Диапазоны антирадара: K (Кей), Ka, Ku, X, L

Содержание

Технические настройки радар-детекторов и комбо-устройств

Для эффективной работы Вашего радар-детектора или комбо-устройства, мы рекомендуем правильно его настроить.

Как правило, необходимо включить или выключить определенные диапазоны, чтобы избежать ложных срабатываний и при этом повысить качество работы аппарата. 

 

В более дорогих и полупрофессиональных радар-детекторах пользователю предоставляется возможность изменять чувствительность каждого из диапазонов, настраивать автоматические режимы его приема и работы и многое многое другое. В этом разделе вы найдете рекомендуемые технические настройки для России и стран СНГ.


Краткий экскурс в радиочастоты и связанные с ними измерителей скорости:

 

Диапазон X 

В данном диапазоне с 2008 года ни работает ни один измеритель скорости в России.

Последним радаром был СОКОЛ-М, и даже в самых глухих и отдаленных регионах и областях его Вы  не встретите.

 

Диапазон К

В данном диапазоне работают 99% измерителей скорости в России и странах СНГ.

Основными из которых являются Скат, Оскон, Кречет, Кордон. Крис, Арена, Искра, Радис, Бинар, Стрелка, Беркут, Визир, Робот, Места а также новые радары на данных платформах.

 

Лазерный диапазон Laser

Чтобы встреть лазерный измеритель скорости — надо быть редким «везунчиком» 😉

Как мы всегда говорили, что лазерный радар вещь дорогая, непрактичная и сложная и от того крайне редкая. Список где вы можете встретить в Москве и области ЛИСД или АМАТА, а так же ПОЛИСКАН: 

  • Ленинградское шоссе, на перегоне от МКАД до Зеленограда.

  • Горьковское шоссе на перегоне от Балашихи до Купавны.

  • Минское и Новорижское шоссе — полигон для ПОЛИСКАНОВ, там они иногда встречаются

  • По неподтвержденной информации один ЛИСД есть в Ростове-на-Дону и один АМАТА в Казани.

Рекомендованные технические настройки для России по моделям и брендам 

 

 

Для того, чтобы войти в режим программирования, вам необходимо зажать одновременно клавиши MRK и SEN, после чего на дисплее появится надпись «параметры».

Прежде всего нужно переключить режим пользования с «новичок» (установлен по умолчанию) на «продвинутый», после чего вы сможете управлять тонкими настройками прибора.

  • «Круиз» — 20 км/ч. В данном режиме прибор принимая сигналы радаров на скорости до установленного пользователем порога будет подавать два коротких зума (давая понять, что сейчас есть сигнал и разгоняться не надо).
  • «Режим индикации сигнала» — «спецификация» или «эксперт». Здесь, что вам боьше нравится кол-во источников (эксперт) или же частотный диапазон сигнала (спецификация).
  • «Автообучение» — «выкл». Данный режим не будет сохранять автоматически координаты с постоянными сигналами в базу помех, тем самым не запомнит сигнал стационарной камеры, как помеху.
  • «Х-диапазон» — «выкл». Данный диапазон в РФ и странах СНГ полностью выведен из применения и радаров работающих в нем нет.
  • «К-диапазон» — «выкл», после чег ов меню появляются поддиапазоны К1 — «вкл», К2 — «вкл», К3 — «выкл».  
  • «СТРЕЛКА» — «вкл». При включенном режиме вы всего лишь получаете так называемый «особый сигнал на стрелку», на дисплее при ее приеме будет загораться литера «С» и голосом будет говориться «ВНИМАНИЕ СТРЕЛКА». При выключенном режиме стрелка прибор принимая его сигнал просто будет писать на дсиплее «К диапазон». Регионы, в которых есть камеры «СТРЕЛКА»: очень плотно в Московской обоасти и по всем федеральным трассам РФ в близи городов. 
  • «МУЛЬТИРАДАР» («Робот») — «вкл». При включенном режиме вы всего лишь получаете так называемый «особый сигнал на робот мультирадар», на дисплее при ее приеме будет загораться литера «М» и голосом будет говориться «ВНИМАНИЕ МУЛЬТИРАДАР». При выключенном режиме мультирадар прибор принимая его сигнал просто будет писать на дсиплее «К диапазон». Регионы, в которых есть камеры «Multiradar» («Робот»): Московская область, Смоленская область, Самарская область, Ульяновская область, Нижегородская область
  • TSR — «выкл».
  • IVT — «выкл»
  • ИНД (информация на дисплее) — Част (частота) в городе для определения частоты принимаемого сигнала в Ггц. На трассе для отображения силы принимаемо сигнала цифрой 1-9 можно ставить режим — МУЛЬТ. 

  • АвтПр (автоприглушение звука) — ВЫКЛ

  • X — выкл

  • K — ХПР (гипер чувствительность выбираем для максимальной дальности приема)

  • СТ (специальный сигнал на радар Стрелка) — ВКЛ

  • Ka — выкл

  • ИМП — не имеет значения ВКЛ или ВЫКЛ

  • РДР — ВКЛ (позволяет прибору фильтровать шумы от других радар-детекторов)

  • Laser — ВКЛ (если а вас в авто есть система city safety делаем ВЫКЛ)

  • SWS — ВЫКЛ

  • АВТОСКАН — как для города, так и для трассы

  • X — ВЫКЛ

  • K — ВКЛ

  • Ka — ВЫКЛ

  • В городе режим — ГОРОД3 (в Москве сигнатурный режим «Супер Тихий)

  • Порог скорости — 50км/ч (для моделей поддерживающих эту функцию)

Отключение диапазонов поддерживается практически всеми моделями.  

  • X — ВКЛ

  • K — ВКЛ

  • Ka — ВЫКЛ

  • POP — OFF

  • X/K фильтр — чем выше цифра (1-5) тем помех меньше и дальность приема при этом тоже ниже. 

  • Ка фильтр — ВЫКЛ

Cobra (серия RU) | Snooper | Sho-me | Inspector | Stinger | Crunch | Star | Silver Stone | Neoline | PlayMe  и прочие

Отключение некоторых диапазонов поддреживают лишь модели верхнего ценового сегмента. 

  • X — ВЫКЛ
  • K — ВКЛ
  • Ku — ВЫКЛ
  • Ka — ВЫКЛ

Остальные настройки (spectre, vg-2, safety, и пр.) носят чисто маркетинговый характер и но какой пользы не несут.

Что такое диапазоны X, K, Ka, Laser, что такое POP

Нам часто задают вопрос -что означают эти буквы в описании радар-детекторов: Х, К, Ка, L, POP, VG-2?

X, K и Ka-это радиочастотные диапазоны, в которых работают милицейские радары.

L (laser)-означает возможность обнаружения лазерных радаров (лидаров)

POP-это не диапазон, это режим работы милицейского радара (а для радар-детектора -режим обнаружения).

VG-2 это система обнаружения радар-детекторов (а в радар-детекторах соответственно защита от такого обнаружения)

Рассмотрим это подоробней.

Диапазон X (10.475 to 10.575 ghz) -Самый старый радиочастотный диапазон используемый для контроля скорости. Водители старшего поколения помнят большие радары которые использовала милиция еще в СССР, похожие на большую серую трубу, из-за чего получили название «труба» или «фара». Сейчас таких почти не осталось. Лично я видел последний раз такую штуку на дорогах Украины в 2007 году. Имея любой, даже самый дешевый радар-детектор на вооружении вы легко успеете притормозить, т.к. скорость работы этих радаров невысока.

Диапазон K (24. 0 to 24.25 ghz) -диапазон К самый распространенный диапазон в котором на данный момент работает большинство милицейских радаров. Этот диапазон был введен в 1976 году в США и до сих пор широко используется во ввсем мире для обнаружения скорости. Радары, работающие в диапазоне К отличаются меньшими размерами и весом по сравнению с радарами диапазона Х, а также более высокой скоростью работы. Этот диапазон используют радары «Визир», «Беркут», «Искра» и др. Все радар-детекторы которые представлены в нашем магазине обнаруживают диапазон К.

Диапазон Ка (33.4 to 36.0 ghz) -более новый диапазон. Радары работающие в этом диапазоне более точные. Для радар-детекторов обнаружение этого диапазона сложнее. Все современные радар-детекторы обнаруживают излучение радаров в диапазоне Ka, однако ввиду того что работают такие милицейские радары очень быстро, не факт что Вам удастся снизить скорость в достаточной мере для того чтобы не быть пойманым. Будьте осторожны!

Лазерный диапазон. Радары (лидары) работающие в лазерном диапазоне это кошмар для нарушителя. Его используют камеры контроля скорости , например прибор TruCam. Лазерный измеритель скорости излучает луч в инфракрасном спектре. Отражаясь от фар автомобиля или номерного знака, лазерный луч возвращается обратно, и так как все это происходит со скоростью света, то шансов снизить скорость у вас просто нет. Если Ваш радар-детектор сообщил об обнаружении лазера то это означает что вас уже поймали 🙁 Другое дело если ловили совсем не Вас и радар-детектор «поймал» отраженный сигнал, тогда еще может повезти.
Функцию обнаружения лазерных радаров имеют все радар-детекторы, представленные в нашем магазине. Но самый действенный (единственный надежный!) способ борьбы с лазерными пушками является так называемые «шифтеры»-приборы, обманывающие лазерный измеритель скорости. В нашем магазине представлен Beltronics SHIFTER ZR4-комплекс позволяющий обнаружить и защититься от лазерного обнаружения. Вот что по-настоящему позволит защититься от TruCam! Beltronics Shifter ZR4 может работать как самостоятельно, так и в комплекте с радар-детекторами Beltronics.

режим POP-это режим работы милицейского радара в котором он излучает очень короткое время (десятки миллисекунд). Этого бывает достаточно для определения скорости, но фиксации скорости не происходит и гаишнику в принципе нечего Вам предъявить. Но он предъявит, будьте уверены. Большинство радар-детекторов могут определять сигналы в этом режиме, у многих этот режим включается принудительно.В этом режиме ваш радар-детектор более чувствителен к помехам, поэтому используйте его за городом.

VG-2 -это режим защиты от обнаружения вашего радар-детектора. В некоторых странах Европы и в некоторых штатах США использование радар-детекторов запрещено. Поэтому полицейские имеют на вооружении так называемые детекторы радар-детекторов (Radar Detector Detector-RDD). Они улавливают специфическое излучение, которое производит радар-детектор во время работы. Таким образом полицейский на расстоянии может знать что у Вас в машине установлен радар-детектор. Все современные радар-детекторы защищены от обнаружения устройствами VG-2. Смех в том что VG-2 -система, изобретенная в начале 90-х и на данный момент практически не используется. Сейчас полицейские используют новые RDD системы Spectre (Stalcar). От этих RDD очень трудно защититься, практически ни один радар-детектор на рынке не способен защититься от системы Spectre, кроме радара Beltronics STI Driver-эта штука невидима на 100%.

После прочтения этой статьи может сложиться впечатление что в радар-детекторах нет никакого смысла-все равно не поможет. Это совсем не так. Во-первых, большинство радаров работают в диапазоне К и Ка, имея хороший антирадар Вы будете предупреждены заранее и успеете скинуть скорость.

Лазерные пушки, стационарные лазерные камеры-это проблема. С другой стороны таких устройств крайне мало, они дороже обычного радара в разы и меньше распространены чем обычные радары диапазона К даже в США, что уж говорить об Украине. Такие радары нельзя использовать с рук, только с треноги или закрепленные стационарно. Для стопроцентной защиты от лазерных радаров вам потребуется шифтер-дорого но надежно.

Даже самый простой «антирадар» обнаруживает большинство радаров диапазона K заранее, на достаточном расстоянии чтобы Вы успели остановится . Мой любимые радары среднего ценового диапазона- Stinger -лучше защищены от помех и имет большую чувствительность. Ну и премиум класс- радар-детекторы Beltronics и в особенности STI Driver -вне конкуренции!

Удачи на дорогах!

что это, расшифровка и обновление, как обновить и настроить радар-детектор

Автор: Виктор

Такие устройства, как антирадары, появились на отечественном рынке достаточно давно. Со временем производители модернизировали и совершенствовали функции, которыми обладают эти девайсы. Диапазон К на антирадаре — что это такое, какие еще используются диапазоны, что нужно знать об обновлении радар-детектора? Ответы на эти вопросы вы найдете ниже.

Содержание

Открытьполное содержание

[ Скрыть]

Особенности настройки радар-детектора

Итак, что означают используемые диапазоны радар-детектора (ДРД), как правильно настроить девайс для работы, как прошить и как обновить базу данных? Процедура настройки и обновления осуществляется строго в соответствии с инструкцией по эксплуатации. Для начала предлагаем ознакомиться с расшифровкой понятий.

Обозначение диапазонов

Какие режимы могут использоваться в современных радар-детекторах:

  1. Х. Полицейское оборудование обычно функционирует в нескольких стандартизированных частотах. На сегодняшний день одной из наиболее старых и самых важных считается частота 10525 МГц, именно она называется Х. Эта частота изначально применялась только в локационных установках, она вошла в основу многих современных радаров полиции. Сегодня данный режим считается морально устаревшим, даже если брать во внимание импульсную технологию, на смену ей пришли другие ДРД.
  2. К или Кей. Этот ДРД считается более новым и свежим для оборудования ДПС. Из-за применения более увеличенного потенциала, а также уменьшенной длительности периода оборудование, которое функционирует в этом режиме, обладает небольшими габаритами и повышенной дальностью выявления. Если сравнивать с Х ДРД, то дальность радаров, которые работают с К частотой, будет в полтора раза выше, при этом время выявления будет ниже.
    Кроме того, основным преимуществом этого ДРД является более широкая полоса пропускания, составляющая 100 МГц, а если сравнить с частотой Х, то в данном случае помех будет значительно меньше. Эта частота лежит в основе устройств ДПС Беркут, Искра-1, а также их модификационные версии и целые комплексы, которые функционируют с применением локационных частей данных устройств. На сегодня этот ДРД является базовым для многих радаров, использующихся по всему миру.
  3. Ка. Эта частота считается одной из самых новых, ее рабочий параметр составляет 34700 МГц. В настоящее время этот диапазон является одной из самых перспективных, что обусловлено уменьшенной длительностью периода, а также увеличенным энергетическим потенциалом. Благодаря этим достоинствам устройства, работающие с этим ДРД, обладают высокой дальностью выявления нарушителей, составляющей 1.5 км. Они более точны, при этом время обнаружения будет значительно ниже.
    Следует отметить, что этот режим также обладает широкой полосой пропускания, составляющей 1400 МГц, именно поэтому специалисты зовут его сверхшироким. В его работе отсутствуют как бытовые, так и любые другие помехи, которые могут помешать определению точной скорости автомобиля. Несмотря на все преимущества, сегодня в РФ и странах бывшего СССР используется довольно мало радаров, работающих с этой частотой, такое оборудование только начинает внедряться.
  4. Ku. Этот режим считается одним из наиболее редких, на данный момент он используется только в некоторых странах Евросоюза. Со временем его внедрение ожидалось и в России, однако этого не произошло из-за этого, что в такой же частоте работает и спутниковое ТВ. Соответственно, нормальная работа полицейских радаров в таком ДРД будет невозможна, поскольку это приведет к постоянному появлению помех в их работе. В РФ такие радары практически не используются и в будущем это также уже не произойдет, однако в Европе и странах Прибалтики на данной частоте функционирует чуть ли не половина устройств.
  5. VG-2. Как известно, антирадары запрещены не только в России, но и в США, а также практически во всех государствах Европы. Соответственно, власти делают все возможное для того, чтобы выявить нарушителей, ведь сами антирадары и радар-детекторы продаются в свободном доступе. Для обеспечения быстрого отлова нарушителей, использующих незаконные девайсы, применяются множество различных специализированных устройств. Они функционируют при частоте 13000 МГц и могут иметь название VG-1, VG-2, VG-3 и т.д.
    Принцип работы такой технологии заключается в том, что полицейское оборудование посылает облучение на автомобиль и если в нем используется радар-детектор, то он обрабатывает поступающий импульс. В результате импульс усиливается и перед тем, как он поступит непосредственно в детектор, где будет обработан, последний выдаст незначительное эхо в эфир. Полицейское оборудование, в свою очередь, зафиксирует это эхо и предупредит представителя правопорядка о наличии детектора в машине. На практике многие производители таких устройств уже позаботились насчет этой проблемы и используют разные технологии для маскировки детекторов.
  6. Еще одна частота — лазерная. Первые лазерные радары и устройства для замера скорости стали использоваться полицией еще в начале 90-х годов прошлого века. Тогда измерение скорости оборудованием осуществлялось по простым алгоритмам, в результате передачи нескольких кратковременных сигналов спустя определенное время. В целом принцип действия таких радаров остался аналогичным и практически не поменялся, однако с годами изменялась частота сигналов, а также длинна отправляемого луча.
    На практике почти все детекторы, продающиеся сегодня, оснащаются сенсорами, предназначенными для приема лазерного импульса. Также нужно отметить, что оборудование, работающее в лазерной частоте, не позволяет нормально функционировать в условиях осадков или тумана. Соответственно, его эксплуатация возможна только в сухую погоду.

Каким должен быть диапазон К?

Если вы не знаете, как настроить детектор, то в первую очередь нужно разобраться с диапазонами его работы. Именно этот фактор во многом определит правильность функционирования и работоспособность девайса в условиях помех. Рабочий параметр диапазона К должен составлять 24150 МГц, допускается отклонение в 100 МГц в большую или меньшую сторону (видео снято каналом Pro100cars).

Какие диапазоны можно спокойно отключить в гаджете?

Итак, какие частоты можно отключить в России:

  • Ka;
  • Ku;
  • VG 2;
  • Spectre I-IV;
  • POP.

Эти ДРД на практике практически не применяются в РФ, соответственно, перед эксплуатацией радар-детектора их желательно отключать. Деактивация данных частот позволит значительно снизить вероятность ложных срабатываний оборудования. Вне зависимости от того, что часть приведенных выше частот попросту не используются в полицейском оборудовании, не исключается вероятность срабатывания детектора от прочих источников. Кроме того, при их отключении должна увеличиться и характеристика быстродействия детектора, поскольку он будет работать только с частью используемых частот.

Если после отключения режимов детектор все равно ложно срабатывает, причины помех могут быть связаны с:

  • географическими особенностями местности;
  • типом оборудования, используемого полицией, в нем может быть настроена разная мощность;
  • методом установки оборудования ДПС;
  • погодными условиями, а также плотность потока авто (автор видео — канал 28Sti).

Основные аспекты обновления и прошивки антирадара

Что касается прошивки и обновления, то в этом случае процедура осуществляется строго с использованием сервисной книжке по эксплуатации. В мануале должны быть отмечены рекомендации производителя касательно выполнения этой задачи, а также может быть представлена подробная инструкция по перепрошивке. Дело в том, что каждый производитель имеет собственные базы и обновления для них, соответственно, процедура обновления может отличаться в зависимости от модели.

Как прошить детектор своими руками:

  1. Для начала необходимо снять детектор и подготовить устройство, подключив его к компьютеру и ноутбуку с помощью кабеля, который идет в комплекте.
  2. Затем запускается специальное программное обеспечения для перепрошивки. Программ в интернете огромное множество, рекомендуем выбирать софт, соответствующий модели вашего радар-детектора. Ознакомьтесь с комментариями потребителей в сети — обычно пользователи делятся информацией касательно использования тех или иных программ при обновлении.
  3. Сами базы для обновления или версию прошивки также можно скачать из Сети. Либо это все можно найти на официальном сайте производителя, что вероятнее всего, либо придется искать прошивку и обновления на других сайтах.
  4. Когда все будет подготовлено, запускается утилита для обновления. При выполнении этой задачи, как сказано выше, нужно пользоваться сервисной книжкой, где должны быть указаны все нюансы и моменты. Если все настроено верно, то программа автоматически обновит базы и осуществит перепрошивку устройства, после чего будет возможна его полноценная эксплуатация.

Фотогалерея «Полицейское оборудование»

1. Радар Беркут
2. Радар ДПС Сокол
3. Прибор для фиксации скорости Искра
4. Полицейский комплекс Автодория

Заключение

Поскольку большинство современных радар-детекторов производятся в Китае или Европе, при отсутствии настроек эти девайсы в любом случае будут работать с помехами. В таком случае автолюбителю предстоит столкнуться с регулярными ложными срабатываниями. Детектор будет реагировать практически на все — начиная от оборудования на предприятиях или в других автомобилях и заканчивая автоматическими дверьми супермаркетов. Поэтому перед использованием детектор обязательно нужно настроить и отключить диапазоны, которые в вашей стране не используются.

 Загрузка …

Видео «Как своими руками доработать радар-детектор?»

Подробнее о том, как доработать и добиться максимальной эффективности от радар-детектора, вы можете узнать из ролика, размещенного ниже, на примере китайского устройства V7 (видео опубликовано каналом CompsMaster).

Диапазоны радаров ДПС в России

Полицейские дорожные радары используют несколько стандартизированных несущих радиочастот, самая основная из которых, является частота 10525 МГц, названная X-диапазоном.Основные радары ДПС это Барьер, Сокол и др. Которые с легкостью обнаруживаются радар детекторами за достаточно большое расстояние. На данный момент, практически себя изжил и в РФ не используется. Чаще используется на территории стран СНГ.

Барьер-2-2МСокол-М

Более новый диапазон для радаров ДПС, частота 24150 МГц. Самый важный диапазон для России.

Частота менее длительна, имеет более высокий энергетический потенциал, дальность обнаружения, и гораздо меньше помех по сравнению с X-диапазоном.

Радары ДПС использующие эту частоту: Беркут, Искра-1 и их модификации и фото и видео комплексы, построенные с участием локационных частей этих радаров. Также легко обнаруживается детекторами. В данном диапазоне работают практически все камеры и измерители скорости. В том числе и Стрелка СТ/M.

Искра-1ДСтрелка-СТ

Новейший диапазон для полицейских радаров, частота 34700 МГц. Дальность обнаружения до 1.5 км с высокой точностью за минимально короткое время. Наиболее перспективный диапазон за счет, меньшей длительности периода и высокого потенциала. Так же обнаруживается радар детекторами. В РФ не используется вообще. Занят военными. Можно встретить на территории стран СНГ и Европы.

Один из редких диапазонов, используемый в некоторых европейских странах. В России на этом диапазоне работает  спутниковое телевидение, поэтому в России нет таких радаров ДПС. Хотя в Европе и даже в Прибалтике их предостаточно.

Почти во всех европейских странах и некоторых штатах Америки местным законодательством запрещено использование радар-детекторов.

Чтобы обеспечить отлов незаконного прибора, существуют несколько специальных высокочувствительных радаров, работающих на на частоте 13000 МГц, именуемыми VG-1,VG-2,VG-3 и аналогичными.

Суть технологии такова — машина облучается данным радаром. Радар-детектор, в подавляющем своем большинстве основанный на супергетеродине, произведет обработку этого сигнала.

В процессе усиления этого сигнала и до того, как он пойдет на обработку в радар-детекторе, радар-детектор выдаст этот сигнал-эхо в эфир. То есть произойдет обычное для усилителя-гетеродина и неизбежное излучение усиленного сигнала. Радар VG-2 засекает этот эхо и выдает, что в том месте с большой долей вероятности находится радар-детектор.

Чтобы уберечь себя и кошелек владельца, в настоящее время почти все производители радар-детекторов позаботились об этом, и имеют различные технологии маскирования от незваных гостей.  Снят с вооружения в 2012 году. Заменен на Spectre. В России радар детекторы разрешены. Поэтому, если есть в радар детекторе данная функция, то ее можно смело выключить.

С начала 90-х годов впервые появились лазерные дальномеры и измерители скорости, основанных на отражения узконаправленного луча лазера от препятствия.

Скорость вычислялась по простым алгоритмам, путем подачи нескольких коротких импульсов через строго определенный промежуток времени измеряя расстояния до цели от каждого отражения этого импульса. В итоге получалась некая средняя составляющая, которая и выводилась на экран. Принцип прост и не изменился с тех пор и до сегодняшних дней, но с каждым новым витком эволюции таких дальномеров менялась частота импульсов и длинна луча лазера. Почти все современные радар-детекторы встроены сенсоры для приема лазерного диапазона. Принимаемая длина волны которых колеблется от 800 нм до 1100 нм.

Имеются так же недостатки, присущие приборам, используемых лазерный диапазон — они не любят дисперсионный препятствия (осадки, туман и т.д.), в следствии чего данные приборы используются только в сухую погоду. Наличие приема данного диапазона важно в большинстве своем лишь в мегаполисах, где сотрудники ГИБДД имеют дорогую технику для отслеживания скоростного режима.

Проконсультироваться, подобрать подходящую именно Вам модель

радара и приобрести все новинки рынка автомобильных радар-детекторов Вы

можете в нашем интернет магазине www.topradar.ru

Как лучше детектировать? Или какой радар-детектор взять с собой в дорогу?

Как лучше детектировать? Или какой радар-детектор взять с собой в дорогу?

А начнем мы с того, что разберемся, что же такое радар-детектор и что такое антирадар.

Радар-детектор – это компактный электронный прибор весом примерно 100-200 г, который улавливает радиосигналы, испускаемые радарами ГИБДД, и сообщает об этом водителю. В зависимости от модели радар-детектора, сигнал может быть звуковым или световым. Прежде всего, радар-детектор – это пассивный приемник, не подавляющий принимаемый сигнал усиленным сигналом той же частоты, а сигнализирующий водителя о том, что в радиусе своего действия он принимает сигналы каких-либо диапазонов, на которые он собственно и настроен. Данные устройства не запрещены к продаже и использованию их на территории РФ.

Анти-радар — антирадаром в обиходе, зачастую, называют радар-детекторы, имея в виду одни и те же устройства. Иногда антирадарами называют “активные радар-детекторы”. Это приборы, которые выдают помеху на радар ДПС. Поэтому, можно смело сказать, что антирадар – это активный подавитель какого-либо излучения, на которое он настроен. Т.е. при обнаружение сигнала подходящей частоты включается режим подавления – излучение более сильного сигнала и искаженным шумом. Данное устройство противоречит законам РФ, т.к. является мощным излучателем радиосигналов в частотах, запрещенных на использование частными лицами. То, что продается на территории РФ – это радар-детекторы , но в народе их до сих пор так и называют антирадарами .

А теперь о частоте

 

С начало 90-х в России данные посты по измерению скорости пережили множество обновления техники измерения, начиная от простых радаров, использующих устаревший в настоящее время диапазон X (10. 5 ГГц) постоянного действия, до современного (для России) диапазона K (24.15 ГГц) импульсного режима.

Также особняком стоят ЛИСД – дальномеры и измерители скорости, основанных на применение лазерного луча с длинной волны от 0.7 до 1.0 мкм, активное применение в России началось с 2001 года.

По соглашению Государственной Комиссии по Радиочастотному Контролю, в России разрешены к применению в радарах ДПС частоты с несущей частотой 10.525 ГГц и 24.15 ГГц с соответствующими допусками. По международным стандартам эти частоты обозначаются как X-диапазон (10.525 ГГц) и K-диапазон (24.15 ГГц). Сейчас уже ведется активная работа по внедрению нового для России Ka-диапазона с несущей частотой 34.7 ГГц, и планируется его внедрить в ближайшие два года. Все приборы, использующих эти частоты для определения скорости объекта, можно разделить на два класса – прибор с постоянным излучением и приборы с короткоскважным модулированным излучением (импульсные).

Поэтому довольно просто сделать вывод. В соответствие с тем, что различные радары работают на разных частотах, радар-детекторы должны принимать сигналы в разных диапазонах (полосах) частот. В нашей стране наиболее распространены однополосные радар-детекторы, настроенные на Х-диапазон (в соответствие с большинством радаров в России). Двухполосные радар-детекторы работают в Х- и К-диапазонах. Многополосные охватывают все доступные диапазоны (Х-, К-, Ка-, и лазер). Как правило, чем больше полос охватывает радар-детектор, тем он дороже. В России наиболее целесообразно покупать ХК-радар-детекторы, как соответствующие подавляющему большинству применяемых радаров.

Диапазоны

 

X-диапазон

Полицейские и милицейские дорожные радары используют несколько стандартизированных несущих радиочастот, самой старой и основной из которых является частота 10525 МГц, названная X-диапазоном.

Данная частота была изначальна использована в локационном оборудование, и на основе ее было создано множество импортных и отечественных радаров ДПС, из которых наиболее популярны «Барьер», «Сокол» и др.

В настоящее время эта частота морально и технически отжила свой век и постепенно уступила дорогу более быстродействующим приборам работающих на другой несущей частоте.

K-диапазон

 

Более «свежий» диапазон для полицейских и милицейских дорожных радаров с несущей частотой 24150 МГц. Ввиду меньшей длительности периода и более высокого энергетического потенциала позволяет приборам, работающим на этой частоте, иметь небольшие размеры и дальность обнаружения, в полтора раза превышающую дальность приборов, работающих X-диапазоне, плюс за меньшее время.

Так же эта частота хороша тем, что у нее более широкая полоса пропускания (100 МГц) и гораздо меньше помех по сравнению

с X-диапазоном. На этом диапазоне частот базируются наши отечественные радары «Беркут», «Искра-1» и их модификации и фото и видео комплексы, построенные с участием локационных частей этих радаров. В настоящее время это базовый диапазон у подавляющего большинства радаров мира.

Ka-диапазон

Самый новый диапазон для полицейских и милицейских дорожных радаров с несущей частотой 34700 МГц. Считается наиболее перспективным диапазоном за счет опять же еще меньшей длительности периода и более высокого энергетического потенциала, позволяющего данным приборам иметь дальность обнаружения до 1.5 км с высокой точностью за минимально короткое время.

Этот диапазон имеет самую широкую полосу пропускания (1300 МГц), в счет чего его назвали SuperWide (сверширокий) и полное отсутствие бытовых и иных помех, мешающих определению скорости пеленгуемого объекта. Это рабочий диапазон будущих радаров, наиболее эффективный для повсеместного применения. Ожидается его полное лицензирование в ближайшие 2-3 года.

Ku-диапазон

 

Один из редких диапазонов, используемый в некоторых европейских странах и который ранее ожидался у нас, работающий на частоте 13450 МГц.

Камнем преткновения на деле послужило спутниковое телевидение, работающее в этом диапазоне, и поэтому в России нет, да и вряд ли будут такие радары.

А в Европе, и даже в Прибалтике пока что добрая половина парка дорожных радаров работает на этой частоте. Редкий рабочий диапазон, являющийся истинно европейским, но не имеющий практического будущего.

VG-2 — защита от нападения

 

Почти во всех европейских странах и некоторых штатах Америки местным законодательством запрещено использование радар-детекторов.

Чтобы обеспечить «отлов» незаконного прибора, существуют несколько специальных высокочувствительных радаров, работающих на частоте 13000 МГц, именуемыми VG-1,VG-2,VG-3 и аналогичными.

Суть технологии такова — машина облучается данным радаром. Радар-детектор, в подавляющем большинстве основанных на супергетеродине, который производит обработку этого сигнала. В процессе усиления этого сигнала и до того, как он пойдет на обработку в радар-детекторе, радар-детектор выдаст этот сигнал-эхо в эфир.

Т.е. произойдет обычное для «усилителя-гетеродина» и неизбежное излучение усиленного сигнала. Радар VG-2 засекает этот «эхо» и выдает, что в том месте с большой долей вероятности находится радар-детектор. Чтобы уберечь себя и кошелек владельца, в настоящее время почти все производители радар-детекторов позаботились об этом, и имеют различные технологии маскирования от незванных гостей.

Лазерный диапазон

 

С начала 90-х годов впервые появились лазерные дальномеры и измерители скорости, основанных на отражения узконаправленного луча лазера от препятствия.

Скорость вычислялась по простым алгоритмам, путем подачи нескольких коротких импульсов через строго определенный промежуток времени измеряя расстояния до цели от каждого отражения этого импульса. В итоге получалась некая средняя составляющая, которая и выводилась на экран. Принцип прост и не изменился с тех пор и до сегодняшних дней, но с каждым новым витком эволюции таких дальномеров менялась частота импульсов и длинна луча лазера. Почти все современные радар-детекторы встроены сенсоры для приема лазерного диапазона. Принимаемая длина волны которых колеблется от 800 нм до 1100 нм.

Имеются так же недоставки, присущие приборам, используемых лазерный диапазон — они не любят дисперсионный препятствия (осадки, туман и т.д.), вследствие чего данные приборы используются только в сухую погоду. Наличие приема данного диапазона важно в большинстве своем лишь в мегаполисах, где сотрудники ГИБДД имеют дорогую технику для отслеживания скоростного режима.

Импульсные режимы определения. Стандарты и названия

 

В конце 90-х годов прошлого века сменилась эпоха постоянно действующих радаров X, K и Ka диапазонов на более быстрые и неуловимые Instant-On (навскидку) радары.

Данные устройства имеет импульсную форму определения скорости — небольшой очередью коротких импульсов. Данную форму не помнимают многие радар-детекторы и просто не обрабатывают ее, считая это помехой.

Специально для таких радаров были разработаны многими компаниями новых алгоритмов по определению таких форм. Названий они получали много, но утвердились лишь немногие:

  1. Ultra-X — короткоимпульсный режим диапазона X;
  2. Ultra-K — короткоимпульсный режим диапазона K;
  3. Ultra-Ka — короткоимпульсный режим диапазона Ka;
  4. POPtm — сертифицированный режим по определению импульсных K и Ka дипазонов;
  5. F-POPtm — сертифицированный режим по определению импульсных X, K и Ka дипазонов.

В настоящий момент данные режимы поддерживают не все радар-детекторы, которые продают на рынке, поэтому будьте бдительны при покупке!

 

Подвергнем классификации радар-детекторы

 

Важными по порядку параметрами для радара-детектора являются:

  1. Определение всех применяемых диапазонов и режимов радаров ДПС
  2. Дальность обнаружения сигнала
  3. Процентное соотношение реальных сигналов к ложным
  4. Скорость обработки полученных сигналов.
  5. Достоверность результата.
  6. Надежность и качество.
  7. Дополнительная функциональность.

Как правильно выбрать антирадар

Антирадар не понадобится, если всегда соблюдать скоростной режим
Фото: pixabay.com

Наилучшие радар-детекторы должны работать на большом расстоянии, иметь широкий диапазон частот и помехоустойчивость.

Радар-детекторы, чаще называемые в обиходе «антирадарами», служат для предупреждения о наличии на дорогах камер контроля скорости. В России использовании таких гаджетов не запрещено, однако если вас остановят с радар-детектором (даже выключенным) в Европе, то устройство конфискуют, а вам выпишут приличный штраф. О том, как правильно выбрать антирадар для пользования на территории России, рассказал сайт «Популярная Механика».

Выбирая сканирующее устройство стоит отдавать предпочтение моделям с максимальным диапазоном рабочих частот. Это позволит определять широкий спектр камер. Также важно, чтобы радар-детектор выдавал минимум ложных сигналов и справлялся с помехами. Оптимальная дальность действия должна быть не менее 5 километров. Не помешает и наличие GPS-модуля, который позволит определять камеры по координатам в базе данных. И, конечно же, устройство должно быть способным периодически обновлять базу данных.

Список лучших радар-детекторов на российском рынке по версии сайта «Популярная Механика»:

  • Neoline X-COP S300;
  • Neoline X-COP 5700;
  • Whistler Pro-80ST;
  • Playme Hard 3;
  • Playme Silent;
  • Radartech Pilot 11RS;
  • Sho-Me G-1000 Signature;
  • TrendVision Drive-700 5. 0;
  • Sho-Me G-700STR;
  • Inspector RD GTS;
  • Whistler 558;
  • Playme Quick 2;
  • Fujida Neo 8000;
  • Sho-Me G-800STR;
  • Supra DRS-SG171V;
  • SilverStone F1 Fuji;
  • Prestige RD-101.

Не стоит забывать, что технологии не стоят на месте, поэтому если вы хотите приобрести самое современное устройство, то необходимо следить за выпускаемыми новинками и сравнивать их с проверенными моделями.


Почему подводит радар-детектор или как избежать штрафов за превышение скорости? | ARTWAY ELECTRONICS

В отзывах на сайтах интернет-магазинов автоаксессуаров, на автомобильных форумах и на других ресурсах часто можно встретить претензии к радар-детекторам, вовремя не предупредившим владельца о расположенных на их пути комплексах фиксации нарушений скоростного режима. Одни водители жалуются на то, что «антирадар» сработал слишком поздно, вторые заявляют, что он не сработал вообще, хотя они сами отчетливо видели «камеру», а третьи отмечают, что даже самая современная модель срабатывает не на все «радары».

Главным виновником в подобных ситуациях обычно объявляется конкретная модель устройства, которая не работает должным образом. Реальной же причиной того, что радар-детектор не спас от штрафа, в большинстве случаев является незнание принципа его работы, а также особенностей технических средств, применяемых ГИБДД.В этой статье мы расскажем, как сократить риск неприятных последствий после встречи с ними до минимума.

Типы и особенности средств контроля скорости

Все используемые технические средства фиксации нарушений скоростного режима можно разделить на три типа: радарные, лазерные (оптические) и безрадарные. Первые определяют скорость движения автомобиля по разности частоты (или длины волны) излучаемого и отраженного от объекта радиосигнала. Вторые используют аналогичный принцип, с той лишь разницей, что роль радиосигнала играет импульсный оптический лазерный луч. Третьи определяют скорость на основании времени прохождения автомобилем определенного участка.

Устройство и принцип действия радара-детектора

Радар-детектор благодаря встроенной рупорной антенне, принимающей радиосигналы определенного диапазона, и линзам, улавливающим излучение лазера, позволяет на расстоянии идентифицировать работающие средства фиксации нарушений первых двух типов. Принятый сигнал обрабатывается процессором по определенному алгоритму с целью исключения ложных срабатываний.В случае соответствия сигнала определенным критериям,информация о радаре и расстоянии до него выводится в доступной для восприятия водителем форме – графической (световые индикаторы или дисплей) и звуковой(голос или тоновый сигнал).

Наиболее продвинутые модели оснащаются GPS-модулем и программным обеспечением, позволяющим анализировать местоположение автомобиля и сравнивать его с имеющейся в базе данных информацией о местах расположения стационарных и мобильных средств фиксации нарушений.

Факторы, влияющие на дальность действия радар-детектора и вероятность его срабатывания:

1.Тип и модель средства фиксации нарушений

На данный момент в России наиболее распространены радарные комплексы фиксации нарушений или просто радары. Наиболее популярные модели – КРИС-П, АРЕНА,КОРДОН, КРЕЧЕТ, мультирадар («РОБОТ») и СТРЕЛКА-СТ.
Первые три модели в стандартной ситуации (см. ниже) легко определяются большинством радаров-детекторов на большом расстоянии благодаря мощному сигналу.

 

Крис ПАренаКордон

 

Последние три относятся к категории «малошумных», и поэтому даже качественные «антирадары» определяют их нередко только за 200–300 метров, а иные «не видят» вовсе.

 

КречетРоботСтрелка СТ

 

Наиболее сложным для идентификации является мультирадар, также известный как РОБОТ. В то же время его легко заметить визуально, благодаря внушительным габаритам. Опасность СТРЕЛКИ заключается в способности слежения за автомобилем-нарушителем на расстоянии до 400 м, тогда как остальные измеряют скорость движения непосредственно перед съемкой.

Амата

ЛИСД

Самыми популярными лазерными средствами фиксации нарушений являются ЛИСД и АМАТА. Первое внешне напоминает большую видеокамеру с двумя объективами, а второе – бинокль. Преимуществом этих комплексов, обычно используемых инспекторами ГИБДД в ручном режиме, является внезапность.

Луч лазера посылается после нажатия на кнопку и мгновенно замеряет скорость движущегося объекта. Радар-детектор при этом обычно срабатывает, но это уже не имеет значения, так как нарушение уже зафиксировано. Засечь оптические радары и избежать штрафа реально, лишь двигаясь в потоке – в этом случае луч может отразиться от другого автомобиля, либо визуально – увидев подозрительный объект на обочине.

 

Безрадарные комплексы системы «Автодория» радар-детектор засечь не может в принципе, так как они не излучают никаких радио- или оптических сигналов. Предупредить о них может только оснащенный модулем GPS «антирадар» или навигатор.

Вывод: максимально сократить риск штрафа позволяют чувствительные радары-детекторы с GPS модулем и обновляемой базой данных. Полагаться только на улавливаемые сигналы можно не всегда. При наличии обеих функций «антирадар» в большинстве случаев успевает вовремя предупредить о вероятной опасности.

 

 

2. Местоположение комплекса фиксации нарушений

Обмануть радар-детектор можно и при помощи нестандартного размещения средств фиксации нарушений. Значение имеет направление, угол поворота к дороге и высота (расстояние от дорожного полотна до «камеры»). Стационарные комплексы обычно размещаются на специальных фермах над дорогой, на мостах, путепроводах, столбах и других подходящих для этой цели сооружениях. Мобильные (они же треноги)чаще стоят на разделительной полосе или на обочине (за автомобилем, за деревом, в кустах и т.д.) и расположены под углом к дороге. Радар может быть направлен как в сторону потока, так и в направлении его движения (в данном случае на фото попадает задняя часть автомобиля).

Рассмотрим несколько примеров.
Стандартная (самая распространенная) ситуация показана на рисунке 1.


Стационарный комплекс фиксации нарушений расположен над дорогой и направлен навстречу потоку. В точке 1 сигнал от «камеры» отсутствует, поэтому радар-детектор «молчит». В точке 2 интенсивность излучения достигает достаточной для срабатывания отметки, и устройство оповещает об этом владельца. У последнего есть некоторое время на то, чтобы снизить скорость, так как замер её производится в точке 3. В точке 4 сигнал всё ещё улавливается радар-детектором, однако опасность фиксации нарушения уже миновала.

Работа стационарного комплекса «в спину».

 


В данном случае камера расположена по ходу движения, поэтому дистанция срабатывания (Dср) меньше, чем в первой ситуации, однако у водителя всё же есть возможность притормозить до попадания в точку замера, которая находится уже после конструкции с камерой. Радар-детектор будет улавливать сигнал ещё некоторое время после проезда этой точки.

Радар на земле

 


В этой ситуации мобильный комплекс расположен на треноге на расстоянии около 1 м от земли на обочине под углом к дороге и навстречу потоку. Точка срабатывания в этом случае ещё ближе к точке замера. Ещё более неприятной разновидностью данного случая может быть радар, направленный по ходу движения. В этом случае вовремя предупредить об опасности может только чувствительный радар-детектор.

Вывод: лучше всего определяются радары, направленные в сторону потока и расположенные параллельно дороге на большой высоте, хуже всего – находящиеся близко к земле и направленные «в спину» под углом.

3. Рельеф местности и наличие препятствий

Рельеф может сыграть как в пользу автовладельца, так и против него.

 

 

В данном случае радар-детектор поймал сигнал комплекса фиксации на достаточно большом расстоянии, однако после этого автомобиль попал в «мертвую зону» и оповещение временно отключилось. После выезда из ложбины транспортное средство оказалось сразу в точке замера скорости.

 

 

В этой ситуации дальность срабатывания радара будет меньше из-за небольшой протяженности прямого участка перед комплексом фиксации.

 

 

Похожая ситуация может сложиться в том случае, если комплекс фиксации нарушений расположен за поворотом и прямую видимость закрывает какой-нибудь объект или объекты (здания, деревья, горы и т.п.). По этой причине расстояние от точки срабатывания до точки замера минимальное.

Вывод: приближаясь к подозрительным и плохо просматриваемым участкам дороги, снижайте скорость, особенно если радар-детектор подает неуверенные сигналы об опасности или в базе данных есть информация о стационарной камере или полицейской засаде в этой точке.

4. Скорость движения автомобиля

На обработку сигнала радар-детектору требуется некоторое время. Когда счет идет на секунды, этот параметр может иметь решающее значение. Также следует учитывать, что чем выше скорость движения автомобиля, тем быстрее он пройдет расстояние от точки срабатывания до точки замера, которое в некоторых случаях составляет несколько десятков метров.

Вывод: скорость движения должна позволять вам своевременно отреагировать на оповещение радар-детектора, не прибегая к резкому торможению.

 

5. Отсутствие сигнала радара (безрадарные комплексы фиксации нарушений или муляжи)

Основным отличием безрадарных комплексов фиксации нарушений является отсутствие какого-либо излучаемого сигнала. Замер скорости в данном случае производится путем «отсечки», то есть фиксации парой камер местоположения одного и того же транспортного средства на различных участках дороги и времени нахождения его в этих точках. Если разница во времени окажется меньше периода, за который можно проехать данную дистанцию его с разрешенной скоростью – автовладельцу придет «письмо счастья».

Наглядно работа комплекса «Автодория» показана на рисунке.

 

 

Если радар-детектор не сработал на стационарную или мобильную камеру, это может также означать, что перед вами муляж, то есть нерабочая,пришедшая в негодность камера, просто похожая на неё коробка или плакат. Такие «обманки» часто устанавливают на опасных участках, тем самым заставляя водителей соблюдать скоростной режим. Иногда их можно отличить визуально, но лучше всё же положиться на хороший радар-детектор.

Вывод: так как безрадарные камеры не излучают сигналов, то никакой радар-детектор,оснащенный лишь антенной и линзой, в том числе самый современный и дорогой, идентифицировать их не может. Единственным исключением является радар-детектор с GPS-приемником. Он способен определять местоположение автомобиля и сравнивать его с базой данных о расположении комплексов «Автодория», на основании которых оповещает водителя о приближении к опасному участку. Он же позволит отличить безрадарные комплексы от муляжей – последние в базу, как правило, не вносят.

 

6. Чувствительность радар-детектора

 

Большинство современных моделей радар-детекторов позволяют устанавливать разный уровень чувствительности. Это связано прежде всего с большим количеством источников помех (радиопередающих устройств, датчиков движения и т.д.) в населенных пунктах, которые увеличивают число ложных срабатываний. Режимы предназначенные для города использовать на трассе нежелательно, так как это существенно сокращает дистанцию срабатывания и не позволяет вовремя снизить скорость.

Вывод: при использовании радар-детектора необходимо выбирать режим в соответствии с окружающей обстановкой, а также скоростью движения.

7. Актуальность баз данных о камерах

Данный пункт актуален для радар-детекторов с GPS-модулем и обновляемыми базами данных о местоположении стационарных и мобильных камер. Последние необходимо обновлять хотя бы раз в месяц, так как количество комплексов видеофиксации нарушений постоянно увеличивается, а в некоторых случаях меняется их дислокация.

Вывод: актуальные базы данных сокращают риск получения штрафов при проезде по участкам, скорость на которых контролируется безрадарными комплексами или малошумными радарами.

 

Базы камер регулярно обновляются с помощью партнерского сервиса mapcam.info
В данном материале описаны наиболее распространенные ситуации, а также особенности применения и работы самых популярных средств фиксации нарушений и общие принципы их идентификации. Изучение данной информации и следование советам позволит повысить эффективность использования радар-детектора. В то же время следует понимать, что все возможные случаи описать невозможно, а технические средства, используемые ГИБДД, постоянно совершенствуются, поэтому небольшая вероятность получения штрафа за превышение скорости всё же сохраняется.

 

 

При написании статьи были использованы материалы с ресурса
https://www.drive2.ru/b/1703981/

Radar Range — обзор

5.

1 Введение

В настоящее время радары ближнего действия становятся интересными устройствами для внутреннего и наружного применения [1–6]. Бесконтактная локализация с распознаванием человека может быть достигнута с помощью этих радарных датчиков, которые должны быть компактными и иметь хорошие характеристики [7–10]. Приложения варьируются от ухода за престарелыми, наблюдения за пациентами, обнаружения выживших после схода лавин или землетрясений и здравоохранения в реальном времени до дополненной реальности на основе радаров [11–16].

С этой целью в литературе традиционно предлагались две основные архитектуры: доплеровские радары и импульсные радиолокационные сверхширокополосные (ИК-СШП) радиолокационные системы. Первые используют одиночный тон в качестве формы сигнала передачи, не имея разрешения по дальности [11,17,18]. Последние передают чрезвычайно узкие импульсы, которые обычно трудно уловить [12,19–22]. В обоих случаях было предложено множество схем и связанных подходов к обработке с интересными и многообещающими результатами в области биочувствительности и здравоохранения [17–22].

Эта глава посвящена недавно предложенной архитектуре радара непрерывного излучения с линейной частотной модуляцией (LFMCW) для приложений локализации с учетом человеческого фактора [7,23–26]. Добавляя также функцию когерентности, система сочетает в себе превосходную фазовую точность при измерении дальности до целей с разрешением по дальности [23–26]. Кроме того, получение эхо-сигналов, отраженных от целей, можно значительно упростить, что может быть использовано для разработки недорогих прототипов радаров [23–26].

Глава написана в автономном стиле, так что читатель может найти всю важную информацию для понимания, создания, использования и даже моделирования согласованного прототипа радара LFMCW для приложений ближнего действия. Учитывая его уникальные особенности, авторы считают, что в ближайшем будущем подобная радарная система будет широко распространяться для улучшения качества нашей жизни. Возможно, автомобильный сектор сейчас лидирует в этой гонке [27–29].

В следующем разделе описывается так называемый метод уменьшения амплитуды, который является ключевой концепцией недорогого радара LFMCW. Он заключается в смешивании реплики переданного сигнала с эхом, исходящим от целей.

Простой математический анализ для понимания форм сигналов представлен в Разделе 5.3, который знакомит читателя с важными понятиями, такими как быстрое время, медленное время, разрешение по диапазону и т. Д. В разделе 5.3 также подробно описаны ключевые аспекты, связанные с поддержанием когерентности радара, чтобы можно было использовать фазовую / доплеровскую историю рассеивателей цели. Кроме того, вводятся два простых алгоритма для получения эволюции дальности целей.В зависимости от амплитуды и фазы сигнала с замедленным временем эти алгоритмы могут использоваться для получения истории дальности до целей, что является основным выходом, требуемым в приложениях локализации с учетом человеческого фактора.

Вопросы обработки сигналов представлены в разделе 5.4, с введением обычного форматирования данных и построением важных матриц, таких как матрица профиля дальности или карта доплеровского диапазона. Кроме того, в Разделе 5 представлено более формальное описание алгоритмов отслеживания истории дальности до целей.4.

Раздел 5.5 рассматривает важные концепции разрешения по дальности, точности и точности в контексте когерентных радаров LFMCW. Авторы отмечают, что иногда эти концепции недостаточно используются в литературе, что обычно приводит читателя в замешательство. Также кратко описаны концепции для других размеров, таких как угол (азимут или возвышение) и доплеровский.

С другой стороны, беспорядок — это любой нежелательный возврат, который может отрицательно повлиять на правильную работу радара.В контексте локализации с учетом информации о человеке в разделе 5.6 представлена ​​математическая основа для возможных возникающих эффектов препятствий и предложены методы уменьшения помех на основе допплера для когерентных радаров LFMCW.

Результаты моделирования и эксперимента приведены в разделах 5.7 и 5.8 соответственно. Моделируемые примеры позволяют подтвердить принцип работы радиолокационной системы, подразумеваемую математику, указанные ограничения и предлагаемые алгоритмы. Экспериментальные результаты также подтверждают концепции и устанавливают связь с реальностью.Дополнительно дается краткое описание сконструированного прототипа.

В последнем разделе (Раздел 5.9) вкратце описывается наша будущая работа, которая в основном сосредоточена на создании прототипа когерентного LFMCW диапазона миллиметровых волн. Преимущества увеличения рабочей частоты радиолокационного датчика комментируются в разделе 5.9.

радар | Определение, изобретение, история, типы, применения, погода и факты

Радар , электромагнитный датчик, используемый для обнаружения, определения местоположения, отслеживания и распознавания различных объектов на значительных расстояниях.Он работает, передавая электромагнитную энергию на объекты, обычно называемые целями, и наблюдая за отраженным от них эхом. Целями могут быть самолеты, корабли, космические корабли, автомобили и астрономические тела, или даже птицы, насекомые и дождь. Помимо определения присутствия, местоположения и скорости таких объектов, радар иногда может также определять их размер и форму. Что отличает радар от оптических и инфракрасных датчиков, так это его способность обнаруживать далекие объекты в неблагоприятных погодных условиях и определять их дальность или расстояние с точностью.

Радар является «активным» сенсорным устройством, поскольку он имеет собственный источник освещения (передатчик) для определения местоположения целей. Обычно он работает в микроволновом диапазоне электромагнитного спектра, измеряемом в герцах (циклах в секунду), на частотах от 400 мегагерц (МГц) до 40 гигагерц (ГГц). Однако он использовался на более низких частотах для приложений дальнего действия (частоты до нескольких мегагерц, которые являются HF [высокочастотным] или коротковолновым диапазоном), а также на оптических и инфракрасных частотах (частоты лазерного радара, или лидар).Компоненты схем и другое оборудование радарных систем различаются в зависимости от используемой частоты, а размеры систем варьируются от достаточно малых, чтобы поместиться на ладони, до таких огромных, что они могли бы заполнить несколько футбольных полей.

Радар быстро развивался в течение 1930-40-х годов для удовлетворения потребностей военных. Он по-прежнему широко используется в вооруженных силах, где зародились многие технологические достижения. В то же время радары находят все большее количество важных гражданских применений, в частности, управление воздушным движением, наблюдение за погодой, дистанционное зондирование окружающей среды, навигацию самолетов и судов, измерение скорости для промышленных приложений и для правоохранительных органов, космического наблюдения и планетарного наблюдения. наблюдение.

Основы радара

Радар обычно включает излучение узкого луча электромагнитной энергии в космос от антенны ( см. Рисунок ). Узкий луч антенны сканирует область, где ожидаются цели. Когда цель освещается лучом, он улавливает часть излучаемой энергии и отражает часть обратно к радарной системе. Поскольку большинство радарных систем не передают и не принимают одновременно, одна антенна часто используется с разделением по времени как для передачи, так и для приема.

Принцип работы радара

Переданный импульс уже прошел цель, которая отразила часть излучаемой энергии обратно в сторону РЛС.

Encyclopædia Britannica, Inc. Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Приемник, прикрепленный к выходному элементу антенны, извлекает полезные отраженные сигналы и (в идеале) отклоняет те, которые не представляют интереса. Например, интересующий сигнал может быть эхом от самолета.Сигналы, которые не представляют интереса, могут быть эхом от земли или дождя, которые могут маскировать и мешать обнаружению желаемого эха от самолета. Радар измеряет местоположение цели по дальности и угловому направлению. Дальность или расстояние определяется путем измерения общего времени, которое требуется радиолокационному сигналу, чтобы пройти туда и обратно к цели и обратно ( см. Ниже ). Угловое направление цели определяется по направлению, в котором направлена ​​антенна во время приема эхо-сигнала. Посредством измерения местоположения цели в последовательные моменты времени можно определить недавний путь цели. Как только эта информация будет установлена, можно предсказать будущий путь цели. Во многих приложениях обзорных радаров цель не считается «обнаруженной» до тех пор, пока не будет установлена ​​ее траектория.

Основы RADAR

Основы RADAR Основы работы с радаром



A. ВВЕДЕНИЕ:

РАДАР — это аббревиатура от Radio Detection And Ranging.В целом радиолокационных станций, которые использовались (и используются) NWS, потребовалось гораздо больше, чем просто «обнаружение» и «определение дальности». место. С годами технический прогресс в материалах, схемотехника, высокоскоростные устройства, возможности обработки и наблюдения объединились, чтобы позволить радиолокационным системам значительно улучшенный.

Хорошим примером является WSR-57, долгое время являвшаяся общенациональная сеть метеорологических радиолокационных систем NWS. Номер модификации WSR-57 продлили срок его службы и позволил ему работать так, как никогда не могли задумал. Например, ’57 был сопряжен с технологией цифровой обработки и современными системами связи которые позволяют отображать и передавать данные радара далеко за пределы три оригинальных консольных ЭЛТ и фотоаппарат.

В начале 1960-х гг.У. Хизер писал: «В будущем это вероятно, что небольшие, твердотельные, готовые к использованию цифровые компьютеры будет использоваться для оперативного анализа данных на радаре в реальном времени для местных использование и для временного хранения цифровых данных на магнитной ленте до к передаче в другом месте «.

Кажется, мы подошли к моменту времени (и технологиям) в котором можно сказать, что у нас есть радиолокационная система, такая как Hiser описан почти тридцать лет назад.Эта система — WSR-88D, радар и система связи, буквально рожденная в головах Hiser и другие.

Чтобы обеспечить прочную основу для изучения Система WSR-88D, мера знания основных принципов радар — это необходимость. Обсуждения в этом наборе предварительных условий Уроки по работе с радарами призваны дать обзор этих основ. Включенные темы будут отраженными волнами, импульсными волнами, шириной луча радара, распространение, длительность импульса, частота следования импульсов, поляризация, цель разрешение, траектория луча, объем импульса и объем отраженного сигнала.

B. ССЫЛКИ:

Принципы работы радаров, (NWSTC MRRAD410, 1988)
Основы метеорологических радиолокационных систем, (NWSTC MRRAD420, 1990)
Радиолокационная метеорология, (Х.В. Хисер, третье издание, 1970 г.)

C. ОБСУЖДЕНИЕ:

Обычные радио- и телевизионные волны, которые передаются в атмосфера имеет вид непрерывных волн.»Несущая» волна передается, на который накладывается определенный модулирующий сигнал которые мы слышим или видим на нашем приемном оборудовании. С целью нашего обсуждения отраженных волн, модулирующих сигналов, которые частью волны CW можно пренебречь. Мы будем «модулировать» в радаре, а не обычным способом, радиолокационная волна будет передаваться время от времени. Пока радиолокационный передатчик включен, излучаемая волна может рассматриваться как непрерывная волна, и поэтому будет соответствуют принципам, изложенным в следующем обсуждении.

Электромагнитная волна может быть представлена ​​в пространстве, как показано на рисунке ниже. Также показан радиопередатчик, приемник, и препятствие для волны. (Позже мы обратимся к это препятствие как «цель»).



Если излучение направлено в сторону препятствия, волны ударяются о него и определенная часть энергии (намного меньше, чем полная энергия, падающая на препятствие) отражается обратно в сторону передатчика.В на самом деле происходит то, что волны «разбросаны» во многих направлениях с поверхностей препятствия, на которое ударила волна.

Если препятствием на чертеже было облако капель воды, прошедшая (падающая) волна была бы «рассеяна» почти во всех направлениях каждой из капель. Можно сказать что каждая капля воды будет «повторно излучать» полученную энергию. от прошедшей волны.Кроме того, каждая капля действует как малая дипольная антенна. Если капли различаются по размеру, их соответственно меняются электрические характеристики антенны. Некоторые капли будет излучать больше энергии, чем другие. Максимальное количество это повторное излучение, конечно, будет определяться размером капли и длиной волны падающего излучения. Должный до сферической формы капель переизлучение происходит во всех направления (рассеяние).Самолет на чертеже будет производить рассеянное переизлучение. Его форма и размер, конечно, будут определить картину рассеяния.

Общее количество отраженной энергии (в любом направлении) равно зависит от нескольких факторов, некоторые из которых будут обсуждаться в этом единица. Здесь достаточно сказать, что если мы передаем обычные электромагнитные волны, которые ударяются о какое-то препятствие, очень небольшое количество этого энергия будет отражаться (повторно излучаться) обратно к точке передачи.

В системе с непрерывной волной, такой как описанная выше, казалось бы, что любые отраженные волны, возвращающиеся к передатчику будут отменены или скрыты помехами от исходящих волн. Если это произойдет, не может быть никакого метода обнаружения отраженная энергия может быть достигнута. Чтобы разрешить использование одной антенны, а также для измерения расстояния от антенна к отражающей поверхности (-ам), «импульсная» волновая радиолокационная система был разработан и будет исключительной темой нашего обсуждения.

В импульсной радиолокационной системе излучаются электромагнитные волны от антенны короткими очередями. То есть волны прерываются на время, чтобы волна достигла отражающей цели и часть энергии может вернуться к той же антенне до следующего передается всплеск волн. Если соответствующие устройства времени и схем, можно определить расстояние до цель в подходящих единицах измерения.Эти единицы измеряются в время увеличивается, но поскольку волны распространяются с известной скоростью, мы можем легко конвертировать измеренное время в значения расстояния (диапазона).

На рисунке ниже изображены «импульсные» волны радиолокационной системы. Обратите внимание, что здесь одна антенна. Эта цифра, хотя и сильно преувеличена. во временной области показывает «интервал» между импульсами волны и длительность самого импульса.


Длительность импульса называется «длительностью импульса» и измеряется в микросекундах (одна микросекунда — одна миллионная секунды).Пульс Длина обычно называется ШИРИНОЙ ИМПУЛЬСА в радиолокационных системах.

Интервал между импульсами или время от начала одного импульса к началу следующего, определяется количеством импульсов, которые передаются в заданный период времени. В радаре мы измеряем все время в секундах (или долях секунды). В результате уравнение для измерения интервала времени между импульсами составляет ….

Одна секунда
Интервал повторения импульсов = __________________
Количество импульсов в секунду

Если бы мы передавали 1000 импульсов в секунду, интервал время от начала одного импульса до начала следующего будет быть. ..

1
Интервал повторения импульсов = ___________ = 0,001 секунды
(PRI) 1000

Временной интервал известен как «PRI», его также часто называют «PRT». Количество импульсов, передаваемых за одну секунду, называется «частота», и чаще всего ее называют «PRF» (повторение импульсов частота).

«Коэффициент заполнения» (часто называемый рабочим циклом) — это коэффициент от ширины импульса (PW) до частоты повторения импульсов (PRF), и составляет выдано …

Рабочий цикл = PW * PRF

… где PW в секундах, а PRF в импульсах в секунду.

Рабочий цикл выражает отношение времени включения передатчика. к общему доступному времени (PRI).Если использовать наш пример PRF выше (1000 импульсов в секунду), и каждый излучаемый импульс длился одну микросекунду (0,000001 секунды), значение рабочего цикла будет . ..

Рабочий цикл = 0,000001 * 1000 = 0,001

Это означает, что наш передатчик действительно включен на одну тысячную от общего измеренного времени. Один метод понимания значение «рабочего цикла» действительно интересно. Взгляните на часы и, когда секундная стрелка пройдет точное начало любого ЧАСА (1 час, 2 часа и т. д.), крик в верхней части ваши легкие ровно на 3,6 секунды. Затем молча дождитесь точного начало СЛЕДУЮЩЕГО ЧАСА, а затем повторите 3,6-секундный крик. Соотношение вашего крика и тишины будет точно таким же. как наша частота повторения импульсов 1000 Гц и длительность импульса 1 микросекунда выше.

Что на самом деле означает коэффициент заполнения с точки зрения радиолокационной системы? Поскольку каждый из переданных импульсов содержит определенное количество энергии (и такое же количество энергии содержится в каждом импульсе), рабочий цикл это значение, которое позволяет нам вычислить энергию (мощность) одного импульс, как если бы мощность была равномерно распределена в течение всего времени от начала одного импульса до начала следующего.

Опять же, рассмотрим свой почасовой «крик». Если ваш 3.6 энергия второго крика должна была быть «усреднена» за весь час, как громким был бы шум? Конечно, небольшой «гул» такие результаты может быть довольно трудно услышать.

Аналогично, если наш импульс в 1 микросекунду содержит миллион ватт мощности, какая средняя мощность будет, если ее усреднить по период времени, разрешенный нашей PRF 1000 Гц?

Ответ находится путем умножения мощности в импульсе на рабочий цикл (пиковая мощность * рабочий цикл)…

1000000 Вт * 0,001 = 1000 Ватт

(пиковая мощность) * (постоянный ток) = (Средняя мощность)

Должно быть очевидно, что рабочий цикл — это «соотношение» между ПИКОВАЯ энергия в импульсе радара и СРЕДНЯЯ затраченная энергия в течение определенного периода времени. Поскольку устройства мы для измерения радиолокационных волн используются «усредняющие» устройства, нам необходимо способность выразить ПИКОВУЮ мощность в СРЕДНЕЙ мощности, что дает от включения и выключения пульсирующей энергии. Это касается цепей как в радаре. передатчик и в приемнике радара.

Необходимо учитывать еще один важный фактор, касающийся радиолокационных волн. В наших современных радиолокационных системах мы передаем волны «лучами». Этот показано на рисунке ниже.


«Луч» энергии достигается с помощью антенны, которая фокусирует энергию радара на параболическом отражателе.Общая аналогия к этому встречается обычный фонарик. Полированный отражатель найденный в фонарике, имеет эффект направления световых волн в концентрированный «пучок». Луч света может быть направлен в любое желаемое направление, чтобы мы могли «осветить» объекты ярким (мощная) энергия, излучаемая фонариком. Если вы направите фонарик на стене, вы увидите яркое «пятно» в центре «луч света. Очевидно, что большая часть световой энергии сосредоточены на этой небольшой области.

И так с радаром «Луч». Параболическая антенна отражатель оказывает такое же влияние на электромагнитные волны радиочастоты испускается передатчиком. Намерение состоит в том, чтобы сосредоточить энергию в узкий луч так, чтобы большее «освещение» интересующих объектов могло быть выполненным. Это большее «освещение» дает больше энергии. отражаясь обратно в исходную точку. В случае с фонариком, вы видите гораздо больше света, отраженного от «пятна», а в случае радар, гораздо больше энергии отражается от самой сильной концентрации волн (центр луча).

Теоретически параболоидная форма отражателя антенны должна получится «карандашный» пучок. Однако дифракция на краях антенна (в зависимости от длины волны) заставляет луч слегка становиться «конической», и приводит к небольшому расширению луча, поскольку энергия уходит от антенны. Это распространение вызывает линейное изменение в физической ширине луча по мере того, как переданный импульс распространяется.

Ширина энергетического «луча» радара является критическим фактором многие расчеты, необходимые для определения суммы энергии, которая обнаруживается в импульсах, отраженных от погодных «целей». Поскольку параболическая антенна не может сфокусировать всю волну энергия точно в центре луча, часть передаваемой мощности волны распространяется от центральной оси пучка. Некоторые расстояние (и угол) от оси луча, эта мощность может быть найдена как половина мощности, измеренной на оси. Это расстояние или угол, называется точкой ½ мощности. Есть бесконечное количество точек ½ мощности, расположенных вокруг центра луча. Теоретически каждая из этих точек должна содержать уровень мощности, равный половине этого в центре.Поскольку ½-степень также может быть представлена термин -3 дБ, эти точки часто называют точками -3 дБ. Ширина луча относительно двух из этих точек, расположенных на 180 кроме того, называется шириной луча ½ мощности (или -3 дБ). Ширина луча выражается как угол theta (), определяемый как …

71,6 Длина волны
Ширина луча (0) = ___________________
Диаметр антенны (d)

… где 0 в градусах ( o ), длина волны и диаметр антенны указаны в одних и тех же единицах измерения (футы, дюймы, метры, сантиметры и т. д.). Если мы используем сантиметры как наши эталонная длина волны в формуле, тогда мы также должны использовать сантиметры как диаметр антенны (d) в формуле.

Например, антенна WSR-57 имеет длину 12 футов (3,657 метра). в диаметре, а длина волны составляет (для 2885 МГц) 10,3986 сантиметра. Расчет ширины луча по формуле даст …

71,6 * 10,3986
0 = ______________ = 2,036 o
365,7

Повторение расчетов для гораздо большей РЛС WSR-88D диаметр антенны (@ 28 футов) и длина волны (все еще «S» диапазон) приводят к очень узкая ширина луча ½ мощности (0) около 0.95 o .

Для сравнения, радиолокационная система WSR-74C (5625 МГц и 8 футовая антенна) имеет ширину луча () около 1,6 o .

Еще один момент, касающийся концепции ширины луча, должен быть считается. Поскольку ширина луча — это просто угол (0 ), а пучок расширяется в зависимости от дальности, физический размер волновой фронт становится фактором, когда измерение «целевых» эхо-сигналов должно быть выполненным. Например, балка WSR-57 (2,0 o ) распространяется до размеров, указанных в таблице ниже.

Диапазон (миль) 2 o Диаметр луча
______________ _________________

25 5307 футов
50 10,613 футов
75 15 920 футов
100 21 227 футов
125 26 534 футов
150 31 840 футов
200 42 454 футов
250 53067 футов

Следует отметить, что разброс удваивается как диапазон удваивается.Эта линейная зависимость верна для всех значений ширины луча радара.

Наконец, из-за дифракции луча только около 80% передаваемой энергии содержится в области -3 дБ, которую мы имеем называется шириной луча. То же действие, которое вызывает расширение луч также вызывает излучение некоторой части энергии (около 20%) (в меньшей концентрации) под еще более широкими углами от антенны. Эти области энергии излучения называются боковыми лепестками.Поскольку балка трехмерная, так же и боковые лепестки, как показано на рисунке ниже.


Вспомните нашу аналогию с «фонариком». Если вы указали фонарик по направлению к стене вы можете увидеть центральное яркое пятно, вызванное дальним светом, как и ожидалось. Однако вы также должны увидеть рваный, относительно тусклый «кольцо» света вокруг центрального яркого пятна. Это боковой лепесток. Антенны всепогодных радаров имеют несколько боковых лепестков, разделенных определенными углы относительно центра дальнего света.Сила в этих лепестков значительно меньше мощности, сфокусированной в главный луч (первичный лепестка), но все же достаточно, чтобы вызвать нежелательные радиолокационные эхо от цели, особенно те, которые находятся близко к антенне РЛС.



На рисунке выше показан один из всплесков электромагнитного волны, которые может излучать радиолокационный передатчик. Энергия в виде высокочастотных колебаний, точное количество которых зависят от частоты передатчика и ширины импульса (PW).

В радаре WSR-57 при ширине импульса 4 мксекунды энергетический всплеск содержит около 11540 колебаний радиочастотного энергия. Если мы отобразим пакет на осциллографе, мы сможем только просмотреть огибающая импульса, содержащая высокочастотные колебания. В наших радарах NWS мы можем видеть огибающую радиочастотного всплеска. подключив кристаллический детектор и осциллограф к одному из волноводов порты в радиолокационном передатчике.Мы можем только посчитать количество колебаний в периоде импульсов.

Действие импульсной энергии радара можно просто изобразить на диаграмме ниже. В данном случае наша цель — метеорологические. в природе (гроза).
На данный момент мы не будем обсуждать детали множества вариаций Возможны в природе радиолокационные «цели». Эти предметы (относительно метеорологический радар) будут включены в последующие информационные листы.


Синхронизирующие сигналы радара указывают точное время когда цепи передатчика радара должны генерировать всплеск электромагнитного энергия. В то же время синхронизируются схемы отображения.

Энергия полной мощности покидает антенну радара и перемещается (удерживается лучом) в направлении цели осадков. В цель, мощность импульса была существенно снижена. Некоторые энергии, которая поражает капли воды во время грозы, повторно излучается в направлении антенны. Опять же, на обратном пути мощность в пульсе убывает. Антенна собирает «отраженную» энергию, что составляет крошечную долю от силы исходного переданного импульса.

В приемнике РЛС полученное «эхо» усиливается, смешивается с сигналом гетеродина, усиленным еще больше, а затем преобразованным в напряжение «видео» для отображения на прицеле (ах) радара.Положение напряжение видеосигнала в области измеренного времени после передатчика Импульс определяет расстояние до цели, от которой отражена энергия. В радаре это время называется дальностью.

    Скорость распространения Электромагнитные волны
Электромагнитные волны распространяются (распространяются) с «c» (скорость свет). Эта скорость составляет 299,8 миллиона метров в секунду, или около 161784. морские мили в секунду.Для простоты радиолокационных расчетов мы «округляем» указанные выше скорости до …

c = 300000000 метров в секунду (300000 км в секунду)
161,800 морских миль в секунду
186,420 статут миль в секунду
984 300 000 футов в секунду

В наших обсуждениях преобразование скорости должно выполняться в обоих метров и морских миль, поскольку система WSR-88D использует оба устройства в измерении и отображении погодных эхосигналов.Старые радарные системы NWS (WSR-57) измеряется в морских милях, в то время как системы серии WSR-74 на основе метровых и километровых расстояний.

Скорость распространения волны имеет решающее значение для работы любой радиолокационной системы, так как измерения времени, прошедшего между передатчиком импульсы и принятые «эхо» сигналы являются единственным методом определения расстояние между радаром и целью (целями). В таблице ниже указаны расстояния, пройденные радиолокационной волной в различных единицах времени.




Для точного измерения временных интервалов в радаре мы больше озабочены временем полного прохождения импульсной волны. Это время в правом столбце таблицы на страница 11, которая представляет время с момента, когда волна покинет передающей антенны, пока отраженная волна не вернется к той же антенне.Другими словами, интервал отражения (время в правый столбец) ровно вдвое превышает время, необходимое волне, чтобы достичь цель. Если наша радиолокационная система настроена на измерение (отображение) радиолокационную информацию с шагом в морских милях, мы будем ссылаться на время интервала отражения 12,36 µСекунды в правом столбце как «единица радар морская миля ». С другой стороны, если радар настроен на километр шаг отображения, мы бы использовали 6.67 мкСекундное значение (снова с столбец отраженного интервала), и на этот раз будет называться «один радар километр ».

На этом этапе одно из основных соображений при проектировании РЛС должны быть представлены в математических терминах. Эта концепция известна как формула радиолокационного диапазона. Математическое выражение это …

ct где … c = скорость света
R = _____ t = PRI (интервал между импульсами)
2 R = диапазон от передатчика

В качестве примера рассмотрим WSR-88D PRI (интервал повторения импульсов) из 3066.66 мксекунд. Выражение Range будет следующим …

300 000 000 * 0,00306666
R = _______________________ = 460 000 метров
2

Обратите внимание (из таблицы на странице 11), что время интервала отражения 3066.66 µSeconds соответствует диапазону (расстояние до цели) 460 000 метров. Это тоже 460 километров, что, по неслучайному совпадению, также является максимальной дальностью действия WSR-88D.

Еще один термин, который часто используется в этом отношении: однозначный диапазон. Проще говоря, однозначный диапазон — самый большой. расстояние, на которое импульс радара может пройти и вернуться к антенне радара ДО передачи следующего импульса. Мы обнаружим, что WSR-88D должен уметь исправлять двусмысленность (сомнительная или недостоверная информация) в диапазоне во время выполнения задачи от импульса к импульсу сбора и обработки метеорологических Информация.Мы обнаружим, что некоторые специальные методы (уникальные для ’88D) используются для разрешения неоднозначности диапазона.


    Длительность импульса и его повторение Частота
Учтите, что работа радара в чем-то похожа на функция пулемета, стреляя «брызгами» пуль (энергетические всплески) как стрелок (антенна радара) медленно поворачивает направление прицеливания. В обеих ситуациях существует дискретный промежуток времени между «пулями», и есть также дискретная длина, связанная с «пулей», поскольку она едет к цели.Хотя скорости двух «пули» существенно отличаются, остается четкая взаимосвязь (функционально) в схемах стрельб. Рассмотрим рисунок ниже …




Здесь, как на рисунке на стр. 4, «обжиг» частота »(PRF), длина« пули »(ширина импульса) и интервал МЕЖДУ «выстрелами» (PRI) можно легко различить.Кроме того, все энергия (мощность) содержится в ПУЛЕ, количество поставленной мощности к цели зависит от ДЛИНЫ пули, а также от ЧИСЛА УДАРОВ в цель за заданный период времени (PRF). PRI (пуля интервал) — время, отсчитываемое от начала одной пули до начало следующего.

Если стрелок заряжает БОЛЬШИЕ (и более длинные) пули, то энергия, достигающая его цели, будет пропорционально увеличиваться, если он будет стрелять по та же частота.Что касается радара, если ширина импульса (PW) увеличивается (без изменения PRF), метеорологическая цель аналогичным образом получит больше энергии за определенный период времени. Этот именно то, что происходит в WSR-88D. Доступны две ширины импульса для передачи. Эти значения составляют 1,57 мкСм и 4,5 мкСм.

Кроме того, в отличие от стандартного пулемета, 88D может также варьировать PRF. Как указано во вложении «PRIs» (стр.26), Частоты PRF в настоящее время

доступно для WSR-88D в диапазоне от 321 Гц до 1282 Гц. Вариация PRF и PW в передатчике 88D обеспечивает превосходную гибкость в поддержании контроля над властью, которая в конечном итоге поступает от антенна. Это очень важно при измерении интенсивности штормов, а также будет иметь решающее значение для способности 88D извлекать дополнительные данные от метеорологической цели (ей).

Как следует из термина «электромагнитное излучение», радиолокационные волны состоят из электрического и магнитного полей.Когда волна передается в свободное пространство от антенны, ориентация электрического Поле [E] относительно плоскости земной поверхности определяет поляризация волны. Если волна ориентирована так, что поле «Е» перпендикулярна Земле, волна называется вертикально поляризованной. Если поле «E» параллельно поверхности земли, волна горизонтальна. поляризованный. В обоих случаях поляризация волны остается всегда в одной и той же ориентации, и поэтому именуется линейная поляризация.

РЛС NWS WSR-57 использует горизонтальную линейную поляризацию, Чертеж этого типа волновой ориентации показан ниже …





Обратите внимание, что поляризация магнитного поля «M» меняется на противоположную. с каждым ½-циклом, но остается ориентированным вертикально относительно к поверхности земли. Поскольку капли дождя имеют тенденцию становиться сплюснутыми наружу), когда они падают, метеорологические радиолокационные системы традиционно используют горизонтальные линейная поляризация.Этот метод позволяет улучшить возврат сигнала от погодные цели.

Альтернатива вертикальной или горизонтальной линейной поляризации был опробован в ранних системах WSR-88D. Эта техника называется круговая поляризация. В этом виде электромагнитного излучения поле «E» больше не ограничено одной плоскостью, а состоит из равноамплитудные компоненты с горизонтальной и вертикальной поляризацией, которые сдвинуты по фазе на 90 o .См. Схему ниже …




Легко видеть, что векторы как «E», так и Поля «M» вращаются по часовой стрелке (если смотреть сзади антенна). Это вращение называется правой круговой поляризацией. На чертеже показана только длина волны (). Обратите внимание, что поля повернуты на 45 o .После ¼ , поворот будет на 90 o , а после одного полного векторы поля совершат полное вращение на 360 o . Итак, для каждого цикла прошедшей волны поля «E» и «M» равны повернулся на 360 o . Наблюдатель (стоит за антенна) «увидит» вектор вращения на этом рисунке, вращающийся в круговое движение по часовой стрелке. Это причина использования терминологии «круговая поляризация».

Направление по часовой стрелке или против часовой стрелки может быть контролируется конструкцией узла антенного питания. Чаще это не так, вращение CW называется правой поляризацией, а вращение CCW вращение называется левой поляризацией. Ранние модели систем WSR-88D использовали устройство, называемое датчиком ортогонального режима (OMT), установленное в антенна. ОМТ обеспечивал правую поляризацию. Этот циркуляр схема поляризации не дала желаемого результата, и все производственные Системы ’88D оснащены антенными системами, использующими горизонтальную ЛИНЕЙНУЮ поляризация.

Если передается правая круговая поляризация, волны которые отражаются от целей осадков, аналогичны «зеркальное изображение». То есть энергия возвращается к антенне как левая поляризация. Поскольку радар использует одну и ту же антенну для передачи и прием, антенна гораздо меньше реагирует на противоположный смысл вращения. В результате прямые отражения от сферических целей (например, как круглые капли дождя) с трудом проходят через поляризатор приемник.Однако такая сложная цель, как самолет, будет вернуть немного энергии с правильной поляризацией. Энергия от самолет может быть возвращен на одном «отскоке» (как от плоского, так и сферического поверхность), или может совершать два или более «отскока» между различными частями цель перед возвращением к антенне РЛС. Сигналы, которые делают одиночные отражения (или любое нечетное число) обычно отклоняются антенна с круговой поляризацией.

С другой стороны, сигналы, которые «отскакивают» дважды (или даже количество раз) будут довольно легко приняты.Круговая поляризация, поэтому традиционно использовался как решение проблемы подавление эхо-сигналов от симметричных целей. Целевые показатели осадков обычно имеют сфероидальную (следовательно, симметричную) форму и имеют традиционно отклонены с круговой поляризацией.

Способность подавлять эхо дождя зависит от степени кругообразность поляризации, которую можно создать с помощью практической антенны и от формы частиц преципитации. На практике, относительно легко добиться высокого (~ 20 дБ) интегрированного подавления коэффициент (ICR) на одной частоте, но это довольно сложно сделать диапазон частот. ICR — это «показатель качества» для циркулярной поляризованная антенна, учитывающая поляризацию всей луч радара, а не поляризация только на оси или пике луч. По сути, это средневзвешенное значение коэффициентов отмены. в каждой точке балки.Один фактор, который имеет тенденцию уменьшать или ограничивать эффективность круговой поляризации — это энергия, отраженная от земли, что фактически изменяет поляризацию.

Радиолокационное сечение воздушной цели, как правило, составляет меньше с круговой поляризацией, чем с линейной поляризацией. Следует отметить, что разница в отражении эхо-сигнала при круговой а линейная поляризация сильно зависит от аспекта (угла обзора) цели.Поскольку было показано, что поляризованные по кругу эхосигналы самолета где-то между 3 и 6 дБ меньше, чем при линейном поляризационные радары управления воздушным движением (УВД) используют конструкции антенн которые можно переключать между двумя методами поляризации. Если диспетчер УВД хочет видеть осадки на своем телескопе, он может переключить РЛС в режим линейной поляризации, несколько за счет уменьшения (хотя бы временно) его способность обнаруживать самолеты.

В ранней конструкции 88D в радиолокационной системе WSR-88D использовалась OMT и отдельные волноводы для режимов передачи и приема, что позволяет традиционная теория (как подробно описано в обсуждении на стр. 15 и 16) детектирования с круговой поляризацией, подлежащего обращению.В Эти ’88Ds, зеркальные левополяризованные эхо-сигналы передавались легко в секцию приемника, а все остальные поляризации (включая правую волны) были сильно ослаблены. Намерение состояло в том, чтобы позволить поляризации WSR-88D устройство для простого ограничения эхо-сигналов от самолетов и других неметеорологических цели.

    Цель Рекомендации по разрешению диапазона
Ссылаясь на рисунок на странице 13, вы Напомним, что мы изобразили действие радиолокационного передатчика по аналогии к пулемету, который стреляет «очередями» с интервалом времени определенного длительность между каждым всплеском. Тот же рисунок (вместе с нашим обсуждением) указывает, что один всплеск энергии радара займет дискретное расстояние в пространство, расстояние от которого будет зависеть от длины (длительности) импульса. Кроме того, таблица на странице 11 показывает, что если пульс 1 мкСм, всплеск волны займет расстояние 300 метров. (984 фута) в пространстве в направлении распространения. Если 4,5 мкс импульса (как в режиме длинных импульсов WSR-88D), РЧ-пакет будет занимают 1350 метров, что эквивалентно 4430 футам.

Обратите внимание, что (с импульсом 1 мкс) любой цель, которая находится на расстоянии менее 150 метров от антенны, не может быть обнаружен радаром. Это связано с тем, что передняя кромка отраженной волны вернется в антенну ДО того, как задняя кромка испускается. Ширина импульса (H) определяет минимальный диапазон, при котором цели могут быть обнаружены. Этот минимальный диапазон составляет приблизительно 1/2 длины всплеска волны. В случае с 4.5 мкСм импульс, минимальная дальность будет 675 метров (2215 футов). Это также равно примерно 0,36 морской мили. С импульс 1,57 мкСм (как в режиме коротких импульсов WSR-88D) минимум Дальность составит около 235 метров. На практике минимальная дальность действия радара несколько больше, чем указанные выше значения, потому что небольшой задержки, возникающей при включении приемника после переданный импульс очистил антенну.

В старых моделях радаров эта задержка связана с временем восстановления трубки T / R (дуплексер).В WSR-88D компьютер управляет как срабатывание передатчика (каждый импульс), так и защита приемника во время пакетов передатчика. Почувствовав, что в волноводе уменьшилась энергия большой мощности, компьютер позволяет приемник, который нужно активировать.

В том же направлении рассмотрим, что две (2) цели очень близки друг к другу и примерно по одному азимуту от радар.Предположим далее, что эти цели намного превышают минимальные дальность действия радара, как описано на странице 17. Используемая ширина импульса составляет 1 мкс. См. Рисунок ниже …



Если расстояние между двумя целями меньше ½ длительности импульса (в нашем случае менее 150 метров) отраженные волны от обеих целей будут объединены в одну (1) составную волну.Только относительно большая цель будет видна на индикаторе радара. Если, на с другой стороны, расстояние между двумя целями превышает ½ ширины импульса, полученная энергия вернется двумя (2) пакетами, и две отдельные цели будут обнаружены на индикаторе радара. Должно быть очевидно, что ширина импульса решающим образом влияет на целевое разрешение в области дальности. Отсюда следует, что по логике чем короче ширина импульса, тем выше разрешение целей.

Однако более длинные импульсы имеют определенное заметное преимущество, особенно в метеорологических приложениях. Длительный импульс 4,5 мкс ширина будет содержать примерно в 4½ раза больше энергии, чем 1 мкСм. пульс. Это увеличение энергии (мощности) позволяет обнаруживать цели на больших дальностях и приведет к обнаружению более слабых целей на короткое расстояние, чем импульс 1 мкс. Кроме того, более длинный пульс компенсирует некоторое затухание коротких пульсовых волн, что предотвращает полная отработка целей со значительной глубиной дальности.Эти эффекты легко наблюдаются на современных радиолокационных системах NWS, которые имеют двойной импульсный возможность ширины (WSR-57 и WSR-74S). Хотя целевое определение несколько страдает в режиме длинных импульсов, преимущества часто перевешивают недостатки.

    Разрешение целевой ширины луча (азимута) Соображения
Рассмотрим радар, который передает импульсные волны от «изотропного» излучатель (теоретическая антенна, излучающая волны одновременно во всех направлениях).Приемная система радара будет обнаруживать и усиливать эхо от целей во всех направлениях, но не сможет правильно отобразить цели на прицеле радара или различать различные отражения. Дальше, излучая изотропно, электромагнитная энергия быстро исчезнет. рассеивается во всех направлениях, и максимальная дальность, на которой цели могут быть обнаруженным будет резко сокращено.

В начале этого обсуждения было заявлено, что электромагнитные волны (как световые волны) могут быть преобразованы в «лучи».Обычный фонарик был использован в качестве примера излучаемой энергии. Другие примеры могут быть автомобильные фары, прожекторы и т. д. За счет использования подходящих антенных отражателей (параболоидов), мы обнаружили, что чтобы сконцентрировать большую часть энергии передатчика в одном луче. Далее, повернув отражатель по горизонтали (азимуту), как и в вертикальных (высотных) плоскостях, можно управлять направлением балки. Направление любой оси луча (горизонтальное или вертикально) может отображаться на соответствующем радиолокационном прицеле в любом заданном мгновенно, что позволяет отображать цели, освещенные лучом, на ОБЕИ правильное время (диапазон) и азимут (направление). Снова, однако вопрос о дифференциации (разрешении) цели (целей) необходимо адресовать. Напомним, что когда луч энергии уходит от антенны ширина луча расширяется. Если антенна радара вращается по азимуту (по горизонтали), одиночная цель будет казаться растянутый (вытянутый) по ширине. Это связано с тем, что энергия отражается, как только передний край луча попадает в цель, и энергия продолжает отражаться до тех пор, пока задний край луча прошел цель.Подтверждение любой цели будет функция ширины луча.

В качестве примера см. Таблицу диаметров балки WSR-57 на стр. 8. При ширине луча 2 ФИЗИЧЕСКАЯ ШИРИНА луча составляет 21 227 футов на расстоянии 100 морских миль. Эта ширина составляет почти четыре (4) миль. Отраженная энергия, которая вернется от «точечной» цели (самолет и т. д.) приведет к отображению цели быть почти четыре (4) мили в ширину.
Если бы целью был ливневый дождь, он также был бы растянут по ширине луча. Поскольку ливневый дождь не является точечной целью, ошибка в видимой ширине не было бы столь драматичным. Однако ширина луча эффект добавит четыре (4) мили к фактической ширине душа.

Такое же растяжение происходит по вертикальной оси (высоте). Напомним, что балка симметрична в трех измерениях. Когда WSR-57 операторы радара сканируют по вертикали сквозь грозу, чтобы определить высоты «верхушек» осадков, в них необходимо добавить поправку для компенсации для разницы между фактической высотой и кажущейся высотой, которая вызвано шириной луча.(Обратите внимание, что поправка применена необходимо отрегулировать для диапазона сканирования цели.)

Теперь рассмотрим одну и ту же антенну, направленную на два (2) самолета. которые расположены близко друг к другу (в пределах одного луча). Это легко видно, что энергия, отраженная от каждой цели, будет сливаться в составная волна, которая появится на экране радара как одна (1) цель. Для того чтобы радар обнаружил присутствие двух (2) целей, самолеты должны быть разделены расстоянием, превышающим ширину луча на заданном расстоянии. Еще раз, этот пример предполагает «точечная» цель. Однако следует понимать, что такой же эффект имеет место с любыми целями, которые находятся в пределах ширины луча друг друга и на одном расстоянии от радара. Очевидный вывод в этом отношении заключается в том, что узкая ширина луча будет способствовать увеличению разрешающая способность обнаружения данной РЛС. Антенна РЛС WSR-88D имеет ширину луча 0,95 градуса и, следовательно, обеспечивает значительную улучшение по сравнению со старыми системами с более широкими балками.Напомним, что ширина луча удваивается в зависимости от дальности. В WSR-88, эффект растяжения будет вдвое меньше, чем у WSR-57.

Еще одним преимуществом антенны с узким лучом является ее увеличенная прирост. Если ширина луча относительно узкая, может потребоваться больше энергии. быть сосредоточенным в одном направлении распространения. Это означает более сильную Энергетическая волна будет направлена ​​на любую цель, и результат будет что больше энергии будет отражено целью обратно к радару. «Коэффициент усиления» антенны радара является мерой ее концентрированной энергии (в луч) относительно энергии, которая могла бы упасть на цель, если бы такая же передаваемая энергия излучалась изотропной антенной.

В случае антенны WSR-57 (@ 2 o ширина луча), коэффициент усиления составляет примерно 6460: 1. Это означает, что любая заданная цель попадающий в луч радара получит в 6460 раз больше мощность, чем была бы получена, если бы радар использовал изотропный (всенаправленный) радиатор.Этот коэффициент усиления является отношением и может выражаться в децибелах. как усиление 38,1 дБ. РЛС WSR-88D (ширина луча 0,95 o ) концентрирует еще больше мощности передатчика в

луч, чем WSR-57. Коэффициент усиления антенны ’88D составляет около 45,5 дБ. Это соотношение 35 480: 1 более чем в пять раз. эффективность WSR-57.

Значение усиления антенны необходимо учитывать для ОБЕИХ переданных волна и полученная энергия. Другими словами, относительно изотропного антенна, антенна WSR-88D имеет эффект усиления передатчика мощность на 45 дБ, а также усиление отраженной энергии, падающей на антенна на 45 дБ. Как правило, узкие лучи обеспечивают большую дальность действия. Однако если радар сканирует пространство очень узким лучом, — это повышенный шанс того, что некоторые цели могут быть пропущены. Эта ситуация зависит от цели, дальности, PRF радара и скорость вращения антенны.В WSR-88D движение антенны полностью контролируется указанными схемами охвата объема (VCP) на стр. 26. Эти выкройки (находящиеся под компьютером control) убедитесь, что антенна сканирует указанный азимут и угол места последовательности так, чтобы атмосфера в пределах диапазона радара наблюдалась и отобраны таким образом, чтобы свести к минимуму возможность «пропуска» значимых цель возвращается.

Совершенно очевидно, что параболический отражатель в любом радаре играет важную роль в способности радара обнаруживать цели.

Хотя ранее отмечалось, что электромагнитная волна распространение приближается к тем же физическим правилам, что и световые волны, есть некоторые вариации. Это изменение связано с Дело в том, что радиолокационные волны имеют гораздо большую длину волны, чем световые. Все электромагнитные волны распространяются за счет взаимодействия электрических и магнитные силовые поля, которые связаны друг с другом и с их направление движения.Распространение волн в вакууме происходит по прямой линия.

Однако в атмосфере колебания влажности и температуры с высотой приводят к изменению скорости распространения волн. При изменении скорости волны волна «изгибается», и направление волны изменяется соответственно. Эти изменения направления связаны с «показатель преломления», который является мерой скорости света в вакуум, деленный на скорость распространения волны в атмосфере. Подразумевается, что показатель преломления связан с параметрами атмосферы. Однако сама функциональная связь зависит от длины волны. распространяемой энергии.

Обычно на микроволновых частотах «преломление» выражается как …

N = (n-1) * E + 6

… и следующее уравнение является допустимым приближением в Атмосфера…



Поскольку p и p быстро уменьшаются с высотой, а T уменьшается медленно, N будет уменьшаться с высотой. В результате скорость распространения волны увеличивается с высотой, и волна искривляется немного назад к земле. Кривизну траектории (C) можно рассчитать используя уравнение C = — скорость изменения n по высоте. В результате в «нормальной» атмосфере радар «прямой видимости» (путь луча) представляет собой дугу с радиусом приблизительно 1.В 34 раза больше радиус земли. См. Рисунок ниже …




При значительных отклонениях от «стандартной» атмосферы (экстремальные температуры и инверсии влажности) луч радара может погнуться более резко к земле или может перемещаться внутри слоя (канала) из-за отражение на верхней и нижней границах. Когда это происходит, заземлите цели могут наблюдаться на дисплее радара дольше, чем обычно (иногда фантастические) диапазоны.Это явление известно как «аномальное распространение», и может представить оператору РЛС очень сложную интерпретацию объема ситуация.

Как описано ранее в наших обсуждениях радара, радар Луч — это путь, по которому распространяется выброс электромагнитной энергии. Изображение одиночного импульса показано ниже …



Импульс имеет определенную физическую длину в пространстве и находится в пределах -3 дБ точек луча (как по горизонтали, так и по вертикали поперечные сечения).Форма пульсового объема — усеченная конус. Объем импульса будет увеличиваться в размере с увеличением дальности из-за расширения ширина луча. В результате растекания удельная мощность в любой части объем уменьшается по мере увеличения дальности от радара. Энергия (WSR-88D) присутствует в течение 1,57 мксекунд импульс или импульс 4,5 мксек. Следовательно, при 1,57 мкс При настройке пульс занимает 471 метр (1545 футов) диапазона вдоль луч.Пульс составляет 0,3 мили.

Объем отраженного эха — это объем атмосферы, о котором говорится чтобы радар мгновенно регистрировал их. Как этот объем относятся к (и отличаются от) описанным выше импульсным объемом? Теоретически громкость отраженного сигнала является наименьшим разрешаемым элементом атмосфера в пределах досягаемости радара. Это означает, что это один (1) ширина луча в диаметре и длительность ½ импульса в диапазоне (вспомните разрешение обсуждение на страницах с 17 по 19).В тогда у ’88D объем эха «короткого импульса» будет 235,5 метра в длину. и шириной одного луча. В режиме «длинный импульс» громкость эха 675 метров в длину.

В РЛС WSR-57 и WSR-74 полученная энергия «дискретизируется» цифровым видеопроцессором (DVIP) с частотой один раз в 1,67 мксекунды.

Этот интервал выборки начинается в момент электромагнитного импульс покидает антенну радара и продолжается через всю дальность действия радара. Выбор времени для образцов означает, что практический «отражающийся объем» — это элемент атмосферы, который представляет собой километр дальности и, конечно же, один (1) луч в диаметре. В обоих этих старых радарах используются четыре (4) ¼ километра образца. сначала суммируется, а затем усредняется до значения, представляющего полный километр дальности действия РЛС. Результирующее разрешение дисплея тогда составляет один (1) километр по дальности и один (1) луч по азимуту.

Чтобы быть полезной, радиолокационная информация должна быть доступна для анализа.В большинстве радиолокационных систем принимаемые цели усиливаются, преобразованы в видеочастотные сигналы, а затем представлены оператору на различных типах дисплеев с электронно-лучевой трубкой. Основной дисплей типы показаны ниже.





Эти дисплеи синхронизируются одними и теми же базовыми сигналами синхронизации которые управляют срабатыванием радиолокационного передатчика. В то же мгновение Электромагнитная волна покидает передатчик, цепи в радаре блок индикации находится под напряжением.

Индикация развертки «А» имеет ту же форму, что и у знакомого осциллографа. отображать. Расстояние между радаром и целью отображается на экране горизонтальная ось (X), а интенсивность цели отображается на вертикальная (Y) ось. Расположение радара обычно находится слева стороны дисплея, а максимальный диапазон представлен справа край.

Сканирование «P», обычно называемое «PPI» (положение в плане индикатор), вероятно, является наиболее знакомым и универсальным из всех на экране радара.Расположение радара находится в центре тубус дисплея, а максимальный диапазон представлен краем круглого путь, все точки которого одинаково удалены от центра экрана. «Развертка» PPI вращается вокруг центра (начала) ЭЛТ при совпадении с физическим положением передающей антенны. Дисплей PPI показывает радиолокационные цели в обоих диапазонах (расстояние от центра трубы) и направление (угловое положение от центра трубки). В дисплей использует позиционирование в «полярных координатах» (от 0 до до 360 o азимута) относительно местоположения радара. Сканирование «E», также называемое «RHI» (индикатор высоты диапазона), отображает радиолокационные цели как в диапазоне от радара, так и на высоте над землей. Как и PPI, развертка RHI вращается вертикально в соответствии с перемещение угла антенны РЛС. В этом случае угол стреловидности представляет угол антенны по горизонтали (0 o ) и вертикальное (90 o ) положения.

Система WSR-88D не использует ни один из этих традиционных радаров. отображает. Вместо этого используется развертка «B» (дисплей телевизионного типа). Мониторы сканирования «B» похожи на осциллографы PPI, но гораздо более гибкие. в их способности отображать различные степени форматов данных.

Приведен пример отображения типа «телевизор» (B-развертка). ниже …





Радиолокационная система WSR-88D использует специальные «стратегии» сканирования в чтобы собрать информацию об отражательной способности и доплеровском режиме. Эти стратегии сканирования называются «шаблонами охвата тома» (VCP). Два из этих VCP в настоящее время предназначены для режима работы, называемого «Режим чистого воздуха» и два других ПДС используются в «Режиме осадки» VCP режима «Precip» (также «A») называются VCP # 11 и VCP # 21. Они облегчают выборку четырнадцати (14) и девяти (9) уникальных высот углы соответственно. VCP 11 имеет 16 «разрезов» (только 14 углов, поскольку два самых низких угла повторяются) через пять минут, и VCP 21 выполняет 11 «сокращений» за шесть минут.VCP 11 показан в табличной форме ниже. Обратите внимание на ШЕСТНАДЦАТЬ поворотов антенны («разрезов»). Также обратите внимание, что Скорость PRF и скорость нарастания антенны изменяются на разных высотах.



Режим «A» (Precip VCP 11) Короткий импульс (1,57 с) Delta C PRI


ВЫСОТА СКАНИРОВАТЬ 360 WF PRF ИМПУЛЬСЫ
«ВЫРЕЗАТЬ» СТАВКА ВРЕМЯ ТИП # по или
___________ ______ ______ ______ ____ ________
Ø. 5Ø 3.11 19,28 CS 321 17
Ø.5 Ø 3.20 18,73 CD — # — — * —
1,45 3,31 17,27 CS 321 16
1,45 3.20 18,73 CD — # — — * —
2,4 Ø 2,69 22,34 B 321 6
3,35 2,98 20.12 B 446 6
4,3 Ø 2,98 20.11 B 446 6
5,25 2,91 20,62 B 643 10
6,2 Ø 2,91 20,61 B 643 10
7,5 Ø 4,19 14.30 CD — # — — * —
8.7Ø 4,23 14,17 CD — # — — * —
1 Ø. Ø Ø 4,24 14,16 CD — # — — * —
12. ØØ 4,24 14,14 CD — # — — * —
14. ØØ 4.45 13,58 CD — # — — * —
16,7 Ø 4,27 13,55 CD — # — — * —
19,5 Ø 4,28 13,49 CD — # — — * —

EL угол Антенна Slew Surv. PRF Бобовые
за каждую Скорость Время Допп. Ставка за
Вращение (Об / мин) (Сек) Партия (ппс) Град. AZ

Приложение . .. «PRIs»

Радарные системы

Радарные системы Введение в Военно-морская техника

Базовые радиолокационные системы

Принцип действия

Радар — это аббревиатура для радиообнаружения и определения дальности.Термин «радио»
относится к использованию электромагнитных волн с длинами волн в так называемое радио
волновая часть спектра, охватывающая широкий диапазон от 10 4 км до 1 см. Радар
системы обычно используют длины волн порядка 10 см, соответствующие на частоты
около 3 ГГц. Обнаружение и ранжирование части аббревиатуры выполняется по
синхронизация задержки между передачей импульса радиоэнергии и его последующие
возвращаться.Если время задержки Dt, тогда диапазон можно определить по простой формуле
:

R = cDt / 2

, где c = 3 x 10 8 м / с, скорость света при которой все электромагнитные волны распространяются.
Множитель два в формуле исходит из наблюдения, что импульс радара должен
добраться до цели и вернуться до обнаружения, или вдвое увеличить дальность.

Последовательность импульсов радара разновидность амплитудной модуляции частоты радара
несущая волна, подобно тому, как несущие волны модулируются при коммуникации системы.
В этом случае информационный сигнал довольно простой: одиночный импульс повторяется на
регулярные промежутки. Общая модуляция несущей радара, известная как последовательность импульсов
показано ниже. Общие параметры радара, как определено см. рисунок 1.

Фигура 2.

PW = ширина импульса. PW имеет единицы времени и обычно выражается в мс.PW — продолжительность пульса. RT = время отдыха. RT — интервал между импульсами. Измеряется в мсек. PRT = импульс время повторения. PRT имеет единицы времени и обычно выражается в мс. PRT — это интервал между началом одного импульса и начало другого. PRT также равен сумме, PRT = PW + RT. PRF = частота повторения импульсов. PRF имеет единицы времени -1 и обычно выражается в Гц (1 Гц = 1 / с) или в импульсах на второй (ппс).PRF — это количество импульсов, передаваемых в секунду. и равен обратному PRT. RF = радиочастота. РФ имеет единиц времени -1 или Гц и обычно выражается в ГГц или МГц. RF — частота несущей волны, которая модулированы для формирования последовательности импульсов.

Механизация

Практическая радиолокационная система требует семи основных компонентов, как показано на рисунке. ниже:

Рисунок 3

Датчик .Передатчик создает радиоволны для быть отправленным и модулирует его, чтобы сформировать последовательность импульсов. Передатчик также должен усилить сигнал до высокого уровня мощности, чтобы обеспечить адекватный диапазон. Источником несущей волны может быть клистрона, лампы бегущей волны (ЛБВ) или магнетрона. Каждый имеет свои особенности и ограничения.

2. Приемник . Приемник чувствителен к диапазон передаваемых частот и обеспечивает усиление возвращенного сигнала.Чтобы обеспечить максимальную диапазон, приемник должен быть очень чувствительным, не вводя чрезмерного шум. Возможность отличить полученный сигнал от фона шум зависит от отношения сигнал / шум (S / N).

Фоновый шум задается средним значением, называемым шумовой эквивалентной мощностью (НЭП). Это напрямую приравнивает шум к обнаруженному уровню мощности. так что его можно сравнить с возвратом.Используя эти определения, критерий успешного обнаружения цели

П r > (S ​​/ N) НЭП,

где P r — мощность обратного сигнала. Поскольку это является важной величиной для определения характеристик радиолокационной системы, ему присвоено уникальное обозначение, S min , и он называется Минимальный сигнал для обнаружения .

S мин = (S / N) NEP

Поскольку S min , выраженное в ваттах, обычно является малым число, оказалось полезным определить эквивалент в децибелах, MDS, что означает Минимальный различимый сигнал .

MDS = 10 Log (S мин /1 мВт)

При использовании децибел количество в скобках логарифма должно быть числом без единиц. Я определение MDS, это число является дробью S мин /1 мВт. Напоминаем, что мы используем специальное обозначение дБм для единиц измерения MDS, где «m» означает 1 мВт. Это сокращение для децибел относительно 1 мВт, что иногда записывается как дБ // 1 мВт.

В ресивере, С / Н устанавливает порог обнаружения, который определяет, что будет отображаться а что не будет. Теоретически, если S / N = 1, то только возвращается с мощностью, равной или большей, чем фон будет отображаться шум. Однако шум является статистическим процесс и изменяется случайным образом. НЭП просто средний значение шума. Бывают моменты, когда шум превышает порог, устанавливаемый приемником.Поскольку это будет отображаться и отображаться как законная цель, это называется ложной тревогой . Если SNR установлен слишком высоким, то будет несколько ложных срабатываний, но некоторые фактические цели могут не будет отображаться как промах). Если SNR установлен слишком низко, тогда будет много ложных срабатываний или высокий уровень ложных срабатываний скорость (FAR).

Некоторые приемники контролируют фон и постоянно корректировать SNR для поддержания постоянная частота ложных срабатываний, поэтому все они называются приемниками CFAR.

Какой-то общий приемник функции:

1.) Импульсная интеграция. Приемник принимает средняя обратная сила по многим импульсам. Случайные события подобный шум не будет появляться в каждом импульсе и, следовательно, при усреднении будет иметь меньший эффект по сравнению с фактическими целями, которые будет в каждом пульсе.

2.) Контроль времени чувствительности (STC). Эта функция снижает влияние возвратов из состояния моря.Это уменьшает минимальный SNR приемника на короткое время сразу после передачи каждого импульса. Эффект от настройки STC состоит в том, чтобы уменьшить беспорядок на дисплее в регионе непосредственно вокруг передатчика. Чем больше значение STC, тем больше расстояние от передатчика, в котором помехи будет удален. Однако чрезмерное значение STC отключится. потенциал возвращается близко к передатчику.

3.) Быстрая постоянная времени (FTC). Эта функция разработана для уменьшения эффекта длительной отдачи от дождь. Эта обработка требует, чтобы сила отдачи сигнал должен быстро меняться с течением времени. С дождя происходит на и расширенной области, он будет производить долгий, устойчивый возвращаться. Обработка FTC будет
отфильтровать эти возвраты из дисплея. Только импульсы, которые будут отображаться быстро подниматься и опускаться. В технической термины, FTC — это дифференциатор , то есть он определяет скорость изменения сигнала, который затем используется для различения импульсов которые не меняются быстро.

3. Источник питания . Блок питания обеспечивает электрическая мощность для всех компонентов. Самый большой Потребитель энергии — передатчик, которому может потребоваться несколько кВт средней мощности. Фактическая мощность, передаваемая в импульс может быть намного больше 1 кВт.Блок питания только должен быть в состоянии обеспечить среднее количество энергии потребляется, а не на высоком уровне мощности во время фактического
передача импульсов. Энергия может храниться в конденсаторе банк, например, во время отдыха. Сохраненный энергия затем может быть помещена в импульс при передаче, увеличивая пиковая мощность. Пиковая мощность и средняя мощность равны связаны величиной, называемой рабочим циклом, DC. Рабочий цикл — доля каждого цикла передачи, которую радар действительно передает. Что касается последовательности импульсов на рисунке 2 рабочий цикл может быть следующим:

DC = PW / PRF

Синхронизатор . Синхронизатор координирует время для определения диапазона.

Он регулирует скорость, с которой отправляются импульсы (т.е. устанавливает PRF). и сбрасывает время
часы для определения диапазона для каждого импульса. Сигналы от синхронизатор отправлены

одновременно с передатчиком, который посылает новый импульс, и на дисплей,
который сбрасывает обратную развертку.

Дуплексер . Это переключатель, который попеременно подключает передатчик или приемник к антенне. Его цель — защитить приемник от выхода высокой мощности передатчика. В течение передача исходящего импульса, дуплексер будет выровнен к передатчику на длительность импульса, ПВт. После был отправлен, дуплексер настроит антенну на приемник.Когда будет отправлен следующий импульс, дуплексер сместится обратно к передатчику. Дуплексер не требуется, если передаваемый мощность низкая.

Антенна . Антенна принимает радарный импульс от передатчика. и поднимает его в воздух. Кроме того, антенна должна фокусироваться энергия в четко определенный луч, который увеличивает мощность и позволяет определять направление цели. В антенна должна отслеживать свою ориентацию, что может быть выполнено синхронизатором.Также существуют антенные системы, которые не двигаются физически, а управляются электроникой (в этих случаях ориентация луча радара уже известна a априори ).


Ширина луча антенны — это мера угловой протяженности
— самая мощная порция излучаемой энергии. За наши цели основная часть,
называется главным лепестком, будут все углы от перпендикуляра где мощность
не менее 1/2 пиковой мощности или, в децибелах, -3 дБ.Ширина луча
диапазон углов в главном лепестке, определенный таким образом. Обычно это разрешено в
интересующая плоскость, например горизонтальная или вертикальная плоскость. Антенна будет
имеют отдельные ширину луча по горизонтали и вертикали. За антенна радара,
ширину луча можно предсказать из размера антенны в самолете
проценты от

д = л / л

где:
q — ширина луча в радианах,
l — длина волны радара, а
L — размер антенны, в направление интереса (т.е. ширина или высота).

В обсуждении антенн связи, было заявлено, что ширина луча
для антенны может быть найдена с помощью q = 2л / л. Так кажется что антенны радара
имеют половину ширины луча в качестве средств связи антенны. Разница
заключается в том, что антенны радара используются как для передачи, так и для приема сигнал. Модель
эффекты интерференции с каждого направления объединяются, что имеет эффект снижения
ширина луча.Поэтому при описании двусторонних систем (как и радар) это
подходит для уменьшения ширины луча в ½ дюйма ширина луча
формула аппроксимации.

Направленный усиление антенны — это мера того, насколько хорошо луч
сфокусирован во всех углах. Если бы мы были ограничены одним самолет направленный
усиление будет просто отношением 2p / q. Поскольку та же мощность распределяется в меньшем диапазоне углов
, направленное усиление представляет собой сумма, на которую мощность
в пучке увеличивается. В обоих углах, затем по направлению прирост будет равен:

G dir = 4p / q f

поскольку есть 4p стерадианы, соответствующие во всех направлениях (телесный угол, измеренный
стерадиан, определяется как площадь фронта луча делится на диапазон
в квадрате, поэтому ненаправленный луч будет охватывать площадь из 4пр 2 на расстоянии R
, следовательно, 4p стерадиан).

Здесь мы использовали:
q = ширина луча по горизонтали (радианы)
f = ширина луча по вертикали (радианы)

Иногда направленное усиление измеряется в децибелах, а именно 10 журнал (G dir ).
В качестве примера антенна с горизонтальной шириной луча 1,5 0 (0,025 радиана) и
вертикальная ширина луча 20 o (0,33 радиана) будет иметь:

направленное усиление (дБ) = 10 log (4 p / 0.025 0,333) = 30,9 дБ

Пример: найти ширину луча по горизонтали и вертикали Ан / СПС-49 длинный
дальность действия радиолокационной системы и коэффициент направленного действия в дБ. Антенна ширина 7,3 м
на 4,3 м высотой и работает на частоте 900 МГц.

Длина волны, l = c / f = 0,33 м.

Учитывая, что L = 7,3 м, тогда
q = l / L = 0,33 / 7,3 = 0,045 радиан, или
q = 3 0 .

Высота антенны 4,3 м, поэтому аналогичная расчет дает
f = 0,076 радиан
f = 4 0 .

Коэффициент направленности,
G dir = 4p / (0,045 0,076) = 3638.

В децибелах,
направленное усиление = 10 Log (3638)
= 35,6 дБ.

Дисплей . Блок отображения может иметь различные формы, но в целом предназначена для представления полученной информации оператор.Самый простой тип отображения называется А-сканирование (амплитуда vs. задержка по времени). Вертикальная ось — сила отдачи. а по горизонтальной оси отложено время задержки или диапазон. А-скан не предоставляет информации о направлении цели.


Рисунок 4

Наиболее распространенным отображением является PPI (индикатор положения плана). Информация A-скана преобразуется в яркость и затем отображается в том же относительном направлении, что и антенна.В результат — это вид сверху вниз на ситуацию, когда диапазон является расстояние от начала координат. PPI, пожалуй, самый естественный дисплей для оператора и поэтому наиболее широко используемый. В В обоих случаях синхронизатор сбрасывает кривую для каждого импульса, поэтому что диапазон

информация начнется в источнике.

Рисунок 5

В этом примере использование увеличенного STC для подавления моря беспорядок был бы полезен.

Характеристики радара

Все параметров базовой импульсной радиолокационной системы повлияет
производительность в некотором роде. Здесь мы находим конкретные примеры и количественно оценить эту зависимость
где возможно.

Ширина импульса

Длительность импульса и длина цели по радиальное направление
определяет длительность возвращенного импульса.В в большинстве случаев длина
возврат обычно очень похож на передаваемый импульс. в дисплей,
Импульс (по времени) будет преобразован в импульс на расстоянии. Диапазон значений
от передней кромки до задней кромки создаст некоторую неопределенность в
расстояние до цели. Если принять за чистую монету, способность точно измерить диапазон
определяется шириной импульса.

Если обозначить погрешность измеряемого диапазона как разрешающая способность по дальности,
R RES , то он должен быть равен эквиваленту диапазона ширины импульса, а именно:

R RES = c PW / 2

Теперь вы можете задаться вопросом, почему бы просто не взять передний край импульс как диапазон
, который может быть определен с гораздо большей точностью? Проблема в том, что это
практически невозможно создать идеальную переднюю кромку. На практике идеальный
пульс действительно будет выглядеть так:

Рисунок 6

Для создания идеально сформированного импульса с вертикальным передним фронтом потребуется бесконечная пропускная способность. Фактически вы можете приравнять полоса пропускания передатчика b до минимальной длительности импульса, PW на:

PW = 1 / 2b

Учитывая это понимание, вполне разумно сказать, что диапазон может быть определен не более точно, чем cPW / 2 или эквивалентно

R RES = c / 4b

Фактически, радар высокого разрешения часто называют широкополосным. радар, который вы теперь видите как эквивалентные утверждения.Один термин относится к временной области, а другой — к частотной области. Продолжительность импульса также влияет на минимальный диапазон, на котором радар может обнаружить. Исходящий импульс должен физически очистите антенну перед обработкой возврата. Поскольку это длится в течение промежутка времени, равного ширине импульса PW, минимальной тогда отображаемый диапазон:

R МИН = c PW / 2

Эффект минимального диапазона можно увидеть на дисплее PPI как насыщенный или пустая зона
вокруг происхождения.

Рисунок 7

Увеличение ширины импульса при сохранении остальных параметров то же самое повлияет на рабочий цикл и, следовательно, на средний мощность. Для многих систем желательно сохранить среднюю мощность фиксированный. Тогда PRF необходимо изменить одновременно с PW в чтобы сохранить PW x PRF продукта одинаковым. Например, если ширина импульса уменьшается в ½ раза, чтобы улучшить разрешение, то PRF обычно увеличивается вдвое.

Частота повторения импульсов (PRF)

Частота пульса трансмиссия влияет на максимальный диапазон, который может быть
отображается. Напомним, что синхронизатор сбрасывает отсчет времени. часы как каждый новый импульс
передается. Возвращения с далеких целей, которые не добраться до приемника до
после отправки следующего импульса не будет отображаться правильно. С момента отсчета
часы были сброшены, они будут отображаться, как если бы диапазон меньше фактического.
Если бы это было возможно, то учитывалась бы информация о диапазоне. двусмысленный.
Оператор не будет знать, соответствует ли диапазон фактическому диапазону. или немного больше
ценить.

Рисунок 8

Максимальный фактический диапазон, который может быть обнаружен и отображен без двусмысленность, или максимальный однозначный диапазон , это просто диапазон, соответствующий интервалу времени, равному повторению импульсов время, PRT.Таким образом, максимальный однозначный диапазон

R UNAMB = c PRT / 2 = c / (2PRF)

Когда радар сканирует, необходимо контролировать скорость сканирования так, чтобы
в каждом конкретном случае будет передано достаточное количество импульсов. направление в заказе
чтобы гарантировать надежное обнаружение. Если используется слишком мало импульсов, то будет больше
трудно отличить ложные цели от реальных. Могут присутствовать ложные цели
за один или два импульса, но не за десять или двадцать подряд. Поэтому к
поддерживать низкий уровень ложного обнаружения, количество переданных импульсов в каждом
направление должно быть высоким, обычно выше десяти.

Для систем с высоким частота следования импульсов (частоты) луча РЛС
можно перемещать быстрее и, следовательно, сканировать быстрее. И наоборот, если
PRF снижается, необходимо уменьшить скорость сканирования. Для простого сканирует легко
определить количество импульсов, которые будут возвращены от любого конкретного цель. Пусть
t представляет время выдержки , это время, в течение которого цель остается в
луч радара во время каждого сканирования. Количество импульсов, N, что цель будет
подвергается воздействию во время пребывания:

N = t PRF

Мы можем переписать это уравнение, чтобы наложить требование на задержку время для конкретного сканирования

t мин = N мин / PRF

Таким образом, легко увидеть, что высокая частота следования импульсов требует меньшее время ожидания. Например, для непрерывного кругового сканирования время пребывания связано со скоростью вращения и шириной луча.

т = q / Вт

где q = ширина луча [градусы] W = скорость вращения [градусы / сек] что даст время задержки в секундах. Эти отношения можно объединить, получив следующее уравнение, из которого максимальная скорость сканирования может быть определена для минимального количества импульсов за сканирование:

Вт МАКС = q PRF / N

Частота радара

Наконец, частота несущей радиоволны также будет иметь около
влияют на распространение луча радара.На низкой частоте крайности, лучи радара
преломляется в атмосфере и может попадать в «каналы» в результате получается длинный
диапазоны. В крайнем случае луч радара будет вести себя очень похож на видимый свет и
путешествовать по очень прямым линиям. Очень высокая частота лучи радара пострадают
потерь и не подходят для систем дальнего действия.

Частота будет также влияют на ширину луча.Для антенны того же размера
низкочастотный радар будет иметь большую ширину луча, чем высокочастотный частота одна.
Чтобы сохранить постоянную ширину луча, низкочастотный радар понадобится большой
антенна.

Теоретическое уравнение максимального диапазона

Приемник радара может обнаружить цель, если возврат достаточен. сила.
Обозначим минимальный обратный сигнал, который может быть обнаружен как S min , который должен иметь
единиц измерения Вт, Вт.Размер а способность цели отражать радиолокационную энергию
можно описать одним термином, s, известна как РЛС поперечного сечения, которая имеет единицы
м 2 . Если абсолютно все происшествие Энергия радара на цель была
отражена равномерно во все стороны, затем радар сечение будет равно
цели площадь поперечного сечения, видимая передатчиком. На практике, поглощается некоторая энергия
и отраженная энергия не распределяется равномерно во всех направлениях. Таким образом,
поперечное сечение радара довольно сложно оценить и обычно определяется путем измерения
.

С учетом этих новых количеств мы можем построить простую модель мощности радара
который возвращается получателю:

P r = P t G 1 / 4pR 2 s 1 / 4pR 2 A e

Члены в этом уравнении сгруппированы, чтобы проиллюстрировать последовательность от передачи до коллекции.Вот последовательность подробнее:

G = r G реж

Передатчик выдает пиковую мощность P t в антенну, который фокусирует его в луч с усилением G. Прирост мощности аналогичен к усилению по направлению, G dir , за исключением того, что он должен также включают потери от передатчика к антенне. Эти потери суммируются одним термином для эффективности r. Следовательно,

Энергия радара распространяется равномерно во всех направлениях. В поэтому мощность на единицу площади должна уменьшаться по мере увеличения площади. Поскольку энергия распределена по поверхности сферы, коэффициент 1 / 4pR 2 счетов для уменьшения.

Энергия радара собирается поверхностью цели и размышлял. Сечение радара s учитывает оба этих процесса.

Отраженная энергия распространяется так же, как передаваемая энергия.

Приемная антенна собирает энергию, пропорциональную ее эффективная площадь, известная как апертура антенны, A e . Это также включает потери в процессе приема до тех пор, пока сигнал доходит до приемника. Следовательно, индекс «e» означает «эффективный». Эффективная апертура связана с физической апертурой A, тем же термином, что и коэффициент полезного действия, используемым для увеличения мощности, с учетом символа р.Так что

A e = r A

Наш критерий обнаружения прост: полученная мощность, P r должен
превышают минимум, S min . Поскольку полученные мощность уменьшается с увеличением дальности, максимальная
дальность обнаружения будет иметь место, когда полученная мощность равна минимум, т.е.
P r = S мин . Если вы решите диапазон, вы получите уравнение для максимального теоретического
дальность действия радара:

Возможно, наиболее важной особенностью этого уравнения является корень четвертой степени зависимость.Практическое значение этого состоит в том, что необходимо значительно увеличьте выходную мощность, чтобы получить умеренное увеличение спектакль. Например, чтобы увеличить дальность вдвое, передаваемый мощность пришлось бы увеличить в 16 раз. Вы также должны отметить что минимальный уровень мощности для обнаружения, S мин , зависит от по уровню шума. На практике это количество постоянно варьируется. для достижения идеального баланса между высокой чувствительностью который подвержен шуму и низкой чувствительности, что может ограничивать способность радара обнаруживать цели. Пример: найти максимум дальность действия РЛС AN / SPS-49 с учетом следующих данных

Размер антенны = 7,3 м в ширину на 4,3 м в высоту
КПД = 80%
Пиковая мощность = 360 кВт
Поперечное сечение = 1 м 2
S min = 1 10 -12 W

Из предыдущего примера мы знаем, что направленная антенна усиление,

G dir = 4p / qf = 4p / (.05 x 0,07) = 3430

Прирост мощности,
G = r G реж

G = 2744.

Аналогично, эффективная апертура
А е = rA = 0,8 (7,3 x 4,3)

A e = 25,1 м 2 .

Следовательно, диапазон равен, или

R = 112 км.

Основы работы с радаром | Технология FURUNO

Как работает радар

Что такое радар?

Радар (радиообнаружение и определение дальности) — это прибор, который может обнаруживать окружающие объекты с помощью радиоволн. Таким образом, в морском мире такие объекты, как корабли, буи или птицы, могут быть обнаружены с помощью радаров. Использование коротковолновых микроволн позволяет очень точно измерить направление, в котором обнаружен объект, и расстояние, на котором он находится. Помимо морской области, у радаров есть много других приложений, таких как метеорология и воздушное наблюдение. Радары также широко используются в повседневной жизни для измерения скорости автомобилей на дороге или, например, скорости теннисного мяча на корте.

Принцип аналогичен принципу эха

Хотя радар использует не звуковые волны, а коротковолновые микроволны, принцип работы радара такой же, как и у звука. При контакте с объектом волны отражаются и, таким образом, можно точно рассчитать расстояние до цели и ее направление. Эта информация затем помещается в виде визуальных данных на экран, чтобы она стала читаемой. Предположим, волна направлена ​​в определенном направлении.

Волна проходит через окружающую среду по прямой линии, но когда она попадает в объект на своем пути, она отражается, и часть этой волны возвращается в исходное положение. Это явление называется отражением. Время, необходимое для возврата этого эхо-сигнала, поможет точно определить расстояние, на котором находится объект. Пеленг на цель определяется направлением отраженного эхо-сигнала. Сканер морского радара вращается на 360 градусов вокруг своей вертикальной оси с помощью специального механизма.Так как мы знаем направление, в котором смотрит антенна при передаче энергии радара, мы знаем пеленг целей на пути этого луча энергии. Чем острее луч, тем точнее можно определить пеленг цели.

В морской области анализ эхо-сигнала позволяет получить множество информации путем вычислений и логических выводов, например о том, движется ли объект, приближается или неподвижен. Функции анализа сигналов, такие как «Target Analyzer», даже позволяют легко различать эти эхо-сигналы по цветовым кодам в зависимости от их движения.Другие функции, такие как «Echo Trail», позволяют четко визуализировать движение эха.

Интерпретация экрана морского радара

Как рассчитать расстояние до цели?

При расчете расстояния между радаром и объектом необходимо учитывать, что время (T), измеренное между излучением волны и приемом ее эхо-сигнала, является временем прохождения этой волны туда и обратно, поскольку волна отскочил этим объектом. Чтобы рассчитать расстояние (D) между радаром и объектом, время (T) нужно разделить на два.

D = 1/2 × cT
D : Расстояние между радаром и целевым объектом
c : Скорость света 3 × 10 8 м / с
T : Время, прошедшее между первым излучением и приемом эхо-сигнала

Поскольку радары используют электромагнитные волны, движущиеся со скоростью света, их преимущество заключается в очень быстрой обработке информации.

О пульсовой волне

Радары излучают микроволны пульсирующим образом, и эти волны называются прямоугольными. Полезность импульсных волн заключается в их способности точно определять расстояние, при этом обеспечивая возможность приема энергии, возвращаемой от радиолокационных целей на пути излучаемой волны.

Радар многократно передает импульсные волны в фиксированном цикле. Ширина импульса импульсной волны и частота ее повторения определяются расстоянием, на котором находится цель.Рассмотрим волну, ширина импульса которой составляет 0,8 микросекунды. Если частота установлена ​​на 840 Гц, то волна шириной 0,8 микросекунды будет повторяться 840 раз в течение одной секунды.

Направленность антенного блока

Если расстояние до цели можно узнать, измерив время, которое проходит до приема отраженной волны, направление, в котором находится объект, можно определить с помощью направленной антенны. Хотя антенны, используемые на кораблях, вращаются на 360 °, их чрезвычайно точная направленность (т.е.е. угол точности антенны) позволяет определять местонахождение цели с очень высокой точностью. Однако, поскольку реверберированные сигналы чрезвычайно слабы по сравнению с передаваемым сигналом, необходимо усилить эти сигналы с помощью усилителя, чтобы их можно было экспортировать в визуальные данные.

Прямая видимость РЛС

Радиолокационные волны распространяются вдоль поверхности Земли, но из-за эффекта дифракции эти волны распространяются слегка изогнутым образом.Степень дифракции определяется многими факторами, включая плотность атмосферы. В целом дифракционная кривая позволяет волне выходить за пределы прямой видимости примерно на 6%.

D ≒ 2.2 (√h2 + √h3)
D Радиолокатор прямой видимости (NM)
h2 : Высота, на которой установлен радар (м)
h3 : Высота объекта, отражающего сигнал (м)

Например, если мы предположим, что высота, на которой антенна расположена на лодке, составляет 16 м, а высота обнаруженного объекта — 9 м, тогда линия прямой видимости радара будет составлять около 15 морских миль.Дальность действия радара можно увеличить, просто установив антенну выше, и таким же образом, чем выше высота объекта, тем дальше его можно обнаружить.

Понимание концепций дальности и пеленга

РАДАР стал ключевой технологией, помогающей ориентироваться в самолетах. С растущим спросом на эффективное использование воздушного пространства растет и потребность в радиолокационных системах. РАДАР — это технология, использующая радиоволны для обнаружения объектов в воздухе или на море.

Дальность и пеленг — это одна из двух основных характеристик, которые измеряет РАДАР.Чтобы понять эти два параметра, нам нужно понять, как работает РАДАР.

Радар — это аббревиатура от «радиообнаружения и определения дальности». Радарная система обычно работает в ультравысокой (UHF) или микроволновой части радиочастотного (RF) спектра и используется для обнаружения положения и / или движения объектов.

Простыми словами «Дальность» — это расстояние до объекта от определенной точки. В радаре дальность определяется формулой. Но зачем вам формула для определения дальности, полученной с помощью РАДАРА?

Потому что технология RADAR использует радиоволны, которые движутся со скоростью света.Как уже упоминалось, дальность — это расстояние от цели до определенного объекта. Для измерения расстояния мы используем формулу Ньютона

S = v * t

Измерим расстояние до объекта, в данном случае — самолета. Расстояние до объекта от РАДАРА называется наклонной дальностью — это расстояние по линии прямой видимости.

Наклонная дальность — это расстояние прямой видимости между радаром и освещаемым объектом. Расстояние до земли — это расстояние по горизонтали между излучателем и его целью.Его расчет требует знания высоты цели.

Поскольку радиоволны распространяются со скоростью света, назовем эту скорость C o

Формула будет

В = с / т

C o = 2R / t

В то время как «2R» — это наблюдение за импульсом радара, идущим к цели, а затем возвращающимся к радару. «T» — это затраченное время.

Теперь V = C o для скорости света, которая равна C = 3 · 10 8 м / с

Расстояние S = 2R.

T — затраченное время.

Формула, полученная для диапазона, следовательно: R = C o * t / 2

Формула дальности рассчитывается программным модулем RADAR.

В навигации «Пеленг» описывает горизонтальный угол между направлением одного объекта и другого объекта или между ним и истинным севером. Он измеряется в милах или градусах. Подшипник используется в гражданской авиации, войне, а также в поисково-спасательных операциях.

В технологии RADAR азимут — это определение направления.Истинный пеленг (относительно истинного севера) радиолокационной цели — это угол между истинным севером и линией, направленной непосредственно на цель. Этот угол измеряется в горизонтальной плоскости и по часовой стрелке от истинного севера.

Угол пеленга на радиолокационную цель также может быть измерен по часовой стрелке от центральной линии вашего собственного корабля или самолета. Это называется относительным подшипником.

В воздушной навигации угол обычно измеряется от линии пути или курса воздушного судна по часовой стрелке.

Современные радиолокационные станции берут на себя эту задачу и с помощью спутников GPS самостоятельно определяют направление на север.

Радар | Лаборатория субмиллиметровых волн

Подробнее об ERADS (Expert Radar Signature Solutions)


Компактные радиолокационные диапазоны

В течение последних двадцати пяти лет компания STL разрабатывала и конструировала уникальные компактные радиолокационные диапазоны для создания радиолокационных сигнатур кораблей, танков и других тактических транспортных средств . Компактный радарный диапазон разработан для измерения масштабных моделей реальных целей с использованием лазерных и твердотельных субмиллиметровых лучей. Выполняя измерения радиолокационного рассеяния на высокоточных масштабных моделях внутри компактного радиолокационного диапазона, можно получить отпечаток или сигнатуру радара тактического транспортного средства с низкими затратами и очень высокой точностью.

Типичный компактный радарный уровнемер состоит из трех основных компонентов: безэховой камеры (для поглощения рассеянного рассеяния), системы позиционирования цели (для обеспечения точного позиционирования поставленной цели с точностью до 0.001 градус) и приемопередатчик субмиллиметрового диапазона (который передает субмиллиметровый луч и принимает сигнатуру обратного рассеяния от каждой цели).

STL, как часть консорциума средств радиолокационной сигнатуры Expert RADar Signature Solutions (ERADS), в настоящее время использует компактные диапазоны, предназначенные для соответствия полевым системам в VHF, UHF, X-диапазоне, K-диапазоне, Ka-диапазоне, Ku-диапазоне , и радар W-диапазона.

Персонал : Томас Гойетт, доктор философии, Гай ДеМартини, доктор философии, Джейсон Дикинсон, Кристофер Бодуан, доктор философии.D.


Исследование и анализ радиолокационных сигнатур

Используя компактные радиолокационные диапазоны в STL в рамках консорциума радаров ERADS, радиолокационные радиолокационные сигнатуры получают от тактических целей, начиная от кораблей и грузовиков и заканчивая основными боевыми танками. Самая популярная система измерения азимутальной развертки ISAR позволяет получать изображения обратного радиолокационного рассеяния, точно имитирующие оперативные измерения тактических целей на многочисленных платформах.

Радиолокационные сигнатуры, собранные в STL, представляют собой очень экономичный способ создания высококачественных изображений радиолокационного рассеяния из масштабных моделей.

За двадцатипятилетний опыт работы наши сотрудники приобрели значительный опыт в лабораторной интеграции современных методов сбора данных, управления движением, обработки и визуализации данных.

Персонал : Томас Гойетт, доктор философии, Гай ДеМартинис, доктор философии, Джейсон Дикинсон


Изготовление мелкомасштабных моделей

STL управляет центром моделирования целей мирового класса, где представлены фотографии тактических целей и модели САПР превращаются в масштабные модели с удивительно высокой точностью воспроизведения.Неослабевающее внимание к деталям позволяет изготавливать масштабные модели с масштабными сварными швами, головками болтов, звеньями гусеницы, гайками, ржавчиной, повреждениями в боях и неметаллическими элементами, такими как резиновые прокладки, стекловолокно и холст.

Персонал: Talal Chouman


Определение характеристик диэлектриков для масштабирования радара

Для правильного масштабирования тактических целей, содержащих неметаллические компоненты, лаборатория материалов STL разработала методы измерения комплексной диэлектрической проницаемости материалов на истинном радаре. частоты, а также частоты ТГц.Зная диэлектрическую проницаемость радиолокационной частоты материала, можно изготовить новый материал, обладающий такой же диэлектрической проницаемостью на частотах ТГц, используя обширную библиотеку рецептов диэлектрических материалов для подгонки материалов STL. Затем цех по изготовлению мелкомасштабных моделей STL может создавать компоненты модели с идеальным диэлектрическим масштабом, используя эти рецепты.

Персонал: Эндрю Гейтсман, Ph.D.


Исследования малозаметности

Из-за чрезвычайно высокой чувствительности систем приемопередатчиков в STL у нас есть возможность выполнять радиолокационные исследования обратного рассеяния малозаметных и скрытых целей.Прототипы транспортных средств или систем можно смоделировать и измерить, а затем модифицировать и повторно измерить в рамках процесса уменьшения поперечного сечения радара, повторяя окончательный малозаметный дизайн.

Персонал : Томас Гойетт, Ph. D.


Реалистичный рельеф местности и помехи

Наземные самолеты
Хорошо известно, что местная местность, на которой находится наземный транспорт, оказывает значительное влияние на поперечное сечение радара транспортного средства. STL спроектировала и изготовила более двух десятков наземных плоскостей, моделирующих поведение обратного рассеяния для самых разных типов местности, таких как пустыня, почва, асфальт, бетон и т. Д.Сравнение поведения поляриметрического обратного рассеяния наземных плоскостей, моделирующих как сухую, так и влажную почвенную местность, показывает отличное согласие с полевыми данными в диапазонах X, Ka и W.

Ground Clutter STL активно исследует методы точного моделирования сложных компонентов ландшафта, таких как неоднородные неровности, камни, деревья, растительность, корни, трава и т. Д. Методы изготовления для моделирования изменений плотности и влажности, которые могут привести к объемному рассеянию, адресуются.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *