Регулятор напряжения генератора своими руками: Регулятор напряжения генератора своими руками

Содержание

Реле регулятора напряжения генератора своими руками: схема

Стабилизатор напряжения в бортовой электросистеме автомобиля – самый важный узел без всякого преувеличения. От качества его работы будет зависеть не только стабильность и длительность срок эксплуатации аккумулятора. При этом даже вполне исправное устройство стабилизации не всегда дает гарантию соответствия напряжения и качества питания электросети автомобиля. Нередко автолюбители задаются вопросом как сделать реле регулятор напряжения генератора более надежным – обратиться к специалистам СТО, собрать или усовершенствовать самостоятельно? Вариантов много.

Современные стабилизаторы

На современном автотранспорте, как правило, устанавливаются автоколебательные реле. Они работают по принципу отключения питания катушки возбуждения при достижении напряжения верхнего предела 13,5-13,8 В и подключения при нижнем пороге напряжения 14,5-14,6 В.

Таким образом, выходное напряжение постоянно колеблется.

Теоретически это не считается недостатком, так как напряжение не выходит за допустимые рамки. Все же это не совсем безопасно. Наверняка опытные водители знают, что слабым местом у этого вида реле являются переходные моменты, когда резко меняются обороты ротора или нагрузочный ток. Особенно неблагоприятный момент возникает при большом токе нагрузки на малых оборотах. В эти моменты колебания напряжения часто превышают верхний порог. За счет кратковременности таких скачков аккумулятор не выйдет со строя сразу, но каждый раз его емкость и соответственно ресурс сокращается.

Решают эту проблему по-разному. Иногда автолюбители просто меняют автоколебательное реле на устаревшее контактно-вибрационное. Более оптимальным решением станет заменить реле на широтно-импульсный стабилизатор или модернизировать «родной» с помощью небольших дополнений.

ШИ-стабилизатор

Широтно-импульсные стабилизаторы характеризуются более стабильной работой, то есть в сеть автомобиля подается почти постоянное напряжение, а небольшие отклонения в пределах нормы носят плавный характер. В схеме устройства использованы те же детали, что и в оригинале, но в то же время включена микросхема К561ТЛ1. Это позволило собрать мультивибратор и формирователь коротких импульсов на 1-м узле. Также упрощен узел управления выходным ключом за счет применения полевого транзистора, повышенной мощности.

Основные узлы:

Цикл работы стабилизатора

С включением зажигания на выходе триггера DD1.1 появляется низкий логический уровень. В следствии, этого током зарядки конденсатора СЗ открывается транзистор VT1. Он в свою очередь начинает подавать на входы элемента DD1.2 высокий уровень, единовременно разряжая конденсатор С4. С появлением на выходе низкого уровня DD1.2 открывает полевой транзистор VT3. Ток с вывода стабилизатора протекает обмотку возбуждения генератора.

После прекращения импульса на выходе DD1.1 образуется высокий уровень и транзистор VT1 закрывается. Происходит зарядка конденсатора С4 током, проходящим через резистор R5 от генератора, который управляется транзистором VT2. В то время как напряжение на конденсаторе С4 опуститься до нижнего предела переключения триггера DD1.2, он переключится. На его выходе возникнет высокий уровень, который закроет транзистор VT3. В целях защиты входных цепей микросхемы DD1 напряжение конденсатора С4 ограничивается диодом VD4, что при его последующей зарядке не приведет к переключению DD1.2. Когда же на выходе генератора снова формируется импульс низкого уровня, процесс начинает повторяться.

Таким образом, стабилизация осуществляется длительностью включенного состояния полевого транзистора, а процессом управляет измерительное устройство, а также генератор тока. Когда возрастает напряжение на выводе генератора нарастает ток коллектора транзистора VT2. При увеличении ампеража конденсатор С4 начинает заряжаться быстрее и продолжительность включенного состояния транзистора VT3 уменьшается. В следствии ток, который протекает через обмотку возбуждения генератора уменьшается и, конечно же, уменьшается выходное напряжение генератора.

При понижении напряжения на выводе от генератора ток на коллекторе транзистора VT2 снижается. В результате время зарядки конденсатора С4 возрастает. Это приводит к более длительному периоду включенности транзистора VT3 и ток, который протекает через обмотку возбуждения генератора, возрастает. Выходное напряжение генератора также увеличивается.

Широтно-импульсный стабилизатор своими руками

Хотя эффективность представленного реле и его серийного производства устройство трудно найти в продаже. К тому же узнать о нем что-либо у продавцов консультантов не всегда удается. Поэтому если есть опыт в радиотехнике, реле регулятор напряжения генератора можно собрать своими руками.

Для приведенной выше принципиальной схемы можно применить следующие элементы и их альтернативные замены.

Модернизация регулятора напряжения

Это еще один вариант улучшить качество работы реле и устойчивость его к переходным моментам. За основу взято стандартное реле 50.3702-01, в схему которого добавили всего один резистор и конденсатор.

На схеме доработка обозначена красным цветом и, как видно, не требует больших усилий и особого опыта в радиоэлектронике. При увеличении напряжения в бортовой электросети, конденсатор С2 начинает заряжаться. При это часть тока протекает через базу транзистора VT1 и по величине пропорционален скорости роста напряжения. Это приводит к открытию транзистора VT1 и закрытию транзисторов VT2 и VT3. При этом происходит спад тока в катушке возбуждения, причем более ранний, чем без дополнительной установленной цепи. Это позволяет значительно уменьшить колебания напряжения в сети или вовсе их исключить. То же самое касается и снижения напряжения. Другими словами, рамки допустимого напряжения сужаются, а плавность стабилизации повышается.

На данной схеме также можно внедрить еще одно рациональное предложение. Как известно, выходное напряжение генератора оптимизируется в зависимости от окружающей температуры и зимой должно быть выше на 0,8 В, достигая где-то 14,6 В. По стандарту сезонная подстройка выполняется снятием или установкой перемычек S1, S2 и S3. Установка перемычек исключает из схемы резисторы R1, R2 и R3 и напряжение на выходе возрастает. При снятии перемычек транзисторы снова включаются в работу и напряжение падает. Чтобы этого не делать, упомянутые транзисторы можно заменить одним подстроечным и регулировать выходное напряжение проще и с большей точностью.

Читайте также:

Самодельный Регулятор Напряжения — MOTOREGULATOR

Как я делал Реле-Регулятор (Реле зарядки) для мотоцикла.
Для начала отмечу, что нижеследующий текст является популистским и предназначен для людей, слабо разбирающихся в электронике, поэтому изобилует не совсем корректными сравнениями и упрощениями. Не надо тыкать мне в лицо учебником электротехники и учить меня законам Кирхгофа. Началось все с того, что ребята из дружественного мото-сервиса попросили меня срочно решить «проблемку с РР». Отказать ребятам было нельзя — свои, и я принялся изучать вопрос. Сначала выяснилось, что мотоциклетное РР — это совсем не то, что автомобильное.
Отличий два и все они очень серьёзны.
1) Авто — это стабилизатор.
Мото — это выпрямитель + стабилизатор .
2) Авто — регулирует напряжение на обмотке возбуждения генератора .
Мото — регулирует выходное напряжение генератора .
Есть мотоциклы с генераторами автомобильного типа, но их немного.
Вот тут надо сделать небольшое отступление на тему «что такое сила тока, напряжение, и стабилизатор напряжения». Электрический ток, как известно из школьного курса физики, это «направленное движение электронов». Вдаваться в подробности сейчас не будем, важно уяснить главное — у электрического тока есть множество параметров, но нам наиболее важны два из них — сила тока и напряжение. Ток измеряется в Амперах, а напряжение измеряется в Вольтах. Чтобы понять что это такое, представьте, что ваш провод это канал, а ток — вода текущая по нему. Так вот сила тока это скорость потока воды, а напряжение — уровень воды в канале. Для понимания дальнейшего текста этого хватит.
Теперь о стабилизаторах.
Заморачиваться на выпрямителях мы пока не будем — диод он диод и есть. Задача любого стабилизатора напряжения — получить напряжение, понизить его до заданного уровня и удерживать на этом уровне. По принципу действия стабилизаторы делятся на импульсные, линейные и шунтирующие. Шунтирующий стабилизатор «пускает лишнее напряжение мимо потребителя».
Простейший шунтирующий стабилизатор собирается из двух деталей — резистора и стабилитрона.

Стабилитрон, это такой забавный штук, который, когда напряжение меньше чем нужно, прикидывается что его (стабилитрона) нет (то есть якобы провод оборван), а когда напряжение больше, чем нужно, прикидывается проволочкой (то есть начинает свободно проводить ток). Представьте себе клапан с пружиной, вот принцип тот же. Работает это так. Вот напряжение, меньше чем нужно, стабилитрон ток не проводит, весь ток уходит потребителю. Воды мало, клапан закрыт. Вот напряжение почему-то повысилось и стало больше чем нужно. Стабилитрон начинает проводить ток, и все лишнее «проваливается» мимо потребителя через стабилитрон на массу. Воды много, клапан открылся и слил лишнюю воду. Таким образом, наше напряжение, наш «уровень воды» все время находится примерно на одном значении. Все бы ничего, но не бывает стабилитронов на большие токи. Этот клапан может быть только маленького диаметра. Поэтому сделать стабилизатор для большой силы тока только на стабилитроне — невозможно. Как с этим справляются расскажу позже.
Линейный стабилизатор действует по принципу: «при повышении напряжения ему создаются дополнительные трудности для прохождения». Лучшее сравнение — унитазный бачок. Уровень в бачке маленький — клапан открыт — вода наливается, уровень поднимается — поплавок тащит вверх, клапан закрывается, отверстие всё уже, уже, уже…. Уровень достиг нужного — клапан закрылся. Спустили воду — уровень упал — вода полилась, и всё по новой. Только быстро.
Приделываем к нашему стабилитрону транзистор.

Транзистор это и есть тот самый клапан в бачке. Напряжение маленькое — стабилитрон отключен (говорится «закрыт») — ток открывает транзистор — ток идет через транзистор к потребителю, напряжение повысилось — стабилитрон открылся — ток слился на массу — транзистор открывать уже нечем — он закрылся — отключил источник от потребителя. Ваша любимая «КРЕНка» и есть такой вот линейный стабилизатор, только схема внутри нее посложнее. И все бы ничего но, сам принцип линейного стабилизатора подразумевает «преобразование лишнего тока в тепло». Шунтирующий стабилизатор «пропускает через себя только лишнее». А линейный — всё. Поэтому греется он гораздо больше. И если заставить его стабилизировать большие токи, то
греться он будет быстрее чем остывать. И быстро сгорит. И никакие радиаторы не помогут. А в мотоциклах очень большие токи (я говорю о японцах). Поэтому тот кто советует «сделать РР для мотоцикла на КРЕНке» — бредит. Импульсный стабилизатор действует по похожему принципу, только у него нет промежуточных состояний. Он либо подключает, либо отключает источник от потребителя. Подробности в википедии.
Теперь вернёмся к нашим мотоциклам.
Итак для начала я попробовал собрать классический линейный стабилизатор. Да, да, я наступил на все грабли, на которые можно было наступить. 20-ти амперный тошибовский транзистор шарахнул так, что слышно было на улице. Тогда вместо классического «биполярного» транзистора я применил так называемый «полевой». Полевые транзисторы свободно оперируют большими токами не особо при этом нагреваясь.
Моя первая схема имела следующий вид.

Транзистор VT0 выполняет функцию «чем больше напряжение питания, тем меньше напряжение он выдаёт», микросхема DA1 — «дёргает напряжение, управляющее полевым транзистором, чем меньше напряжение на входе, тем реже дёргает» микросхема DA2 — усиливает напряжение, управляющее полевым тразистором, а то ему с DA1 мало, ну а полевой транзистор VT1 уже выполняет роль того самого клапана в бачке унитаза и питает весь мотоцикл. И ничего. Не перегревается. Эту схему я изготовил в единственном экземпляре, и она работала. О дальнейшей ее судьбе мне ничего не известно. Но судя по тому, что рекламаций мне не высказали, наверно работала она удовлетворительно. Однако это получается импульсный стабилизатор. И у него есть главный недостаток импульсного стабилизатора — большие пульсации. Грубо говоря, напряжение на его выходе не 13 вольт, как надо, а «то много, то мало, а в среднем то что надо». Если мой друг Вася выпил при мне две бутылки пива, а мне не дал ни одной, то теоретически, мы вместе выпили по бутылке пива каждый, а практически Васе пора бить морду. Я показал эту схему лишь для того, чтобы обозначить «этапы большого пути».
Но эту схему собирать не надо.
Именно из-за пульсаций. Мой коллега предложил аналогичную схему с меньшим количеством деталей, но работающую по тому же принципу.

Её тоже сделали. И она тоже работала. Но и это импульсный стабилизатор со всеми своими пульсациями, поэтому от этой схемы так же отказались. Что ж, я стал искать дальше. Очень скоро я обнаружил, что производители японских мотоциклов используют шунтирующие стабилизаторы, но ревностно хранят тайну их устройства.
Вот все что мне удалось найти, листая официальную документацию.

Содержимое «Integrated Circuit» остаётся загадкой. Однако главный принцип ясен — роль шунтирующего стабилизатора (то есть «клапана, сливающего лишнюю воду»), выполняет деталь под названием «тиристор». Это мощный электронный «клапан», который открывается, если на его управляющий контакт пустить ток, а закрывается когда ток через него падает до нуля(почти). Именно этим и занимается Integrated Circuit, осталось додуматься что же у него внутри? Поискав еще, я обнаружил, что не один я заморачиваюсь этой проблемой, и, в общем повторяю путь других людей. Вот только большинство людей остановились на одном и том же этапе — прицепили к тиристору стабилитрон. Попутно изыскатели еще и наделали других ошибок.
Так что я продолжаю показывать схемы, которые собирать не надо :
В этой схеме к стабилитрону зачем-то прилеплен конденсатор большой ёмкости.

Конденсатор большой ёмкости замедляет процесс «переключения напряжения туда-сюда», в линейном стабилизаторе он нужен, здесь же он только мешает стабилитрону нормально работать. Кроме того в этой схеме есть та же проблема, что и в следующей.
В этой схеме на первый взгляд все неплохо. Но тут уже начинается физика с математикой.

Как я уже говорил раньше «стабилитрон это клапан который не может быть слишком большим». Добавлю: слишком маленьким тоже. То есть — вот у вас стабилитрон который должен открываться при напряжении 13 вольт. Но кроме напряжения у нас есть понятие силы тока. Так вот у любого стабилитрона есть минимальный ток, меньше которого он еще не работает, и максимальный ток, больше которого он уже горит. Такой же параметр есть и у тиристора. И они не совпадают. Среднестатистический стабилитрон начинает работать с 5-ти миллиампер и сгорает, если ток выше 30-ти миллиампер. А тиристору, чтоб открыться нужно миллиампер 15. Одному. Но генератор мотоцикла трёхфазный — выдаёт ток с трёх точек. Поэтому тиристоров-то у нас три!
А в этой схеме вообще применены «более другие клапана» под названием «симистор». Симистору, чтоб открыться, в зависимости от модели, нужно от 30-ти до 70-ти миллиампер. Одному. Дальше все зависит от резистора под стабилитроном — если он маленький — стабилитрон сгорит. Если большой — тиристоры не будут нормально открываться. Есть стабилитроны которые держат до 100 миллиампер. Но они начинают работать только с 50-ти. Дело в том, что мотоциклетный генератор выдаёт очень большой разброс напряжений. На холостых это вольт 10, зато на полном газу — 60 вольт не предел. Вспоминаем закон ома «чем больше напряжение, тем больше сила тока». Считаем. 10 вольт генератора делим на 330 ом резистора — получаем 30 миллиампер тока. Обычный стабилитрон уже на пределе. Мощный еще даже не приготовился работать. 60 вольт генератора делим на те же 330 ом — получаем 180 миллиампер. Оно конечно, тиристоры сразу же, за микросекунду «уронят» напряжение обратно, но все же… все же… Может увеличить сопротивление ? Давайте попробуем.
60 / 1200 = 50 миллиампер.
Вроде нормально. Но 10 / 1200 = ?
То-то и оно.
Кроме того в этой схеме есть лишние детали. Следующую схему помещаю просто для коллекции — в ней та же проблема.
К тому же на ней честно написано «Не для сборки !»

А вот эта схема на первый взгляд лишена всех вышеперечисленных недостатков.

Тиристору надо 20 миллиампер ? Стабилитрон работает в разбросе 5-30? Пожалуйста — каждому тиристору свой стабилитрон. Все довольны. Но только вот какая засада — даже если детали сделаны на одном заводе, в один день и на одном станке, они все равно чуть-чуть разные. Вы купите три стабилитрона на 13 вольт, а реально получите один на 12.9 второй на 13 третий на 13.1 вольт. Та же история будет с резисторами — их сопротивление будет отличаться ом на 5-10 в разные стороны. Кроме того генератор изготовлен тоже людьми. И поэтому выдает не абсолютно одинаковые напряжения на каждой точке а чуть-чуть да разные. В итоге какой-то из трёх стабилитронов будет открываться чуть раньше остальных. И открывать тиристор. И на этот тиристор ляжет основная нагрузка. Большая часть «лишнего» напряжения будет «сливаться» через один тиристор и он быстро сдохнет от перенагрузки. То есть эта схема вполне работоспособна при условии максимальной одинаковости деталей. Иначе она будет сильно греться и быстро сгорит. Делаем вывод — стабилитрон должен быть один, общий, и рулить всеми тремя тиристорами одновременно, но между ним и тиристорами должно быть что-то еще, усиливающее ток.
Через некоторое время я нашел вот эту схему.

В принципе ее можно делать. Она будет работать как надо. Но я ее делать не стал. Я перфекционист. Транзисторы, предлагаемые тут, держат ток 100 миллиампер, причём тиристорами-симисторами управляет только один из них — правый — Q2. Если использовать симисторы — 90 миллиампер «съедаться» ими, еще немного уходит на взаимодействие со вторым транзистором, сколько остаётся запаса? Не люблю я так, чтоб впритык. А если взять транзисторы по мощнее, то стабилитрон их «не раскачает» как следует. Опять же — деталей в схеме много, паять ее долго и муторно. Надо двигаться дальше. Надо сказать что тогда я много спорил с автором одной из выше расположенных схем — Dingosobak-ой именно на счёт стабилитрона, и вот я, плюнув на всё, начинаю разрисовывать свой собственный вариант, но тут, Dingosobaka присылает мне схему которую получил от GogiII

Здесь все нормально, за исключением некоторых номиналов резисторов — резисторы R1 и R2 надо уменьшить килоОМ так до трёх, а то на опять-таки многострадальный стабилитрон идёт слишком маленький ток. (Схема требует пересчета многих номиналов, но ввиду её невостребованности делать это никто не собирается — поэтому относитесь к ней как к экспонату в музее). В этой схеме маленький стабилитрон «качает» маленький транзистор, маленький транзистор «качает» транзистор побольше, а большой транзистор «рулит» мощными симисторами — он свободно держит ток в 1000 миллиампер. То есть 1 ампер. Вот это я называю «запас» ! К тому времени схем накопилось много и надо было их как-то друг от друга отличать. Этой схеме я присвоил название исходная .
Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. На этом бы успокоиться, но — нет. Схема-то, для тех, кто «не в теме», сложная. И я стал искать пути упростить изготовление схемы без потери функциональности. Сначала я вознамерился приспособить автомобильное РР к мотоциклу. Исходил я из того что автомобильное РР по сути выполняет ту же функцию, что и Integrated Circuit, с той лишь разницей, что автомобильное РР управляет обмоткой возбуждения, а мотоциклетное — тиристорами-симисторами. Вот что в итоге у меня получилось:
Сначала собираем блок тиристоров-симисторов.

Затем берем автомобильное РР, выкусываем детальки, зачёркнутые крестиками, и впаиваем новые, отмеченные синим.
Внимание ! Нужно реле зарядки под названием 121.3702 . Всяческие 121.3702 -01 , 121.3702 -02 и 121.3702 -03 не годятся !

В зависимости от типа применяемых тиристоров-симисторов придётся подобрать тот резистор, что справа (как считать-подбирать резистор написано в конце статьи). По сути, мы просто собираем предыдущую схему GogiII-Dingosobaka, только с минимальными трудозатратами и максимальным использованием готовых изделий. Настроение было игривое, поэтому эта схема получила название брутальная . Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Дальше я стал делать ту же схему но задался целью найти готовый Integrated Circuit не в виде «РР от жигулей», а в виде готовой законченной микросхемы. И нашёл. Аж три штуки.
Схема приобрела вот такой вид.

За красоту и аккуратность схема получила название гламурная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но тут-то и возник парадокс. Почти у каждого из вас есть дома такая микросхема. В музыкальном центре. Она управляет светодиодными индикаторами. Но кто-нибудь хоть раз видел магнитофон у которого сдох светодиодный индикатор ? Ну не горит она, эта микросхема. Не с чего ей гореть. А раз не горит, значит ее не покупают. А раз не покупают, значит не везут !
Копеечную микросхему купить практически невозможно ее нет в магазинах. Но именно эту схему я собрал себе как запасную. Родное РР у меня пока (тьху-тьху-тьху) живо. И я стал думать дальше. Во всех предыдущих схемах используются тиристоры. Можно использовать и симисторы. Но именно можно а не обязательно. Напомню принцип работы тиристора — на «палочку» подключили массу, на «треугольничек» — плюс, если на управляющий контакт подать плюс — тиристор откроется, если минус — закроется. Только так и никак иначе. Поэтому я не могу использовать с тиристорами очень распространённую микросхему TL431 (она же КРЕН19) — тиристоры, чтобы открыть их, надо подключать к плюсу, а TL431 подключает к минусу. Сначала я пошёл по проторённому пути, и воткнул между TL431 и тиристорами переходной транзистор.

Продолжая модную тогда тему «падонкаффскаго езыка» я назвал схему готичная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но (!) больше я этого делать не буду. Смысл ? Опять много деталей. Меняем шило на мыло. Ну раньше было два транзистора, теперь одна трёхногая микросхема и один транзистор. Разницы-то? Хотя в этой схеме можно вместо стабилитрона с резистором поставить один переменный резистор, тогда появится возможность плавно регулировать напряжение, но переменный резистор это ненадёжная деталь. Особенно в условиях мотоцикла. Спустя почти год (я сделал эту схему в июле 2007-го) ребята из Саратова практически повторили эту схему, применив хоть и другие, но аналогичные детали.

Схема хороша, но сохраняет главный недостаток — много деталей. Микросхема, которую применили саратовчане (так называемый «супервайзер»)держит совсем уж мизерный ток, поэтому они усилили ее дополнительным транзистором. (Вот что непонятно — неужели в Саратове микросхема TL431 это большая проблема чем применённая ими PST529 ?) Когда я начинал, я смотрел в сторону PST529 и подобных, но отказался от них потому что они требуют большого количества дополнительных деталей. А моя задача была — свести количество деталей к минимуму, сохранив достойную функциональность. Вот тут видно как мне предлагают микросхему типа «супервайзер» а я от неё отказываюсь.
Через несколько лет Dyn предложил свой вариант «готичной»:

И успешно её изготовил. Деталей опять много, но ему было не лень.(да, чего уж там — на две три детали то больше… Если кого то интересует изготовление этой схемы — по ссылке выше описание и там же указаны номиналы деталей. Только я немного ошибся — R6 R7 надо поменять местами. Dyn)
Ну а пока я, с подачи Dyn-a, стал изучать симисторы. И обнаружил принципиальное их отличие от тиристоров. А именно — им совершенно не обязательно «на палочку подключили массу, на треугольничек — плюс, открывать плюсом». Им вообще пофиг какая полярность куда подключена. Это резко меняло дело и открывало новые горизонты. Еще раз напомню — все предыдущие схемы рассчитаны под тиристоры . В них можно использовать симисторы, но не обязательно. А я сделал схему, которая будет работать только с симисторами. И в ней симисторы работают в удобном для себя режиме.
В итоге схема приняла такой вид.

В уже сложившейся традиции схема была названа зач0тная. Ещё раз отмечу — с этим вариантом Integrated circuit можно использовать только симисторы, тиристоры использовать нельзя ! И включаются эти симисторы не так как на всех предыдущих схемах.
То есть взять эту схемку и пришпилить к ней «силовой блок» из прeдыдущих схем — нельзя! Запас по току правда не очень велик — TL431 держит всего 150 миллиампер, но все же это вполне допустимо. Но, как уже отмечалось, я — перфекционист и всё люблю делать с запасом, поэтому я заменил TL431 на классический нижний ключ ULN2003. (Так же можно использовать аналог TD62083). Эта микросхема есть в продаже, работает в этой схеме в своём нормальном режиме и держит ток 500 миллиампер. C этой деталью схема упростилась уже до полного безобразия, а так как принцип не поменялся, получила название зач0тная-2. Эти схемы я делал и делаю до сих пор. И они работают. Их делают и другие люди. И у них эти схемы так же работают.


Регулятор напряжения 20 Ампер, 5 контактовРегулятор напряжения 30 Ампер, 7 контактов

Некоторое время назад товарищ Poner предложил использовать вместо ключа оптореле.
Собраный им образец показал свою работоспособность, хотя и чуть худшие характеристики.


От себя добавлю, что не вижу причин, почему бы не использовать в качестве ключа любой подходящий полевой МОП транзистор (MOSFET) .

После прочтения всей этой моей писанины, у вас наверняка накопились вопросы. Постараюсь на них ответить.
Многие спрашивают, почему я пишу «тиристоры» а на схемах рисую симисторы BTA26 ?
Причина проста — из-за лени. Большинство тиристоров-симисторов нельзя использовать без прокладок и неметаллических винтов! А вот симисторы BTA16-24-26-41 — можно. Если же использовать другие тиристоры-симисторы (25TTS, BT152, BT225 и т. д.) то приходится ставить каждый на прокладку, да прикручивать его неметаллическим винтом, да следить, чтоб не замкнуло, это так лениво.
Так же многие спрашивают какие можно еще применять тиристоры-симисторы. Да в общем-то любые, рассчитанные на ток не меньше 20-ти ампер. Вот прям прийти в магазин и сказать «дайте мне три тиристора или симистора ампер на двадцать.» Вообще-то можно и меньше (10-15 ампер), но как уже отмечалось — лично я люблю все делать с запасом. Кроме того, чем на меньше ампер рассчитан тиристор-симистор тем больше он будет греться.
Только если использовать симисторы, то для схем «исходная», «гламурная», «брутальная» и «готичная» годятся не любые симисторы а только четырёхквадрантные (4Q). Ещё бывают трёхквадрантные (3Q или hi-com) и они для вышеназванных схем не годятся.
А вот для схем «зач0тная» и «зач0тная-2» не только подходят любые симисторы — и 4Q и 3Q, но 3Q даже предпочтительнее, так как будут меньше нагреваться.
Но самый лучший симистор для наших целей это конечно BTA26 (он же ВТА24 в другом корпусе). Он подходит ко всем схемам, надёжен и недорог.
К тому же выпускается в двух вариантах BTA26бла-бла-бла B это 4Q, а BTA26бла-бла-бла W это 3Q.
Кроме того, под неизвестно-какие тиристоры-симисторы потребуется пересчитать номиналы резисторов, иначе тиристоры-симисторы будут сильно греться и в итоге сгорят.
Разберём этот момент на примере симисторов BTA140.
Открываем даташыт (ссылка)
Ищем в таблицах параметр I GT (Gate Trigger Current) видим максимальное значение 35 миллиампер.
Чуть-чуть «откатываемся назад» от максимального значения, чтобы не грузить симистор, и считаем:
14 вольт / 0.03 ампер = 470 ом.
То есть в управляющем контакте одного симистора BTA140 должно быть 470 ом.
То есть если взять схему «зачотная», то все резисторы между микросхемой и симисторами должны быть по 470 ом.
Если взять схему «брутальная» — по 360 а общий резистор в переделанном РР от жигулей — 110 ом.
Единственно чего нельзя делать — это ставить один общий резистор на все три тиристора-симистора, а их управляющие контакты собирать в один пучок. Тогда между тиристорами-симисторами возникнут паразитные связи и всё пойдёт в разнос. У каждого тиристора-симистора должен быть свой «персональный» резистор хотя бы ом на 70, а остальное может быть общим.
Короче, купив тиристоры-симисторы, уточняйте все эти моменты по документации на сайте оллдаташыт !
Часто меня спрашивают какой стабилитрон нужно применять в схеме.
Стабилитронов много, и многие годятся, но нужно учитывать следующие моменты:
Стабилитрон нужен на правильный ток. То есть минимальный ток стабилитрона должен быть не больше 5-ти миллиампер, а максимальный — не меньше 15-ти. Причём эти токи взаимосвязаны, рабочий участок стабилитрона обычно равен 20-30 миллиампер, то есть если у стабилитрона максимальный ток 50 миллиампер, то его минимальный ток будет миллиампер 50-30=20, то есть такой стабилитрон не годится. В магазинах частенько обозначают стабилитроны по мощности, например «13 вольт 0.5 ватта».
Это значит, что максимальный ток стабилитрона 0.5W / 13v = 30 миллиампер. Значит у этого стабилитрона минимальный ток будет около 1 миллиампера, и такой стабилитрон подойдёт.
Стабилитрон нужен на правильное напряжение, то есть на 14 вольт. Вольт туда — вольт сюда на стабилитроне, аукнется полутора вольтами на выходе схемы. Если стабилитрона на 14 вольт под руками нет, можно набрать его из нескольких стабилитронов в сумме (7+7 6+8) или добавить нужное количество любых маломощных кремниевых диодов в прямом включении, из расчёта, что 1 диод добавляет к стабилитрону 0.7 вольта. Например к стабилитрону на 13 вольт нужен 1 диод вроде 1N400*, КД521 , КД522 , КД509 , КД510 итд. C тем же успехом вместо диода можно использовать второй такой же стабилитрон. С точки зрения сборки это даже предпочтительнее — взял два стабилитрона на 13 вольт, спаял метками друг к другу, воткнул в схему любой стороной, и вопрос закрыт.

Теперь пару слов о той части мотоциклетного РР о которой мы еще не говорили — о выпрямительной. Токи потребляемые мотоциклом исчисляются десятками ампер, поэтому диоды надо применять мощные. Если объем двигателя кубиков 400-600, то вполне хватит 30-ти амперных диодов. Я обычно применяю готовый 36-ти амперный диодный мост (сборка на 6 диодов) 36MT. Но если объём двигателя большой — 36МТ не справится. Зависимость проста — большой двигатель труднее крутить стартером, значит стартер ставится более мощный, чтоб его крутить нужен мощный аккумулятор, значит он потребляет большой ток при зарядке. Для того чтоб не рисковать надо использовать 40-ка а то и 50-ти амперные диоды. Например 40CTQ 50HQ 52CPQ и т. д.
Вот например вариант «зач0тной-2» на трёх 50-ти амперных мостах KBPC5006 (они же MB506) и трёх симисторах BTA41 (все резисторы по 300 ом).

Источник: moto-electro.ru
Текст отредактирован, орфография и пунктуация сохранены, все оригинальные ссылки сохранены.

Реле регулятор напряжения генератора своими руками схема

Задумался я об этой штуке прошлой зимой, когда короткие поездки по городу (дом-работа, дом-магазин и т.д.) с включенными всеми потребителями начали давать о себе знать. Многие, наверное, слышали про установку «повышающего диода на регулятор напряжения», так вот, прочитав данную статью я задумался: при таком раскладе напряжение в бортовой сети в ручную не регулируется, просто становится больше на то значение, на какое упадет напряжение при прохождении тока через диод. Для начала немного теории: при прохождении тока через диод, напряжение падает в среднем на 0,5 вольта (в зависимости от диода), и штатный регулятор думает, что напряжение упало в бортовой сети, и заставляет генератор давать большее напряжение.
Практика: берем ту же схему, что и для «повышающего диода» и добавляем к ней второй диод и переключатель на 3 положения, причем диод можно использовать любой, только, чтоб он был рассчитан на ток не менее 5А, далее собираем всё вот по такой схеме

И вуаля первое положение 14,2 В, второе положение 15,4 В, третье положение 14,8 В

Стабилизатор напряжения в бортовой электросистеме автомобиля – самый важный узел без всякого преувеличения. От качества его работы будет зависеть не только стабильность и длительность срок эксплуатации аккумулятора. При этом даже вполне исправное устройство стабилизации не всегда дает гарантию соответствия напряжения и качества питания электросети автомобиля. Нередко автолюбители задаются вопросом как сделать реле регулятор напряжения генератора более надежным – обратиться к специалистам СТО, собрать или усовершенствовать самостоятельно? Вариантов много.

Современные стабилизаторы

На современном автотранспорте, как правило, устанавливаются автоколебательные реле. Они работают по принципу отключения питания катушки возбуждения при достижении напряжения верхнего предела 13,5-13,8 В и подключения при нижнем пороге напряжения 14,5-14,6 В.

Таким образом, выходное напряжение постоянно колеблется. Теоретически это не считается недостатком, так как напряжение не выходит за допустимые рамки. Все же это не совсем безопасно. Наверняка опытные водители знают, что слабым местом у этого вида реле являются переходные моменты, когда резко меняются обороты ротора или нагрузочный ток. Особенно неблагоприятный момент возникает при большом токе нагрузки на малых оборотах. В эти моменты колебания напряжения часто превышают верхний порог. За счет кратковременности таких скачков аккумулятор не выйдет со строя сразу, но каждый раз его емкость и соответственно ресурс сокращается.

Решают эту проблему по-разному. Иногда автолюбители просто меняют автоколебательное реле на устаревшее контактно-вибрационное. Более оптимальным решением станет заменить реле на широтно-импульсный стабилизатор или модернизировать «родной» с помощью небольших дополнений.

ШИ-стабилизатор

Широтно-импульсные стабилизаторы характеризуются более стабильной работой, то есть в сеть автомобиля подается почти постоянное напряжение, а небольшие отклонения в пределах нормы носят плавный характер. В схеме устройства использованы те же детали, что и в оригинале, но в то же время включена микросхема К561ТЛ1. Это позволило собрать мультивибратор и формирователь коротких импульсов на 1-м узле. Также упрощен узел управления выходным ключом за счет применения полевого транзистора, повышенной мощности.

Цикл работы стабилизатора

С включением зажигания на выходе триггера DD1.1 появляется низкий логический уровень. В следствии, этого током зарядки конденсатора СЗ открывается транзистор VT1. Он в свою очередь начинает подавать на входы элемента DD1.2 высокий уровень, единовременно разряжая конденсатор С4. С появлением на выходе низкого уровня DD1.2 открывает полевой транзистор VT3. Ток с вывода стабилизатора протекает обмотку возбуждения генератора.

После прекращения импульса на выходе DD1.1 образуется высокий уровень и транзистор VT1 закрывается. Происходит зарядка конденсатора С4 током, проходящим через резистор R5 от генератора, который управляется транзистором VT2. В то время как напряжение на конденсаторе С4 опуститься до нижнего предела переключения триггера DD1.2, он переключится. На его выходе возникнет высокий уровень, который закроет транзистор VT3. В целях защиты входных цепей микросхемы DD1 напряжение конденсатора С4 ограничивается диодом VD4, что при его последующей зарядке не приведет к переключению DD1.2. Когда же на выходе генератора снова формируется импульс низкого уровня, процесс начинает повторяться.

Таким образом, стабилизация осуществляется длительностью включенного состояния полевого транзистора, а процессом управляет измерительное устройство, а также генератор тока. Когда возрастает напряжение на выводе генератора нарастает ток коллектора транзистора VT2. При увеличении ампеража конденсатор С4 начинает заряжаться быстрее и продолжительность включенного состояния транзистора VT3 уменьшается. В следствии ток, который протекает через обмотку возбуждения генератора уменьшается и, конечно же, уменьшается выходное напряжение генератора.

При понижении напряжения на выводе от генератора ток на коллекторе транзистора VT2 снижается. В результате время зарядки конденсатора С4 возрастает. Это приводит к более длительному периоду включенности транзистора VT3 и ток, который протекает через обмотку возбуждения генератора, возрастает. Выходное напряжение генератора также увеличивается.

Широтно-импульсный стабилизатор своими руками

Хотя эффективность представленного реле и его серийного производства устройство трудно найти в продаже. К тому же узнать о нем что-либо у продавцов консультантов не всегда удается. Поэтому если есть опыт в радиотехнике, реле регулятор напряжения генератора можно собрать своими руками.

Для приведенной выше принципиальной схемы можно применить следующие элементы и их альтернативные замены.

Модернизация регулятора напряжения

Это еще один вариант улучшить качество работы реле и устойчивость его к переходным моментам. За основу взято стандартное реле 50.3702-01, в схему которого добавили всего один резистор и конденсатор.

На схеме доработка обозначена красным цветом и, как видно, не требует больших усилий и особого опыта в радиоэлектронике. При увеличении напряжения в бортовой электросети, конденсатор С2 начинает заряжаться. При это часть тока протекает через базу транзистора VT1 и по величине пропорционален скорости роста напряжения. Это приводит к открытию транзистора VT1 и закрытию транзисторов VT2 и VT3. При этом происходит спад тока в катушке возбуждения, причем более ранний, чем без дополнительной установленной цепи. Это позволяет значительно уменьшить колебания напряжения в сети или вовсе их исключить. То же самое касается и снижения напряжения. Другими словами, рамки допустимого напряжения сужаются, а плавность стабилизации повышается.

На данной схеме также можно внедрить еще одно рациональное предложение. Как известно, выходное напряжение генератора оптимизируется в зависимости от окружающей температуры и зимой должно быть выше на 0,8 В, достигая где-то 14,6 В. По стандарту сезонная подстройка выполняется снятием или установкой перемычек S1, S2 и S3. Установка перемычек исключает из схемы резисторы R1, R2 и R3 и напряжение на выходе возрастает. При снятии перемычек транзисторы снова включаются в работу и напряжение падает. Чтобы этого не делать, упомянутые транзисторы можно заменить одним подстроечным и регулировать выходное напряжение проще и с большей точностью.

Создано реле регулятор напряжения генератора для корректировки выдаваемого в бортовую сеть и на клеммы аккумулятора «вольтажа» в заданном диапазоне 13,8 – 14,5 В (реже до 14,8 В). Кроме того, регулятор корректирует напряжение на обмотке самовозбуждения генератора.

Назначение реле регулятора напряжения

Независимо от стажа и стиля вождения владелец авто не может обеспечить одинаковые обороты двигателя в разные моменты времени. То есть, коленвал ДВС, передающий крутящий момент генератору, вращается с разной скоростью. Соответственно, генератор вырабатывает разное напряжение, что крайне опасно для АКБ и прочих потребителей бортовой сети.

Поэтому замена реле регулятора генератора должна производится при недозаряде и перезаряде аккумулятора, горящей лампочке, мигании фар и прочих перебоях электроснабжения бортовой сети.

Взаимосвязь источников тока авто

В транспортном средстве находится минимум два источника электроэнергии:

  • аккумулятор – необходим в момент запуска ДВС и первичного возбуждения обмотки генератора, энергию не создает, а только расходует и накапливает в момент подзарядки
  • генератор – питает бортовую сеть на любых оборотах и подпитывает АКБ только на высоких оборотах

В бортовую сеть необходимо подключение обоих указанных источников для корректной работы двигателя и прочих потребителей электричества. При поломке генератора АКБ «протянет» максимум 2 часа, а без аккумулятора не заведется двигатель, приводящий в движение ротор генератора.

Существуют исключения – например, а счет остаточной намагниченности обмотки возбуждения штатный генератор ГАЗ-21 запускается самостоятельно при условии постоянной эксплуатации машины. Можно завести авто « с толкача», если в нем установлен генератор постоянного тока, с прибором переменного тока такой трюк невозможен.

Задачи регулятора напряжения

Из школьного курса физики каждый автолюбитель должен помнить принцип работы генератора:

  • при взаимном перемещении рамки и окружающего ее магнитного поля в ней возникает электродвижущая сила
  • электромагнитом генераторов постоянного тока служат статоры, ЭДС, соответственно возникает в якоре, ток снимается с коллекторных колец
  • в генераторе переменного тока намагничивается якорь, электроэнергия возникает в обмотках статора

Упрощенно можно представить, что на величину выходящего с генератора напряжения влияет значение магнитной силы и скорость вращения поля. Основная проблема генераторов постоянного тока – пригорание и залипание щеток при съеме с якоря токов большой величины – решена переходом на генераторы переменного тока. Ток возбуждения, подающийся на ротор для возбуждения магнитной индукции, на порядок ниже, снимать электроэнергию с неподвижного статора гораздо легче.

Однако вместо постоянно расположенных в пространстве клемм «–» и «+» производители авто получили постоянное изменение плюса и минуса. Подзарядка аккумулятора переменным током не возможна в принципе, поэтому диодным мостиком его предварительно выпрямляют.

Из этих нюансов плавно вытекают задачи, решаемые реле генератора:

  • подстройка тока в обмотке возбуждения
  • выдерживание диапазона 13,5 – 14,5 В в бортовой сети и на клеммах аккумулятора
  • отсечение питания обмотки возбуждения от АКБ при заглушенном двигателе

Поэтому называют регулятор напряжения еще и реле зарядки, а на панель выведена сигнальная лампа процесса подзарядки АКБ. В конструкцию генераторов переменного тока функция отсечения обратного тока заложена по умолчанию.

Разновидности реле регуляторов

Прежде, чем произвести самостоятельный ремонт устройства регулирования напряжения, необходимо учесть, что существует несколько типов регуляторов:

  • внешние – повышают ремонтопригодность генератора
  • встраиваемые – в пластину выпрямителя или щеточный узел
  • регулирующие по минусу – появляется дополнительный провод
  • регулирующие по плюсу – экономичная схема подключения
  • для генераторов переменного тока – нет функции ограничения напряжения на обмотку возбуждения, так как она заложена в самом генераторе
  • для генераторов постоянного тока – дополнительная опция отсечения АКБ при неработающем ДВС
  • двухуровневые – морально устарели, применяются редко, регулировка пружинами и небольшим рычагом
  • трехуровневые – дополнены специальной платой сравнивающего устройства и сигнализатором согласования
  • многоуровневые – в схеме имеются 3 – 5 добавочных резисторов и система слежения
  • транзисторные – в современных авто не используются
  • релейные – улучшенная обратная связь
  • релейно-транзисторные – универсальная схема
  • микропроцессорные – небольшие габариты, плавные регулировки нижнего/верхнего порога срабатывания
  • интегральные – встраиваются в щеткодержатели, поэтому заменяются после истирания щеток

Внимание: Без доработки схемы «плюсовой» и «минусовой» регулятор напряжения являются не взаимозаменяемыми приборами.

Реле генераторов постоянного тока

Таким образом, схема подключения регулятора напряжения при эксплуатации генератора постоянного тока сложнее. Поскольку в стояночном режиме авто, когда ДВС заглушен, необходимо отключить генератор от АКБ.

При диагностике проверка реле происходит на выполнение трех его функций:

  • отсечка аккумулятора во время стоянки машины
  • ограничение максимального тока на выходе генератора
  • регулировка напряжения для обмотки возбуждения

При любой неисправности требуется ремонт.

Реле генераторов переменного тока

В отличие от предыдущего случая диагностика своими руками регулятора генератора переменного тока немного проще. В конструкцию «автомобильной электростанции» уже заложена функция отсечки питания во время стоянки от АКБ. Остается проверить лишь напряжение на обмотке возбуждения и на выходе с генератора.

Если в машине стоит генератор тока переменного, его невозможно завести разгоном с горки. Так как остаточного намагничивания на возбуждающей обмотке здесь нет по умолчанию.

Встроенные и внешние регуляторы

Для автолюбителя важно знать, что измеряют и начинают регулировать напряжение реле в конкретном месте их установки. Поэтому встроенные модификации воздействуют непосредственно на генератор, а выносные «не знают» о его наличии в машине.

Например, если выносное реле подключено к катушке зажигания, его работа будет направлена на регулировку напряжения лишь на этом участке бортовой сети. Поэтому, прежде чем узнать, как проверить реле выносного типа, следует убедиться, что оно подключено правильно.

Управление по «+» и «–»

В принципе схемы управления по «минусу» и «плюсу» отличаются лишь схемой подключения:

  • при монтаже реле в разрыв «+» одна щетка подключается к «массе», другая к клемме регулятора
  • если же подключить реле в разрыв «–», то одну щетку нужно подключить к «плюсу», другую к регулятору

Однако в последнем случае появится еще один провод, поскольку реле напряжения является устройством активного типа. Для него необходимо индивидуальное питание, поэтому «+» нужно подвести отдельно.

Двухуровневые

На начальном этапе в машинах устанавливались механические двухуровневые регуляторы напряжения с простым принципом действия:

  • через реле проходит электрический ток
  • возникающее магнитное поле притягивает рычаг
  • сравнивающим устройством служит пружина с заданным усилием
  • при увеличении напряжения контакты размыкаются
  • на возбуждающую обмотку поступает меньший ток

Использовались механические двухуровневые реле в автомобилях ВАЗ 21099. Основным минусом являлась работа с повышенным износом механических элементов. Поэтому на смену этим приборам пришли электронные (бесконтактные) реле напряжения:

  • делитель напряжения собран из резисторов
  • стабилитрон является задающим устройством

Сложная схема соединения и недостаточно эффективный контроль напряжения привели к снижению спроса на эти приборы.

Трехуровневые

Однако двухуровневые регуляторы, в свою очередь, так же уступили позиции более совершенным трехуровневым и многоуровневым приборам:

  • напряжение выходит с генератора на специальную схему через делитель
  • информация обрабатывается, действительное напряжение сравнивается с минимальным и максимальным пороговым значением
  • сигнал рассогласования регулирует силу тока, поступающего на возбуждающую обмотку

Более совершенными считаются реле с частотной модуляцией – в них нет привычных сопротивлений, зато увеличена частота срабатывания ключа электронного. Управление осуществляется логическими схемами.

Принцип работы реле регулятора

Благодаря встроенным резисторам и специальным схемам реле получает возможность сравнивать величину вырабатываемого генератором напряжения. После чего, слишком высокое значение приводит к отключению реле, чтобы не перезарядить аккумулятор и не испортить электроприборы, подключенные в бортовую сеть.

Любые неисправности приводят именно к этим последствиям, приходит в неисправность батарея АКБ или резко увеличивается эксплуатационный бюджет.

Переключатель лето/зима

Вне зависимости от сезона и температуры воздуха работа генератора всегда стабильна. Как только его шкив начинает вращаться, электроток вырабатывается по умолчанию. Однако зимой внутренности аккумулятора замерзают, он восполняет заряд значительно хуже, чем летом.

Переключатели лето/зима находятся либо на корпусе регулятора напряжения, либо этим обозначением подписаны соответствующие разъемы, которые нужно найти и подсоединить к ним проводку в зависимости от сезона.

Ничего необычного в этом переключателе нет, это лишь грубые настройки реле регулятора, позволяющие повысить до 15 В напряжение на клеммах аккумулятора.

Подключение в бортовую сеть генератора

Если при замене генератора вы подключаете новый прибор самостоятельно, необходимо учесть нюансы:

  • вначале следует проверить целостность и надежность контакта провода от кузова машины к корпусу генератора
  • затем можно подсоединять клемму Б реле регулятора с «+» генератора
  • вместо «скруток», начинающих греться через 1 – 2 года эксплуатации, лучше использовать пайку проводов
  • заводской провод нужно заменить кабелем сечения 6 мм2 минимум, если вместо штатного генератора монтируется электроприбор, рассчитанный на ток больше 60 А
  • амперметр в цепи генератор/аккумулятор показывает, мощность какого источника электроснабжения в данный момент выше в бортовой сети

Амперметры – нужные приборы, с помощью которых можно определить заряд АКБ и работоспособность генератора. Без особых причин не рекомендуется убирать их из схемы.

Схемы подключения регулятора выносного

Монтируется выносное реле регулятора напряжения генератора только после выяснения, в разрыв какого провода оно должно быть подключено. Например:

  • на старых РАФ, Газелях и «Бычках» используются реле 13.3702 в полимерном или стальном корпусе с двумя контактами и двумя щетками, монтируются в «–» разрыв цепи, клеммы всегда промаркированы, «+» обычно берется с катушки зажигания (Б-ВК клемма), контакт Ш регулятора соединяется со свободной клеммой щеточного узла
  • в «жигулях» применяются реле регуляторы 121.3702 белого и черного цвета, существуют двойные модификации, в которых при выходе из строя одного прибора работа второго устройства продолжается простым переключением на него, монтируется в разрыв «+» клеммой 15 к выводу катушки зажигания Б-ВК, к щеточному узлу крепится проводом клемма 67

Встраиваемые реле-регуляторы автолюбители называют «шоколадками», маркированными Я112. Они монтируются в специальные щеткодержатели, прижимаются винтами и защищаются дополнительно крышкой.

На автомобилях ВАЗ реле обычно встроены в щеточный узел, полная маркировка Я212А11, подключаются к замку зажигания.
Если владелец меняет штатный генератор на старом отечественном ВАЗ на устройство переменного тока от иномарки или современной Лады, подключение производится по другой схеме:

  • вопрос крепления корпуса автолюбитель решает самостоятельно
  • аналогом клеммы «плюс» здесь служит контакт В или В+, его включают в бортовую сеть через амперметр
  • выносные реле регуляторы здесь обычно не используются, а встраиваемые уже интегрированы в щеточный узел, из них выходит единственный провод с маркировкой D либо D+, который подсоединяется к замку зажигания (к клемме катушки Б-ВК)

Для дизельных ДВС в генераторах может присутствовать клемма W, которая присоединяется к тахометру, ее игнорируют при установке на авто с бензиновым мотором.

Проверка подключения

После установки трехуровневого или иного реле-регулятора необходима проверка работоспособности:

  • двигатель заводится
  • напряжение в бортовой сети контролируется на разных оборотах

После установки генератора переменного тока и подключения его по вышеприведенной схеме владельца может ожидать «сюрприз»:

  • при включении ДВС запускается генератор, измеряется напряжение на средних, больших и малых оборотах
  • после выключения зажигания ключом …. двигатель продолжает работать

В этом случае заглушить ДВС можно либо сняв провод возбуждения, либо отпустив сцепление с одновременным нажатием тормоза. Все дело в наличии остаточной намагниченности и постоянном самовозбуждении обмотки генератора. Проблема решается установкой в разрыв возбуждающего провода лампочки:

  • она горит при незапущенном генераторе
  • гаснет после его запуска
  • проходящий через лампу ток недостаточен, чтобы возбудить обмотку генератора

Эта лампа автоматически становится индикатором наличия зарядки АКБ.

Диагностика реле регулятора

Определить поломки регулятора напряжения можно по признакам косвенным. Прежде всего, это некорректная зарядка АКБ:

  • перезаряд – выкипает электролит, раствор кислоты попадает на детали кузова
  • недозаряд – ДВС не запускается, лампы горят в пол накала

Однако предпочтительнее диагностика приборами – вольтметром или тестером. Любое отклонение от максимального значения напряжения 14,5 В (в некоторых авто бортовая сеть рассчитана на 14,8 В) на больших оборотах или минимального значения 12,8 В на малых оборотах становится причиной замены/ремонта реле регулятора.

Встроенного

Чаще всего регулятор напряжения интегрирован в щетки генератора, поэтому необходимо уровневое обследование этого узла:

  • после снятия защитной крышки и ослабления винтов щеточный узел извлекается наружу
  • при износе щеток (осталось меньше 5 мм их длины) замена должна производится в обязательном порядке
  • диагностика генератора мультиметром производится в комплекте с аккумулятором или зарядным устройством
  • «минусовой» провод от источника тока замыкается на соответствующую пластину регулятора
  • «плюсовой» провод от ЗУ или АКБ подключается к аналогичному разъему реле
  • тестер устанавливается в режим вольтметра 0 – 20 В, щупы накладываются на щетки
  • в диапазоне 12,8 – 14,5 В между щетками должно быть напряжение
  • при увеличении напряжения больше 14,5 В стрелка вольтметра должна быть на нуле

В данном случае вместо вольтметра можно использовать лампу, которая должна гореть в указанном интервале напряжения, гаснуть при увеличении этой характеристики больше этого значения.

Провод, управляющий тахометром (маркировка W только на реле для дизелей) прозванивается мультиметром в режиме тестера. На нем должно быть сопротивление около 10 Ом. При снижении этого значения провод «пробит», его следует заменить новым.

Выносного

Никаких отличий в диагностике для выносного реле не существует, зато его не нужно демонтировать из корпуса генератора. Проверить реле регулятор напряжения генератора можно при работающем двигателе, изменяя обороты с низких на средние, затем высокие. Одновременно с увеличением оборотов нужно включить дальний свет (как минимум), кондиционер, монитор и прочие потребители (как максимум).

Таким образом, при необходимости владелец транспортного средства может заменить штатное реле регулятор напряжения на более современную модификацию встраиваемого или выносного типа. Диагностика работоспособности доступна собственными силами при наличии обычной автомобильной лампы.

Регулятор напряжения генератора своими руками | Fermer.Ru — Фермер.Ру — Главный фермерский портал

Схемы и фото тут https://cloud.mail.ru/public/3HYa/3Mu… пароль на видео.

Теперь есть возможность людям самостоятельно делать шоколадку для своего генератора, Выставлять напряжение заряда такое — как вам нравиться. Почти любой щеточный генератор можно модифицировать. Не сколько лет назад я разрабатывал регулятор напряжения на без щеточный генератор трактора мтз 80. Схема прекрасно работала. Через какое то время я заменил шоколадку на автомобиле газель. в родной шоколадке меня не устраивало зарядное напряжение генератора. При включении нагрузки — свет + электро вентилятора зарядное напряжение падало до 12,5v — Покупать реле регулятор за 600р. Жаба душит, так еще и толку от покупки нового нет. Так как ситуация не меняется. Вот и поставил опять самодельную шоколадку на газель. И вот сегодняшний день — Китайский тракторный генератор на 350ватт, трактор DF-244. В магазине регулятора напряжения именно на этот генератор мы не нашли. Нам пояснили что стоить он будет дорого и ждать долго. По этому я принял решение собрать регулятор сам. и установить его в трактор. Цена запчастей на радио рынке 1500р. + пайка и установка 1000р. — цены демократические в нашем месте обитания.

Главным неудобством этой схемы является то, что нужно изолировать минусовой контакт щетки от массы генератора. Взамен вы получаете практически не убиваемый регулятор напряжения генератора. Стоит заметить — что не стоит перегружать генератор. Он может выйти из строя путем перегрева выпрямительных диодов или обмоток статора. Вся модификация происходит на ваш страх и риск.

Данная схема стабильно регулирует выходное напряжение генератора. Схема позволяет использовать силовой N-канальный полевой ключ или ключ игбт. Итак начнем по порядку…
Первым делом мы должны получить стабильное опорное напряжение 10в, Это достигается линейным стабилизатором lm317z, можно использовать и любой другой стабилизатор на 10вольт. В схеме перед стабилизатором напряжения можно наблюдать линейный стабилизатор тока на 100ма, он не обязателен и используется просто как предохранитель всей схемы, к примеру если в схеме произойдет короткое замыкание, то стабилизатор тока не даст выгореть стабилизатору напряжения и другим компонентам.
Ядром схемы является компаратор состоящий из дифференциального усилителя на рассыпухе и логической микросхемы. Микросхема в данной системе может стоять как cd4001 или cd4011. Сама микросхема служит пороговым элементом. позволяющим быстро переключаться меж логическими значениями ноль или единица.
Резисторный делитель делит напряжение пополам получая 5в на вход нашего компаратора.
Много оборотный подстроечный резистор на 10килоом является резисторным делителем напряжения другого входа компаратора.
им можно задавать выходное напряжение генератора.
когда это плечо компаратора станет больше 5вольт произойдет переключение компаратора.

Резистор 390килоом нужен для организации тригера шмитта, резистор увеличивает или уменьшает опорное напряжение компаратора,
что не дает схеме начать работать в линейном режиме.

Выход микросхемы поступает на базы транзисторов выключенных в схему усилителя повторителя напряжения, являвшимся драйвером для силового транзистора.
не стоит забывать и про диод на щетках, он не допускает обратной эдс вырасти при закрытии ключа.
Светодиоды ставятся по желанию — эта индикация, очень помогает при настройке данного регулятора напряжения генератора.

Так же подойдет и для других генераторов для автомобилей и тракторов.

Но вам придется переключить щетки генератора так чтобы управление генератором шло по минусу.

Вот и всё! Мы желаем вам мира и добра. всем пока!

Реле регулятор напряжения генератора ВАЗ

Реле регулятор напряжения (или просто реле напряжения) – это устройство, предназначенное для сохранения бортового напряжения сети, получаемого с генератора. Дело в том, что генератор, в силу неравномерности вращения ротора, не может обеспечить равномерное напряжение на выходе, так как оно, то возрастает, то снижается. Для поддержания заданной величины напряжения используется реле-регулятор.

Данное устройство выпускалось вначале в виде электромагнитного реле, основой которого служила катушка с сердечником и ряд небольших механизмов для замыкания, размыкания и создания определенного сопротивления в цепи. Такой вид регуляторов уже устарел и больше не производится.

На смену устаревшему типу реле, пришло электронное полупроводниковое устройство. Отличается от старого образца отсутствием каких-либо контактов, габаритами и содержимым. Кроме того, не поддается регулировкам, поэтому является одноразовым элементом.

Крепление реле осуществляется при помощи шпилек и гаек на кузове автомобиля в подкапотном пространстве. Однако, современные образцы, например, на ВАЗ 2109, ВАЗ 2112, Lada Priora и Lada Kalina имеют реле напряжения, которые крепятся, непосредственно к щеткам генератора и представляют единое целое. Такие элементы в народе получили название «таблетка».

Неисправности реле напряжения и их диагностика на ВАЗ 2106

В процессе эксплуатации автомобиля в бортовой сети могут возникнуть определенные сбои, которые говорят о плохом электроснабжении аппаратуры. В первую очередь, автолюбители проверяют состояние генератора. Его снимают, разбирают, проводят диагностику и оценивают натяжение ремня. Если в процессе проверки, выясняется, что он исправен, то последним остается реле-регулятор напряжения.

Самая обычная неисправность реле-регулятор – это слишком малый или слишком большой заряд. При мало заряде, на холостых оборотах плохо работают фары, двигатель работает неустойчиво, а ситуация улучшается после добавлении оборотов коленчатому валу.

При большом заряде, многие предохранители часто перегорают, фары светят слишком ярко, а электрическая аппаратура нагревается. В обоих случаях, приступают к замерам напряжения бортовой сети.

Запустите двигатель и прогрейте его. Приложите концы вольтметра к клеммам аккумулятора. Напряжение должно составлять 13,5 – 14 вольт. Попробуйте включить фары, дворники и т п. Если напряжение падает ниже 12 вольт, то реле напряжения нуждается в замене.

Замена реле-регулятора напряжения ВАЗ 2106

Чтобы заменить реле напряжения на ВАЗ 2106, отключите клемму аккумулятора и вытащите штекера с проводами из старого реле. После этого, открутите гайки крепления и вытащите со шпилек неисправный элемент. После этого, установите новое реле и закрутите гайки. Вставьте штекера в разъемы нового реле и наденьте клемму аккумулятора.

Внимание! Ни в коем случае никогда не перемыкайте провода, идущие к реле друг с другом. При работающем двигателе это может вызвать резкий скачок напряжения, который испортит все электрические приборы автомобиля.

После установки нового элемента рекомендуется провести его проверку. Дело в том, что такие реле имеют особенность исправной работы только на одной машине. Это связано с плохим качеством сборки комплектующих деталей для наших автомобилей. Поэтому, если показания прибора снова не оправдывают ваших ожиданий, верните реле в магазин и попросите другое. Вполне возможно, что следующее реле окажется именно тем.

Помимо этого, существует, также, вероятность получения бракованного устройства. Именно поэтому, проверка реле должна проводиться обязательно.

Видео — Как поменять реле-регулятор своими руками

Реле регулятор напряжения генератора своими руками схема

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • паяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

НаименованиеНоминалАналог
Резистор R1470 кОм
Резистор R210 кОм
Конденсатор С10,1 мкФ х. 400 В
Диод D11N40071SR35–1000A
Светодиод D2BL-B2134GBL-B4541Q
Динистор DN1DB3HT-32
Симистор DN2BT136КУ 208

Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

Нередко работа генератора перестает удовлетворять возросшим требованиям, связанным с установкой дополнительного электрического оборудования, постоянно включенным ближним светом, частой и длительной работой двигателя на холостых оборотах, например, в пробках, а также использованием современных аккумуляторных батарей (АКБ), требующих повышенного напряжения заряда и более точного его поддержания.

Если суммарная долговременная мощность потребителей превышает паспортную мощность генератора, т. е. имеет место отрицательный энергетический баланс, наиболее эффективным решением проблемы может служить только замена генератора на более мощный. Такие решения, как уменьшение диаметра ведомого шкива для повышения передаточного числа привода, замена диодов выпрямительного моста на диоды Шоттки для снижения падения напряжения, применение полевых транзисторов в оконечном каскаде регулятора напряжения (РН), снятие мощности с нулевой точки обмотки статора (третьей гармоники фазного напряжения) и другие являются полумерами с ограниченной эффективностью, достаточно затратны и не способны кардинально решить проблему нехватки мощности.

В случае же, когда генератор справляется с электрической нагрузкой во всем диапазоне оборотов двигателя, нередко возникает задача повышения выдаваемого им напряжения по сравнению с тем, которое обеспечивается применением штатного РН. Нередко он имеет большой разброс напряжения регулирования, нижний предел которого у некоторых экземпляров может доходить до 13,6 В, что приводит к хроническому недозаряду даже АКБ старого образца со всеми вытекающими отсюда последствиями, особенно в холодное время года.

Все сказанное в дальнейшем справедливо для исправной электрической схемы с хорошими контактами между АКБ, кузовом, двигателем и генератором, при правильно натянутом приводном ремне.

Для повышения напряжения регулирования штатного РН в простейшем случае можно использовать дополнительный диод, включаемый в его цепь:

При этом контрольное напряжение на РН снижается на величину падения напряжения на открытом диоде, которое в зависимости от его типа – диод Шоттки, германиевый или кремниевый – составляет от 0,3 до 1,2 В. В результате напряжение регулирования РН возрастает на ту же величину. Поскольку через диод течет ток возбуждения генератора, его максимально допустимый прямой ток должен составлять не менее 5 А. Конструктивно диод может быть либо впаян в шину дополнительных диодов (показан стралкой):

(фото с сайта http://forum.auto35.ru), либо вставлен в разрыв штатных разъемов:

Аналогичный результат достигается установкой такого же диода в минусовую цепь РН:

Возможна также замена диода резистором сопротивлением 0,2-0,3 Ом, чем обеспечивается отрицательная обратная связь по напряжению с аналогичным эффектом. Мощность резистора должна составлять не менее 5 Вт, и необходим теплоотвод (как, впрочем, и для диодов тоже). Такие схемы, правда, могут отличаться нестабильностью напряжения регулирования.

Недостатком этих решений является некоторое снижение тока через обмотку ротора из-за падения напряжения на диоде или резисторе и, как следствие, небольшое снижение максимальной мощности генератора.

Более правильной с учетом этого недостатка является такая схема:

Здесь силовая и контрольная цепи РН разделены, а диод, показанный на схеме справа, включен только в последнюю. Параллельно ему установлен диод, необходимый для гашения тока самоиндукции обмотки ротора. Он совместно с диодом в самом РН предотвращает пробой силового ключа РН при коммутации обмотки. Реализация этой схемы конструктивно сложнее, поскольку требует разъединения нередко сваренных контактов в самом щеточном узле. Здесь необходимо плюсовую щетку, соединяющуюся через клемму «папа» с выпрямителем, отключить от вывода, выходящего из корпуса РН, а в образовавшийся зазор впаять диоды и обеспечить их изоляцию. Это, правда, намного проще сделать, если РН уже вынесен за пределы генератора.

И, наконец, наиболее эффективное решение достигается установкой выносного РН с заменой щеточного узла и размещением самого регулятора вне генератора, подверженного нагреву, попаданию воды и антифриза. В этом случае обеспечиваются также более корректная термооптимизация работы РН, возможность переключения напряжений регулирования, как это сделано в многоуровневых РН, и удобство его обслуживания.

В генераторах 8-го и 10-го семейства, установленных на ВАЗ-21213 и 21214 соответственно, напряжение для контроля РН снимается с дополнительных диодов, которые одновременно служат для питания обмотки ротора. В ряде случаев, особенно при большой нагрузке на генератор и высоких оборотах двигателя, напряжение в этой точке может превышать на 0,2 – 0,3 В напряжение на силовом выводе генератора, а следовательно и на АКБ. Это объясняется бОльшим падением напряжения на силовых диодах по сравнению с дополнительными и приводит к некорректной работе РН, т. е. к занижению напряжения регулирования на эту величину. Избежать этого можно, снимая контрольное напряжение с силового вывода, что реализовано в современных генераторах путем применения РН нового образца с дополнительным выводом:

Путем несложной доработки его можно установить в генератор 10-го семейства. Подробности можно узнать на форуме autolada.ru http://www.autolada.ru/viewtopic.php?t=187791&start=150&postdays=0&postorder=asc&highlight=.

Для генераторов 8-го семейства, используемых в ВАЗ-21213, выпускается РН нового образца (1702.3702.01) с дополнительным выводом http://www.vtnauto.com/ru/1702.html, подключаемым к силовой клемме.

Поскольку у меня уже был установлен всем хорошо известный трехуровневый РН, я собрал несложную схему, показанную на следующем рисунке:

Здесь в цепь плюсовой клеммы РН введен контакт реле Р, обмотка которого подключена к дополнительным диодам. После запуска двигателя и возбуждения генератора реле Р срабатывает и переключает контрольный вывод РН с дополнительных диодов на силовой вывод генератора, в моем случае – непосредственно на плюсовую клемму АКБ. Таким образом, при работе генератора контрольная и силовая цепи РН развязаны: контрольное напряжение снимается с АКБ, а на обмотку ротора подается напряжение с дополнительных диодов. Благодаря этому удалось добиться стабилизации напряжения во всех режимах на уровне 14,2 В (в среднем положении переключателя).

Реле можно использовать любое автомобильное 5-контактное на напряжение 12 В. Конденсатор С служит для повышения инерционности реле и сглаживания пульсаций выпрямленного напряжения. Диод VD1 с максимальным прямым током не менее 1 А, например, 1N4001 служит для гашения тока самоиндукции обмотки ротора взамен аналогичному диоду внутри РН, который для корректной работы схемы необходимо удалить:

Все элементы, включая сам РН, размещены в подходящей по размеру электротехнической монтажной коробке.

Статья не претендует на оригинальность, а является лишь попыткой обобщения имеющегося опыта и личных наблюдений.

Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. Следствием этого являются хлопоты и раздумья как жить-быть дальше и принятие решения восстанавливать сотворённое ранее или продолжать творить.

Схема номер 1

Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.

КТ829 – мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.

Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»

Схема номер 2

В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.

У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40 вольт, выходное 1,2 – 37 вольт. Да, имеется падение напряжения вход – выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.

Что получилось

Сам процесс обновлённого монтажа занял времени ни сколько не больше чем предыдущий. При этом получен не простой регулятор напряжения, который подключается к блоку питания стабилизированного напряжения, собранная схема при подключении даже к сетевому понижающему трансформатору с выпрямителем на выходе сама даёт необходимое стабилизированное напряжение. Естественно, что выходное напряжение трансформатора должно соответствовать допустимым параметрам входного напряжения микросхемы КР142ЕН12А. Вместо неё можно использовать и импортный аналог интегральный стабилизатор LM317Т. Автор Babay iz Barnaula.

Обсудить статью ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ

схема подключения, как проверить, признаки неисправности

Автор: Виктор

Трехуровневый регулятор напряжения (РН) представляет собой один из основных составляющих элементов генераторного устройства. Как известно, выход из строя генератора может привести к неработоспособности автомобиля в целом, поэтому состояние всех его деталей и механизмов всегда должно быть рабочим. Подробнее о регуляторе, его разновидностях, а также диагностике вы можете узнать из этого материала.

Содержание

Открытьполное содержание

[ Скрыть]

Характеристика регулятора напряжения

Что такое регулятор постоянного тока, какую роль он играет в автомобильном генераторе, какое напряжение должен выдавать генератор? Можно ли поднять и увеличить количество выдаваемого параметра с помощью простейшего трехуровневого устройства? Для начала давайте разберем, какова конструкция элемента и в чем заключается его предназначение.

Назначение

Итак, для чего применяется электронный регулятор напряжения генератора автомобиля? При запуске силового агрегата, как известно, в первую очередь начинает вращаться коленчатый вал, это происходит в результате воздействия на него постоянного тока. Ток в амперах осуществляет начало движения роторного механизма, после чего начинает функционировать генераторный узел. Регулятор постоянного напряжения используется для контроля всех процессов.

Если напряжение будет не высоким, а из-за выхода из строя регулятора напряжения генератора мощность механизма будет отсутствовать, узел запустить не получится. При отсутствии мощности генератора ток в амперах просто не будет подаваться на оборудование. Простой регулятор напряжения дает возможность удерживать ток в амперах в указанном диапазоне, это его основное предназначение.

Конструкция

Теперь разберем вопрос устройства: любой повышающий РН, даже простой и самодельный, будет состоять из:

  1. Выпрямительного блока. Этот элемент включает в себя несколько диодных компонентов, обычно их количество равно шести. Все компоненты этого блока подключаются между собой по специальному мосту.
  2. Роторный механизм с обмоткой. Это устройство осуществляет вращение вокруг оси, его предназначение заключается в образовании магнитного поля внутри узла.
  3. Статорный механизм. На корпусе данного устройства расположены три обмотки, подключенные друг к другу. Благодаря этим обмоткам обеспечивается не только обеспечение более повышенного заряда, а также увеличения мощности для автомобильного аккумулятора. Они также позволяют обеспечить током всю электросеть транспортного средства.
  4. Крыльчатки. Данный элемент устанавливается на внешней части механизма. Крыльчатка используется для обдува и охлаждения обмотки, без нее возможен перегрев последней.
  5. Корпусная крышка. Ее назначение заключается в скрытии все составляющих конструктивных частей узла, благодаря чем у обеспечивается надежная защита устройства от воздействия грязи и пыли. В зависимости от модели, крышка может иметь специальный кожух — если конструкция подразумевает его наличие, то регуляторный элемент будет расположен сразу за ним.
  6. И само реле. Если генератор выдает большое напряжение, не свойственное для бортовой сети, или слишком низкое, то реле позволит стабилизировать этот параметр до нужного уровня. Стабилизатор должен обеспечить именно оптимальное напряжение, не повышенное и не пониженное (автор видео — Виталий Галанкин).

Принцип работы

В том случае, если вы решите подключить обмотку без регуляторного устройства к источнику питания, то значение постоянного тока после подсоединения, разумеется, будет повышенным. С помощью данного устройства осуществляется выравнивание значения, что позволяет предотвратить поломку оборудования. Регуляторное устройство асинхронного генераторного узла — это, фактически, выключатель. Если напряжение на зажимах генератора не соответствует норме, механизм осуществляет регулировку параметра до нужного значения.

Перед тем, как повысить напряжение генератора, необходимо точно узнать, сколько должен быть параметр на конкретном устройстве. В идеале значение должно варьироваться в районе 14-14.2 вольт, но допускается от 13.6 вольт. Здесь многое зависит от модели автомобиля и самого генераторного узла, установленного на нем. Поэтому точно узнать, сколько вольт должно быть, нужно в технической документации.

Следует отметить, что выработка параметра производится по принципу — когда вращается роторный узел, на обмотку поступает невысокое напряжение, а в ходе вращения на выводах механизма образуется переменный ток. Впоследствии он передается на обмотку. Если вы не знаете, как повысить напряжение генератора, то в первую очередь следует проверить качество натяжки самого ремня. Как правило, о необходимости увеличивать и повышать значение напряжения автовладельца задумываются в том случае, если ремешок устройства ослаб, хотя его нужно просто подтянуть (автор видео — канал T-Strannik).

Разновидности

Схема подключения РН практически идентична на всех видах генераторных узлов, однако существуют определенные разновидности девайсов.

Какие виды РН можно найти в продаже:

  1. Двухуровневые РН. Такие регуляторы на сегодняшний день считаются устаревшими, в большинстве своем они используются на отечественных авто. Конструктивно такой РН состоит из электромагнитного элемента, подключаемого к контроллеру обмотки. Также устройство оснащается пружинами, которые используются как задающие элементы, и подвижным рычагом, использующимся для стабилизации.
    Двухуровневые РН обычно небольшие по размерам. Существенным минусом девайсов такого типа считается невысокий срок службы, в результате чего они довольно быстро выходят из строя.
  2. Полупроводниковые РН на 40 ампер. В отличие от вышеописанных, такие РН обладают более высоким сроком службы, а это, в свою очередь, обеспечивает их более стабильную работу на протяжении всего ресурса эксплуатации.
  3. Трехуровневные РН. Такие девайсы по конструктивным особенностям схожи с вышеописанными. Единственно и важно отличие заключается в наличии в конструкции добавочного сопротивления.
  4. Многоуровневые РН. Как можно понять из названия, такие РН имеют много уровней защиты благодаря тому, что в их конструкции может быть 3-5 добавочных сопротивлений. В результате этого многие специалисты считают, что такое РН более эффективны и надежные, чем другие виды.

Фотогалерея «Самые распространенные виды РН»

1. Двухуровневый РН для автомобиля ГАЗ
2. Трехуровневый РН фирмы «Совет автоэлектрика»

Проведение диагностики РН своими руками

Теперь расскажем о том, как проверить трехуровневый регулятор напряжения своими руками. Процедура проверки регулятора может быть произведена как на СТО, так и в гаражных условиях, мы же рассмотрим второй вариант. Проверка регулятора напряжения на 40 ампер или меньше должна выполняться с помощью тестера — вольтметра либо мультиметра. Также следует учитывать, что выявление неисправностей в работе РН должно производиться исключительно при полностью заряженной АКБ.

Итак, как проверить регулятор напряжения генератора с помощью тестера:

  1. В первую очередь нужно открыть капот и повернуть ключ в замке, включив зажигание.
  2. Далее, производится запуск силового агрегата. Двигатель должен поработать вхолостую какое-то время, для получения более точных данных диагностики рекомендуется включить оптику. Число оборотов при работе двигателя должно составлять в районе 2.5-3 тысяч. Чтобы ДВС перешел в такой режим работы, обычно требуется подождать примерно 10 минут.
  3. Затем производится подключение щупов тестера к аккумуляторным выводам. Когда вы подключили тестер, на его дисплее должны высветиться показатели диагностики, в идеале они должны составлять примерно 14.1-14.3 вольта.

Если проверка показала другие значения, будь они более высокими или низкими, то нужно заняться ремонтом генераторного узла. Но как показывает практика, проблема обычно кроется именно в РН, поэтому вероятнее всего, его придется заменить. Перед тем, как приступить к диагностике, удостоверьтесь в том, что ремень нормально натянут. Во время диагностики не допускается замыкание контактов, так как это может стать причиной деформации и выхода из строя выпрямительного блока.

 Загрузка …

Видео «Подключение трехуровневого РН своими руками»

Подробная инструкция по подключению трехуровневого РН с описанием основных нюансов приведена в ролике ниже (автор — канал altevaa TV).

Как установить регулятор напряжения генератора

Регулятор напряжения генератора необходим для поддержания постоянного напряжения в генераторе переменного или постоянного тока. Во время работы двигатель в генераторе работает на разных скоростях в зависимости от мощности, которую необходимо произвести. Переработанный двигатель может нагреться и вызвать скачки напряжения, которые могут нанести вред генератору. Стабилизатор напряжения в основном используется в автомобилях, чтобы аккумулятор не перезарядился и не вышел из строя.

Шаг 1 — Проверьте генератор

Перед установкой регулятора проверьте, работает ли ваш генератор. Также проверьте состояние аккумулятора, поскольку он является неотъемлемой частью системы. Проводка между генератором, регулятором и аккумулятором часто подвержена коррозии, которую можно удалить с помощью мелкой наждачной бумаги. Перед тем, как отсоединить какие-либо провода от их подключения, пометьте их, чтобы вы могли повторно подключить их. Перед проверкой регулятора необходимо поляризовать генератор.Подключите положительный полюс батареи к якорю генератора, чтобы поляризовать его. Удалите аккумулятор после этого шага. Хотя в некоторых руководствах указано, что регулятор должен быть поляризован, на самом деле это означает просто генератор, поскольку регуляторы не чувствительны к полярности.

Шаг 2 — Выберите регулятор

Убедитесь, что используемый регулятор подходит для генератора. Величина напряжения, которое производит ваш генератор, должна попадать в диапазон, который может контролировать регулятор.Популярный диапазон для регулятора — от 6 до 12 вольт. Большинство регуляторов имеют маркировку силы тока и напряжения для облегчения идентификации. Не думайте, что чем выше напряжение, указанное на регуляторе, тем лучше для вашего генератора и аккумулятора. Если у вас есть внутренний регулятор, это означает, что ваш регулятор установлен внутри генератора, и его нельзя снять или заменить. Если регулятор неисправен, вам нужно будет переустановить весь генератор.

Шаг 3. Общие сведения о генераторах переменного тока и проводке регуляторов

Хотя большинство генераторов переменного тока поставляются со встроенным регулятором, некоторые из них имеют внешний регулятор.Клемма заземления аккумуляторной батареи должна быть отключена перед работой с генератором или регулятором. Регулятор будет иметь три провода. Вам нужно будет подключить два провода меньшего размера к генератору. На генераторе обычно есть маркировка с надписью F и R. Подключите F к тому месту, где указано 1 на регуляторе, а R к месту, где указано 2. Иногда и на генераторе, и на маркировке регулятора написано 1 и 2, или на регуляторе вместо этого написано F и R. генератора. Просто запомните соответствующие подключения.Подключите большой провод к батарее. Во всех случаях убедитесь, что проводка выполнена точно, так как любое неправильное подключение приведет к повреждению регулятора и генератора.

Шаг 4. Общие сведения о проводке генераторов постоянного тока и регуляторов

В этой системе необходимо позаботиться только о трех основных проводах: выключателе, регуляторе тока и регуляторе напряжения. Подключите провод F вашего регулятора к проводу возбуждения генератора, соедините A is с якорем генератора и подключите BATT к положительной клемме батареи.BATT обычно коричневый / желтый, F — желтый / зеленый, а A — в основном коричневый (имейте в виду, что эти цвета могут меняться в зависимости от марки устройства).

Сила домашнего пивоварения: Создайте собственный генератор.


Мы обсудим, как построить собственный генератор, который что-то выглядит нравится.

Этот генератор был построен с использованием двигателя Briggs and Stratton мощностью 3 лошадиных силы. двигатель с горизонтальным валом, автомобильный генератор GM 65 А (с встроенный регулятор напряжения), использованный автомобильный аккумулятор, шкив и Ремень клиновой, коробка розетки прикуривателя 12 вольт с предохранителем, постоянный ток к преобразователю питания переменного тока, реле контроля низкого напряжения, лом 3/4 дюйма фанеры, несколько обрезков пиломатериалов 2 х 4, 4 колеса и два аккумуляторные кабели.Мы также использовали специально разработанный кронштейн, изготовленный для Epicenter, чтобы все это стало проще простого.

На фото выше мы использовали 8-дюймовый шкив на двигателе. испытания показывают, что шкив 5 дюймов — правильный размер для использования для этого приложения. Однако мы предоставили данные (в шкиве раздел обсуждения) для шкивов размером 8 дюймов, 6 дюймов и 5 дюймов.

Обратите внимание, что необходимо установить защитный кожух, чтобы закрыть ремень и шкивы! Это ограждение не установлено, чтобы на фотографиях показать максимально подробно! Если вы планируете использовать генератор этого типа, пожалуйста, убедитесь, что вы установили защитное ограждение!


Для чего можно использовать этот генератор?

Базовый генератор (газовый двигатель, генератор и аккумулятор). только), может использоваться как источник питания 12 В.Это очень полезен для зарядки аккумуляторных батарей в домах на колесах, кемпингах или в других зданиях. Большим преимуществом этого генератора как системы зарядки является высокий выходной ток генератора и, как следствие, уменьшенный заряд время от использования солнечных батарей или зарядных устройств переменного тока. Другой большое преимущество использования этого устройства для зарядки аккумуляторов всего за заряжая их автомобилем, в том, что этот генератор потребляет гораздо меньше газ для работы (что критично в аварийной ситуации).Некоторые HAM радиолюбители используют 12-вольтовое оборудование, которое может питаться от аккумулятор, пока он не разрядится, а затем включите генератор для подзарядки аккумулятора. Высокая производительность этого устройства также делает Это полезно для автомобильных стоянок или автопарков для запуска автомобилей от внешнего источника.

Если к базовой системе добавляется преобразователь постоянного тока в переменный, то также будет доступно ограниченное количество 120 В переменного тока! Преобразователи постоянного тока в переменный ток с помощью электроники преобразуют 12 вольт постоянного тока. мощность до 60 герц, мощность переменного тока 120 вольт.Эти коробки просто соединяются к батарее на генераторе, и обеспечить розетки переменного тока для стандартной бытовой сети переменного тока.

В наш первый прототип (показанный выше) мы включили 140 Вт (200 пик) преобразователь мощности для выполнения некоторых нагрузочных испытаний генератора. Хотя это и не рекомендуется, мы использовали преобразователь мощности с 150 Ваттный прожектор, и проблем не было. Эта нагрузка немного закончилась конструктивные ограничения преобразователя, но он работал нормально.

Преобразователи постоянного тока в переменный ток

доступны в различных диапазонах мощности.Есть три размера, которые подойдут для использования в этом проект:

Модель Непрерывный Пик Разъем # торговые точки Прибл. Стоимость
PC140140 Вт 200 Вт Штекер прикуривателя 1 $ 45
PC300 300 Вт 500 Вт Штекер прикуривателя 2 $ 80
PC500 500 Вт 800 Вт Зажим аккумулятора на 2 $ 120


Какой подержанный мотор следует использовать?

Как обсуждал Дэвид, его первая версия самодельного генератора использовали двигатель газонокосилки с вертикальным валом (который очень легко найти).Эти косилки можно купить за бесценок и найти просто о любом месте. У них есть несколько ключевых компонентов, которые быть обязательным в этом проекте. У них есть основание, на котором держится мотор, и трос для регулировки скорости мотора. У них тоже есть колеса что очень удобно, если вы когда-нибудь планируете его переместить! Эта проблема в том, что на рынке так много брендов, и каждый швов строит там собственную базу. Что еще хуже, нет кажутся действительно стандартной формой основания.Некоторые модели имеют плоские поверхности, к которым предметы можно прикрепить болтами, а к некоторым основаниям — нет.

Самая большая задача при постройке самодельного генератора — это вычисление как прикрепить генератор и двигатель, чтобы мощность от двигатель может быть передан, чтобы заставить генератор вращаться и производить электричество. Задача усложняется, если газон с вертикальной шахтой двигатель косилки. Еще сложнее реализовать без специальных инструменты (такие как высокоскоростные дрели, кольцевые пилы, сварочные аппараты и т. д.). Так по этой причине мы не будем обсуждать использование двигателя с вертикальным валом и сконцентрируемся на использовании двигателя с горизонтальным валом.

Вы заметите, что второй генератор Дэвида использовал горизонтальный вал двигателя, который значительно упрощает весь проект. Хитрость по-прежнему фактическая установка генератора, поэтому ремень может быть используется для подключения генератора к двигателю.


В этом проекте мы сконцентрируемся на том, как построить его, используя двигатель с горизонтальным валом:

В простейшей форме двигатель и генератор могут быть прикручены болтами. к базе.Точная монтажная конфигурация генератора зависит от модели генератора, используемого двигателя и ремня конфигурация привода. Следующая задача — найти способ натянуть ремень. Что есть у некоторых творческих людей (например, Дэвида) Готово — использовать разные кронштейны от автомобилей для крепления генератора к базе. Затем кронштейны регулятора, которые можно найти на типичных автомобильных двигателях. использовались для натяжения ремня на генераторе.

Этот метод требует высокой степени «накручивания», чтобы прийти установите (или соберите) необходимые скобки.Да, несколько поездок в автомобильная свалка приведет к обнаружению разных предметов чем можно использовать, но это требует нескольких часов времени!


Время — деньги!

Команда Эпицентра разработала простой способ выполнения большая часть этого проекта!

Мы разработали и изготовили простой, цельный универсальный монтажный кронштейн специально для этой задачи! Это болты кронштейна к двигателю (с помощью универсального набора болтов) и позволяет Генератор прикрутить болтами непосредственно к кронштейну.Кронштейн также имеет встроенный паз для регулировки ремня, который позволяет положение генератора регулируемый, служащий для натяжения ремня.


Что вам понадобится для сборки домашнего генератора?

Первое, что вам понадобится, это подержанный мотор.

Ключ к этой конструкции заключается в том, что для нее потребуется горизонтальный вал. двигатель, который можно найти на старых газонокосилках барабанного типа, роторно-мотоблоках, и кромкообрезные машины.Самый распространенный размер двигателя, который вы найдете на подержанный рынок будет моделью мощностью 3 или 3,5 лошадиных силы. Моторы большего размера труднее найти, потому что большинство из них раскупают для строительства ходунки или мини-велосипеды. Самый распространенный бренд, который вы найдете, это Бриггс и Страттон. Более новые двигатели Briggs и Stratton имеют бензобак, карбюратор и выхлоп на одной стороне мотора. Если вы посмотрите на показанный здесь Бриггс в старом стиле, вы заметите что бензобак установлен на противоположной стороне мотора чем карбюратор.Это означает, что независимо от того, на какой стороне генератора установлен, генератор должен устранять препятствия. Да наш скобка учитывает это!

При покупке мотора обратите внимание на то, как шкив прикреплен к валу. Большинство валов двигателей имеют на валу паз под квадратную шпонку (или канавку). Это упрощает замену шкива на тип вам понадобится для этого проекта. Также обратите внимание на диаметр вала. Большинство двигателей в классе мощности 3 лошадиных силы имеют вал диаметром 3/4 дюйма.Избегайте покупки двигателя, у которого есть только резьбовое отверстие в конец вала! Эта конфигурация приведет к тому, что часы потраченного впустую времени на выяснение того, как прикрепить новый шкив, как Дэвид узнал, когда построил свою первую версию !.

Вы заметите, что, посмотрев на несколько моделей двигателей из несколько производителей, есть несколько функций, которые вот-вот у всех есть. Во-первых, у большинства из них вырезан ключ. в выходном валу.Во-вторых, все они имеют четыре отверстия под болты на основание для крепления мотора к ровной поверхности. И третий дело в том, что все они имеют четыре резьбовых отверстия на выходном валу крышка. Эти монтажные отверстия выходной крышки являются ключевыми особенность двигателей с горизонтальным валом. Убедитесь, что мотор, который вы покупаете имейте их, если вы планируете использовать кронштейн, подобный разработанному нами!

Как узнать, есть ли в вашем двигателе необходимые отверстия?

Посмотрите, где находится выходной вал двигателя.Затем обратите внимание, что два отверстия сверху и два отверстия под валом. Они будет расположен на воображаемом круге диаметром 3 и 5/8 дюйма, и центрируется в центре вала. Это звучит сложнее, чем это действительно так. Взгляните на схему.

Мы рассмотрели двигатели мощностью от 3 до 10 лошадиных сил, и обнаружили, что эти отверстия под болты выходной крышки находятся в одном из двух узоров.

В следующих двигателях используется диаметр отверстия под болты 3 и 5/8 дюйма:

  • Бриггс и Страттон 3, 3.5, 5 лошадиных сил.
  • Робин Интернешнл 5 лошадиных сил.
  • Tecumseh 5,6,7,8,10 лошадиных сил.
  • Honda 5.5 лошадиных сил.

Могут быть и другие двигатели, в которых используется эта разболтовка. Моторы большего размера чем показано, используйте другую схему расположения болтов размером 6 1/2 «или 7 3/4 дюйма.

Проверить расположение бензобака. (Вид сверху)

Это фото — вид сверху Briggs and Stratton 3 лошадиных сил. мотор, найденный на кромкообрезных станках, показывает расположение бензобака.

Большинство новых двигателей имеют бак, карбюратор и глушитель на та же сторона мотора. В случае с 3-х сильным Бриггсом и Stratton мы использовали, танк находится на противоположной стороне. Следующий нужно определить, выходит ли сторона резервуара за пределы плоская поверхность крышки выходного вала. Как видно из этого вид сверху, Бриггс мощностью 3 лошадиные силы (что добавляет немного сложности до монтажа генератора). У нашего кронштейна есть вырез, который предназначен для очистки газовых баллонов этого типа.


Следующее, что вам понадобится, это генератор переменного тока (со встроенным напряжением регулятор).

Источник питания. Генератор GM (со встроенным регулятором напряжения).

Мы также использовали генератор GM 65 А со встроенным регулятором напряжения. Очень важно использовать только генератор переменного тока со встроенным в регуляторе напряжения! Если вы ошиблись при выборе генератор, вы подвергаетесь очень высокому риску повредить аккумулятор, или, что еще хуже, причинение телесных повреждений!

Еще раз.Особое внимание уделите выбору генератора! Вы должны выбрать генератор GM со встроенным регулятором напряжения. В случае сомнений проконсультируйтесь со специалистом или специалистом по запчастям!

Ваш генератор должен иметь встроенный регулятор напряжения!

Чтобы полностью понять причину указанного выше специального уведомления, давайте обзор некоторых вещей о том, как работает генератор переменного тока:

Мы пропустим (важные) детали, касающиеся магнетизма. и совершите прыжок веры, чтобы описать аффект, наблюдаемый, когда генератор переменного тока, имеющий либо встроенный регулятор напряжения, либо или генератор без встроенного регулятора напряжения.В этом обсуждении предполагается, что клеммы подключены так, как они обычно будет, и никаких дополнительных подробностей предоставлено не будет. для этого обсуждения.

В случае генератора без встроенного напряжения регулятор: (очень и очень плохо — не использовать!):

  • По мере вращения блока выходное напряжение увеличивается. Быстрее он вращается, тем выше выходное напряжение! Итак, если он повернут при нескольких тысячах оборотов в минуту выходное напряжение достигало бы 70+ вольт! Этого состояния достаточно, чтобы в аккумуляторе закипел электролит. и может привести к взрывоопасным последствиям! Не используйте этот тип генератора!

А если используется генератор со встроенным регулятором напряжения:

  • Теперь, если генератор со встроенным регулятором напряжения при использовании (и правильном подключении) выходное напряжение увеличится пока оно не достигнет примерно 14 вольт.Вот и все. Как бы быстро он вращается, выходной сигнал никогда не превысит это значение. Как это оказывается, это идеальное напряжение зарядки для свинцово-кислотного аккумулятор (штатный автомобильный аккумулятор). Представь это!

Если вы выберете генератор, который мы использовали, есть 4 соединения это должно быть сделано.

Контакты генератора переменного тока Delco-Remy 1100934 37A, 3D10 12VNEG с встроенный регулятор напряжения:

За дополнительной информацией по подключению обращайтесь к специалисту по запчастям!

BAT: Основной выход +12 В.Эта линия подключается непосредственно к Терминал «POS» на аккумуляторе.

GND: это отрицательный вывод. Подключается к клемме «NEG» на батарее.

F: Эта клемма является линией измерения напряжения для генератора переменного тока. Подключите его напрямую к клемме «POS» на аккумуляторе, или клемму «BAT» на генераторе.

R: Эта клемма является источником питания для внутренней цепи регулятора. Эта линия должна быть подключена через переключатель к «BAT» клемму на генераторе или клемму «POS» на аккумуляторной батарее.Этот терминал будет потреблять питание от батареи каждый раз, когда переключатель включен, поэтому ВЫ ДОЛЖНЫ выключить его, когда генератор не включен. используйте, иначе ваша батарея со временем разрядится из-за этого Терминал.

Другое примечание:

Когда придет время запускать генератор, вам понадобится выключить переключатель, который идет к клемме «R». Если переключатель включен, генератор будет пытаться выдавать напряжение, пока вы натягивая пусковой шнур на мотор.Вы обнаружите, что это будет практически невозможно дергать за шнур! Если переключатель выключен, тогда сопротивление от генератора почти отсутствует.


Что еще нужно?

Шкив (прикрепить к выходному валу двигателя):

В нашем прототипе, показанном выше, мы использовали шкив 8 дюймов (с 3/4 дюйма вал и шпоночный паз). Мы обнаружили, что передаточное отношение было далеко не идеально.Мы провели дополнительные тесты и определили что для этого случая подходит шкив диаметром 5 дюймов. 6 или 8 дюймов подойдут, если вы не можете найти 5 дюймов, но вы заметите скорость двигателя уменьшается при приложении нагрузки. Для компенсации (если используя шкив 6 или 8 дюймов), скорость двигателя необходимо увеличить до включения нагрузки.

С 8-дюймовым двигателем и двигателем, работающим на холостом ходу, мы смогли чтобы заглушить двигатель при приложении нагрузки 150 Вт.Если мотор скорость была установлена ​​выше холостого хода, особых проблем не было, но генератор вращался намного быстрее, чем требовалось. А 6 дюймов шкив в тех же условиях приводил к небольшой скорости двигателя уменьшаются при приложении нагрузки. Скорость генератора была около Правильно. Но когда использовался 5-дюймовый шкив, скорость двигателя отсутствовала. поменять на ту же нагрузку. Фактически, он справлялся с нагрузкой во время работы на холостом ходу, и повернул генератор на скорости больше похожей на нашел в машине.

Нам любопытно, как будет работать шкив размером 4 дюйма или 4 1/2 дюйма, но мы будем оставьте это на усмотрение наших посетителей. Мы надеемся, что кто-то будет поделитесь результатами.

Данные о шкиве и ремне при использовании кронштейна генератора Epicenter.
Диаметр шкива Удобство использования Минимальная длина ремня Максимальная длина ремня Пример номера ремня
5 « Отлично 36 « 38 « 15360-15380
6 « Очень удобно 38 « 40 « 15380-15400
8 « Нежелательно, но работает 41 « 43 « 15410-15430

Следующий переписку по электронной почте между командой Эпицентра, и Дэвид Хупер иллюстрирует проблему:

Эпицентр спросил Дэвида Хупера следующее:

«Дэвид, я заметил, что когда я построил генератор, используя 8» шкив на моторе, чтобы мотор не работал в нормальном режиме диапазон.Генератор тоже крутился как сумасшедший, и я думаю все было бы лучше, если бы передаточное число шкивов было ближе к чему-то вы можете найти в машине, как 5 или 6-дюймовый шкив на двигателе. будет крутить генератор на такой же скорости, как в машине, а также увеличит крутящий момент на генераторе, поэтому изменения нагрузки меньше повлияют на двигатель ».

Дэвид ответил:

«Пойду померю, но мне кажется, что пробовал на дюйм или два больше (диаметр), чем размер генератора шкив так, чтобы при двигателе на «крейсерской скорости» (около 2500 Об / мин) генератор также будет работать на разумной скорости — он не выдает свою максимальную мощность, если он действительно не гудит, но вы тоже не может работать вечно, и у вас есть только около 3 или 3.5 л.с. для его мощности! Все — компромисс! »

«Я бы попробовал 5″, но мне кажется, что мой был больше похож на 4 » — память в этот момент не работает … Да, генератор потянет вниз обороты двигателя, но если вы слишком сильно настроены, он ДЕЙСТВИТЕЛЬНО сделает это! «

В следующем электронном письме от Дэвида:

«5-дюймовый шкив должен сделать это. Вы абсолютно правы в предполагая, что он примерно того же размера, что используется в автомобиле (около 6 дюймов) будет правильным для получения правильной скорости генератора — но помните, что большинство автомобилей проводят большую часть своей жизни НИЖЕ 2500 об / мин, поэтому размер шкива обеспечивает оптимальную скорость ремня. для водяного насоса, вентилятора, генератора и т. д.На самом деле у многих автомобилей есть «ступенчатый» шкив другого размера для работы ГУР насос, и еще один для кондиционера ».

«Здесь у нас есть специальный агрегат, только с двигателем 3 — 3,5 л.с., так что где-то в диапазоне 5-6 дюймов должно быть об этом. я никогда действительно не экспериментировал с разными размерами и измерениями максимальная мощность генератора. Поднимается ли вверх с 5 дюймов до Увеличить мощность на 6 дюймов или снизить обороты двигателя, что приведет к чистым потерям? Интересный вопрос! «

«Я просто использовал кое-что из подручных средств, и это сработало, поэтому я продолжил к старому изречению «Если работает, не чините!» Возможно немного мастеринг может быть приказом в конце концов! «


Кабели:

Показанная небольшая двухпроводная вилка была куплена в местном магазине автозапчастей. магазин примерно за 3 доллара.Этот литой разъем (с проводами) является заменой деталь для подсоединения к двум клеммам (R и F) на генераторе. Это сэкономило кучу времени, сделав два подключения генератора переменного тока. и стоит своих затрат. Ваш местный магазин запчастей доставит что-то похожее. Мы купили бренд Calterm, номер детали. 08602.

Затем мы использовали стандартные аккумуляторные кабели калибра 6 и 15 дюймов от местного производителя. магазин автозапчастей для подключения генератора к аккумулятору. Да, они немного переборщили, но стоят 3 доллара.39 каждый количество времени вы бы потратили свои собственные кабели меньшего размера (обжатие клеммы и т. д.) больше, чем просто покупка пары!

У нас есть записка от Дэвида по этому поводу, и мы поделимся ею с вы:

«Я подозреваю, что использование полностью включенных кабелей аккумуляторной батареи является излишним. — есть клеммы аккумулятора, которые принимают барашковую гайку и винт (столб) разъемы доступны во многих магазинах авто / жилых автофургонов, и вам не нужно чтобы здесь была вся такая толщина проволоки — проверьте калибр проводов от генератора до АКБ автомобиля — около 8 га должно подойти, 6 га, если вам действительно нужен коэффициент безопасности.«2», «1», «0» или «00» га. провода в кабелях аккумулятора просто излишни в этом применение — они НЕОБХОДИМЫ в автомобиле для передачи большого тока нужен стартер, но не в другое время. Оставьте их как необязательные, но затраты могут быть уменьшены за счет использования более дешевых проводов (если только в магазине автозапчастей есть аккумуляторные кабели по очень низким ценам!) Меня беспокоит размер разъема, необходимого на стороне генератора. — подгонка этого разъема к «горячему» выводу генератора без какой-либо опасности прикосновения к корпусу или любой другой «земле» легче с меньшими клеммами, следовательно, с меньшими проводами! »

Действительный набор очков.Опять же, если вы получите большую скидку на батарею кабели (как и мы) их используют! Бренд, который мы использовали, был сделан Web Wire and Cable MFG Co, номера деталей 15-6BK и 15-6RD.

Фактическая длина может быть больше в зависимости от как вы все монтируете. Минимальная длина 15 дюймов.


Каковы затраты?

Арт. Кол-во Стоимость Источник Банкноты
Розничная торговля Фактически оплачено Эпицентром
Двигатель 1 15–25 долларов США $ 0 Гаражная продажа Б / У — Подарок друга
Генератор 1 10-15 долларов США $ 0 Автоэвакуатор Б / У — Подарок друга
Шкив 1 $ 10 $ 10 Строительный магазин
Преобразователь постоянного тока в переменный 1 45–120 долларов $ 45 Эпицентр Цена зависит от номинальной мощности
Аккумуляторные кабели 2 $ 3.39 EA (всего 6,78 $) $ 6,78 Магазин автозапчастей
Вилка генератора 1 $ 3 $ 3 Магазин автозапчастей
Кронштейн генератора 1 $ 29.95 $ 29.95 Эпицентр
Разные гайки и болты 1 $ 5 $ 5 Строительный магазин
Ремень клиновой 1 $ 6 (НОВЫЙ) $ 0 (Б / У) Магазин автозапчастей Б / У — из запчастей автомобиль
Автомобильный аккумулятор 12 В 1 $ 15 (Б / У) $ 0 Автоэвакуатор Б / У — из запчастей автомобиль

Отмеченные позиции доступны на нашей главной странице.

Продукция, связанная с энергетикой


Это настоящий кронштейн или это просто пароварка?

Эта скоба настоящая! Мы думаем, что идея генератора домашнего пивоварения (первоначально представленный Дэвидом Хупером из Ванкувера, Британская Колумбия) так круто, мы сделали небольшой тираж кронштейнов. Здесь показаны остатки с первого серийного производства!

Эти скобки вырезаны из 0.190 дюймов, алюминий 6061T6 для света вес и высокая прочность. Наши кронштейны вырезаны с компьютерной точностью с помощью станка плазменной резки с ЧПУ.


Вот как выглядит настоящая скоба!


Хорошо, так как же все это барахло соединяется вместе?

Компоненты, вид сверху.

(кожух ремня снят)

Первое, что нужно сделать, это разложить все компоненты на вашем цех. Это даст вам представление о том, сколько места вы будете необходимо смонтировать все предметы на основание. Мы обнаружили, что самые маленькие размер платформы был размером с какой-то обрезок фанеры из обратно. Минимальный размер — 28 дюймов в длину и 15 дюймов в ширину, если батарея устанавливается рядом с генератором переменного тока. Это позволяет использовать меньше дорогие 15-дюймовые аккумуляторные кабели.Также обратите внимание на расположение источника питания. конвертер. Поскольку вам понадобится доступ к передней части устройства для подключения устройств переменного тока доступ должен быть вдали от ремня. и шкив.

Эта конфигурация также обеспечивает легкий доступ к запуску двигателя. шнур.

Обратите внимание!

Добавьте примерно 4 дюйма к минимальной ширине платформы, чтобы может быть встроен кожух, закрывающий шкив и ремень! Этот прототип был построен без охраны, чтобы можно было делать снимки, и не предназначено для использования на самом деле! Это очень опасная конфигурация когда не установлен кожух ремня! Пожалуйста, установите ремень и ограждение шкива для безопасности окружающих! Охранник может можно построить из обрезков 2х4 и еще одного обрезка фанеры.


Схема монтажных отверстий двигателя Briggs and Stratton.

Следующим шагом является привинчивание кронштейна адаптера генератора к электродвигателя и прикрутите генератор к кронштейну болтами. Затем проверьте размещение на вашей монтажной платформе. Вам также необходимо будет подтвердить размеры монтажного отверстия для вашего двигателя. Бриггс и Страттон 3 лошадиных силы, которые мы использовали, имеет разболтовку, как показано ниже:

Не забудьте проверить двигатель на правильность расположения монтажных отверстий.Затем просверлите отверстия в фанерном основании немного выше размер, чтобы помочь в позиционировании двигателя. В случае с двигателем мы использовали отверстия для болтов 1/4 дюйма, поэтому мы просверлили отверстия 3/8 дюйма чтобы дать немного швабры, чтобы болты легче вошли в основание.

Теперь поместите аккумулятор в основание.

Обеспечьте по крайней мере 3 дюйма пространства между задней частью генератора. и аккумулятор. Это обеспечит достаточно места для доступа к клеммы генератора.Затем используйте несколько кусков лома размером 2 на 4 секунды, расположенные стороной 2 дюйма вниз для создания коробки высотой 4 дюйма вокруг батареи. Мы нарезали их по длине, а затем прикрепили к основанию из снизу с помощью 2-дюймовых шурупов.

Намного проще, если просверлить отверстия перед установкой винты. Что мы сделали, так это вырезали первые 2×4, а затем расположили это на обратной стороне батареи. Мы отметили внешнее расположение карандашом.Затем мы переместили аккумулятор и отметили внутреннюю часть из 2х4. Мы проделали то же самое с остальными 3 записками. Один раз разметили контуры 2х4, просверлили отверстия в базе. Затем мы переместили 2×4 (по одному) назад. на основании и просверлил в нижней части 2×4 от противоположная сторона основания, используя отверстия в основании как сверло руководство. Затем мы установили винты через основание и в обрезки 2х4. После завершения аккумулятор помещается прямо в коробку!

Затем установите колеса любого типа, которые могут быть у вас под рукой.Мы использовали несколько колес с роликами, но если у вас есть старая газонокосилка, эти колеса работали бы даже лучше!

И, наконец, прикрутите мотор к основанию, сделайте необходимую проводку, и установите аккумулятор.


Как подключить:

Эта неделя Tip o’da предназначена только для образовательных целей. Нет никаких гарантий, явных или подразумеваемых относительно точности информации. представлен здесь! Перед этим проконсультируйтесь со специалистом по автомобильной проводке пытаясь провести какие-либо электромонтажные работы.

Основная проводка.

Это базовая конфигурация с использованием Delco-Remy 1100934 37A, Только генератор 3D10 12VNEG. Проконсультируйтесь со специалистом по запчастям для информации о проводке.

В этом режиме его можно использовать только для приложений 12 В постоянного тока. Можно добавить коробку для розетки прикуривателя на 12 В для обеспечения простой способ подключения устройств на 12 вольт к агрегату. Если сигарета добавлена ​​розетка для зажигалки, обязательно установите предохранитель в соответствии с розетку.Большинство коробок, которые можно приобрести в магазине автозапчастей магазин приходит с одним. Но помните, что количество энергии, которое может поставляться при использовании розеток прикуривателя, может только в размере:

Скажем, в выбранной вами розетке для зажигалки есть предохранитель на 20 А:

Тогда максимальная мощность, которая может быть доставлена ​​через разъем составляет 12 В x 20 ампер = 240 Вт. Это означает, что ни один прибор может потреблять более 240 Вт, иначе перегорит предохранитель.Итак, если вы планируйте использовать преобразователь постоянного тока в переменный ток PC140 (140 Вт, 200 пиковая мощность) при полной нагрузке все будет нормально. Но если вы решите использовать PC300 (300 Вт, пиковая мощность 500) на полную мощность с помощью прикуривателя вилка, вы взорвете предохранитель!

Не пытайтесь заменить предохранитель на предохранитель большего номинала!

Если вы планируете использовать PC300 или PC500 при полной нагрузке, вам понадобится подключить их напрямую к батарее.Оба блока имеют встроенные предохранители. В случае PC300 вам нужно будет вынуть сигарету. зажигалку и подключите ее напрямую. Обратите внимание, что эта модификация аннулирует заводскую гарантию, и если при подключении будет сделана ошибка их вверх, вы повредите устройство! В PC500 нет зажигалки вилка, но имеет зажимы на типовых разъемах (например, перемычка кабели). Опять же, если вы решите отключить их и постоянно подключать на аккумулятор, вы аннулируете заводскую гарантию.


Как это выглядит после завершения?

Виды спереди и сзади:


Несколько последних предостережений!

У нашего прототипа, показанного выше, не установлена ​​защита ремня! ПОЖАЛУЙСТА, установите кожух ремня! Эти шкивы возьмут палец (или того хуже) прочь, если не охраняется каким-то образом! Легкий способ построить охранник должен вырезать один из обрезков фанеры и прикрепить к основание с шурупами по дереву.

Если вы построите что-то вроде этого генератора, вы должны его построить. на свой страх и риск! ВЫ должны определить достоинства этого совета для вы сами и берете на себя все риски, связанные с его постройкой и пользуйся. Эта неделя Tip o’da предназначена для образовательных целей. Только. Нет никаких гарантий, явных или подразумеваемых относительно точности. информации, представленной здесь! Проконсультируйтесь с автомобильной проводкой специалисту, прежде чем пытаться выполнить какие-либо электромонтажные работы.


Эпицентр.com
6523 California Ave. SW # 161
Seattle, WA 98136 (206) 937-5658 голос / факс
Эл. почта: [email protected]

Схема регулятора напряжения солнечной панели

В сообщении подробно рассказывается, как построить простую схему контроллера регулятора солнечной панели в домашних условиях для зарядки небольших батарей, таких как батарея 12 В 7 Ач, с использованием маленькой солнечной панели

Использование солнечной панели

Мы все хорошо знаем хорошо о солнечных батареях и их функциях.Основные функции этих удивительных устройств — преобразование солнечной энергии или солнечного света в электричество.

В основном солнечная панель состоит из отдельных секций отдельных фотоэлектрических элементов. Каждая из этих ячеек способна генерировать небольшую электрическую мощность, обычно от 1,5 до 3 вольт.

Многие из этих ячеек на панели подключены последовательно, так что общее эффективное напряжение, генерируемое всем блоком, достигает пригодных для использования выходов 12 или 24 вольт.

Ток, генерируемый устройством, прямо пропорционален уровню солнечного света, падающего на поверхность панели. Электроэнергия, вырабатываемая солнечной панелью, обычно используется для зарядки свинцово-кислотной батареи.

Свинцово-кислотная аккумуляторная батарея, когда она полностью заряжена, используется с инвертором для получения необходимого напряжения сети переменного тока для электропитания дома. В идеале солнечные лучи должны падать на поверхность панели, чтобы она функционировала оптимально.

Однако, поскольку солнце никогда не бывает неподвижным, панели необходимо постоянно отслеживать путь солнца или следовать за ним, чтобы генерировать электроэнергию с высокой эффективностью.

Если вы заинтересованы в создании автоматической системы солнечных панелей с двумя трекерами, вы можете обратиться к одной из моих предыдущих статей. Без солнечного трекера солнечная панель сможет выполнять преобразования только с эффективностью около 30%.

Возвращаясь к нашим фактическим обсуждениям солнечных панелей, это устройство можно считать сердцем системы в том, что касается преобразования солнечной энергии в электричество, однако произведенное электричество требует большого количества измерений, прежде чем его можно будет эффективно использовать. в предыдущей системе привязки сетки.

Зачем нам солнечный регулятор

Напряжение, получаемое от солнечной панели, никогда не бывает стабильным и резко меняется в зависимости от положения солнца и интенсивности солнечных лучей и, конечно же, от степени падения на солнечную панель.

Это напряжение, если оно подается на батарею для зарядки, может вызвать повреждение и ненужный нагрев батареи и связанной с ней электроники; поэтому может быть опасным для всей системы.

Для регулирования напряжения от солнечной панели обычно используется схема регулятора напряжения между выходом солнечной панели и входом батареи.

Эта схема гарантирует, что напряжение от солнечной панели никогда не превышает безопасное значение, необходимое для зарядки аккумулятора.

Обычно для получения оптимальных результатов от солнечной панели минимальное выходное напряжение от панели должно быть выше, чем требуемое напряжение зарядки аккумулятора, что означает, что даже в неблагоприятных условиях, когда солнечные лучи не являются резкими или оптимальными, солнечная панель все равно должна быть способен генерировать напряжение, превышающее, скажем, 12 вольт, что может быть напряжением заряжаемой батареи.

Солнечные регуляторы напряжения, доступные на рынке, могут быть слишком дорогими и не такими надежными; однако изготовление одного такого регулятора дома с использованием обычных электронных компонентов может быть не только забавным, но и очень экономичным.


Вы также можете прочитать об этой цепи регулятора напряжения на 100 Ач


Принципиальная схема

ПРИМЕЧАНИЕ : ПОЖАЛУЙСТА, УДАЛИТЕ R4, ТАК КАК ЭТО НЕ ВАЖНО. ВЫ МОЖЕТЕ ЗАМЕНИТЬ ЕГО ПРОВОДНИК.

Конструкция печатной платы на стороне дорожек (R4, диод и S1 не включены…R4 на самом деле не важен и может быть заменен перемычкой.

Как это работает

Ссылаясь на предлагаемую схему регулятора напряжения солнечной панели, мы видим конструкцию, в которой используются очень обычные компоненты, но при этом она удовлетворяет требованиям, как того требуют наши спецификации.

Одна микросхема LM 338 становится сердцем всей конфигурации и отвечает за выполнение желаемых регуляторов напряжения в одиночку.

Показанная схема регулятора солнечной панели соответствует стандартному режиму конфигурации IC 338.

Вход подается на указанные точки входа ИС, а выход для батареи — на выход ИС. Поток или предустановка используются для точной установки уровня напряжения, который можно рассматривать как безопасное значение для батареи.

Зарядка с контролируемым током

Эта схема контроллера солнечного регулятора также предлагает функцию управления током, которая гарантирует, что аккумулятор всегда получает фиксированный заданный ток заряда и никогда не перегружается.Модуль можно подключить, как показано на схеме.

Соответствующие указанные позиции могут быть легко подключены даже неспециалистом. Остальные функции выполняются схемой регулятора. Переключатель S1 должен быть переключен в режим инвертора, как только батарея полностью заряжена (как показано на индикаторе).

Расчет зарядного тока для батареи

Зарядный ток может быть выбран соответствующим образом путем выбора номинала резисторов R3. Это можно сделать, решив формулу: 0.6 / R3 = 1/10 батареи AH. Предварительно установленный VR1 настроен на получение необходимого зарядного напряжения от регулятора.

Солнечный регулятор с использованием IC LM324

Для всех систем солнечных панелей эта единственная схема гарантированно эффективного регулятора на основе IC LM324 предлагает энергосберегающий ответ на зарядку аккумуляторных батарей свинцово-кислотного типа, обычно встречающихся в автомобилях.

Не принимая во внимание цену солнечных элементов, которые, как предполагается, будут перед вами для использования в различных других планах, солнечный регулятор сам по себе стоит ниже 10 долларов.

В отличие от ряда других шунтирующих регуляторов, которые перенаправляют ток через резистор, когда батарея полностью заряжена, эта схема отключает питание от батареи, устраняя необходимость в громоздких шунтирующих резисторах.

Как работает схема

Как только напряжение аккумулятора падает ниже 13,5 В (обычно напряжение холостого хода аккумулятора 12 В), включаются транзисторы Q1, Q2 и Q3, и зарядный ток проходит через солнечные панели. как предполагалось.

Активный зеленый светодиод показывает, что аккумулятор заряжается. Когда напряжение на клеммах батареи приближается к напряжению холостого хода солнечной панели, операционный усилитель A1a отключает транзисторы Q1-Q3.

Эта ситуация фиксируется до тех пор, пока напряжение батареи упадет до 13,2 В, после чего запуск процесса зарядки батареи снова восстанавливается.

В отсутствие солнечной панели, когда напряжение батареи продолжает падать с 13,2 В до примерно 11,4 В, что подразумевает полностью разряженную батарею, A1b, выход переключается на 0 В, заставляя подключенный КРАСНЫЙ светодиод мигать с частотой, фиксированной нестабильный мультивибратор A1c.

В этой ситуации мигает с частотой 2 герца. Операционный усилитель A1d дает опорное напряжение 6 В для сохранения порогов переключения на уровнях 11,4 В и 13,2 В.

Предлагаемая схема регулятора LM324 рассчитана на токи до 3 ампер.

Для работы с более значительными токами может быть необходимо увеличить базовые токи Q2, Q3, чтобы гарантировать, что все эти транзисторы могут поддерживать насыщение во время сеансов зарядки.

Солнечный регулятор электроэнергии с использованием микросхемы IC 741

Большинство типичных солнечных панелей обеспечивают без нагрузки около 19 В.Это позволяет получить падение напряжения на выпрямительном диоде на 0,6 В при зарядке свинцово-кислотного аккумулятора на 12 В. Диод предотвращает прохождение тока батареи через солнечную панель в ночное время.

Эта установка может быть отличной, если аккумулятор не перезаряжается, так как аккумулятор 12 В может легко перезарядиться до уровня более 1 В 5, если источник зарядки не контролируется.

Падение напряжения, вызванное последовательным проходом BJT, обычно составляет примерно 1,2 В, что кажется слишком высоким для эффективной работы почти всех солнечных панелей.

В этой простой схеме солнечного регулятора эффективно устранены оба вышеперечисленных недостатка. Здесь энергия от солнечной панели поступает в аккумулятор через реле и выпрямительный диод.

Как работает схема

Когда напряжение аккумулятора увеличивается до 13,8 В, контакты реле щелкают, так что транзистор 2N3055 начинает подзаряжать аккумулятор до оптимального значения 14,2 В.

Этот уровень напряжения полной зарядки можно установить немного ниже, несмотря на то, что большинство свинцово-кислотных аккумуляторов начинают выделять газ при 13.6В. Это выделение газов значительно увеличивается при перенапряжении.

Контакты реле срабатывают при падении напряжения аккумуляторной батареи ниже 13,8 В. Аккумуляторная батарея не используется для работы схемы.

Фет работает как источник постоянного тока.

Шунтирующий регулятор напряжения

Схему регулятора солнечной панели шунтового типа, показанную выше, можно понять по следующим пунктам:

Операционный усилитель TL071 сконфигурирован как компаратор.

Полевой транзистор BF256 вместе с предустановкой P1 на 500 кОм формирует опорный генератор постоянного тока и постоянного напряжения для инвертирующего входа операционного усилителя.

Вывод 3, который является неинвертирующим входом для операционного усилителя, удерживается с источником переменного напряжения в зависимости от уровня напряжения на клеммах батареи, поэтому этот контакт 3 работает как вход измерения избыточного заряда отсека или операционного усилителя.

Предустановка P1 на выводе 2 ИС настраивается таким образом, что потенциал на входе вывода 3 ИС оказывается выше, чем на выводе 2, как только батарея достигает полного уровня заряда.

Пока уровень заряда батареи ниже значения полного заряда, потенциал на контакте 3 ниже, чем на контакте 2, который удерживает выход операционного усилителя на нулевой логике, а полевой транзистор T2 BUZ100 остается выключенным.

Однако, как только батарея достигает полного уровня заряда, потенциал на выводе 3 теперь превышает значение на выводе 2, что приводит к изменению состояния на выходе операционного усилителя на высокий выход.

Это немедленно включает полевой транзистор T1, который шунтирует напряжение солнечной панели на землю, тем самым предотвращая дальнейшую зарядку аккумулятора.

Пока напряжение солнечной панели шунтируется полевым транзистором T1 через диод D4, эти два устройства могут существенно нагреваться, поскольку вся мощность солнечной панели заземляется этими двумя устройствами.

Диод D3 гарантирует, что после зарядки аккумулятор никогда не разрядится через солнечную панель, особенно в ночное время.

Светодиод D1 показывает, когда аккумулятор полностью заряжен, и отключается, когда он включается.

Список деталей

Следуйте этим простым шагам, чтобы проверить выходную мощность портативного генератора

Последнее обновление

У вас есть переносной генератор? Вы должны считать это бесценным.Да, портативный генератор может быть отличным предметом, который вы будете использовать в самых разных ситуациях. Возможно, вам нужен электроинструмент, а вы находитесь далеко от ближайших линий электропередач.

Или, возможно, вам потребуется источник питания в качестве резервного источника питания. Возможно, вы находитесь в кемпинге или в последней экспедиции и хотите, чтобы дела продолжались. Во всех этих ситуациях портативный генератор — это то, что вам нужно. Убедитесь, что у вашего генератора правильное напряжение.

Но как определить правильное напряжение? Для этого вам понадобится только вольтметр.Это не должно быть дорогостоящим. Подойдет и дешевый вольтметр. Между тем, при этом помните, что ваша безопасность превыше всего.

Безопасность прежде всего

Очень важно соблюдать несколько правил безопасности при использовании вольтметра для измерения напряжения в генераторе. Вот несколько полезных советов:

  • Было бы разумно наступить на резиновый коврик и надеть обувь с непроводящей подошвой. Это отличная мера предосторожности для защиты от возможных несчастных случаев с электрическим током, которые могут нанести вам вред.
  • Не прикасайтесь к находящимся в любом месте проводам, так как это может привести к поражению электрическим током. По тем же причинам особенно следует избегать прикосновения к регулятору напряжения.

По сути, это простой процесс проверки выходной мощности генератора. Тем не менее, вы должны проявлять большую осторожность, чтобы предотвратить опасность или возможность несчастного случая со смертельным исходом.

Шаги по проверке выходной мощности генератора

Выполните следующие простые шаги:

  • Включите вольтметр после первого запуска генератора.
  • Во время работы генератора включить вольтметр. Убедитесь, что вольтметр установлен в положение «Напряжение переменного тока». Если этого не сделать, вы рискуете перегореть предохранитель.
  • Заземлите глюкометр. Сделайте это с помощью черного провода. Для этого прикрепите счетчик к раме генератора (если он заземлен!).
  • На поводке найден зажим из кожи аллигатора. Это полезно для крепления счетчика к раме двигателя.
  • Подсоедините красный провод к выходной вилке.
  • Коснитесь красным проводом того места, куда вы хотите подключить прибор
  • Считайте отображаемое напряжение.

Обратите внимание, что все, что отображается в показаниях, является текущим выходным напряжением генератора.

Поиск и устранение неисправностей AVR

Если вы обнаружите, что значение напряжения ниже ожидаемого, вы можете предпринять некоторые шаги, чтобы исправить это:

  • Есть ли у вашего генератора автоматический регулятор напряжения (АРН)? Это могло быть причиной низкого напряжения.
  • Проверьте это, найдя АРН и отсоединив два провода.
  • От AVR до набора щеток идет провод красный и черный .Удалите выводы.
  • Закройте два провода изолентой. Это предотвратит их касание друг друга или корпуса.
  • Приобретите источник питания постоянного тока на 12 Вольт. Это может быть автомобильный аккумулятор и зажимы типа «крокодил». Зацепите за набор щеток зажимы, которые были сняты с проводов.
  • Установите аккумулятор, зацепив положительный провод, который вы только что прикрепили к набору щеток.
  • Убедитесь, что положительная линия всегда направлена ​​к подшипнику. На этом этапе оставим отрицательную линию .
  • Теперь запустите генератор.
  • Дайте генератору поработать примерно десять секунд, затем зацепите отрицательный провод от щетки, которая установлена ​​на батарею.
  • Возьмите вольтметр. Используйте его для проверки первых двух выводов, отсоединенных от AVR.
  • Попробуйте сделать так, чтобы он читал 60в. Часто для решения проблемы достаточно теста 12-вольтовой батареи. Вы обнаружите, что остаточный магнетизм генератора восстанавливается с помощью этого теста. Это все, что нужно для решения проблемы.
  • Если это не сработает, возможно, вам придется заменить AVR. Если АРН не является причиной низкой выходной мощности генератора или недостатка мощности, возможно, неисправна другая часть двигателя.
  • Если какая-либо другая часть двигателя вызывает проблемы, вам придется отнести машину для обслуживания квалифицированному специалисту. Убедитесь, что производитель одобрил выбранного техника.

Заключение

Проверить выходную мощность портативного генератора довольно просто.Все, что вам нужно, это дешевый вольтметр. Это простой процесс. Если вы получаете неожиданные показания на вашем глюкометре, выполните необходимый процесс устранения неполадок, чтобы устранить проблему.

Flash A Generator | Сбытовая компания Davidson

Купить регуляторы напряжения

Как «прошить» генератор при потере мощности из-за потери возбуждения.

Остаточный магнетизм в поле возбудителя генератора позволяет генератору повышать напряжение во время запуска.Этот магнетизм иногда теряется из-за срока хранения или неправильной эксплуатации, среди других причин. Восстановление этого остаточного магнетизма возможно, что иногда называют «миганием поля возбудителя».

Чтобы восстановить небольшой остаточный магнетизм, необходимый для начала нарастания напряжения, подключите 12-вольтовую батарею с устройством ограничения тока к полю возбудителя, когда генератор находится в состоянии покоя, как показано ниже:

1. Отсоедините провода возбуждения F + и F- от регулятора напряжения.ВНИМАНИЕ: Если не отсоединить провода возбуждения от регулятора во время процедуры прошивки, регулятор может быть поврежден.
2. Измерьте сопротивление поля возбудителя от F + до F-. При измерении непрерывной обмотки вы должны иметь возможность измерить сопротивление. Бесконечное показание сопротивления указывало бы на разрыв в поле возбудителя. Также убедитесь, что нет заземления.
3. Подключите F + к положительному полюсу аккумулятора.
4. Удерживая F- провод за изолированную часть свинцового провода, прикоснитесь F- к отрицательному полюсу батареи примерно на 3-5 секунд, затем извлеките. Обратите внимание на дугу при отсоединении F-провода. Дуга подтверждает полное замыкание.
5. Подключите F + и F- к регулятору. Повторите процедуру, если генератор не выдает напряжение.

Это общая процедура, и для некоторых концов генератора может потребоваться более высокое напряжение постоянного тока или ограничительный резистор, включенный последовательно с выводами батареи.Специальные руководства по обслуживанию генераторов для продукции Marathon Electric можно получить в компании Marathon Electric (715) 675-3311 или связавшись с сбытовой компанией Davidson

.

Дуговой автоматический регулятор напряжения AVR для бензинового электрогенератора мощностью 2–3 кВт 168F Регулятор напряжения тяжелого оборудования и сельскохозяйственных принадлежностей Сделай сам и инструменты arcadiawinds.com

Voltage Regulator — дуговый автоматический регулятор напряжения AVR для бензинового электрогенератора мощностью 2–3 кВт 168F: DIY & Tools.Регулятор напряжения — автоматический регулятор напряжения в форме дуги AVR для бензинового электрогенератора мощностью 2–3 кВт 168F: DIY & Tools. Этот автоматический регулятор напряжения используется для управления мощностью бензинового генератора. 。 Устанавливается рядом с генератором и соединяется несколькими проводами для измерения и регулировки генератора. 。 Увеличивая или уменьшая управляющее напряжение генератора, выходное напряжение генератора соответственно увеличивается или уменьшается. 。 Широко используется для бензиновых генераторов мощностью от 2 до 3 кВт, 168F.。 Направление провода может отличаться, так как синий квадрат может быть слева или справа, пожалуйста, используйте настоящий квадрат в качестве стандартного. 。 Характеристики: 。Этот автоматический регулятор напряжения используется для управления мощностью бензинового генератора. Устанавливается рядом с генератором и соединяется несколькими проводами для измерения и регулировки генератора. При увеличении или уменьшении управляющего напряжения генератора выходное напряжение генератора генератор увеличивается или уменьшается соответственно. Широко используется для бензиновых генераторов мощностью от кВт до 3 кВт, 68F. Направление провода может отличаться, так как синий квадрат может быть слева или справа, пожалуйста, выберите реальный в качестве стандартного.。Технические характеристики: 。Основной цвет: черный YP-AVR: 0 мкФ, 50 В Мощность: кВт-3 кВт Режим запуска: Электрический запуск Рабочая температура: -40 ~ + 05 Подходит для: кВт ~ 3 кВт, бензиновый генератор 68F。 Упаковка Включает: x регулятор напряжения。。。




дуговой автоматический регулятор напряжения AVR для бензинового электрогенератора мощностью 2–3 кВт 168F регулятор напряжения

SUREH Garden Kneels Pad Экстра толстый мягкий садовый коврик для колен для садоводства Большой коврик для колен для упражнений и йоги Наколенник для детской ванны 20 x 12 x 1.8 дюймов, Dapetz ® абразивные валики для декора из оксида алюминия, 115 мм х 5 м наждачная бумага, зернистость 120. OOPPEN PVC Круглые воздуховоды Алюминиевые гибкие воздуховоды для вентиляторов ø150 * 10м, черные. DC 5V. DPDT Electronics-Salon 2шт. TQ2-5V Низкопрофильное сигнальное реле 2, форма C. 150 мм Securit Chrome Cabin Hook, в коробке Beta S13 55 / S13-13 Double Open END WR. Фурнитура для шкафов для ванной комнаты Koofizo® Broad D Ручка для шкафа, 10 шт., Для двери кухонного шкафа, никелевая мебель, вытяжка, 5 дюймов / 128 мм, расстояние между винтами, ящик комода для спальни. Yonico 12249q Shaker 2 Bit Rail and Stile Router Bit Set, 1/4 дюйма, хвостовик.Draper 1W LED перезаряжаемый фонарик, женская рубашка с короткими рукавами Premier Workwear Signature Oxford. Black TuffStuff 255 / BK-S Маленькая куртка Soft Shell с капюшоном Hertford. Прямая труба 32 мм сливной сифон для отходов, хромированный сменный, длина 250 мм, ударная отвертка Makita DTD152 18V LXT с ящиком для хранения инструментов 16 дюймов / 41 см. 28PCS 60W Электрический сварочный паяльник с регулируемой температурой, набор для резьбы по дереву, инструмент для пирографии, тиснение по дереву, набор паяльных ручек. Hopkins 48485 7-полюсный автомобильный соединитель отвала RV Hopkins Towing Solutions.WILKA 1438 Защелка с рычагом и защелка с засовом. Двойные розетки Chengtao IP66 Коммутируемые крышки розеток, 13A Наружная стена, всепогодная вилка, розетки, настенные электрические розетки, водонепроницаемые, двойные розетки, наружные розетки, FQD & BNM Наждачная бумага 5 шт. 75×533 мм шлифовальная лента из оксида алюминия 3 x21 шлифовальная лента для шлифовальной бумаги Принадлежности для деревообрабатывающих электроинструментов, зернистость 120. Ширина 48 мм, черный и желтый Предупреждение об опасности Клейкая маркировка Барьерная лента Предупреждающая лента. sourcingmap Ручка для выдвижного ящика Ручка для вытягивания 40 мм Хрустальное стекло в форме ромба Ручки для дверных ящиков шкафа с винтами для домашнего офиса Шкаф Шкаф DIY 10 шт. Прозрачный.


9 Компоненты генератора

Генератор состоит из 9 основных компонентов, каждый из которых выполняет свою функцию.

  1. Двигатель : источник входной механической энергии для генератора. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. При оценке двигателя вашего генератора необходимо учитывать несколько факторов. Изготовитель технических характеристик двигателя и графиков технического обслуживания.
    • Тип используемого топлива — Генераторные двигатели работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном состоянии) или природный газ. Меньшие двигатели обычно работают на бензине, в то время как более крупные двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.
    • Двигатели с верхним расположением клапанов (OHV)
    • и двигатели без OHV — двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не на блоке двигателя.OHV
  1. Генератор : известен как «Genhead», составляя часть генератора, которая вырабатывает электрическую мощность из механического входа, подаваемого двигателем. Он содержит набор неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.
    • Статор — Стационарный компонент, который содержит набор электрических проводников, намотанных катушками над железной рудой.
    • Ротор / Якорь — Движущийся компонент, который создает вращающееся магнитное поле посредством 1) индукции, 2) постоянных магнитов, 3) использования возбудителя.

Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками этого статора. Это производит переменный ток (AC) на выходе генератора.

При оценке генератора переменного тока необходимо учитывать следующие факторы:

    • a) Металлический корпус по сравнению с пластиковым корпусом — цельнометаллическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и опасно для пользователя.
    • Шариковые подшипники против игольчатых подшипников — шариковые подшипники предпочтительнее и служат дольше.
    • Бесщеточная конструкция — генератор, в котором не используются щетки, требует меньшего обслуживания и вырабатывает более чистую мощность.
  1. Топливная система — Топливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем в течение 6-8 часов.В случае небольших генераторных установок топливный бак является частью основания генератора. Для коммерческого использования может потребоваться монтаж и установка внешнего топливного бака. Общие характеристики топливной системы включают:
    • Трубка, соединяющая топливный бак с двигателем — линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.
    • Вентиляционная труба для топливного бака — топливный бак имеет вентиляционную трубу для предотвращения повышения давления или вакуума во время заправки и слива бака.
    • Подключение перелива топливного бака к сливной трубе — это необходимо для того, чтобы любой перелив во время заправки бака вызывал разлив жидкости в генераторную установку
    • Топливный насос — перекачивает топливо из основного накопительного бака в дневной. Топливный насос обычно работает от электричества.
    • Водоотделитель топлива / топливный фильтр — отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.
    • Топливная форсунка — распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.
  2. Регулятор напряжения — Регулирует выходное напряжение генератора. Механизм описан, поскольку каждый компонент регулирует выходное напряжение генератора. Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.
    • Регулятор напряжения: преобразует переменное напряжение в постоянный ток.
    • Обмотки возбудителя: преобразует постоянный ток в переменный.
    • Вращающиеся выпрямители: преобразует переменный ток в постоянный.
    • Ротор / Якорь: преобразует постоянный ток в переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет вырабатывать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения вырабатывает меньше постоянного тока. Когда генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, достаточный для поддержания выходной мощности генератора на полном рабочем уровне.

  1. Системы охлаждения и выхлопа — постоянное использование генератора приводит к нагреву его различных компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода выделяемого тепла.
    • Пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях. Водород можно использовать в качестве хладагента для обмоток статора больших генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты.Для обычных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают как основная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха.

Выхлопная система — выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или бензинового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов.

  1. Система смазки — Поскольку генератор состоит из движущихся частей двигателя, ему требуется смазка для обеспечения долговечности и бесперебойной работы в течение длительного периода времени.Двигатель генератора смазывается маслом, хранящимся в насосе. Уровень смазочного масла следует проверять каждые 8 ​​часов работы генератора. Вы также должны проверять отсутствие утечек смазки и менять смазочное масло каждые 500 часов работы генератора.
  2. Зарядное устройство — Генератор работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений каких-либо настроек. Выходное напряжение постоянного тока зарядного устройства установлено на уровне 2,33 В на элемент, что является точным значением напряжения холостого хода для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, который не мешает нормальному функционированию генератора.
    • Панель управления — пользовательский интерфейс генератора, содержащий положения для электрических розеток и органов управления. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из основных характеристик:
    • Электрический запуск и останов. Панели управления автоматическим запуском автоматически запускают ваш генератор во время отключения электроэнергии, контролируют работу генератора и автоматически выключают агрегат, когда он больше не нужен.
    • Датчики двигателя — различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы, постоянное измерение и мониторинг этих параметров позволяет встроить отключение генератора при любом из них превышают соответствующие пороговые уровни.
    • Датчики генератора
    • — на панели управления также есть счетчики для измерения выходного тока, напряжения и рабочей частоты.
    • Другие элементы управления — переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.
  3. Панель управления
    Это пользовательский интерфейс генератора, содержащий положения для электрических розеток и органов управления. В следующей статье представлены дополнительные сведения о панели управления генератором.Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.
    • Электрический запуск и отключение — Панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически отключают агрегат, когда он больше не нужен.
    • Указатели двигателя — различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы.Постоянное измерение и мониторинг этих параметров позволяет автоматически отключать генератор, когда любой из них превышает соответствующие пороговые уровни.
    • Датчики генератора
    • — На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.
    • Другие элементы управления — переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.
  4. Основной узел / рама — Все генераторы, переносные или стационарные, имеют индивидуальные корпуса, обеспечивающие структурную опору основания.Рама также позволяет заземлить генератор в целях безопасности.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *