Работа двигателя бензинового двигателя: Бензиновый двигатель: устройство,принцип работы,виды ,фото,видео.

Содержание

Бензиновые двигатели и их устройство

Принцип работы бензинового силового агрегата состоит в следующем: небольшой объем топливной смеси поступает в камеру сгорания, там происходит ее воспламенение и взрыв, в результате которого высвобождается определенная энергия. В двигателе внутреннего сгорания таких взрывов происходит несколько сотен за минуту.

Расширяющийся в камере сгорания газ давит на поршень (М), который при помощи шатуна (N) вращает коленвал (P).

Цикл работы бензинового двигателя состоит из следующих этапов:

• Впускной такт. В этот момент начинается движение поршня вниз, происходит открытие впускного клапана. В цилиндр поступает топливовоздушная смесь.

• Сжатие. Поршень начинает двигаться вверх, тем самым сжимает смесь в цилиндрах, что необходимо для выделения большей энергии при последующем взрыве.

• Рабочий такт. Когда поршень поднимается до верхней мертвой точки в цилиндре, в работу включается свеча зажигания и поджигает топливную смесь. После взрыва поршень движется уже вниз.

• Выпускной такт. После достижения поршнем крайней нижней точки, происходит открытие выпускного клапана, через который продукты сгорания и уходят из камеры.

После выхода продуктов сгорания начинается новый цикл работы ДВС.

Результат работы силового агрегата – получение вращательного движения, которое оптимально подходит для проворота колес машины. Достигается это за счет использования коленчатого вала, который и преобразует линейную энергию во вращение. 

 

Устройство и основные детали бензиновых ДВС  

Цилиндр – важнейшая часть бензинового мотора, в котором происходит движение поршня, вызванное взрывом топливной смеси. В описанном выше примере речь идет об одном цилиндре. Такое устройство может иметь двигатель моторной лодки или сенокосилки. В моторах же автомобилей цилиндров больше – три, четыре, пять, шесть, восемь, двенадцать и более.

Расположение цилиндров в ДВС может быть следующим:

— рядным:

2

— V-образным:

3

— оппозитным (цилиндры горизонтально располагаются друг напротив друга):

4

Каждое расположение цилиндров имеет свои плюсы и минусы, из которых складывается характеристики тех или иных двигателей и затраты на их производство.

Поршень (М). Эта деталь выполнена в виде металлического цилиндра, двигается вверх-вниз внутри цилиндра уже двигателя.

Клапаны. Могут быть впускными (A) и выпускными (J). Открываются они в различные такты работы двигателя. Через впускные подается топливовоздушная смесь, через выпускные выходят выхлопные газы. В моменты сжатия и сгорания топлива все клапаны закрыты.

Свечи зажигания (К). С их помощью подается искра, которая необходима для воспламенения топлива. Правильная работа двигателя подразумевает точный момент подачи искры (раннее или позднее зажигание – неисправности). На каждый цилиндр двигателя приходится минимум одна свеча.

Поршневые кольца (М). Являются скользящим уплотнением между поршнем и стенкой цилиндра.

С их помощью выполняются следующие функции:

• топливовоздушная смесь не проникает из камеры сгорания в картер во время работы ДВС;

• препятствуют проникновению моторного масла из картера в камеры сгорания.

В автомобилях, страдающих повышенным расходом масла, его угар в 90% случаев происходит из-за износа поршневых колец. Понять, что кольца изношены можно замеряв компрессию двигателя на СТО. Но, стоит понимать, что в случае закоксовки маслосъемных колец компрессионные кольца могут быть в порядке, а значит — и компрессия будет в норме, хотя кольца уже пора менять.

Коленчатый вал (Р). С его помощью поступательные движения поршней преобразуются во вращательное движение. К коленвалу крепится маховик, который необходим для запуска двигателя — бендикс стартера своими зубьями вращает именно его венец. К маховику крепится и корзина сцепления. На другом конце коленчатого вала находится шкив. Шкив вращает посредством ременной или цепной передачи привод ГРМ. Некоторые конструкции двигателей имеют дополнительные шкивы, которые используются для вращения навесного оборудования.

Картер (G). В нем находится коленвал и некоторое количество моторного масла.

Шатун (N). Служит для соединения между собой коленвала и поршня.

Распределительный вал (I). Его задача заключается в своевременном открытии и закрытии выпускных и впускных клапанов.

Гидравлические компенсаторы (на схеме не обозначены). Применяются не на всех моторах, служат для автоматической регулировки зазора между распределительным валом и клапанами. В случае же их отсутствия, зазор регулируется при помощи специальных шайб, и проводить эту процедуру необходимо на СТО на определенном пробеге двигателя.

Блок цилиндров (F). Самая большая часть двигателя, его основа. Может быть как чугунным, так и алюминиевым. Верхняя часть блока содержит головку (D) и клапанную крышку (B). Рабочие отверстия блока это и есть цилиндры двигателя. 

 

Навесное оборудование. 

На вышеуказанной схеме оно не обозначено, но стоит чуть подробнее описать его. Все навесное оборудование состоит из отдельных самостоятельных устройств или элементов различных систем. Это, прежде всего:

Генератор. Служит для превращения механической энергии в электрическую, необходимую для питания бортовой сети автомобиля и зарядки АКБ. Заведенный автомобиль питает свою электронику от генератора.

Стартер. Пуск автомобиль осуществляется с его помощью.

Инжектор или карбюратор. Эти устройства служат для приготовления топливовоздушной смеси. Карбюратор уже не используется на относительно новых автомобилях. Теперь производители используют топливную рампу с форсунками и инжектор.

ТНВД. Топливный насос высокого давления используется и на некоторых бензиновых двигателях. Его задача – нагнетать под давлением определенное количество топлива и регулировать момент и количество его подачи.

Турбокомпрессор (турбина). Осуществляет принудительную подачу воздуха в цилиндры, чем увеличивает его мощность.

Водяной насос (помпа) системы охлаждения. Отвечает за циркуляцию антифриза по системе. Стоит отметить и термостат системы охлаждения, который пускает антифриз по малому или большому кругу (в зависимости от степени нагрева ОЖ).

Компрессор кондиционера. Отвечает за циркуляцию хладагента в системе кондиционирования.

Насос ГУР (гидроусилителя руля). Перемещает жидкость ГУР по системе рулевого управления.

Различные датчики, регуляторы и устройства.

Датчики давления масла, массового расхода воздуха (ДМРВ), РХХ (регулятор холостого хода), положения дроссельной заслонки, сама дроссельная заслонка, ДПКВ (датчик положения коленвала), ДПРВ (датчик положения распредвала) и т.д. Вышеуказанные устройства контролируют работу силового агрегата, корректируют подачу воздуха, передают информацию на различные ЭБУ и приборную панель.

  

Классификация бензиновых ДВС 

Кроме вышеуказанной классификации бензиновых автомобильных двигателей по расположению цилиндров они могут различаться и по:

• Способу смесеобразования (инжекторные и карбюраторные).

• По количеству цилиндров (четырех, восьми и т.д.).

• По степени сжатия (высокой или низкой степени).

• С турбонаддувом и без наддува.

• Роторные двигатели. Не получили распространения, употребляются на единичных моделях авто (например, автомобили Mazda серии RX).

Про разновидности компоновок двигателей можно узнать ЗДЕСЬ.

 

Срок службы и капитальный ремонт бензиновых моторов 

Чаще всего эти вопросом задаются автомобилисты, приобретающие машину на вторичном рынке. Никто не хочет «попасть» на скорый капремонт или вовсе на замену мотора в ближайшем будущем. Так какой же ресурс современного бензинового ДВС?

До сих пор на слуху многих автолюбителей информация о старых сверхнадежных импортных двигателях («миллионниках»), которые могут легко отходить до капитального ремонта 300-500 тысяч км, а после него – еще столько же.

Теперь же ситуация в корне поменялась. Современные производители (особенно бюджетных авто) не ставят своей целью максимального увеличения ресурса двигателя выпускаемых моделей. Да и цена автомобилей с такими силовыми агрегатами вышла бы из категории «бюджетной».

К тому же, многие недорогие ДВС не имеют ремонтных запчастей, а значит капитальный из ремонт с расточкой цилиндров, шлифовкой головы и т.д. провести не представляется возможным.

Ресурс современных бензиновых двигателей это 150-300 тысяч, после чего некоторые из них можно «капиталить», а некоторые придется и вовсе — менять.

На продолжительность работы ДВС не последнее влияние оказывает качество технического обслуживания и стиль вождения того или иного водителя (кто-то любит крутить холодный мотор до отсечки, кто-то подолгу греет двигатель на холостых оборотах, что также вредно и т.д.).

Современная тенденция увеличения мощности двигателя без изменения его объема привела к использованию турбонаддува. Небольшой легкий двигатель с турбонагнетателем работает постоянно с повышенной нагрузкой, что способствует его быстрому износу. Стоит понимать, что при прочих равных ресурс атмосферного ДВС выше, чем у такого же, но с турбиной. Роторные двигатели и вовсе служат всего 80-120 тысяч км. Одно можно сказать точно – чем меньше «лошадей» снято с кубического см мотора, тем больше его ресурс.

 

Устройство двигателя внутреннего сгорания в видео:

Как работает двигатель?

Двигатель автомобиля может выглядеть как большая запутанная мешанина металлических частей, трубок и проводов для непосвященных. В то же время двигатель — это «сердце» почти любого автомобиля — 95% всех машин работают на двигателе внутреннего сгорания.

В этой статье мы обсудим работу двигателя внутреннего сгорания: его общий принцип, изучим конкретные элементы и фазы работы двигателя, узнаем, как именно потенциальная топлива преобразуется во вращательную силу, и постараемся ответить на следующие вопросы: как работает двигатель внутреннего сгорания, какие бывают двигатели и их типы и что означают те или иные параметры и характеристики двигателя? И, как всегда, всё это просто и доступно, как дважды два.

Главная цель бензинового двигателя автомобиля заключается в преобразовании бензина в движение, чтобы Ваш автомобиль мог двигаться. В настоящее время самый простой способ создать движение от бензина — это попросту сжечь его внутри двигателя. Таким образом, автомобильный «движок» является двигателем внутреннего сгорания — т.е. сгорание бензина происходит внутри него.

Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели являются одной из форм, а газотурбинные — совсем другой. Каждый из них имеет свои преимущества и недостатки.

Ну, как Вы заметите, раз существует двигатель внутреннего сгорания, то должен существовать и двигатель внешнего сгорания. Паровой двигатель в старомодных поездах и пароходах как раз таки и является лучшим примером двигателя внешнего сгорания. Топливо (уголь, дерево, масло, любое другое) в паровой машине горит вне двигателя для создания пара, и пар создаёт движение внутри двигателя. Разумеется, двигатель внутреннего сгорания является намного более эффективным (как минимум потребляет гораздо меньше топлива на километр пути автомобиля), чем внешнего сгорания, кроме того, двигатель внутреннего сгорания намного меньше по размерам, чем эквивалентный по мощности двигатель внешнего сгорания. Это объясняет, почему мы не видим ни одного автомобиля, похожего на паровоз.

А теперь давайте посмотрим более подробно, как же работает двигатель внутреннего сгорания.

Как работает двигатель?

Давайте рассмотрим принцип, лежащий в любом возвратно-поступательном движении двигателя внутреннего сгорания: если Вы поместите небольшое количество высокоэнергичного топлива (например, бензина) в небольшое закрытое пространство и зажжёте его (это топливо), то выделится невероятное количество энергии в виде расширяющегося газа. Вы можете использовать эту энергию, к примеру, для приведения в движение картофелины. В этом случае энергия преобразуется в движение этой картофелины. Например, если Вы в трубу, у которой один конец плотно закрыт, а другой — открыт, нальёте немного бензина, а затем засунете картофелину и подожжёте бензин, то его взрыв спровоцирует приведение в движение этой картофелины за счёт выдавливания её взрывающимся бензином, таким образом, картофелина подлетит высоко в небо, если Вы направите трубу вверх. Это мы кратко описали принцип действия старинной пушки. Но Вы также можете использовать такую энергию бензина в более интересных целях. Например, если Вы можете создать цикл взрывов бензина в сотни раз в минуту, и если Вы сможете использовать эту энергию в полезных целях, то знайте, что у Вас уже есть ядро ​​для двигателя автомобиля!

Почти все автомобили в настоящее время используют то, что называется четырёхтактным циклом сгорания для преобразования бензина в движение. Четырёхтактный цикл также известен как цикл Отто — в честь Николая Отто, который изобрел его в 1867 году. Итак, вот они, эти 4 такта работы двигателя:

  1. Такт впуска топлива
  2. Такт сжатия топлива
  3. Такт сгорания топлива
  4. Такт выпуска отработавших газов

Вроде бы уже всё понятно из этого, не так ли? Вы можете посмотреть ниже на рисунке, что элемент, который называется поршень, заменяет картошку в описанной нами ранее «картофельной пушке». Поршень соединен с коленчатым валом с помощью шатуна. Только не пугайтесь новых терминов — их, на самом деле не так много в принципе работы двигателя!

На рисунке буквами обозначены следующие элементы двигателя:

A — Распределительный вал
B — Крышка клапанов
C — Выпускной клапан
D — Выхлопное отверстие
E — Головка цилиндра
F — Полость для охлаждающей жидкости
G — Блок двигателя
H — Маслосборник
I — Поддон двигателя
J — Свеча зажигания
K — Впускной клапан
L — Впускное отверстие
M — Поршень
N — Шатун
O — Подшипник шатуна
P — Коленчатый вал

Вот что происходит, когда двигатель проходит свой ​​полный четырёхтактный цикл:

  1. Начальное положение поршня — в самом верху, в этот момент открывается впускной клапан, и поршень движется вниз, таким образом, засасывая в цилиндр приготовленную смесь бензина и воздуха. Это такт впуска. Всего лишь крошечная капля бензина должна смешаться с воздухом, чтобы всё это работало.
  2. Когда поршень достигает своей нижней точки, то впускной клапан закрывается, а поршень начинает перемещаться обратно вверх (бензин оказывается в «западне»), сжимая эту смесь из топлива и воздуха. Сжатие впоследствии сделает взрыв мощнее.
  3. Когда поршень достигает верхней точки своего хода, свеча зажигания испускает искру, порождённую напряжением более десятка тысяч Вольт, чтобы зажечь бензин. Происходит детонация, и бензин в цилиндре взрывается, с невероятной силой толкая поршень вниз.
  4. После того, как поршень снова достигает дна своего хода, настаёт очередь открываться выпускному клапану. Затем поршень движется вверх (это происходит уже по инерции) и отработавшая смесь бензина и воздуха выходит через выхлопное отверстие из цилиндра, чтобы отправиться в своё путешествие до выхлопной трубы и далее в верхние слои атмосферы.

Теперь, когда клапан снова в самом верху, двигатель готов к следующему циклу, так что он всасывает следующую порцию смеси воздуха и бензина, чтобы ещё сильнее раскрутить коленчатый вал, который, собственно и передаёт своё кручение далее через трансмиссию к колёсам. Теперь посмотрите ниже, как работает двигатель во всех своих четырёх тактах.

Более наглядно работу двигателя внутреннего сгорания Вы можете увидеть на двух анимациях ниже:

Как работает двигатель — анимация

Обратите внимание, что движение, которое создаётся работой двигателя внутреннего сгорания, является вращением, в то время как движение, создаваемое «картофельной пушкой», является линейным (прямым). В двигателе линейное движение поршней преобразуется во вращательное движение коленчатого вала. Вращательное движение нам нужно, потому что мы планируем повернуть наши колёса автомобиля.

Теперь давайте посмотрим на все части, которые работают вместе в дружной команде, чтобы это произошло, начиная с цилиндров!

Ядром двигателя является цилиндр с поршнем, который двигается вверх и вниз внутри цилиндра. Двигатель, описанный выше, имеет один цилиндр. Казалось бы, что ещё нужно для автомобиля?! А вот и нет, автомобилю для комфортной езды на нём нужны по меньшей мере ещё 3 таких цилиндра с поршнями и всеми необходимыми этой парочке атрибутами (клапанами, шатунами и так далее), а вот один цилиндр подойдёт разве что для большинства газонокосилок. Посмотрите — ниже на анимации Вы увидите работу 4-хцилиндрового двигателя:

Типы двигателей

Автомобили чаще всего имеют четыре, шесть, восемь и даже десять, двенадцать и шестнадцать цилиндров (последние три варианта устанавливают, в основном на спортивные автомобили и болиды). В многоцилиндровом двигателе все цилиндры, как правило, расположены одним из трёх способов:

  • Рядный
  • V-образный
  • Оппозитный

Вот они — все три типа расположения цилиндров в двигателе:

Рядное расположение 4-х цилиндров

Оппозитное расположение 4-х цилиндров

V-образное расположение 6 цилиндров

Различные конфигурации имеют разные преимущества и недостатки с точки зрения вибрации, стоимости производства и характеристик формы. Эти преимущества и недостатки делают их более подходящими для использования некоторых конкретных транспортных средств. Так, 4-хцилиндровые двигатели редко имеет смысл делать V-образными, таким образом, они обычно рядные; а 8-цилиндровые двигатели делают чаще с V-образным расположением цилиндров.

Теперь давайте наглядно посмотрим, как работает система впрыска топлива, масло и другие узлы в двигателе:

Давайте рассмотрим некоторые ключевые детали двигателя более подробно:

  • Свеча зажигания обеспечивает искру, которая зажигает воздушно-топливную смесь, так, чтобы происходило сгорание. Искра должна произойти в нужное время, чтобы двигатель работал должным образом.
  • Клапаны — впускные и выпускные — также должны открываться в строго нужное время, чтобы впустить воздух и топливо и выпустить отработавшие газы. Обратите внимание, что оба клапана закрыты во время сжатия и сгорания так, что воздушно-топливная смесь плотно «замурована» в цилиндре.
  • Поршень представляет собой цилиндрический кусок металла, который движется вверх и вниз внутри цилиндра.
  • Поршневые кольца. Мы их пока ещё не видели на рисунках, но это довольно часто употребляемая вещь, так как от их износа зависит многое в работе двигателя. Поршневые кольца огибают поршень и упираются во внутреннюю поверхность цилиндра, двигаются вверх/вниз вместе с поршнем и обеспечивают уплотнение между наружным краем поршня и внутренней кромкой цилиндра. Кольца служат двум целям: предотвращают утечку топлива в масляный отстойник во время сжатия и горения и удерживают масло в картере от утечки в область горения, где оно может сгореть из-за невероятно высокой температуры. Большинство автомобилей с такими симптомами как повышенный расход топлива и масла, чёрный дым из глушителя, и с пробегом более 100 тысяч километров, попросту имеют изношенные кольца, которые больше не «запечатывают» поршень должным образом.
  • Шатун соединяет поршень с коленчатым валом. Он может поворачиваться на обоих концах так, что его угол может меняться в то время как поршень движется и когда коленчатый вал поворачивается.
  • Коленчатый вал крутится за счёт движения поршня.
  • Картер окружает коленчатый вал. Он содержит некоторое количество машинного масла, которое собирает на дне отстойника.

А теперь внимание! На основе всего прочитанного посмотрим на полный цикл работы двигателя со всеми его элементами:

Полный цикл работы двигателя

Далее мы узнаем, что может помешать работе двигателя.

Почему двигатель не работает?

Допустим, Вы выходите утром к машине и начинаете её заводить, но она не заводится. Что может быть не так? Теперь, когда Вы знаете, как работает двигатель, можно понять основные вещи, которые могут помешать двигателю завестись. Три фундаментальные вещи могут случиться:

  • Плохая топливная смесь
  • Отсутствие сжатия
  • Отсутствие искры

Да, есть ещё тысячи незначительных вещей, которые могут создать проблемы, но указанная «большая тройка» является чаще всего следствием или причиной одной из них. На основе простого представления о работе двигателя мы можем составить краткий список того, как эти проблемы влияют на двигатель.

Плохая топливная смесь может быть следствием одной из причин:

  • У Вас попросту закончился в баке бензин, и двигатель пытается завестись от воздуха.
  • Воздухозаборник может быть забит, поэтому в двигатель поступает топливо, но ему не хватает воздуха, чтобы сдетонировать.
  • Топливная система может поставлять слишком много или слишком мало топлива в смесь, а это означает, что горение не происходит должным образом.
  • В топливе могут быть примеси (а для российского качества бензина это особенно актуально), которые мешают топливу полноценно гореть.

Отсутствие сжатия — если заряд воздуха и топлива не могут быть сжаты должным образом, процесс сгорания не будет работать как следует. Отсутствие сжатия может происходить по следующим причинам:

  • Поршневые кольца изношены (позволяя воздуху и топливу течь мимо поршня при сжатии)
  • Впускные или выпускные клапаны не герметизируются должным образом, снова открывая течь во время сжатия
  • Появилось отверстие в цилиндре.

Отсутствие искры может быть по ряду причин:

  • Если свечи зажигания или провод, идущий к ним, изношены, искра будет слабой.
  • Если провод повредился или попросту отсутствует или если система, которая посылает искру по проводу, не работает должным образом.
  • Если искра происходит либо слишком рано или слишком поздно в цикле, топливо не будет зажжено в нужное время, и это может вызвать всевозможные проблемы.

И вот ещё ряд причин, по которым двигатель может не работать, и здесь мы затронем некоторые детали за пределами двигателя:

  • Если аккумулятор мёртв, Вы не сможете прокрутить двигатель, чтобы запустить его.
  • Если подшипники, которые позволяют коленчатому валу свободно вращаться, изношены, коленчатый вал не сможет провернуться, поэтому двигатель не сможет работать.
  • Если клапаны не открываются и не закрываются в нужное время или не работают вообще, воздух не сможет войти, а выхлопы — выйти, поэтому двигатель опять-таки не сможет работать.
  • Если кто-то из хулиганских побуждений засунул картошку в выхлопную трубу, выпускные газы не смогут выйти из цилиндра, и двигатель снова не будет работать.
  • Если в двигателе недостаточно масла, то поршень не сможет двигаться вверх и вниз свободно в цилиндре, что затруднит или сделает невозможным нормальную работу двигателя.

В правильно работающем двигателе все эти факторы находятся в пределах допуска. Как Вы можете видеть, двигатель имеет ряд систем, которые помогают ему сделать свою работу преобразования топлива в движение безупречной. Мы же рассмотрим различные подсистемы, используемые в двигателях, в следующих разделах.

Большинство подсистем двигателя может быть реализована с использованием различных технологий, и лучшие технологии могут значительно повысить производительность двигателя. Вот почему развитие автомобилестроения продолжается высочайшими темпами, ведь конкуренция среди автоконцернов достаточно велика, чтобы вкладывать большие деньги в каждую дополнительно выжатую лошадиную силу из двигателя при том же объёме. Давайте посмотрим на различные подсистемы, используемые в современных двигателях, начиная с работы клапанов в двигателе.

Как работают клапаны?

Система клапанов состоит из, собственно, клапанов и механизма, который открывает и закрывает их. Система открытия и закрытия их называется распределительным валом. Распределительный вал имеет специальные детали на своей оси, которые движут клапаны вверх и вниз, как показано на рисунке ниже.

Большинство современных двигателей имеют то, что называют накладными кулачками. Это означает, что вал расположен над клапанами, как Вы видите на рисунке. Старые двигатели используют распределительный вал, расположенный в картере возле коленчатого вала. Распределительный вал, крутясь, двигает кулачок выступом вниз таким образом, чтобы он продавливал клапан вниз, создавая зазор для прохода топлива или выпуска отработавших газов. Ремень ГРМ или цепной привод приводится в движение коленчатым валом и передаёт кручение от него к распределительному валу так, что клапаны находятся в синхронизации с поршнями. Распределительный вал всегда крутится в один-два раза медленнее коленчатого вала. Многие высокопроизводительные двигатели имеют четыре клапана на цилиндр (два для приёма топлива внутрь и два для вытяжки отработавшей смеси).

Как работает система зажигания?

Система зажигания производит заряд высокого напряжения и передаёт его к свечам зажигания с помощью проводов зажигания. Заряд сначала проходит к катушке зажигания (эдакому дистрибьютору, который распределяет подачу искры по цилиндрам в определённое время), которую Вы можете легко найти под капотом большинства автомобилей. Катушка зажигания имеет один провод, идущий в центре и четыре, шесть, восемь проводов или больше в зависимости от количества цилиндров, которые выходят из него. Эти провода зажигания отправляют заряд к каждой свече зажигания. Двигатель получает такую искру по времени таким образом, что только один цилиндр получает искру от распределителя в один момент времени. Такой подход обеспечивает максимальную гладкость работы двигателя.

Как работает охлаждение?

Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники — ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.

Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.

Как работает пусковая система?

Повышение производительности Вашего двигателя является большим делом, но важнее то, что именно происходит, когда Вы поворачиваете ключ, чтобы запустить его! Пусковая система состоит из стартера с электродвигателем. Когда Вы поворачиваете ключ зажигания, стартер крутит двигатель на несколько оборотов, чтобы процесс горения начал свою работу, и остановить его смог только поворот ключа в обратную сторону, когда перестаёт подаваться искра в цилиндры, и двигатель, таким образом, глохнет.

Стартер же имеет мощный электродвигатель, который вращает холодный двигатель внутреннего сгорания. Стартер — это всегда довольно мощный и, следовательно, «кушающий» ресурсы аккумулятора двигатель, ведь должен преодолеть:

  • Всё внутреннее трение, вызванное поршневыми кольцами и усугубляющееся холодным непрогретым маслом.
  • Давление сжатия любого цилиндра (цилиндров), которое происходит в процессе такта сжатия.
  • Сопротивление, оказываемое открытием и закрытием клапанов распределительным валом.
  • Все иные процессы, непосредственно связанные с двигателем, в том числе сопротивление водяного насоса, масляного насоса, генератора и т.д.

Мы видим, что стартеру необходимо очень много энергии. Автомобиль чаще всего использует 12-вольтовую электрическую систему, и сотни ампер электричества должны поступать в стартер.

Как работает впрыск и смазочная система?

Когда дело доходит ежедневного обслуживания автомобиля, Ваша первая забота, вероятно, состоит в проверке количества бензина в Вашем автомобиле. А как бензин попадает из топливного бака в цилиндры? Топливная система двигателя высасывает бензин из бака с помощью топливного насоса, который находится в баке, и смешивает его с воздухом так, чтобы надлежащая смесь воздуха и топлива могла протекать в цилиндры. Топливо поставляется в одном из трёх распространённых способов: карбюратор, впрыск топлива и система непосредственного впрыска топлива.

Карбюраторы на сегодняшний день сильно устарели, и их не помещают в новые модели автомобилей. В инжекторном двигателе нужное количество топлива впрыскивается индивидуально в каждый цилиндр либо прямо в впускной клапан (впрыск топлива) или непосредственно в цилиндр (непосредственный впрыск топлива).

Масло также играет важную роль. Идеально и правильно смазанная система гарантирует, что каждая подвижная часть в двигателе получает масло так, что она может легко перемещаться. Две главные части, нуждающиеся в масле — это поршень (а, точнее, его кольца) и любые подшипники, которые позволяют таким элементам, как коленчатый и другие валы, свободно вращаться. В большинстве автомобилей масло всасывается из масляного поддона масляным насосом, проходит через масляный фильтр для удаления частиц грязи, а затем брызгается под высоким давлением на подшипники и стенки цилиндра. Затем масло стекает в отстойник, где снова собирается, и цикл повторяется.

Система выпуска отработавших газов

Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой ​​автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей ​​выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.

Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора. Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле, фарам, стеклоочистителям, электрическим стеклоподъемникам, приводу сидений, бортовому компьютеру и ещё множеству устройств) посредством проводки автомобиля.

Теперь можно сказать, что Вы знаете всё об основах главных подсистем двигателей!

Принцип работы бензинового двигателя

Бензиновые двигатели и их устройство

Принцип работы бензинового силового агрегата состоит в следующем: небольшой объем топливной смеси поступает в камеру сгорания, там происходит ее воспламенение и взрыв, в результате которого высвобождается определенная энергия.

В двигателе внутреннего сгорания таких взрывов происходит несколько сотен за минуту.

Расширяющийся в камере сгорания газ давит на поршень (М), который при помощи шатуна (N) вращает коленвал (P).

Цикл работы бензинового двигателя состоит из следующих этапов:

• Впускной такт. В этот момент начинается движение поршня вниз, происходит открытие впускного клапана. В цилиндр поступает топливовоздушная смесь.

• Сжатие. Поршень начинает двигаться вверх, тем самым сжимает смесь в цилиндрах, что необходимо для выделения большей энергии при последующем взрыве.

• Рабочий такт. Когда поршень поднимается до верхней мертвой точки в цилиндре, в работу включается свеча зажигания и поджигает топливную смесь. После взрыва поршень движется уже вниз.

• Выпускной такт. После достижения поршнем крайней нижней точки, происходит открытие выпускного клапана, через который продукты сгорания и уходят из камеры.

После выхода продуктов сгорания начинается новый цикл работы ДВС.

Результат работы силового агрегата – получение вращательного движения, которое оптимально подходит для проворота колес машины. Достигается это за счет использования коленчатого вала, который и преобразует линейную энергию во вращение.

Устройство и основные детали бензиновых ДВС

Цилиндр – важнейшая часть бензинового мотора, в котором происходит движение поршня, вызванное взрывом топливной смеси. В описанном выше примере речь идет об одном цилиндре. Такое устройство может иметь двигатель моторной лодки или сенокосилки. В моторах же автомобилей цилиндров больше – три, четыре, пять, шесть, восемь, двенадцать и более.

Расположение цилиндров в ДВС может быть следующим:

— рядным:

— V-образным:

— оппозитным (цилиндры горизонтально располагаются друг напротив друга):

Каждое расположение цилиндров имеет свои плюсы и минусы, из которых складывается характеристики тех или иных двигателей и затраты на их производство.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.

Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Принцип работы ДВС 

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье «как устроены бензиновые и дизельные двигатели».

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Как работает двигатель автомобиля? Причины поломок и неисправностей

Расскажем, как работает двигатель внутреннего сгорания, какие неполадки возникают в работе и как продлить его жизненный цикл

Цель работы двигателя — преобразование бензина в движущую силу. Преобразовывается бензин в движущую силу путем сжигания внутри движка. Поэтому он и называется двигателем внутреннего сгорания.

Запомните две вещи:

1. Есть разные виды двигателей внутреннего сгорания:

  • бензиновый двигатель;
  • дизельный;
  • дизель с турбонаддувом;
  • газовый двигатель.

Различия у них в принципах работы, плюс у каждого свои преимущества и недостатки.

2. Бывают еще двигатели внешнего сгорания. Лучший пример — паровой двигатель парохода. Топливо (уголь, дерево, масло) сгорает вне двигателя, образовывая пар, который и есть движущая сила. Двигатель внутреннего сгорания более эффективен, так как ему нужно меньше топлива на километр пути. К тому же он намного меньше эквивалентного двигателя внешнего сгорания. Это объясняет, почему на улицах сейчас не ездят автомобили с паровыми движками.

Как работает система внутреннего сгорания двигателя

Принцип, лежащий в основе работы любого поршневого двигателя внутреннего сгорания: если вы поместите небольшое количество высокоэнергетического топлива, например бензина, в небольшое замкнутое пространство, и зажжете его, то при сгорании в виде газа высвобождается большое количество энергии. Если создать непрерывный цикл маленьких взрывов, скорость которых будет, например, сто раз в минуту, и пустить получаемую энергию в правильное русло, то получим основу работы двигателя.

Автомобили используют «четырехтактный цикл сгорания» для преобразования бензина в движущую силу четырех колесного автомобиля. Четырехтактный подход также известен как цикл Отто, в честь Николауса Отто, который изобрел его в 1867 году. К четырем тактам относятся:

  • такт впуска;
  • такт сжатия;
  • такт горения;
  • такт выведения продуктов сгорания.

Поршень двигателя в этой истории главный «работяга». Он своеобразно заменяет картофельный снаряд в картофельной пушке. Поршень соединен с коленчатым валом-шатуном. Как только коленчатый вал начинает вращение, происходит эффект «разряда пушки». Рассмотрим цикл сгорания бензина в цилиндре подробнее.

  • Поршень находится сверху, затем открывается впускной клапан и поршень опускается, при этом движок набирает полный цилиндр воздуха и бензина. Это такт называется тактом впуска. Для начала работы достаточно смешать воздух с небольшой каплей бензина.
  • Затем поршень движется обратно и сжимает смесь воздуха и бензина. Сжатие делает взрыв более мощным.
  • Когда поршень достигает верхней точки, свеча испускает искры, чтобы зажечь бензин. В цилиндре происходит взрыв бензинового заряда, что заставляет поршень опуститься вниз.
  • Как только поршень достигает дна, открывается выхлопной клапан, и продукты сгорания выводятся из цилиндра через выхлопную трубу.

4 такта двигателя

Теперь двигатель готов к следующему такту и цикл повторяется снова и снова.

Теперь рассмотрим составные части автомобильного мотора, работа которых взаимосвязана. Начнем с цилиндров.

Составные части двигателя

составные части двигателя

Схема № 1

Основа двигателя – это цилиндр, в котором вверх-вниз двигается поршень. Двигатель, описанный выше, имеет один цилиндр. Это характерно для большинства газонокосилок, но в автомобильных движках цилиндров четыре, шесть и восемь. В многоцилиндровых моторах цилиндры обычно размещаются тремя способами: а) в один ряд; б) однорядно с наклоном от вертикали; в) V-образным способом; г) плоским способом (горизонтально-оппозитный).

расположение цилиндров

У разных способов расположения цилиндров разные преимущества и недостатки с точки зрения гладкости в работе, производственных издержек и характеристик. Эти преимущества и недостатки делают разные способы расположения цилиндров подходящими для разных видов транспорта.

Свечи зажигания

Свечи зажигания дают искру, которая воспламеняет воздушно-топливную смесь. Искра должна вспыхнуть в нужный момент для безотказной работы двигателя. Если движок начинает работать нестабильно, дергается, слышно что «пыхтит» он сильнее чем обычно, вероятно одна из свечей перестала работать, ее нужно заменить.

Клапаны (см. схему №1)

Впускные и выпускные клапаны открываются, чтобы впустить воздух и топливо и выпустить продукты сгорания. Обратите внимание, оба клапана закрыты в момент сжатия и сгорания топливной смеси, обеспечивая герметичность камеры сгорания.

Поршень

поршень

Поршень – это цилиндрический кусок металла, который движется вверх-вниз внутри цилиндра двигателя.

Поршневые кольца

поршневые кольца

Поршневые кольца обеспечивают герметичность между скользящим внешним краем поршня и внутренней поверхностью цилиндра. У кольца два назначения:

  • Во время тактов сжатия и сгорания кольца не дают утечь воздушно-топливной смеси и выхлопным газам из камеры сгорания.
  • Кольца не дают моторному маслу попасть в зону сгорания, где оно будет уничтожено.

Если автомобиль начинает «подъедать масло» и приходиться подливать его каждые 1000 километров, значит двигатель автомобиля «устал» и поршневые кольца в нем сильно изношены. Такие кольца пропускают масло в цилиндры, где оно сгорает. По всей видимости, такому двигателю требуется капитальный ремонт.

Шатун

шутун

Шатун соединяет поршень с коленчатым валом. Он может вращаться в разные стороны и с обоих концов, т.к. и поршень и коленчатый вал находятся в движении.

Коленчатый вал (распределительный вал)

коленчатый вал

Схема № 2

Круговыми движениями коленчатый вал заставляет поршень двигаться вверх-вниз.

Маслосборник

Маслосборник окружает коленчатый вал и содержит определенное количество масла, которое собирается в нижней его части (в масляном поддоне).

Причины неполадок и перебоев в двигателе

Если автомобиль с утра не заводится

Если машина с утра не заводится, этому есть три основных причины:

  • плохая топливная смесь;
  • отсутствие сжатия;
  • отсутствие искры.
Плохая топливная смесь — недостаток поступающего воздуха или бензина

Плохая топливная смесь поступает в движок в следующих случаях:

  • Закончился бензин и в двигатель поступает только воздух. Бензин не воспламеняется, сгорания не происходит.
  • Забиты воздухозаборники, и в движок не поступает воздух, который крайне необходим для такта сгорания.
  • В топливе содержатся примеси (например, вода в бензобаке), которые препятствуют горению топлива. Меняйте бензоколонку.
  • Топливная система подает слишком мало или слишком много топлива в смесь, следовательно, горение не происходит должным образом. Если смеси мало, то слабое воспламенения в цилиндре не может прокрутить цилиндр. Если смеси много, то заливает свечи и они не дают искру.

О «залитых» свечах подробнее: если машина не заводится, а бензонасос не перестает подавать топливо в цилиндры, то бензин не воспламеняется, а наоборот «тушит» свечи зажигания. Свечи с «подмоченной репутацией» нормальной искры для воспламенения смеси не дадут. Если открутив свечу обнаружите, что она «мокрая», сильно пахнет бензином — знайте, свечи «залило». Либо подсушите все 4 свечи, выкрутив их и отнеся в теплое помещение, либо посидите в незаведенной машине с нажатой педалью газа — дроссельная заслонка будет открыта и свечи немного подсохнут от поступающего воздуха.

Отсутствие сжатия

Если топливная смесь не сжимается, так как надо, то и не будет требуемого сгорания для работы машины. Отсутствие сжатия возникает по следующим причинам:

  • Поршневые кольца двигателя изношены, поэтому воздушно-топливная смесь просачивается между стенкой цилиндра и поверхностью поршня.
  • Один из клапанов неплотно закрывается, из-за чего смесь вытекает.
  • В цилиндре есть отверстие.

Часто «дырки» в цилиндре появляются в том месте, где верхушка цилиндра присоединяется к самому цилиндру. Между цилиндром и головкой цилиндра есть тонкая прокладка, которая обеспечивает герметичность конструкции. Если прокладка прохудится, то между головкой цилиндра и самим цилиндром образуются отверстия, через которые образуется утечка смеси.

Отсутствие искры

Искра может быть слабой или вообще отсутствовать в случаях:

  • Если свеча зажигания или провод, идущий к ней, изношены, то искра будет слабой.
  • Если провод перерезан или отсутствует вообще, если система, посылающая искры вниз по проводу не работает, как нужно, то искры не будет.
  • Если искра приходит в цикл слишком рано или слишком поздно, топливо не воспламениться в нужный момент, что повлияет на стабильную работу мотора.

Возможны и другие проблемы с двигателем. Например:

  • Если аккумулятор на авто разряжен, то двигатель не сделает ни одного оборота, а автомобиль не заведется.
  • Если подшипники, которые позволяют свободно вращаться коленчатому валу, изношены, коленчатый вал не провернется, а двигатель не запустится.
  • Если клапаны не будут закрываться или открываться в нужный момент цикла, то работа двигателя будет невозможна.
  • Если в автомобиле закончилось масло, поршни не смогут свободно двигаться в цилиндре, и двигатель застопорится.

В исправно — работающем двигателе описанных проблем быть не может. Если они появились, ждите беды.

Если выяснится, что аккумулятор просто разрядился, почитайте, как правильно «прикурить» от другого автомобиля.

Клапанный механизм двигателя и система зажигания

Разберем процессы происходящие в двигателе отдельно. Начнем с клапанного механизма, который состоит из клапанов и механизмов, открывающих и закрывающих проход топливным отходам. Система открытия и закрытия клапанов называется валом. На распределительном валу есть выступы, которые и двигают клапаны вверх и вниз.

Двигатели, в которых вал размещен над клапанами (бывает, что вал размещают внизу), имеют кулачки распредвала, которые регулируют порядок работы цилидров (см. схему №2). Кулачки вала воздействуют на клапаны напрямую или через очень короткие связующие звенья. Эта система настроена так, что клапаны синхронизированы с поршнями. Многие высокоэффективные двигатели имеют по четыре клапана на один цилиндр – два на вход воздуха и два на выход для продуктов сгорания, и такие механизмы требуют два распределительных вала на один блок цилиндров.

Система зажигания создает высоковольтный заряд и передает его на свечи зажигания через провода. Сначала заряд поступает в распределитель, который легко найти под капотом большинства легковых автомобилей. В центр распределителя подключен один провод, а из него выходит четыре, шесть или восемь других бронепроводов, в зависимости от количества цилиндров в двигателе. Эти провода посылают заряд на каждую свечу зажигания. Работа двигателя настроена так, что за один раз только один цилиндр получает заряд от распределителя, что гарантирует максимально плавную работу мотора.

Давайте подумаем, как заводится двигатель, как остывает и как в нем проходит циркуляция воздуха.

Система зажигания двигателя, охлаждения и набора воздуха

система охлаждения воздуха

Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует вокруг цилиндров по специальным проходам, потом для охлаждения, она поступает в радиатор. В редких случаях двигатели автомобиля оснащены воздушной системой. Это делает двигатели легче, но охлаждение при этом менее эффективное. Двигатели с воздушной системой охлаждения, имеют меньший срок службы и меньшую производительность.

Существуют автомобильные двигателя с наддувом. Это когда воздух проходит через воздушные фильтры и попадает прямо в цилиндры. Наддув ставят в атмосферных движках. Для увеличения производительности некоторые двигатели оснащены турбонаддувом. Через турбонаддув воздух, который поступает в двигатель, уже находится под давлением, следовательно, в цилиндр втискивается больше воздушно-топливной смеси. За счет турбонаддува увеличивается мощь движка.

как работает турбонаддув

Повышение производительности автомобиля – это круто, но что же происходит, когда вы проворачиваете ключ в замке зажигания и запускаете автомобиль? Система зажигания состоит из электромотора, или стартера, и соленоида (реле стартера). Когда поворачивается ключ в замке зажигания, стартер вращает двигатель на несколько оборотов, чтобы начался процесс сгорания топлива. Чем мощнее мотор, тем сильнее нужен аккумулятор, чтобы дать ему толчок. Так как запуск двигателя требует много энергии, сотни ампер должны поступить в стартер для его запуска. Соленоид или реле стартера, это тот самый переключатель, который справляется с таким мощным потоком электричества. Когда вы проворачиваете ключ зажигания, соленоид активируется и запускает стартер.

Разберем подсистемы автомобильного мотора, отвечающие за то, что поступает в движок (масло, бензин) и за то, что из него выходит (выхлопные газы).

Смазочные жидкости двигателя, топливная, выхлопная и электрические системы

Каким образом бензин приводит в действие цилиндры? Топливная система двигателя выкачивает бензин из бензобака и смешивает его с воздухом так, чтобы в цилиндр поступила правильная воздушно-бензиновая смесь. Топливо подается тремя распространенными способами: смесеобразованием, впрыском через топливный порт и прямым впрыском.

При смесеобразовании карбюратор добавляет бензин в воздух, как только воздух попадает в двигатель.

В инжекторном движке топливо впрыскивается индивидуально в каждый цилиндр либо через впускной клапан (впрыск через топливный порт), либо напрямую в цилиндр. Называется «прямой впрыск».

смешанный и прямой впрыск

Масло также играет важную роль в двигателе. Смазочная система не допускает трения жестких стальных частей друг об друга — запчасти не изнашиваются, стальная стружка внутри двигателя не летает. Поршни и подшипники – позволяющие свободно вращаться коленчатому и распределительному валу – основные части, требующие смазки в системе. В большинстве автомобилей, масло засасывается через масляный насос из маслосборника, проходит через фильтр, чтобы очиститься от песка и выработки механизмов мотора, затем, под высоким давлением впрыскивается в подшипники и на стенки цилиндра. Затем масло стекает в маслосборник, и цикл повторяется снова.

Теперь вы знаете больше о том, что поступает в двигатель автомобиля. Но давайте поговорим и том, что выходит из него. Выхлопная система крайне проста и состоит из выхлопной трубы и глушителя. Если бы не было глушителя, в салоне автомобиля были бы слышны все мини-взрывы, происходящие в двигателе. Глушитель гасит звук, а выхлопная труба выводит продукты сгорания из автомобиля.

Электрическая система автомобиля, запускающая машину

Электрическая система состоит из аккумулятора и генератора переменного тока. Генератор переменного тока подключен проводами к двигателю и вырабатывает электроэнергию, необходимую для подзарядки аккумулятора. В незаведенной машине при повороте ключа зажигания за питание всех систем отвечает аккумулятор. В заведенной — генератор. Аккумулятор нужен только, чтобы запустить электрическую систему машины, дальше в работу вступает генератор, который вырабатывает энергию за счет работы двигателя. Аккумулятор в это время заряжается от генератора и «отдыхает». Подробнее об аккумуляторах здесь.

Как увеличить производительность двигателя и улучшить его работу

Любой двигатель можно заставить работать лучше. Работа автопроизводителей над увеличением мощности движка и одновременным уменьшением расхода топлива, не прекращается ни на секунду.

Увеличение объема двигателя. Чем больше объем двигателя, тем больше его мощность, т.к. за каждый оборот двигатель сжигает больше топлива. Увеличение объема двигателя происходит за счет увеличения либо объема цилиндров, либо их количества. Сейчас 12 цилиндров – это предел.

Увеличение степени сжатия. До определенного момента, увеличение степени сжатия смеси увеличивает получаемую энергию. Однако, чем больше сжимается воздушно-топливная смесь, тем выше вероятность того, что она воспламенится раньше, чем свеча зажигания даст искру. Чем выше октановое число бензина, тем меньше вероятность преждевременного воспламенения. Поэтому высокопроизводительные автомобили нужно заправлять высокооктановым бензином, так как двигатели таких машин используют очень высокий коэффициент сжатия для получения большей мощности.

Большее наполнение цилиндра. Если в цилиндр втиснуть больше воздуха и топлива, то на выходе получается больше энергии. Турбонаддувы и наддувы нагнетают давление воздуха и эффективно втискивают его в цилиндр.

Охлаждение поступающего воздуха. Сжатие воздуха повышает его температуру. Тем не менее, хотелось бы иметь как можно более холодный воздух в цилиндре, т.к. чем выше температура воздуха, тем больше он расширяется при горении. Поэтому многие системы турбонаддува и наддува имеют интеркулер. Интеркулер – это радиатор, через который проходит сжатый воздух и охлаждается, прежде чем попасть в цилиндр.

Сделать меньшим вес деталей. Чем легче запчасти двигателя, тем лучше он работает. Каждый раз, когда поршень меняет направление, он тратит энергию на остановку. Чем легче поршень, тем меньше энергии он потребляет. Двигатель из углеродного волокна еще не придумали, но как делают этот материал, читайте тут на Zap-Online.ru.

Впрыск топлива. Система впрыска очень точно дозирует топливо поступающее в каждый цилиндр, повышая производительность двигателя и экономя топливо.

Теперь вы знаете, как работает двигатель автомобиля, а также причины его основных неполадок и перебоев. Если остались вопросы или есть замечания по изложенному материалу, добро пожаловать в комментарии.

Бензиновый двигатель автомобилей: типы и принцип работы

Бензиновый двигатель представляет собой силовой агрегат со встроенной камерой сгорания, в которой энергия сгорания топлива преобразуется в механическую работу. Такие моторы относятся к классу двигателей внутреннего сгорания.

Историческая справка

Первый двигатель внутреннего сгорания (ДВС) построил в 1807 году изобретатель из Швейцарии François Isaac de Rivaz. Правда, работал этот двигатель не на бензине, а на газообразном водороде, однако был оснащен шатунно-поршневой группой и устройством искрового зажигания.

В дальнейшем этот ДВС усовершенствовали француз Jean Joseph Etienne Lenoir (1860) и немецкий инженер Nicolaus August Otto, который в 1863 году создал атмосферный двухтактный, а в 1876 году и четырехтактный ДВС.

Первый бензиновый карбюраторный двигатель внутреннего сгорания разработали немецкие инженеры Gottlieb Wilhelm Daimler и August Wilhelm Maybach, которые использовали его при создании первых мотоциклов (1885) и автомобилей (1886). Примерно в эти же годы первый карбюраторный ДВС был создан и в России. Построил его Огнеслав Костович (1851-1916).

В дальнейшем никаких принципиальных отличий в схему построения ДВС внесено не было, а усилия большого количества инженеров со всего мира были направлены на создание высокотехнологичных бензиновых двигателей достаточно большой мощности с малым потребления топлива.

Виды бензиновых ДВС

В настоящее время на автомобилях можно встретить бензиновые двигатели, оснащенные:

  1. карбюратором, где происходит смешивание топлива с воздухом. Затем подготовленная смесь подается в цилиндры, где поджигается искрой, которая проскакивает между электродами свечей зажигания.
  2. инжекторной системой смесеобразования, которая осуществляется путем впрыска топливно-воздушной смеси во впускной коллектор или непосредственно в цилиндры двигателя. Для этого используются специальные форсунки. При этом существуют системы:
  • моновпрыска топлива (одноточечные).
  • распределенного впрыска топлива (многоточечные).

Управление форсунками и дозирование топлива может осуществляться при помощи:

  1. Рычажно-плунжерного механизма – в механических системах впрыска.
  2. Специального блока управления ЭБУ – в электронных системах впрыска.
  3. Системой наддува, когда впуск горючей смеси или воздуха происходит под давлением, нагнетаемым турбокомпрессором. При этом значительно увеличивается мощность и коэффициент полезного действия силового агрегата.

Особое место среди бензиновых двигателей занимает роторно-поршневой двигатель (двигатель Ванкеля). Он отличается от остальных ДВС отсутствием отдельного механизма газораспределения, что значительно упрощает конструкцию мотора.

Принцип действия роторно-поршневого силового агрегата заключается в том, что за один оборот он выполняет три полных рабочих цикла. Происходит это за счет того, что в основе двигателя лежит оригинальный треугольный ротор, который, вращаясь в камере особой формы, выполняет функции поршня, коленчатого вала и механизма газораспределения. По ряду причин конструктивного и технологического характера этот бензиновый мотор широкого распространения не получил.

В автомобилестроении чаще всего используются рядные четырехцилиндровые четырехтактные бензиновые силовые агрегаты, отличающиеся от остальных:

  • большим ресурсом;
  • экологичным выхлопом;
  • экономичностью;
  • низким уровнем шума.

Принцип действия и устройство

Принцип действия любого бензинового двигателя заключается в том, что при воспламенении небольшого количества предварительно сжатой смеси высокоэнергетического топлива и воздуха в замкнутом пространстве камеры сгорания происходит выделение большого количества энергии, которого достаточно для перемещения поршня.

При этом прямолинейное, поступательно-возвратное движение поршня при помощи кривошипно-шатунного механизма преобразуется во вращательное движение коленчатого вала, который и приводит в движение транспортное средство.

К основным элементам бензиновых ДВС, которые принимают непосредственное участие в процессе преобразования тепловой энергии в механическую, относятся:

  • впускные и выпускные клапаны газораспределительного механизма;
  • поршни;
  • шатуны;
  • коленчатый вал;
  • свечи зажигания.

Кроме того, любой бензиновый двигатель оснащается вспомогательными системами, которые обеспечивают его эффективную работу. К ним относятся:

  1. Система зажигания – обеспечивает поджигание топливно-воздушной смеси. Бывает контактной, бесконтактной, микропроцессорной.
  2. Система запуска ДВС – включает в себя стартер и аккумулятор. Используется для того, чтобы принудительно провернуть коленчатый вал при запуске первого рабочего цикла двигателя. Для запуска бензиновых двигателей малой мощности часто используют мускульную силу человека (кик-стартер).
  3. Система приготовления горючей смеси – обеспечивает приготовление и подачу топливно-воздушной смеси в камеры сгорания цилиндров мотора.
  4. Система выпуска выхлопных газов – отвечает за своевременное удаление продуктов сгорания горючей смеси из цилиндров двигателя.
  5. Система охлаждения – служит для отвода тепла от нагревающихся элементов мотора и обеспечивает заданный температурный режим его работы. Охлаждение может осуществляться при помощи воздуха, специальной охлаждающей жидкости, комбинированного способа.
  6. Система смазки – предназначена для подачи моторного масла к трущимся поверхностям ДВС. Также используется для удаления нагара и продуктов износа трущихся поверхностей. Моторное масло может подаваться к местам смазки как методом разбрызгивания, так и под давлением.

Существуют также комбинированные системы смазки, в которых моторное масло смешивается в определенных пропорциях с горючей смесью. Оснащаются ими двигатели бензиновые малой мощности для моторных лодок, средств малой механизации и пр.

Двигатель внутреннего сгорания: устройство, принцип работы

Двигатель внутреннего сгорания – это такой тип мотора, у которого топливо воспламеняется в рабочей камере внутри, а не в дополнительных внешних носителях. ДВС преобразует давление от сгорания топлива в механическую работу.

Из истории

Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.

В этом двигателе уже было искровое зажигание, он был шатунный, с поршневой системой, то есть, это своего рода прообраз современных моторов.

Спустя 57 лет соотечественник де Риваза Этьен Ленуар изобрел уже двухтактный агрегат. Этот агрегат имел горизонтальное расположение своего единственного цилиндра, наличествовал искровым зажиганием и работал на смеси светильного газа с воздухом. Работы двигателя внутреннего сгорания в то время хватало уже на малогабаритные лодки.

Еще через 3 года конкурентом стал немец Николаус Отто, детищем которого стал уже четырехтактный атмосферный мотор с вертикальным цилиндром. КПД в данном случае увеличился на 11%, в отличие от кпд двигателя внутреннего сгорания Риваза, он стал 15-процентным.

Чуть позже, в 80-х годах этого же столетия, российский конструктор Огнеслав Костович впервые запустил агрегат карбюраторного типа, а инженеры из Германии Даймлер и Майбах усовершенствовали его в облегченный вид, который стал устанавливаться на мото- и автотехнике.

В 1897 году Рудольф Дизель выводит в свет ДВС по типу воспламенения от сжатия, используя нефть в качестве топлива. Этот вид двигателя стал родоначальником дизельных моторов, использующихся по настоящее время.

Виды двигателей

  • Бензиновые моторы карбюраторного типа работают от топлива, смешанного с воздухом. Смесь эта предварительно подготавливается в карбюраторе, далее поступает в цилиндр. В нем смесь сжимается, воспламеняется искрой от свечи зажигания.
  • Инжекторные двигатели отличаются тем, что смесь подается напрямую от форсунок во впускной коллектор. У этого вида имеются две системы впрыска – моновпрыск и распределенный впрыск.
  • В дизельном моторе воспламенение происходит без свечей зажигания. В цилиндре данной системы находится воздух, разогретый до температуры, которая превышает температуру воспламенения топлива. В этот воздух через форсунку подается топливо, и вся смесь воспламеняется по образу факела.
  • Газовый ДВС имеет принцип теплового цикла, топливом может являться как природный газ, так и углеводородный. Газ поступает в редуктор, где давление его стабилизируется в рабочее. Затем попадает в смеситель, а в итоге воспламеняется в цилиндре.
  • Газодизельные ДВС работают по принципу газовых, только в отличие от них, смесь воспламеняется не свечой, а дизельным топливом, впрыск которого происходит также, как и у обычного дизельного мотора.
  • Роторно-поршневые типы двигателей внутреннего сгорания принципиально отличаются от остальных наличием ротора, который вращается в камере, имеющей форму восьмерки. Чтобы понять, что такое ротор, нужно усвоить, что в данном случае ротор выполняет роль поршня, ГРМ и коленчатого вала, то есть специальный механизм ГРМ здесь полностью отсутствует. При одном обороте происходит сразу три рабочих цикла, что сравнимо с работой двигателя с шестью цилиндрами.

Принцип работы

В настоящее время преобладает четырехтактный принцип работы двигателя внутреннего сгорания. Это объясняется тем, что поршень в цилиндре проходит четыре раза – вверх и вниз одинаково по два.

Как работает двигатель внутреннего сгорания:

  1. Первый такт – поршень при движении вниз втягивает топливную смесь. При этом клапан впуска находится в открытом виде.
  2. После достижения поршнем нижнего уровня, он двигается вверх, сжимая горючую смесь, которая, в свою очередь, принимает объем камеры сгорания. Этот этап, включенный в принцип работы двигателя внутреннего сгорания, является вторым по счету. Клапаны, при этом, находятся в закрытом виде, и чем плотнее, тем качественнее происходит сжатие.
  3. В третий такт включается система зажигания, так как здесь происходит воспламенение топливной смеси. В назначении работы двигателя он называется «рабочим», так как при этом начинается процесс привода в работу агрегата. Поршень от взрыва топлива начинает движение вниз. Как и во втором такте, клапаны находятся в закрытом состоянии.
  4. Завершающий такт – четвертый, выпускной, который дает понять, что такое завершение полного цикла. Поршень через выпускной клапан избавляется от отработавших газов цилиндра. Затем все циклически повторяется снова, понять, как работает двигатель внутреннего сгорания, можно представив цикличность работы часов.

Устройство ДВС

Устройство двигателя внутреннего сгорания логично рассматривать с поршня, так как он является основным элементом работы. Он представляет собой своеобразный «стакан» с пустой полостью внутри.

Поршень имеет прорези, в которых фиксируются кольца. Отвечают эти самые кольца за то, чтобы горючая смесь не выходила под поршень (компрессионное), а так же за то, чтобы масло не попадало в пространство над самим поршнем (маслосъемное).

Порядок работы

  • При попадании внутрь цилиндра топливной смеси, поршень проходит четыре вышеописанных такта, и возвратно-поступательное движение поршня приводит в движение вал.
  • Дальнейший порядок работы двигателя следующий: верхняя часть шатуна закреплена на пальце, который находится внутри юбки поршня. Кривошип коленвала фиксирует шатун. Поршень, при движении, вращает коленвал и последний, в свое время, передает крутящий момент системе трансмиссии, оттуда на систему шестерен и далее к ведущим колесам. В устройстве двигателей автомобилей с задним приводом посредником до колес выступает еще и карданный вал.

Конструкция ДВС

Газораспределительный механизм (ГРМ) в устройстве двигателя внутреннего сгорания отвечает за впрыск топлива, а так же за выпуск газов.

Механизм ГРМ состоит из верхнеклапанного и нижнеклапанного, может быть двух видов – ременной или цепной.

Шатун чаще всего изготавливается из стали путем штамповки или ковки. Есть виды шатунов, изготовленные из титана. Шатун передает усилия поршня коленвалу.

Коленвал из чугуна или из стали представляет собой набор коренных и шатунных шеек. Внутри этих шеек есть отверстия, отвечающие за подачу масла под давлением.

Принцип работы кривошипно-шатунного механизма в двигателях внутреннего сгорания заключается в преобразовании движений поршня в движения коленвала.

Головка блока цилиндров (ГБЦ), большинства двигателей внутреннего сгорания, как и блок цилиндров, чаще всего изготавливается из чугуна и реже из различных сплавов алюминия. В ГБЦ находятся камеры сгорания, каналы впуска – выпуска, отверстия свечей. Между блоком цилиндров и ГБЦ находится прокладка, обеспечивающая полную герметичность их соединения.

В систему смазки, которую включает в себя двигатель внутреннего сгорания, входит поддон картера, маслозаборник, маслонасос, масляный фильтр и масляный радиатор. Все это соединено каналами и сложными магистралями. Система смазки отвечает не только за уменьшения трения между деталями мотора, но и за их охлаждение, а также за уменьшение коррозии и износа, увеличивает ресурс ДВС.

Устройство двигателя, в зависимости от его вида, типа, страны изготовителя, может быть чем-либо дополнено или, напротив, могут отсутствовать какие-то элементы ввиду устаревания отдельных моделей, но общее устройство двигателя остается неизменным так же, как и стандартный принцип работы двигателя внутреннего сгорания.

Дополнительные агрегаты

Само собой, двигатель внутреннего сгорания не может существовать как отдельный орган без дополнительных агрегатов, обеспечивающих его работу. Система запуска раскручивает мотор, приводит его в рабочее состояние. Существуют разные принципы работы запуска в зависимости от типа мотора: стартерный, пневматический и мускульный.

Трансмиссия позволяет развить мощность при узком диапазоне оборотов. Система питания обеспечивает ДВС двигатель малым электричеством. В нее входит аккумуляторная батарея и генератор, обеспечивающий постоянный поток электричества и заряд АКБ.

Выхлопная система обеспечивает выпуск газов. В любое устройство двигателя автомобиля входят: выпускной коллектор, который собирает газы в единую трубу, каталитический конвертер, который снижает токсичность газов путем восстановления оксида азота и использует образовавшийся кислород, чтобы дожечь вредные вещества.

Глушитель в этой системе служит для того, чтобы уменьшить выходящий из мотора шум. Двигатели внутреннего сгорания современных автомобилей должны соответствовать установленным законом нормам.

Тип топлива

Следует помнить и об октановом числе топлива, которое используют двигатели внутреннего сгорания разных типов.

Чем выше октановое число топлива – тем больше степень сжатия, что приводит к увеличению коэффициента полезного действия двигателя внутреннего сгорания.

Но существуют и такие двигатели, для которых увеличение октанового числа выше положенного заводом изготовителем, приведет к преждевременной поломке. Это может произойти путем прогорания поршней, разрушения колец, закопченности камер сгорания.

Заводом предусмотрено свое минимальное и максимальное октановое число, которое требует двигатель внутреннего сгорания.

Тюнинг

Любители увеличить мощность работы двигателей внутреннего сгорания зачастую устанавливают (если это не предусмотрено заводом изготовителем) различного рода турбины или компрессоры.

Компрессор на холостых оборотах выдает небольшую мощность, при этом держит стабильные обороты. Турбина же, наоборот, выжимает максимальную мощность при ее включении.

Установка тех или иных агрегатов требует консультации с мастерами, имеющими опыт работы в узком направлении, поскольку ремонт, замена агрегатов, или же дополнение двигателя внутреннего сгорания дополнительными опциями – это отклонение от назначения работы двигателя и уменьшают ресурс ДВС, а неправильные действия могут привести к необратимым последствиям, то есть работа двигателя внутреннего сгорания может быть навсегда окончена.

Принцип работы двухтактного и четырехтактного двигателя

Изобретение двигателя внутреннего сгорания, а также применение его в разных сферах, в том числе и мото — и автотранспорте, позволило значительно упростить жизнь человеку.

Конечно, двигатели внутреннего сгорания, такими какие они есть сейчас, появились не сразу, с момента появления он постоянно совершенствуется.

Хотя на данный момент у этих двигателей лишь модернизируются те или иные составляющие, основная же концепция их остается неизменной.

Цикл работы двигателя, рабочие такты

Появившиеся очень давно двигателя внутреннего сгорания как работающие на бензине, так и дизельном топливе, и применяемые сейчас, делятся на два вида:

  1. Двухтактные;
  2. Четырехтактные.

Как видено из названия сводится различие принципа функционирования двигателя в количестве тактов – движений поршня, за которые он выполняет определенный цикл работ.

Для четырехтактного двигателя определено 4 такта в результате которых один поршень выполняет полный цикл – впуск, сжатие, рабочий ход и выпуск.

В каждом из этих циклов в цилиндре двигателя выполняются определенные процессы. Все они направлены на достижение одной цели – обеспечение преобразования энергии сгорания топлива во вращение коленчатого вала.

Так, при такте впуска в цилиндр подается горючая смесь, состоящая из топлива и воздуха, без которого процесс горения невозможен. Причем образование и подача этой смеси у бензинового и дизельного двигателя отличаются.

Далее идет такт сжатия, при котором поступившая смесь сжимается в объеме. Делается это для того, чтобы в меньшем объеме образовалось больше горючей смеси.

 

Уменьшение объема позволяет при следующем такте обеспечить более высокое КПД при сгорании топлива.

Рабочий ход – единственный из всех тактов, при нем энергия отдается, а не забирается и для него существуют все остальные такты.

После сжатия происходит воспламенение смеси, у бензиновых двигателей – за счет искры, проскакиваемой между электродами свечи накаливания, у дизелей – за счет высокого давления, при котором смесь нагревается настолько, что воспламеняется.

При воспламенении смеси выделяется энергия, которая воздействует на поршень, заставляя его двигаться вниз, при этом выделенная от сгорания энергия передается поршнем на коленвал посредством шатуна.

Выпуск – такт, направленный на очистку полости цилиндра от продуктов горения. После очистки цикл повторяется вновь.

Из всего вышесказанного выходит, что один цикл движения поршня в цилиндре направлен только на получение одного такта – рабочего хода, все остальные такты только помогают получить его, причем для их выполнения задействуется часть энергии, которую отдает такт рабочего хода.

Каждый такт двигателя соответствует определенному движению поршня в цилиндре.

Существуют две крайние точки положения поршня, получивших название мертвых точек.

Одна из них верхняя – выше поршень уже подняться в цилиндре не может, а вторая – нижняя, при которой он ниже не опускается.

Обеспечиваются эти точки кривошипом коленчатого вала, к которому поршень присоединен шатуном.

При движении поршня от одной точки к другой, а затем наоборот, и выполняются такты. То есть, при движении поршня от нижней точки (НМТ) к верхней (ВМТ) могут выполняться два такта – сжатие и выпуск, а при движении наоборот – впуск и рабочий ход.

Имея представление о тактах, можно говорить и о типах двигателей, а их два – 2-тактный и 4-тактный.

У каждого из этих двигателей цикл производится по-разному, что влияет на их конструкцию и многие другие параметры и характеристики.

Конструкция и принцип работы 2-тактного двигателя

2-тактный двигатель нашел наибольшее распространение на малой технике (бензопилы, мотокосы), мотоциклах.

Когда-то существовали даже дизельные 2-х тактные двигатели, устанавливаемые на грузовики, к примеру, МАЗ-200.

МАЗ 200

Интересно, что описанные выше такты у любого двухтактного двигателя никуда не делись, просто они были совмещены.

В итоге это позволяет сократить полный цикл всего в один оборот колен. вала.

Так, при движении поршня от НМТ производится сразу два такта – выпуск и сжатие, а при движении от ВМТ – впуск и рабочий ход.

Достигнуть этого всего возможно при использовании окон в цилиндрах, через которые производится засасывание и перекачивание топливной смеси, а также отвод продуктов горения.

Открытие и закрытие этих окон обеспечивается самим поршнем. Чтобы соблюдалась правильность работы механизма, окна располагаются на разных уровнях в стенках цилиндра.

Чтобы было более понятно, возьмем двигатель мотоцикла «ИЖ Планета 5».

МАЗ 200

Данный мотоцикл укомплектован одноцилиндровым двухтактным мотором.

Цилиндр располагается поверх корпуса двигателя, охлаждение его воздушное, поэтому у него по окружности располагаются ребра охлаждения.

С одной стороны, к цилиндру прикреплен патрубок, идущий от карбюратора, по нему в цилиндр поступает горючая смесь.

Напротив, этого патрубка устанавливается труба отвода отработанных газов.

Вверху цилиндр прикрывает головка, в которой размещена свеча накаливания.

МАЗ 200

Внутри цилиндра располагается поршень, связанный с кривошипом коленчатого вала через шатун. Далее уже он связан со сцеплением и трансмиссией, но это пока неважно.

Для подачи топлива в надпоршневое пространство в двухтактном двигателе задействовано и подпоршневое пространство.

При движении поршня вверх в подпоршневом пространстве создается разряжение, в которое засасывается топливовоздушная смесь через впускное окно.

Подача же из подпоршневого пространства в надпоршневое производится от избыточного давления, которое возникает при движении поршня вниз.

Подача топлива производится через перепускное окно. Выпуск продуктов горения проходит через выпускное окно.

Теперь как все это работает.

Начнем с движения поршня к ВМТ. Находясь в НМТ, поршень обеспечивает открытие перепускного и выпускного окон. Избыточное давление в подпоршневом пространстве выталкивает горючую смесь в надпоршневое пространство.

Двигаясь вверх, поршень перекрывает открытые окна, в результате чего камера сгорания становится герметичной.

МАЗ 200

Доходя до ВМТ, поршень сжимает смесь далее подается искра от свечи накаливания, которая установлена в головке цилиндра.

В это время, поршень двигаясь вверх, открывает впускное окно, через которое смесь поступает в подпоршневое пространство. То есть получается, что в одном такте – движении поршня от НМТ к ВМТ происходит два действия: вначале впуск топлива, затем – сжатие.

После воспламенения топлива, выделенная при этом энергия толкает поршень вниз.

Двигаясь вниз он от ВМТ, поршень открывает сначала выпускное окно. При сгорании объем продуктов горения значительно увеличивается, поэтому они сразу начинают вырываться через это окно.

МАЗ 200

Получается, что при движении поршня вниз вначале выполняется рабочий ход, а после открытия выпускного окна – еще и такт выпуска.

Дальше при движении поршня вниз, он открывает перепускное окно и топливо начинает поступать в надпоршневое пространство – цикл начинает повторяться, при этом на выполнение всего цикла понадобилось только движение поршня сначала вверх, а затем вниз, что соответствует одному обороту колен. вала.

МАЗ 200

Принцип работы 4-тактного двигателя

Теперь о принципе работы 4-тактных двигателей. Опять же возьмем одноцилиндровый двигатель мотоцикла, но на этот раз «Honda CB 125E».

МАЗ 200

У этого мотора тоже цилиндр расположен над картером и имеет воздушное охлаждение.

Внутри цилиндра установлен поршень, связанный с коленвалом посредством шатуна. Сверху цилиндр закрыт головкой.

Конструктивной особенностью этого двигателя является наличие механизма, который обеспечивает подачу смеси и отвод продуктов горения – газораспределительный механизм.

Установлен у этого мотора он в головке блока. Суть работы этого механизма – своевременное открытие впускного и выпускного окон, которые закрыты клапанами.

Работает все по такому принципу. Вначале – такт впуска. Чтобы обеспечить этот такт, поршень должен двигаться от ВМТ вниз. При этом клапан открывает впускное окно, через которое разрежением засасывается топливо в цилиндр.

После достижения НМТ впускное окно клапаном закрывается, поршень в это время начинает двигаться вверх, начинается такт сжатия.

При этом такте оба окна закрыты, цилиндр полностью герметичен, а поршень при движении вверх сжимает горючую смесь, поступившую ранее.

При подходе поршня к ВМТ, когда смесь по максимуму сжата, производится ее воспламенение от искры свечи.

Избыточное давление при сгорании заставляет двигаться поршню вниз – происходит рабочий ход, при котором окна тоже остаются закрытыми.

МАЗ 200

После достижения НМТ, поршень начинает движение вверх, в этот момент клапан открывает выпускное окно и поршень выталкивает через него продукты горения.

В результате получается, что для выполнения тактов впуска и сжатия нужен один оборот колен. вала, а для рабочего хода и выпуска – еще один оборот.

МАЗ 200

Это были принципы работ 2-тактного и 4-тактного двигателей на примере мотоциклов.

Эти принципы используются на всех двигателях внутреннего сгорания – от моторчика авиамодели до мощного 12-цилиндрового мотора танка.

Конструктивные особенности

Помимо различий в принципе работы у этих моторов еще и существуют конструктивные особенности.

2-тактный двигатель конструктивно проще. Механизм газораспределения – это дополнительное оснащение мотора, которое усложняет конструкцию.

У 2-тактного мотора этот механизм отсутствует и его роль выполняет поршень, открывая и закрывая те или иные окна.

Помимо этого, данный двигатель не нуждается в системе смазки. Обусловлено это тем, что в процессе работы задействовано и подпоршневое пространство, где располагается колен. вал.

Но поскольку кривошипно-шатунный механизм требует смазки, то у этого двигателя она производится вместе с топливом, то есть моторное масло добавляет в топливо, и при поступлении топлива в это пространство, имеющееся масло смазывает механизм.

МАЗ 200

У 4-тактных двигателей конструкция включает и механизм газораспределения, и отдельную систему смазки.

Это значительно усложняет конструкцию, однако эти двигателя являются более приоритетными, чем двухтактные из-за ряда эксплуатационных недостатков последних.

МАЗ 200

Эксплуатационные показатели

Теперь об эксплуатационных показателях.

Литровая мощность.

Во многом 2-тактные двигатели по этим показателям лучше. Сказывается затраченная и полученная энергия на осуществление одного рабочего цикла.

У 2-тактного двигателя каждый оборот – это один полный цикл, что обеспечивает больший показатель литровой мощности – отношению объема цилиндра к выходной мощности. В среднем литровая мощность 2-тактного мотора выше, чем у 4-тактного в 1,5 раза.

Удельная мощность.

Еще один показатель, по которому 2-тактный мотор превосходит 4-тактный – это удельная мощность.

Данный показатель характеризует отношение выходной мощности к общей массе двигателя.

Проигрывая в мощностных показателях, 4-тактный двигатель лучше по показателям расхода топлива.

У него подача смеси происходит дозировано, через впускное окно, при этом выпускное – закрыто.

У 2-тактного же мотора существует момент, когда выпускное и перепускное окна оказываются открытыми, при этом поступающее топливо частично выходит через выпускное окно вместе с продуктами горения, то есть, часть топлива не участвует в процессе, а просто вылетает в атмосферу.

Смазка двигателя.

У 4-тактного мотора имеется система смазки, обеспечивающей смазку всех узлов, но при этом масло циркулирует по закрытой системе, потери его незначительны и в основном из-за износа двигателя.

Смазка 2-тактного мотора производится вместе с топливом, а значит, выполнив свою функцию масло попадает в цилиндр, где и сгорает.

Надежность моторов.

По поводу надежности конструкции этих моторов, то здесь довольно интересная ситуация.

Конструктивно 2-тактный мотор проще, а значит и надежнее. Но у 4-тактного мотора есть более совершенная система смазки, которая обеспечивает больший ресурс мотору.

Вот и получается, что оба мотора надежны, но каждый по-своему. А вот по ремонтопригодности 2-тактный мотор все-таки лучше.

Та же совместная смазка вместе с топливом у 2-тактных двигателей сказывается и на экологичности этого мотора. Сгорание масла в большей степени обеспечивает загрязнение атмосферы.

Совмещение рабочих тактов у 2-тактного двигателя сказывается на шумности работы установки, она несколько выше, чем у 4-тактного агрегата.

Зато отсутствие дополнительных систем и механизмов обеспечивает более легкую и менее металлоемкую конструкцию, что сказывается на общей массе установки.

Более сложная конструкция 4-тактной установки играет и положительную роль.

У этих моторов существует возможность модернизации системы питания, применение инжекторных систем с раздельной подачей топлива и воздуха в цилиндры, повышающих мощность и экономичность двигателей.

У 2-тактных моторов возможность совершенствования ограничена все той же смазкой вместе с топливом. Хотя попытки улучшить показатели этих моторов осуществляются постоянно.

Итог

В целом, применение до сих пор имеют оба этих мотора и вряд ли когда-либо откажутся от использования одного из них, оскольку у каждого из них имеются свои преимущества, востребованные в тех или иных условиях.

бензиновый двигатель | Британика

Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, которые вырабатывают энергию при сжигании летучего жидкого топлива (бензин или смесь бензина, такого как этанол) с зажиганием, инициируемым электрической искрой. Бензиновые двигатели могут быть изготовлены в соответствии с требованиями практически любого возможного применения силовой установки, наиболее важными из которых являются пассажирские автомобили, небольшие грузовые автомобили и автобусы, самолеты общего назначения, подвесные и малые бортовые морские агрегаты, стационарные насосные установки среднего размера, осветительные установки, станки и электроинструменты.Четырехтактные бензиновые двигатели используются для подавляющего большинства автомобилей, легких грузовиков, мотоциклов среднего и большого размера и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих портативных инструментах для ландшафтного дизайна, таких как цепные пилы, ножницы для живой изгороди и воздуходувки.

Поперечное сечение V-образного двигателя. Encyclopædia Britannica, Inc.

Типы двигателей

Бензиновые двигатели могут быть сгруппированы в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления топливом, зажигание, расположение поршня и цилиндра или ротора, число тактов за цикл, систему охлаждения, а также тип и расположение клапана.В этом разделе они описаны в контексте двух основных типов двигателей: поршневые и цилиндровые двигатели и роторные двигатели. В поршнево-цилиндровом двигателе давление, создаваемое сгоранием бензина, создает силу на головке поршня, которая перемещает длину цилиндра при возвратно-поступательном или возвратно-поступательном движении. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных поршневыми поршнями.Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и, таким образом, выполнять работу.

бензиновых двигателей Бензиновые двигатели включают (A) двигатели с противоположным расположением поршней, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8. Encyclopædia Britannica, Inc.

Большинство бензиновых двигателей поршневого и цилиндрового типа. Основные компоненты поршнево-цилиндрового двигателя показаны на рисунке. Почти все двигатели этого типа следуют либо четырехтактному циклу, либо двухтактному циклу.

Типичное поршнево-цилиндровое расположение бензинового двигателя. Encyclopædia Britannica, Inc.

Четырехтактный цикл

Из различных методов восстановления энергии от процесса сгорания наиболее важным на сегодняшний день был четырехтактный цикл, концепция, впервые разработанная в конце 19-го века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такт впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр созданным таким образом парциальным вакуумом.Смесь сжимается при подъеме поршня на такте сжатия с закрытыми обоими клапанами. По мере приближения к концу хода заряд зажигается электрической искрой. Затем следует рабочий ход с обоими клапанами, которые все еще закрыты, и давление газа из-за расширения сгоревшего газа, нажимающего на головку поршня или на головку. Во время такта выпуска восходящий поршень нагнетает отработанные продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, каждый цикл требует четырех ходов поршня — впуск, сжатие, мощность и выпуск — и двух оборотов коленчатого вала.

Двигатель внутреннего сгорания : четырехтактный цикл Двигатель внутреннего сгорания проходит четыре такта: впуск, сжатие, сгорание (мощность) и выпуск. Когда поршень движется во время каждого хода, он поворачивает коленчатый вал. Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Недостаток четырехтактного цикла состоит в том, что совершается только вдвое меньше рабочих тактов, чем в двухтактном цикле ( см. Ниже ), и от двигателя данного размера можно ожидать только половину такой мощности при заданная рабочая скорость.Четырехтактный цикл, однако, обеспечивает более положительную очистку от выхлопных газов (очистку) и перегрузку цилиндров, уменьшая потерю свежего заряда в выхлопе.

,

бензиновый двигатель | Британика

Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, которые вырабатывают энергию при сжигании летучего жидкого топлива (бензин или смесь бензина, такого как этанол) с зажиганием, инициируемым электрической искрой. Бензиновые двигатели могут быть изготовлены в соответствии с требованиями практически любого возможного применения силовой установки, наиболее важными из которых являются пассажирские автомобили, небольшие грузовые автомобили и автобусы, самолеты общего назначения, подвесные и малые бортовые морские агрегаты, стационарные насосные установки среднего размера, осветительные установки, станки и электроинструменты.Четырехтактные бензиновые двигатели используются для подавляющего большинства автомобилей, легких грузовиков, мотоциклов среднего и большого размера и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих портативных инструментах для ландшафтного дизайна, таких как цепные пилы, ножницы для живой изгороди и воздуходувки.

Поперечное сечение V-образного двигателя. Encyclopædia Britannica, Inc.

Типы двигателей

Бензиновые двигатели могут быть сгруппированы в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления топливом, зажигание, расположение поршня и цилиндра или ротора, число тактов за цикл, систему охлаждения, а также тип и расположение клапана.В этом разделе они описаны в контексте двух основных типов двигателей: поршневые и цилиндровые двигатели и роторные двигатели. В поршнево-цилиндровом двигателе давление, создаваемое сгоранием бензина, создает силу на головке поршня, которая перемещает длину цилиндра при возвратно-поступательном или возвратно-поступательном движении. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных поршневыми поршнями.Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и, таким образом, выполнять работу.

бензиновых двигателей Бензиновые двигатели включают (A) двигатели с противоположным расположением поршней, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8. Encyclopædia Britannica, Inc.

Большинство бензиновых двигателей поршневого и цилиндрового типа. Основные компоненты поршнево-цилиндрового двигателя показаны на рисунке. Почти все двигатели этого типа следуют либо четырехтактному циклу, либо двухтактному циклу.

Типичное поршнево-цилиндровое расположение бензинового двигателя. Encyclopædia Britannica, Inc.

Четырехтактный цикл

Из различных методов восстановления энергии от процесса сгорания наиболее важным на сегодняшний день был четырехтактный цикл, концепция, впервые разработанная в конце 19-го века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такт впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр созданным таким образом парциальным вакуумом.Смесь сжимается при подъеме поршня на такте сжатия с закрытыми обоими клапанами. По мере приближения к концу хода заряд зажигается электрической искрой. Затем следует рабочий ход с обоими клапанами, которые все еще закрыты, и давление газа из-за расширения сгоревшего газа, нажимающего на головку поршня или на головку. Во время такта выпуска восходящий поршень нагнетает отработанные продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, каждый цикл требует четырех ходов поршня — впуск, сжатие, мощность и выпуск — и двух оборотов коленчатого вала.

Двигатель внутреннего сгорания : четырехтактный цикл Двигатель внутреннего сгорания проходит четыре такта: впуск, сжатие, сгорание (мощность) и выпуск. Когда поршень движется во время каждого хода, он поворачивает коленчатый вал. Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Недостаток четырехтактного цикла состоит в том, что совершается только вдвое меньше рабочих тактов, чем в двухтактном цикле ( см. Ниже ), и от двигателя данного размера можно ожидать только половину такой мощности при заданная рабочая скорость.Четырехтактный цикл, однако, обеспечивает более положительную очистку от выхлопных газов (очистку) и перегрузку цилиндров, уменьшая потерю свежего заряда в выхлопе.

,

бензиновый двигатель | Британика

Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, которые вырабатывают энергию при сжигании летучего жидкого топлива (бензин или смесь бензина, такого как этанол) с зажиганием, инициируемым электрической искрой. Бензиновые двигатели могут быть изготовлены в соответствии с требованиями практически любого возможного применения силовой установки, наиболее важными из которых являются пассажирские автомобили, небольшие грузовые автомобили и автобусы, самолеты общего назначения, подвесные и малые бортовые морские агрегаты, стационарные насосные установки среднего размера, осветительные установки, станки и электроинструменты.Четырехтактные бензиновые двигатели используются для подавляющего большинства автомобилей, легких грузовиков, мотоциклов среднего и большого размера и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих портативных инструментах для ландшафтного дизайна, таких как цепные пилы, ножницы для живой изгороди и воздуходувки.

Поперечное сечение V-образного двигателя. Encyclopædia Britannica, Inc.

Типы двигателей

Бензиновые двигатели могут быть сгруппированы в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления топливом, зажигание, расположение поршня и цилиндра или ротора, число тактов за цикл, систему охлаждения, а также тип и расположение клапана.В этом разделе они описаны в контексте двух основных типов двигателей: поршневые и цилиндровые двигатели и роторные двигатели. В поршнево-цилиндровом двигателе давление, создаваемое сгоранием бензина, создает силу на головке поршня, которая перемещает длину цилиндра при возвратно-поступательном или возвратно-поступательном движении. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных поршневыми поршнями.Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и, таким образом, выполнять работу.

бензиновых двигателей Бензиновые двигатели включают (A) двигатели с противоположным расположением поршней, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8. Encyclopædia Britannica, Inc.

Большинство бензиновых двигателей поршневого и цилиндрового типа. Основные компоненты поршнево-цилиндрового двигателя показаны на рисунке. Почти все двигатели этого типа следуют либо четырехтактному циклу, либо двухтактному циклу.

Типичное поршнево-цилиндровое расположение бензинового двигателя. Encyclopædia Britannica, Inc.

Четырехтактный цикл

Из различных методов восстановления энергии от процесса сгорания наиболее важным на сегодняшний день был четырехтактный цикл, концепция, впервые разработанная в конце 19-го века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такт впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр созданным таким образом парциальным вакуумом.Смесь сжимается при подъеме поршня на такте сжатия с закрытыми обоими клапанами. По мере приближения к концу хода заряд зажигается электрической искрой. Затем следует рабочий ход с обоими клапанами, которые все еще закрыты, и давление газа из-за расширения сгоревшего газа, нажимающего на головку поршня или на головку. Во время такта выпуска восходящий поршень нагнетает отработанные продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, каждый цикл требует четырех ходов поршня — впуск, сжатие, мощность и выпуск — и двух оборотов коленчатого вала.

Двигатель внутреннего сгорания : четырехтактный цикл Двигатель внутреннего сгорания проходит четыре такта: впуск, сжатие, сгорание (мощность) и выпуск. Когда поршень движется во время каждого хода, он поворачивает коленчатый вал. Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Недостаток четырехтактного цикла состоит в том, что совершается только вдвое меньше рабочих тактов, чем в двухтактном цикле ( см. Ниже ), и от двигателя данного размера можно ожидать только половину такой мощности при заданная рабочая скорость.Четырехтактный цикл, однако, обеспечивает более положительную очистку от выхлопных газов (очистку) и перегрузку цилиндров, уменьшая потерю свежего заряда в выхлопе.

,

Бензиновый двигатель — Energy Education

Движущаяся диаграмма встроенного четырехмоторного двигателя. Поршни серого цвета, коленчатый вал зеленого цвета, а блок прозрачный. [1]

Бензиновый двигатель — это тип теплового двигателя, особенно внутреннего сгорания, работающий на бензине. Эти двигатели являются наиболее распространенными способами заставить автомобили двигаться. Хотя турбины могут приводиться в движение бензином, бензиновый двигатель относится конкретно к поршневым бензиновым двигателям.

Бензиновые двигатели являются основной причиной, по которой мир берет столько нефти из земли для переработки в нефтепродукты, такие как бензин. Во всем мире транспортировка составляет примерно 18% от нашего основного потребления энергии, а бензин — чуть меньше половины этого. [2] Это означает, что бензиновые двигатели используют примерно 8% всей первичной энергии в мире.

Анатомия двигателя

Блок

Блок является основой двигателя. Это большой металлический блок, обычно алюминиевый или стальной (Формула 1 использует магниевый сплав) с отверстиями для цилиндров.

Цилиндры

Цилиндры двигателя — то, где работа сделана. Топливо впрыскивается в цилиндры, где оно зажигается свечами зажигания, которые перемещают поршни, выполняя работу.

Поршни

Поршни

— это устройства, которые скользят вверх и вниз внутри цилиндров. Их работа состоит в том, чтобы скользить внутрь и наружу, соединенный с коленчатым валом, чтобы превратить сжигаемый бензин в работу.

Свечи зажигания

Работа свечи зажигания состоит в том, чтобы зажечь топливо внутри цилиндра.Быстрое расширение топлива из-за выделяемого тепла воздействует на поршень, отодвигая его от свечи зажигания.

Распредвал

основной артикул

Распределительный вал — это устройство, которое управляет синхронизацией двигателя. Работа распределительного вала состоит в том, чтобы регулировать, когда топливо поступает в двигатель, а когда выпускается выхлоп.

инжекторы

Целью топливной форсунки является распыление топлива. Это значит превратить жидкое топливо в туман, который резко увеличивает площадь его поверхности.Это позволяет топливу сгорать быстрее, давая больший импульс поршню.

Коленчатый вал

основной артикул

Коленчатый вал — это клей, который соединяет детали двигателя. Его целью является превращение линейного (вверх и вниз) движения поршней во вращательное движение. Один конец коленчатого вала прикреплен к распределительному валу с помощью ремня ГРМ. Другой конец соединен с маховиком, который регулирует мощность, выходящую из двигателя, что-то вроде сетевого фильтра для вашего компьютера.

Маховик

Маховик — это устройство управления питанием двигателя. Это связано с муфтой, которая связана с коробкой передач. Чтобы узнать больше о том, как двигатель передает мощность на колеса, нажмите здесь.

для дальнейшего чтения

Рекомендации

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *