Устройство инжекторного двигателя: Инжекторный двигатель

Содержание

его достоинства, виды, конструктивные особенности

Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену карбюратору. Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

Что такое инжектор и чем он хорош

Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.

Достоинствами инжекторного двигателя, относительно карбюраторных, такие:

  1. Экономичность расхода;
  2. Лучший выход мощности;
  3. Меньшее количество вредных веществ в выхлопных газах;
  4. Легкость пуска мотора при любых условиях.

И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

Видео: Принцип работы системы питания инжекторного двигателя

Виды инжекторов

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.
  1. Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

2. Распределенная

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа  инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

3. Непосредственная

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

Конструкция и принцип работы инжектора

Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.

Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.

Механическая составляющая инжектора

Система питания автомобилей ВАЗ 2108, 2109, 21099

К механической части инжектора относится:

  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Видео: Инжектор

Принцип работы инжектора

Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей.  Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

Устройство электромагнитной форсунки

Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Электронная составляющая

Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  1. Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
  2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
  3. Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
  4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
  5. Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
  6. Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
  7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
  8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Что такое инжектор, зачем он нужен и как устроен?

Первые инжекторы появились в автомобильной индустрии в далеком 1951 году, благодаря компании Bosch, а затем и Mercedes. Тем не менее, широкое распространение инжекторы получили несколько десятков лет спустя, вытеснив карбюраторы. Многие автомобилисты (особенно начинающие) задавались вопросом, что такое инжектор и зачем он нужен. В данной статье подробно рассмотрен принцип работы устройства и назначение.

Инжектор: что это, как работает, для чего нужен?

Инжектор (форсунок) – часть системы подачи топлива, если говорить грубо. Основной принцип работы заключается в принудительной подаче топлива (жидкого или газообразного) в цилиндр.

 

Существует два вида в зависимости от места установки и основного принципа работы:

  • Моновпрыск (центральный впрыск) – состоит из одной форсунки, которая подает топливо во все цилиндры.
  • Распределённый впрыск – состоит из множества форсунок, каждая из которых подает топливо только в один из цилиндров. Распределенный впрыск может быть:
  1. Одновременным, при этом происходит синхронная подача топлива во все цилиндры.
  2. Прямым, то есть непосредственно в камеру. Для двигателей с таким типом подачи особо важным является качество применяемого топлива.
  3. Попарно-параллельным, при котором одна из форсунок открывается перед началом подачи топлива, а вторая после.
  4. Фазированным – каждая форсунка открывается непосредственно перед началом впрыска топлива.

Преимущества и недостатки инжектора

Множество автолюбителей задумывается, особенно при выборе автомобиля, в чем заключаются преимущества инжектора:

Первое – подача топлива в камеру сгорания, где происходит смешивание с воздухом, происходит с помощью форсунки. Это позволяет дозировать порцию бензина на одно впрыскивание. За счет этого у транспортного средства значительно увеличивается мощность (на 7–10%), а главное снижается расход топлива.

Система впрыска очень чувствительна к изменениям нагрузки, и поэтому быстро реагирует на ее изменения количеством подачи бензина. Немаловажным преимуществом является то, что в холодное время года транспортное средство практически не нужно «прогревать». Также инжектор незначительно повышает экологичность выхлопных газов.

Теперь перейдем к недостаткам. Во-первых, автоматизированость инжекторной системы не всегда является преимуществом. При внезапном выходе из строя, привести систему в работу самостоятельно без помощи специалиста невозможно.

Кроме того, инжектор очень требователен к выбору топлива, особенно если вы хотите, чтобы транспортное средство прослужило как можно дольше. При поломках большинство деталей являются неремонтопригодными и требуют полной замены.

В случае ДТП риск воспламенения более высок, из-за подачи топлива под определённым давлением (в случае повреждения контроллера впрыска).

Внутреннее устройство инжектора и принцип его работы

Чтобы разобраться в принципе работы инжекторного двигателя, сперва нужно понять его строение.

  1. ЭБУ (электронный блок питания) – управляет работой всей системы инжекторного двигателя на основании полученных данных (из внешней среды и непосредственно от параметров работы двигателя). Содержит систему диагностики неисправности инжектора, передавая сигнал датчику «Check engine» на панели приборов.
  2. Регулятор давления. В норме давление в форсунках должно быть постоянным, этот регулятор отвечает за постоянство этой величины.
  3. Форсунки – непосредственно подают топливо в цилиндры (электромагнитные, электрогидравлические и пьезоэлектрические).
  4. Бензонасос – под давлением подает топливо в форсунки, что снижает риск образования воздушных пробок.
  5. Датчики – необходимы для слаженной работы всей системы. В инжекторе установлено несколько видов:
  • Датчик детонации – расположен в самих цилиндрах, при детонации по нему проходят вибрации. В виде свободного тока передает информацию на ЭБУ.
  • ДПДЗ – реагирует увеличением датчика или его падением, при смене поворотного угла заслонки дросселя.
  • Датчик фаз сообщается с блоком управления и с цилиндром. Благодаря этому, блок управления подает необходимое напряжение в цилиндр при зажигании, и совершает управление тактами.
  • Датчик массового расхода воздуха состоит из двух платиновых нитей (первая свободно обдувается потоками воздуха, а вторая герметично изолирована). Блок управления подсчитывает температуру и массу воздуха, за счет разницы температуры и сопротивления на двух нитях.
  • ДПКВ (положения коленчатого вала), или датчик Холла, позволяет определять положение коленчатого вала. Основной принцип работы в том, что зубчатое колесо, расположенное на валу двигателя, вращается вокруг магнита. При искажении магнитного поля датчик создает импульсы внутри катушки и передает их в блок управления. В соответствии с полученными импульсами ЭБУ определяет положение коленвала.

 

Все форсунки соединены в единую систему, которая называется топливной рампой. С помощью бензонасоса за счет излишнего давления внутри системы топливо подается в систему. После чего открывается клапан, и топливо из форсунки поступает в цилиндр (чем дольше открыт клапан, тем больше топлива подается и, соответственно, обороты будут выше). Количество поступающего топлива непосредственно зависит от количества воздуха, поступающего в цилиндр.

Благодаря ресурсам интернет-сети можно наглядно увидеть принцип работы инжекторного двигателя:

Режимы работы

Инжекторный двигатель способен работать в 2 режимах.

  1. Холодного пуска. Во время запуска топливо оседает на стенках впускных труб и значительно меньше испаряется. Вследствие этого, топливная смесь незначительно утрачивает свои способности. Для устранения негативного эффекта необходима дополнительная подача топлива при запуске, до достижения топливом необходимой температуры, благодаря чему достигаются нужные обороты холостого хода.
  2. Частичной или полной нагрузки. Максимальной мощности двигатель достигает в момент полного открытия дроссельной заслонки. При повышении оборотов (при быстром открытии заслонки) способность топлива к испарению снижается. Во избежание этого и достижения нужных оборотов происходит дополнительная подача топлива.

Частые поломки и ремонт инжектора

Первой из возможных поломок могут быть проблемы с подачей топлива в инжектор. Первым делом нужно проверить датчик уровня бензина, если датчик исправен – значит проблема в бензонасосе. При засорении входного отверстия подачи топлива его необходимо просто прочистить. В случае если чистка не увенчалась успехом – поломан бензонасос, и его необходимо заменить.

Для замены лучше обратиться на СТО, так как при неправильной установке бензонасоса вместе с топливом он начнет всасывать воздух.

Увеличение расхода топлива чаще всего происходит при засорении форсунок. При этом они не смогут подавать необходимый объем топлива, и система начнет это компенсировать увеличением частоты или объема впрыска топлива. Кроме того, длительность разгона транспортного средства увеличится, а мощность значительно снизится.

Временное исчезновение холостого хода в основном происходит при нарушении герметичности внутри системы, вследствие чего в нее поступает воздух.

Двигатель начинает троить при остановке работы одного из цилиндров. С данной проблемой можно столкнуться при полном засорении форсунки, когда она не способна подавать топливо в цилиндр. Чаще всего это происходит при использовании некачественного топлива.

При поломке датчика фаз, форсунки начинают работать асинхронно, при этом топливо в цилиндры поступает абсолютно бесконтрольно. Будут наблюдаться перебои в работе двигателя и значительная утрата мощности.

Поломка датчика положения дроссельной заслонки проявляется в изменении оборотов при фиксированной педали газа, или в снижении оборотов при выжатой педали. При этом в двигатель поступает чрезмерно большое количество топлива.

Для того, чтобы избежать значительных поломок следует выбирать качественное топливо (во избежание чрезмерного загрязнения) и следить за исправностью работы инжектора.

Индикатор «Check engine» не всегда будет загораться, свидетельствуя о поломках, или вовсе может давать ложные показания. Поэтому нельзя всегда полагаться на датчик, а если вы заметили «странное поведение» транспортного средства – лучше сразу обратиться на СТО.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Устройство системы впрыска топлива современного мотоцикла.

В настоящее время мотоциклы с впрыском топлива, постепенно вытесняют с наших дорог более простые карбюраторные аппараты, которые большинство людей в состоянии кое как настроить и обслужить. Но вот более современные инжекторные мотоциклы, для многих водителей очень сложны, и при возникновении какой либо неисправности, почти все байкеры разводят руками, и не знают с чего начать. И большинству мотоциклистов как то боязно отправляться на впрысковом аппарате в автономный дальнобой.  Да и при поездках по родному городу если вдруг что случится, то грамотных мотосервисов по обслуживанию инжекторных мотоциклов, пока что очень мало, да и находятся они только в крупных городах. И вот для того, чтобы знать с чего начать устранять неисправность инжекторного двигателя, необходимо знать элементарное устройство системы впрыска топлива. Об этом мы и поговорим в этой статье.

Большое достоинство более древней карбюраторной системы питания двигателя, в простоте конструкции. И карбюраторные моторы не уступают по мощности инжекторным, такого же рабочего объёма, но вот бензина они потребляют гораздо больше, а состав выхлопных газов намного вреднее, чем у инжектора. Именно по этой причине в Европе и отказались от карбюраторов.

Об элементарном обслуживании системы впрыска топлива мотоциклов я уже писал, и почитать об этом можно здесь. В этой же статье мы подробно поговорим о компонентах системы впрыска, а так же о её неисправностях. Почему впрысковый мотор не заводится и как это устранить, можно узнать так же вот в этой полезной статье.

Основная задача топливной системы современных двигателей, это подача в камеры сгорания каждого цилиндра такое количество бензина, чтобы при любых погодных условиях и при любых эксплуатационных режимах работы, он смешивался с атмосферным воздухом в самом оптимальном для работы двигателя соотношении. Только в таком случае двигатель сможет выдать положенную ему мощность, при малом расходе топлива и низкой токсичности выхлопных газов.

Компоненты системы впрыска топлива.

Устройство системы впрыска топлива: 1 — катушка зажигания как одно целое с свечным колпачком, 2 — форсунка, 3 — датчик температуры всасываемого окружающего воздуха, 4 — датчик положения дроссельной заслонки, 5 — датчик давления всасываемого воздуха, 6 — датчик положения коленвала, 7 — датчик температуры охлаждающей жидкости, 8 — датчик положения распредвала, 9 — свеча зажигания, 10 — ECU, 11- блок управления зажиганием, 12 — датчик атмосферного давления, 13 — каталитический нейтрализатор.

Современная система впрыска топлива состоит из следующих частей: электронный блок управления двигателем (ECU electronic control unit), или бортовой компьютер, или говоря проще — мозги, система подачи топлива, несколько датчиков и каталитический нейтрализатор выхлопных газов.

Рассмотрим всё это подробнее. ECU блок управления чаще всего монтируется в самом сухом месте мотоцикла — под седлом. В обязанности бортового компьютера входит управление системой зажигания и форсунками, а также обеспечение электропитанием датчиков и узлов системы впрыска, ну и ещё одна важная его функция — это диагностика всей системы впрыска.

ECU блок состоит из четырёх основных компонентов

  1. Блок питания системы, который понижает бортовое напряжение 12,5 вольт в всего 5 вольт, так как большинство компонентов системы впрыска, рассчитано на напряжение в 5 вольт, а не 12. 
  2. Входной интерфейс, который преобразует аналоговые сигналы от датчиков в цифровой код, который затем вводит в процессор.
  3. CPU — центральный процессор, который сравнивает показания от датчиков со своей основной программой, и затем отправляет соответствующие сигналы (команды) форсункам и системе зажигания.
  4. Выходной интерфейс, который преобразует команды центрального процессора в сигналы, которые приводят в действие индикаторы, реле, исполнительные механизмы.

Буквы на графике означают: t — продолжительность подачи топлива, Т — время работы двигателя, А — запуск мотора, В — прогрев мотора, С — холостой ход, D — ускорение, Е — постоянная скорость, F- торможение двигателем.

В память бортового компьютера записаны данные для неких средних условий эксплуатации впрыскового мотоцикла. И ECU постоянно считывает показания с датчиков двигателя, и сверяет их показания с значениями записанными в память, и уже корректирует продолжительность открытия форсунок в зависимости от показаний датчиков, которые создают общую картину режима работы двигателя. Это можно наглядно посмотреть на рисунке слева, где цифра 1 в красном столбике. означает подачу топлива при пуске двигателя, цифра 2 в жёлтом секторе показывает обогащение рабочей смеси после запуска, цифра три в голубом секторе означает обогащение смеси при прогреве мотора, 4 в оранжевом секторе — обогащение смеси при ускорении, 5 в белом секторе — отключение подачи топлива в цилиндры двигателя, если происходит торможение двигателем, 6 в синем секторе — это базовая продолжительность подачи топлива, которая записана в память процессора, 7 в нижней белой полосе — это постоянная компенсация изменения напряжения в бортовой сети мотоцикла.

Для определения угла опережения зажигания и энергии искры на свечах, блок управления руководствуется  от сигналов, поступающих от датчика коленчатого вала и от датчика положения дроссельной заслонки. А нужный момент подачи топлива, блок управления определяет по сигналам с датчика положения распредвала, и с датчика положения коленвала. Так же по оборотам коленвала, блок управления распознаёт режим работы мотора : обычный или пусковой.

Устройство форсунки

Ну а форсунка впрыскового двигателя — это всё таки электро-механическое устройство, которое не в состоянии открыться мгновенно, а блок управления учитывает даже это, и компенсируя эту задержку, подаёт бензин чуть-чуть раньше. Так же в современной системе впрыска топлива, имеется двухступенчатый ограничитель оборотов. И если частота вращения коленчатого вала превысит допустимую для данного двигателя величину, блок управления тут же отключает подачу топлива к двум из четырёх цилиндров, и до тех пор, пока обороты не упадут до положенных. А в случае не сбавления оборотов, отключит и остальные два цилиндра.

Дополнительные функции ECU.

  • При падении мотоцикла, когда приходит сигнал с датчика наклона, блок управления тут же отключает бензо-насос, форсунки, а так же отключает реле системы впрыска топлива, и тем самым двигатель моментально глохнет. 
  • Когда температура охлаждающей жидкости системы охлаждения повышается выше нормы, блок управления включает вентилятор радиатора.
  • Так же блок управления приводит в действие (даёт команду) сервомотор, который открывает или закрывает заслонки в выхлопных партубках (на моторах с системой EXUP).
  • Ну и ещё одна довольно редкая функция, которая применяется на немногих мотоциклах — включение или выелючение дополнительной фары, когда обороты коленвала значительно повышаются.

Система самодиагностики.

В блоке управления современного инжекторного двигателя имеется система самодиагностики, которая поможет вам определить неисправность. И если например при поездке произойдёт сбой системы, то блок управления тут же предупредит водителя включением соответствующей лампы на приборке мотоцикла, и двигатель может заглохнуть. Если компьютер решит, что дальше двигаться невозможно, то лампа на приборке заморгает, когда вы попытаетесь нажать кнопку старта двигателя.

Но советую повторить попытку, выключив, а затем включив замок зажигания, и затем опять попробовать запустить двигатель, нажав кнопку стартера. И если в мозгах был устранимый сбой, то такой перезапуск поможет. Ведь система самодиагностики обнаружив сбой, сама включит обходную программу, и тогда лампа на приборке будет гореть непрерывно, значит можно ехать в мастерскую своим ходом.

После того как вы заглушите двигатель, приехав в мастерскую, на жидкокристалическом мониторе приборки высветится код ошибки. И он будет оставаться в памяти бортового компьютера до тех пор, пока его не сотрут механики мото-сервиса. Отсюда следует сделать вывод: если у вас на приборной панели загорелась соответствуящая лампа диагностики, то советую не глушить двигатель, что бы узнать что произошло. Если например виноват вышедший из строя датчик положения распредвала, то после остановки двигателя, вы его уже не запустите, и придётся вызывать эвакуатор. (см. таблицу кодов неисправностей ниже в тексте, где показан номер кода, и написано, что двигаться можно, но если заглушить мотор, то он уже не запустится, пока вы не замените датчик распредвала). Поэтому при загорании лампы на панели, не глушите двигатель, а спокойно езжайте к себе в гараж. Ведь когда в гараже вы заглушите мотор, на панели высветится номер кода, по которому вы узнаете, что вышло из строя и что заменять в гаражных условиях, а не в дорожных. И именно для этого я и привожу в этой статье таблицу номеров кода и обнаружения неисправностей.

Многие могут задать вопрос: а что будет если лампочка диагностики сгорит. Ну я думаю, что этот факт трудно прозевать, так как  лампа загорается каждый раз, когда вы включите зажигание, и затем через 1,4 секунды она гаснет. А если например вы нажмёте на кнопку старта раньше этой 1,4 секунды, то лампа гаснет раньше, как только вы нажимаете кнопку старта. И лампа не загорится при включении зажигания только в одном случае — если она перегорела. Поэтому прозевать этот момент практически невозможно, и если лампа когда нибудь перегорит, то срочно её замените новой. Эта лампа — ваша гарантия благополучного возвращения домой своим ходом.

Система подачи топлива.

Система подачи топлива состоит из бензонасоса, форсунок и регулятора давления топлива.

Бензонасос состоит из самого насоса роторного типа, который приводится во вращение от вала электродвигателя, а так же из фильтра и предохранительного клапана. Бензонасос и фильтр вмонтированы в бензобак (в отличии от большинства автомобилей). А предохранительный клапан нужен для того, чтобы спасти от разрыва трубопровод, в случае если этот трубопровод засорится. И когда давление превысит 4,5 -6,4 кг (например от засорения), то предохранительный клапан откроется, и лишний бензин стравливается по обратке в бензобак мотоцикла. Следует учесть, что бензонасос всегда подкачивает немного больше бензина, чем необходимо форсункам для нормальной подачи топлива в цилиндры.

Топливные форсунки, когда получают в нужный момент сигнал от блока управления, впрыскивают бензин в камеры сгорания двигателя, если этот двигатель с непосредственным впрыском, или во впускной канал — на обычном инжекторном моторе. Сечение всех форсунок одинаковое (и постоянное), и так же постоянна и разница между давлением впрыска бензина и давлением воздуха во впускном коллекторе (они постоянные), а это значит, что количество впрыснутого топлива, зависит только от величины сигнала от блока управления, (от длительности этого сигнала).

Регулятор давления. Вот именно он и следит, чтобы разница между давлением бензина в бензопроводе и давлением воздуха в впускном коллекторе была неизменной (постоянной) — это примерно около 3 кг/см², а если быть точным, то равно 2,84 кг/см², и эта величина практически одинакова на всех впрысковых мотоциклах. При поддержании постоянного давления в бензопроводе, регулятор давления постоянно стравливает лишний бензин обратно в бензобак, по обратному шлангу (обратке).

Датчики.

Датчики впрыскового двигателя помогают точно определить блоку управления, длительность открытия форсунок. Блок управления (ECU) современного инжекторного двигателя, получает и оценивает сигналы с таких датчиков: датчик положения коленчатого вала, датчик положения распределительного вала, датчик расхода воздуха (расходомер), датчик атмосферного давления, датчик давления воздуха во впускном коллекторе, датчик температуры системы охлаждения (антифриза), датчик температуры окружающего воздуха. И чтобы бензин подавался в каждый цилиндр двигателя в нужный и точный момент фазы впуска, блок управления сверяется с сигналами от датчиков коленчатого и распределительного валов.

Рассмотрим каждый датчик подробнее, это поможет вам точно уметь определять неисправность инжекторного двигателя, так как чаще всего проблемы возникают именно из-за выхода из строя какого либо датчика.

  • Датчик положения распределительного вала. Этот датчик расположен в ценре крышки головки двигателя, точно над одним из распредвалов. Когда при работе двигателя распредвал вращается, то датчик положения распредвала, как и датчик положения коленвала, считывает сигналы и отправляет их на блок управления, а блок в этот момент определяет в каком из цилиндров начинается такт впуска и вовремя включает нужную форсунку цилиндра, в котором и происходит такт впуска.
  • Датчик положения коленчатого вала. Этот датчик устанавливается в правой части коленвала двигателя. При работе мотора, коленвал естественно вращается, и когда выступы ротора, жёстко закреплённого на коленвалу проходят точно над сердечником катушки этого датчика, то возникают импульсы, которые поступают к блоку управления. По этим импульсам блок управления определяет точное положение коленвала, а так же частоту его вращения. Сверяясь с данными заложенными в память компьютера, и сопоставляя их с полученными импульсами (сигналами), процессор очень точно определяет нужный угол опережения зажигания и точный момент впрыска топлива.
  • Датчик давления атмосферного воздуха необходим для того, чтобы компенсировать изменения в условиях окружающей среды. Например если вы заедете достаточно высоко над уровнем моря (в горах например), то атмосферное давление в таких местах ниже обычного, и если бы не корректировка датчика давления, то двигатель бы начал работать с перебоями (из за нехватки воздуха).
  • Датчик положения дроссельной заслонки и датчик разряжения во впускном коллекторе помогают определить блоку управления каков расход воздуха, так как количество воздуха должно быть в определённой пропорции к количеству топлива.
  • Датчик температуры жидкости (антифриза) в системе охлаждения необходим, чтобы от его показаний блок управления обогатил топливную смесь, которая впрыскивается во время запуска и работы холодного двигателя, пока он не прогреется.
  • Датчик температуры окружающего воздуха. При изменении погодных условий и соответственно температуры окружающего воздуха, изменяется и плотность воздуха, а значит и его количество, которое поступает в двигатель. Это значит, что температура окружающего воздуха заметно влияет на состав бензовоздушной смеси. И считывая показания с датчика температуры окружающего воздуха, блок управления корректирует состав топливной смеси, и её подачу в двигатель.
  • Датчик угла наклона байка. Этот датчик нужен для безопасности, так как предотвращает пожар при падении мотоцикла. Датчик «сообщает» блоку управления о критических углах наклона вашего байка. И если например этот наклон превысит 65°, то блок управления автоматически решит, что ваш мотоцикл упал, и моментально отключит бензонасос и форсунки двигателя, тем самым уберегая ваш аппарат и вас от возможного пожара. Чтобы датчик случайно не сработал например при прыжке или тряске, или если ваш байк наклонится и быстро вернётся в нормальное положение, вместе с датчиком работает реле времени, которое задерживает сигнал, и даёт возможность вам выпрямить положение вашего мотоцикла. Ну а если не дай Бог ваш аппарат наклонится более чем на 90°, то есть начнёт кувыркаться, то мотор мотоцикла в такой ситуации глушится моментально. И для того, чтобы после падения завести мотор вашего мотоцикла, кроме подъёма вашего байка в нормальное положение, требуется ещё и выключить зажигание, а затем заново его включить. 

Таблица кодов неисправностей системы впрыска.

Неисправность датчиков поможет определить система самодиагностики мотоцикла, о которой я писал выше. Это легко сделать по номеру кода, который высвечивается на ЖК дисплее приборки мотоцикла, а затем посмотрев в таблице номер кода, прочитать точную неисправность (таблица поделена мной на три части, чтобы добиться более крупного шрифта). Ну а кому интересно как точно определить неисправность датчиков впрыскового мотора, с помощью обычного мультиметра (тестера), кликаем вот по этой ссылке и читаем (на примере автомобильных датчиков).

Ну и последняя, но очень важная деталь системы впрыска топлива только современных мотоциклов, это трёхкомпонентный каталитический нейтрализатор, который довольно эффективно дожигает углеводороды (СН) , оксид углерода или проще угарный газ (СО), а так же разлагает оксиды азота (NOx).

Вторая часть таблицы кодов неисправностей системы впрыска.

Лябда зонд, устанавливаемый в каталитический нейтрализатор, в несколько раз продлевает срок его службы. Лямбда зонд — это датчик кислорода, который начали устанавливать на большинство впрысковых мотоциклов только с 2005 года. Он очень важен, так как определяет точное количество кислорода в выхлопных газов, ведь в выхлопе присутствует строго определённое количество кислорода, при котором состав сгораемой бензовоздушной смеси оптимальный для нормальной работы мотора. И как только состав выхлопных газов выходит из нормы (это определяется лямбда зондом по количеству кислорода в выхлопе), то процессор блока управления, моментально корректирует подачу впрыскиваемого топлива.

Третья часть таблицы кодов неисправностей системы впрыска

Некоторые считают, что датчик кислорода является одной из заводских душилок двигателя. Да, это правда, он забирает небольшую часть мощности, но важнее потерять немного мощности, но зато благодаря этому датчику у вас всегда будет оптимальный для вашего двигателя состав топливной смеси. И пусть лямбда зонд не позволит обогатить смесь до такого значения, чтобы выжать из вашего двигателя дополнительные две-три лошади (на фоне табуна из 160 лошадей, эти две-три лошадки практически ничего не значат), зато экономичность вашего мотора не пострадает. К тому же датчик кислорода ещё и не позволит вашему мотору переобедниться, а значит уменьшит выброс окислов азота. Переобеднение к тому же вредно для любого двигателя.

Единственный минус, по моему мнению, в присутствии лямбда зонда в выхлопной системе вашего, да и любого байка, так это то, что он очень чувствителен к плохому бензину (как определить качество бензина без хим-лаборатории, узнаём здесь). При автономном путешествии по российской периферии, где качество бензина просто отвратительное, датчик кислорода может доставить хлопот водителю мотоцикла. Ведь лямбда зонд не терпит присутствия в составе бензина свинца, и как только хлебнёт такого пойла, то в считанные километры выходит из строя. Как его восстановить можно почитать вот в этой статье, там же вы узнаете об важности лямбда зонда более подробно. Стоит датчик кислорода не мало, поэтому имея современный впрысковый аппарат, повнимательней выбирайте заправки. К тому же очень плохой бензин как правило губит не только датчик кислорода, но и почти весь двигатель.

Вот вроде бы и все полезные знания по впрысковым мотоциклам, которые я хотел до вас донести. И я надеюсь, что многие водители прочитав эту статью, перестанут разводить руками, при возникновении какой либо неисправности системы впрыска топлива современного мотоцикла, и будут относиться к ним так же спокойно как и к неисправностям карбюраторного байка. Успехов всем!

Устройство инжекторного двигателя автомобиля ВАЗ

АвтоВАЗ – это самый известный и самый большой производитель автомобилей в России. История компании начинается с 1966 года, когда было принято решение о строительстве предприятия в Тольятти. Первые автомобили ВАЗ 2101 вышли в 1970 году и были аналогами итальянского Фиат 124. С тех пор в компании много чего поменялось, но даже первые “копейки” пользуются огромной популярностью.

Автомобили ВАЗ практически все до 2000-х были с карбюраторными двигателями, но сейчас выпускаются в основном инжекторные.

Рассмотрим устройство двигателя одной из наиболее популярных моделей – ВАЗ 2109.

“Девятка” выпускается с тремя двигателями объемом 1,1, 1,3 и 1,5 литра. Однако по своей конструкции данные двигатели практически ничем не отличаются кроме размеров и рабочего объема.

Все эти двигатели – четырехтактные, имеют по четыре цилиндра, 8 клапанов. Мотор установлен поперечно. Устройство самое обыкновенное, именно из-за этого продукция ВАЗ обходится сравнительно дешево при обслуживании.

Поршни выполнены из алюминиевого сплава. Имеют по три канавки – две для компрессионных колец, которые защищают двигатель от попадания в него газов, и одна – для маслосъемного кольца, которое отводит масло со стенок цилиндра к поршневому пальцу./p>

Шатуны крепятся к поршням с помощью поршневых пальцев, которые входят в бобышки поршня и фиксируются стопорными кольцами. В верхней части поршня имеется камера сгорания и выточка, которая предотвращает изгибание и поломку клапана при обрыве ремня ГРМ.

Движение поршней передается через шатуны на коленчатый вал, который вращается при помощи коренных подшипников. Вазовский коленвал находится внизу блока под цилиндро-поршневой группой. Соответственно он имеет 4 шатунные и 5 коренных шеек. Имеется восемь противовесов. Для смазки шатунных и коренных подшипников внутри коленвала просверлены ходы, закрытые масленками и заглушками.

Как и в любой другой машине, к задней части коленвала крепится маховик, а к передней – шкив распредвала, который также приводит в движение генератор.

Сверху к блоку цилиндров прикручена головка блока цилиндров. В головке расположен распределительный вал, который приводит в движение клапаны. Втулки клапанов впаяны в головку блоков цилиндров.

Смазывание всех элементов двигателя производится благодаря масляному насосу. На шатунные и коренные подшипники масло подается под давлением, на остальные элементы – разбрызгиванием или самотеком.

Как видим, ВАЗовский двигатель – это достаточно сложная система. К его преимуществам можно отнести хорошую выносливость и ремонтопригодность. Благодаря некоторым простым модификациям, как например выточкам на поршнях, была повышена его надежность. Также двигатель не показывает таких требований к качеству масла и бензина, как моторы других производителей, хотя своевременная диагностика и ремонт – это залог долгой службы двигателя любой модификации.

Видео, устройства и работы двигателя внутреннего сгорания автомобилей ВАЗ (инжектор)

Загрузка…

Поделиться в социальных сетях

Инжекторная система подачи топлива: виды, устройство, принцип работы, фото, промывка

Инжектор – это своеобразная система, которая предназначена для переправки топлива в цилиндры автомобиля. Для этого используются форсунки, которые получают электронный сигнал от блока управления автомобиля. Стоит отметить, что подача топлива осуществляется исключительно точечным методом. Инжекторная система на сегодняшний день считается достаточно распространенной. Подобные конструкции представляют собой значительно более модифицированные версии карбюратора.

Стоит отметить, что первая подобная система была разработана еще в конце 19 века. А вот внедрение в само автомобилестроение произошло только во второй половине 20 века. Дело в том, что специалисты считали данный механизм слишком сложным и неоправданно дорогим.

На сегодняшний день все современные двигатели, оснащённые инжекторными системами подачи топлива, работающие по точечной поточечной подачи топлива в цилиндры, производится со специальными электронными блоками управления. Альтернативой ему может быть контроллер или система управления двигателем. Но, в любом случае, все эти приборы относятся к компьютерным. Именно они обеспечивают инжекторную систему должной информацией, на основании которой она может работать, корректировать дозу подачи топлива, частоту впрыска и другое.

Содержание статьи

Когда появился инжектор

Карбюратор, судя по всему, уже смешал отведенное ему количество топлива с воздухом в XX веке и его время стремительно подходит к концу. Несмотря на то что инжекторная система подачи топлива появилась гораздо раньше, чем карбюратор, она только начинает обживаться под капотами автомобилей. Своим происхождением впрыск обязан итальянскому физику и изобретателю Джованни Вентури, который изобрел форсунку с переменным сечением и скромненько назвал ее Труба Вентури.

Использовать ее в автомобилях начали ребята из гаража Леона Левассора. Что-то наподобие современного впрыска они ставили на свои автомобили еще в 1902 году. После этого автомобильные системы питания метались в поисках лучшего устройства, а инжектор нашел себе применение в авиационных двигателях. К концу 40-х годов все военные истребители поголовно пользовались инжекторной системой питания до тех пор, пока военная авиация не перешла на реактивную тягу.

Основные преимущества инжекторной системы

Современные специалисты отмечают сразу несколько преимуществ подобных видов систем подачи топлива. А именно:

  1. Удалось достигнуть значительного снижения расхода топлива. Это стало возможным благодаря четкому контролю подачи топлива.
  2. Подобная система способствует повышению мощности. Для сравнения карбюраторные двигатели внутреннего сгорания имеют мощность на среднем на 10% меньше нежели идентичные инжекторные.
  3. Автоматизированная система впрыска. Стоит помнить, что в карбюраторных автомобилях функцию регулировки выполняет подсос и регулировочные винты. В данном же случае водителю не придется тратить время, и система все сделаем за него.

Разнообразие инжекторных систем

В современности существует два вида инжекторов. Первый относится к системам моновпрыска. В данном случае одна форсунка осуществляет подачу топлива в коллектор на все цилиндры. Среди автомобилистов подобная система более известна, как электронный карбюратор. Однако, современные производители уже отошли от данной технологии, и встретить подобную систему можно только в старых моделях.

Вторая система подразумевает распределённый впрыск, то есть многоточечный впрыск. В данном случае устанавливается отдельная форсунка во впускном тракте каждого цилиндра и каждая из них осуществляет подачу определённого объёма топлива в камеру сгорания.

По способу распределения впрыска подобные системы делятся на:

  1. Одновременную. Система встречается очень редко, но всё же имеет место быть. Ее особенностью является то, что всего за один оборот коленчатого вала абсолютно все форсунки отрабатывают в одно и тоже время.
  2. Попарную параллельную. В данном случае форсунки работают по парам. Другими словами, за один оборот коленчатого вала только одна пара форсунок работает.
  3. Последовательную. Данный вид распределения впрыска является самым распространенным. Особенностью является то, что за один оборот вала каждая форсунка по разу открывается перед тактом впуска. При этом регулировка происходит отдельно.

Отрицательные характеристики систем

Несмотря на огромный перечень положительных характеристик, данный механизм, как и многие другие, имеет и свою темную сторону. К минусам данной конструкции относятся:

  • довольно большая стоимость ремонта;
  • высокая стоимость комплектующих;
  • маленькая вероятность возможности ремонта;
  • большие требования к качеству топлива;
  • определить неисправность может только профессионал;
  • диагностика стоит достаточно дорого;
  • для ремонта нужно иметь специальное оборудование.

Стоит отметить, что инжекторный тип впрыска топлива со временем может приводить к тому, что впускной клапан закоксовывается. Это происходит из-за того, что он просто не омывается топливом, которое, в некотором роде, его очищает.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

  • лямбда-зонд;
  • положения коленвала;
  • массового расхода воздуха;
  • положения дроссельной заслонки;
  • детонации;
  • температуры ОЖ;
  • давления воздуха во впускном коллекторе.

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

  • бак;
  • электрический топливный насос;
  • топливные магистрали;
  • фильтр;
  • регулятор давления;
  • топливная рампа;
  • форсунки.

Простая инжекторная система подачи топлива

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Почему инжектор лучше карбюратора?

Помнится, еще относительно недавно автомобили с инжекторной системой подачи топлива вызывали недоверие. Пожалуй, единственное логическое объяснение этому – сложность ее конструкции, из-за чего на первых порах возникали проблемы с ремонтом. В отличие от карбюратора, впрыск топлива в инжекторе не нужно регулировать, поскольку это возложено на электронную систему управления. Помимо этого, машина с инжекторным агрегатом потребляет меньше топлива, а мощность ее мотора значительно выше. Плюс ко всему — значительное снижение вредных соединение в выхлопе авто, ввиду лучшего сгорания топливной смеси, которое возможно благодаря ее правильной и дозированной подаче.

Типы инжекторов

 1. Система центральной подачи топлива (моновпрыск), представлен одной форсункой, через которую топливная смесь поступает в коллектор, а с него уже распределяется по всем цилиндрам. Самый простой тип, который сегодня уже практически не применяется.

 2. Система распределенной топливоподачи (многоточечный впрыск). Здесь уже через отдельные форсунки осуществляется впрыск топлива в цилиндры, то есть количество форсунок соответствует количеству цилиндров.

Многоточечная система впрыска бывает:

— Одновременного типа, когда все форсунки открываются, и впрыск топлива осуществляется в течение одного полного оборота коленвала. Практически не встречается.

— Попарно-параллельного типа, когда топливовпрыск ведется через парные форсунки, цикл работы которых определяется одним вращением коленвала. Также используется редко, однако, может быть встречаться из-за поломки датчика при последовательном типе топливоподачи.

— С последовательным (фазированным) впрыском топлива, в которой за одно вращение коленвала происходит открытие каждой из форсунок для впрыска топлива. Наиболее распространенная и совершенная система топливовпрыска, которая позволяет подать рабочую смесь непосредственной в цилиндр, при этом длительность ее подачи и дозировка рассчитываются максимально точно. Стоит отметить, что рабочее давление системы может возрастать до 200 атм.

Однако есть и ряд своих недостатков, к которым можно отнести наличие множества дорогостоящих элементов, причем некоторые из них, абсолютно неремонтопригодны. Также, в инжекторах с системой последовательного топливовпрыска очень часто закоксовываются клапана впуска, из-за того, что они практически не омываются, следовательно, и не очищаются топливной смесью.

Виды систем впрыска бензиновых двигателей

Впрыск может быть:

  • центральным (ДВС с карбюраторами, наддроссельный впрыск),
  • распределённый или коллекторный (осуществляется отдельной форсункой в каждый цилиндр двигателя),
  • непосредственный (осуществляется напрямую в камеры сгорания, отдельными форсунками), встречается в разных вариациях, характерен для современных автомобилей.

Варианты топливных систем бензиновых двигателей (R R. Bosch)

Решения с карбюраторами

Дольше всего человечество знакомо с подачей топлива посредством карбюратора. И не потому, что такие решения лучшие, а потому что они – первые. И множество лет – единственно доступные. Карбюратор был неотъемлемой частью топливной системы на около сотни лет. Нельзя сказать, что сейчас карбюраторы полностью исчезли из жизни, но на легковой и коммерческий транспорт карбюраторы ставить перестали. Их можно увидеть только на средствах механизации, которые применяются для садовых, строительных работ.
Автопром же перестал выпускать машины с карбюраторной системой еще в 90-е годы прошлого века.

Принцип их действия основан на принципе втягивания топлива в поток воздуха, проходящего через карбюратор. Всё это возможно за счет сужения воздушного канала и разрежения воздуха.

Объём воздуха, который проходит через сужение воздушного канала, пропорционален объёму топлива, поступающего через распылитель карбюратора. Благодаря этому несложно в автоматическом режиме поддерживать требуемое соотношение топлива к воздуху.

Как работает устройство?

  1. Топливо из бака забирает насос (управляемый механически или электрически – в зависимости от модели).
  2. ДВС запускается, и поток воздуха, проходящий через сужение воздушного канала карбюратора, создает разрежение.
  3. В смесительную камеру карбюратора поступает топливо.
  4. Жиклер (калиброванное отверстие) дозирует топливо.

С точки зрения работы всё достаточно просто. Так почему же карбюраторы уходят в историю?
Здесь достаточно много причин:

  • Низкая экономичность, а соответственно, и низкий уровень топливной эффективности.
  • Проблемы при переменных режимах работы, обусловленные низкими динамическими качествами.
  • Прямая зависимость от положения двигателя.
  • Выброс в окружающую среду большого количества вредных веществ (несоответствие нормативам эмиссии газообразных вредных выбросов в атмосферу).

Особенности системы впрыска

Основным преимуществом системы впрыска считают точную дозировку топлива, необходимую для оптимальной работы двигателя в определенный момент и под определенной нагрузкой. Этого позволила добиться только электронная система управления. Старые инжекторные системы имели механическое управление и подавали бензин по средним потребностям мотора. Современный инжектор способен точно вычислить сколько топлива необходимо и в какой момент его нужно подать. Синхронизация системы питания с зажиганием позволяет оперативно менять как угол опережения подачи искры, так и момент подачи бензина, поэтому теоретически, инжекторные системы должны быть эффективнее и экономичнее карбюраторных.

Диагностика инжекторных систем

Действительно, с применением электроники и распределенной системы впрыска моторы стали немного экономичнее, но против физики не попрешь, и без нужного количества бензина камера сгорания просто не выдаст ту энергию, которая необходима. С усложнением систем впрыска стали появляться новые проблемы, особенно на дешевых машинах, поскольку система впрыска очень требовательна к материалам топливной аппаратуры и особенно, к качеству топлива. Это вообще больной вопрос для всех инжекторов. Количество серы в отечественном бензине не укладывается ни в какие нормы, поэтому даже на недорогих системах впрыска очень часто требуется вмешательство механика.

Неисправности системы впрыска проявляются по-разному, но методы диагностики на современных СТО позволяют довольно точно определить нерабочий элемент. Чаще всего, это страдают от топлива насосы и форсунки. Определить неисправность просто, для этого даже не нужно ехать в сервис:

  • тяжелый пуск;
  • высокий расход;
  • провалы в работе на средних оборотах и отсутствие холостых;
  • сбои в переходных режимах.

Все это свидетельствует о недостаточном количестве бензина в камере сгорания. Насосы, как правило, не ремонтируют, по крайней мере, на официальных сервисах, а форсунки приходится мыть и прочищать.

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  • послойное ;
  • стехиометрическое гомогенное ;
  • гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Рабочий процесс поддерживается движением воздуха в цилиндрах. В зависимости от нагрузочного и скоростного режимов регулируется интенсивность движения воздуха, при этом, обеспечивается создание гомогенной или послойной смеси.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

Промывка инжекторной системы

Есть несколько способов очистки инжекторной системы. Если двигатель находится еще не в критическом состоянии, тогда может помочь промывка при помощи топливных присадок. Они растворяют отложения в насосе, топливопроводе, а главное, в форсунках, и в некоторой степени чистят систему от грязи и шлаков. не всегда это удается и не всегда это безопасно для двигателя, поэтому наиболее эффективным способом прочистки форсунок считают ультразвуковые ванны. Это не механический способ очистки и процесс проходит довольно эффективно.

Инжекторная система подачи топлива продолжает совершенствоваться, полностью вытесняя карбюраторы. Системы вполне работоспособны, только для того, чтобы избежать лишних проблем с очисткой и регулировками, стоит следить за качеством топлива ровно настолько, насколько это позволяют наши нефтеперерабатывающие комбинаты. Чистого всем бензина, и удачи в дороге!

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

  • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
  • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
  • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
  • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
  • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
  • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.

Исполнительные механизмы инжекторных систем

По названию видно, что эти устройства выполняют то, что им скажет блок управления. Все сигналы от датчиков анализируются, сравниваются с топливной картой (огромной схемой работы при тех или иных условиях), после чего подаётся команда на исполнительный механизм. Следующие исполнительные механизмы входят в состав инжекторной системы:

  1. Электрический бензонасос, установленный в баке. Он нагнетает в рампу бензин под давлением около 3,5 Мпа. Вот какое давление в топливной системе должно быть, при нем распыление смеси окажется наиболее качественным. При повышении оборотов коленвала увеличивается расход бензина, нужно его больше нагнетать в рампу, чтобы удерживать давление на уровне. В нижней части насосов устанавливается фильтр, который нужно менять хотя бы раз в 30000 км пробега.
  2. Электромагнитные форсунки устанавливаются в рампе и предназначены для подачи топливовоздушной смеси в камеры сгорания. Чем дольше открыт клапан форсунки, тем больше смеси поступит в камеру сгорания — именно такой принцип дозирования лежит в основе.
  3. Дроссельный механизм приводится в движение педалью из салона. Но в последние годы набирает популярность электронная педаль газа. Это означает, что вместо тросика используется потенциометр на педали и небольшой электродвигатель на дроссельной заслонке.
  4. Регулятор холостого хода предназначен для контроля количества воздуха, поступающего в топливную рампу при полностью закрытой дроссельной заслонке. На карбюраторных моторах аналогичную функцию выполняет «подсос». Несмотря на то, что топливная система отличается, суть работы остаётся той же — подача смеси и её сгорание.
  5. Модуль зажигания — короб, в котором находится 4 высоковольтные катушки. Хорошая конструкция, но крайне ненадёжная — высоковольтные провода имеют свойство портиться. Намного эффективнее окажется использование для каждой свечи отдельной катушки, выполненной в виде наконечника.

Работа двигателя с инжекторной системой впрыска

А теперь можно рассмотреть и принцип работы системы питания инжекторного двигателя. При включении зажигания происходит переход в рабочий режим всех механизмов и устройств. Первым делом насос нагнетает бензин в рампу до минимального давления, которого хватит для запуска.

А дальше все ждут, когда провернётся коленвал, и с его датчика пойдёт сигнал на блок управления о положении поршней в цилиндрах. Одновременно с этим датчик фаз выдаёт сигнал о том, какой такт совершается. После анализа данных блок управления даёт команду на форсунки (в зависимости от того, в каком цилиндре происходит впуск).

При вращении коленвала постоянно снимаются данные с датчиков и, исходя из них, происходит открывание нужных электромагнитных форсунок на определённый промежуток времени. Смесь воспламеняется, отработанные газы выходят через выпускной коллектор. По тому, какое содержание кислорода в них, можно судить о качестве сгорания топлива.

Если содержание кислорода большое, то смесь сгорает не до конца. Блок управления производит корректировку угла опережения зажигания, чтобы добиться наилучших показаний.

Но вот во время прогрева некоторые датчики не влияют на работу системы управления. Это датчики расхода воздуха, детонации и абсолютного давления. При достижении рабочей температуры включаются они в работу. Причина — во время прогрева невозможно соблюсти все условия, в частности, соотношение бензина и воздуха. Уровень СО в выхлопных газах тоже будет зашкаливать, поэтому контроль всех этих параметров не следует производить.

Инжекторный двигатель: устройство и принцип работы

Инжекторный двигатель представляет собой сложное устройство, обеспечивающее максимальную производительность автомобиля. В отличие от карбюраторных моделей, инжектор более экономичен и прост в обслуживании. Такие двигатели снабжены системой впрыскивания топлива, благодаря чему повышается мощность авто, а расходы топлива, наоборот, снижаются. Принцип работы инжекторного двигателя рассмотрен в нашей статье.

Принцип работы инжектора

Использование устройств с подобным алгоритмом действия поначалу коснулся авиастроительного производства. Ужесточение экологических норм привело к тому, что многие производители автомобилей отказались от применения карбюраторных двигателей, дальнейшее усовершенствование которых не приводило к желаемому результату.

Управление системой впрыскивания топлива проводится автоматизированной системой или бортовым компьютером. Проводится проверка состояния воздушно-топливной смеси и при ее соответствии происходит последовательный впуск топлива непосредственно во впускной клапан. Так обеспечивается более точный расход, а также быстрое сгорание топлива.

Устройство инжекторного двигателя можно охарактеризовать выполнением следующей последовательности:

  1. Нажатие на педаль газа открывает дроссельную заслонку. Это обеспечивает поступление воздуха в двигатель.
  2. Компьютер анализирует объем поступающего воздуха (в зависимости от усилия нажатия педали), после чего дает команду для подачи оптимального объема топлива.
  3. Специальный датчик контролирует количество поступающего в двигатель кислорода и его соответствие объему топлива.
  4. Топливный нанос перекачивает необходимый объем, после чего происходит его впрыск под давлением. В результате образуется мелкодисперсный туман, который быстро сгорает, приводя в движение механизмы вращения движущихся частей мотора.

Даже упрощенная схема показывает, насколько сложным является процесс движения автомобиля. Работа двигателя инжектора представляет собой замкнутую систему, в которой значение имеет каждая деталь. При выходе из строя любой составляющей, сигнал об этом поступает на электронную систему, после чего компьютер сам принимает решение о возможность дальнейшего движения. Это одновременно является достоинством и недостатком такого механизма, ведь при измененных условиях труда раскачать «вручную» систему не получиться, придется обращаться за квалифицированной помощью.

В чём особенности устройства?

Как показывает приведенная информация, главным отличием от более старых карбюраторных моделей является автоматическая подача топлива. Это ключевой момент, определяющий преимущества использования инжекторного устройства. Кроме того, существует еще несколько пунктов, которые выгодно отличают разницу между инжектором и карбюратором.

Ключевые отличия:

  • За счет того, что в карбюраторном двигателе создается определенный уровень давления, позволяющий засасывать воздушно-топливную смесь, а в инжекторе она подается автоматически, экономится мощность отдачи. Это позволяет в целом увеличить производительность авто на 10%. Показатель небольшой, но при длительной эксплуатации это существенная экономия топлива.
  • Быстрое реагирование на изменение условий движения. В инжекторе практически моментально происходит увеличение или уменьшение подачи топлива. Это позволяет маневрировать на дороге гораздо быстрей.
  • Система впрыскивания топлива обеспечивают легкий запуск двигателя.
  • Инжекторное устройство менее чувствительно к измененным погодным условиям. Расход топлива будет экономиться за счет того, что не требуется длительный прогрев двигателя.
  • Также такие устройства соответствуют более строгим современным экологическим стандартам. Уровень вредных выбросов, как правило, ниже на 50-70%, что в современном мире просто необходимо.

Среди главных недостатков — полная зависимость системы от исправности всех элементов. Инжектор снабжен несколькими датчиками, которые анализируют параметры топлива и условия эксплуатации. При выходе электроники из строя может понадобиться дорогостоящий ремонт.

Также при эксплуатации авто с инжекторным двигателем необходимо тщательней следить за состоянием используемого топлива. Форсунки, обеспечивающие подачу и распыление воздушно-топливной смеси, часто забиваются при использовании некачественного бензина. Вместе с тем, этот критерий очень сложно контролировать, особенно при длительной поездке, когда приходится заправляться на непроверенных точках. К недостаткам также можно отнести дорогостоящий ремонт в случае поломок. Самостоятельная починка электронной части на практике оказывается неудачным решением и может привести к необходимости восстановления системы, а это стоит немало.

ЭБУ

Главным центром управления инжектора является ЭБУ — электронный блок управления. В его задачи входит непосредственный контроль над работой всех систем, расходом и подачей топлива, а также сигнализирование о возможных неполадках в работе автомобиля. Отчеты о возможных сбоях в системе и алгоритм правильной работы храниться в специальных ячейках памяти,

В зависимости от модели, обычно есть три типа памяти устройства:

  1. ППЗУ требует однократного программирования, после чего сохраняются все алгоритмы действия для управления системой. Чип хранится на плате блока, при необходимости подлежит замене. Информация не подлежит удалению при сбоях сети, корректированию не поддается.
  2. ОЗУ — оперативное запоминающее устройство. Относится к временному хранилищу файлов. Также служит местом для расчета и анализа полученной информации. Располагается ОЗУ на печатной плате блока, при сбоях в сети информация стирается.
  3. ЭПЗУ представляет собой электрически программируемое запоминающее устройство. В основном используется для хранения информации для противоугонной системы (коды и пароли владельца). При нарушении ввода данных, двигатель не заведется. Такое хранилище не зависит от данных сети, информация сохраниться при любых ситуациях.

Форсунки

Заслонка, позволяющая контролировать впрыск топлива в систему, называется форсункой. Используется два типа системы подачи топлива. Моновпрыск сейчас практически не используется. При таком расположении форсунки топливо подается вне зависимости от открытия впускного клапана двигателя. К тому же, такое управление мало контролируется электроникой. Второй вид — распределительный впрыск представлен более совершенной системой. Благодаря нескольким форсункам, расположенным непосредственно вблизи каждого цилиндра, происходит направленный доступ горючего. Такая система четко регламентирует подачу топлива, а также увеличивает производительность двигателя. Тип управления инжектором также определяется ЭБУ и может быть точечным и последовательным.

Каталитический нейтрализатор

Этот элемент системы инжекторного двигателя предназначен для контроля выхлопов авто. Для его работы необходим датчик содержания кислорода в выхлопных газах (лямбда-зонд). При превышении допустимых значений проводится корректировка впрыска топлива, а также проводится процесс рециркуляции отработанных газов. Кроме того, в системе предусмотрены специальные катализаторы, уменьшающие содержание вредных примесей после сжигания топлива.

Датчики

Сложная система электронного управления подразумевает проверку и регулировку нескольких датчиков. При выходе из строя хотя бы одного элемента, ЭБУ выдает ошибку.

Основные датчики инжекторного двигателя:

  • ДМРВ (датчик массового расхода воздуха). Обеспечивает информацию о массе воздуха, поступающего в двигатель.
  • Лямбда-зонд (датчик кислорода). Определяет содержание кислорода в воздушно-топливной смеси. При помощи такой информации ЭБУ может выявить изменения топливной смеси и откорректировать ее значения.
  • Датчик дроссельной заслонки. Контролирует положение дроссельной заслонки, согласно которому блок управления может реагировать, увеличивая или сокращая подачу топлива по мере необходимости.
  • Датчик напряжения. Контролирует напряжение бортовой сети машины. Показания датчика при необходимости заставляют блок управления увеличить число оборотов холостого хода, если напряжение понижено (чаще всего при высоких электрических нагрузках).
  • Датчик контроля температуры охлаждающей жидкости. Дает сигнал о прогреве двигателя, после чего ЭБУ запускает работу других систем.
  • Датчик абсолютного давления. Следит за показателем давления во впускном коллекторе. От количества воздуха, которое поступает в двигатель, меняется потребление топливной смеси. Также этот показатель используется при определении производительности авто.
  • Датчик вращения коленвала. Скорость вращения коленчатого вала – один из определяющих факторов, которые влияют на расчет необходимой длительности импульса.

Преимущества инжектора уже оценили многие автолюбители. Снижается расход топлива, повышается производительность автомобиля, а также облегчается процесс его управления. Работа инжекторного двигателя обеспечивается непосредственным впрыском топлива в систему, на основании проанализированных данных о параметрах топливной смеси и режиме эксплуатации двигателя. Как работает инжекторный двигатель, его преимущества и недостатки по сравнению с карбюраторным устройством рассмотрены в нашей статье.

ВАЗ 2110 инжектор двигатель, схема и принципы работы инжекторного двигателя «десятки»

ВАЗ 2110 инжектор двигатель который отличается экономичностью, повышенной мощностью и стабильностью работы, если сравнивать его с карбюраторными двигателями ВАЗ 2110. Широкое применение инжекторных моторов на «Автовазе началось в 2000-ых годах. Сегодня мы подробно расскажем как работает инжекторный двигатель «десятки».

Стоит напомнить, что инжекторные моторы на «десятку» устанавливали разные по объему и количеству клапанов. Сегодня на вторичном рынке можно встретить инжекторные ВАЗ 2110 с 8-ми и 16-клапанными силовыми агрегатами рабочим объемом, как 1.5, так и 1.6 литра.

ВАЗ 2110 инжектор двигатель, схема работы

Силовые агрегаты с инжектором отличаются от карбюраторных версий принципом подачи топлива в камеру сгорания бензинового двигателя. Если карбюраторному двигателю необходимо «всасывать» топливо из камер карбюратора, то в инжекторном варианте топливо впрыскивается под давлением посредством форсунок. Это на много экономичнее, поскольку электромагнитные клапана форсунок пропускают только необходимое количество топлива и не каплей больше. За этим чутко следит электроника, которая дает команды пользуясь информацией от различных датчиков, после анализа всех данных подается необходимый импульс в форсунку и она снабжает топливом двигатель. При этом весь процесс происходит практически мгновенно. Далее подробная схема работы ВАЗ 2110 инжектор двигатель.

  • 1 – реле зажигания
  • 2 – аккумуляторная батарея
  • 3 – выключатель зажигания
  • 4 – нейтрализатор
  • 5 – датчик концентрации кислорода
  • 6 – форсунка
  • 7 – топливная рампа
  • 8 – регулятор давления топлива
  • 9 – регулятор холостого хода
  • 10 – воздушный фильтр
  • 11 – колодка диагностики
  • 12 – датчик массового расхода воздуха
  • 13 – тахометр
  • 14 – датчик положения дроссельной заслонки
  • 15 – контрольная лампа «CHECK ENGINE»
  • 16 – дроссельный узел
  • 17 – блок управления иммобилайзером
  • 18 – модуль зажигания
  • 19 – датчик температуры охлаждающей жидкости
  • 20 – контроллер
  • 21 – свеча зажигания
  • 22 – датчик детонации
  • 23 – топливный фильтр
  • 24 – реле включения вентилятора
  • 25 – электровентилятор системы охлаждения
  • 26 – реле включения электробензонасоса
  • 27 – топливный бак
  • 28 – электробензонасос с датчиком указателя уровня топлива
  • 29 – сепаратор паров бензина
  • 30 – гравитационный клапан
  • 31 – предохранительный клапан
  • 32 – датчик скорости
  • 33 – датчик положения коленчатого вала
  • 34 – двухходовой клапан

Важнейшим элементом системы питания инжекторного мотора «десятки» является электрический бензонасос, который расположен в баке, именно он постоянно обеспечивает необходимое давление в рампе с форсунками, через которые топлива подается во впускные коллекторы. Работает бензонасос в ВАЗ 2110 инжектор довольно шумно. Достаточно вставить ключ зажигания и повернуть его, как в салоне автомобиля послышится характерное «жужжание» электро бензонаноса. Если вы не слышите жужжания, перед пуском двигателя, а мотор при этом еще не заводится, значит бензонанос неисправен. А следовательно завести инжекторный двигатель с «толкача» не получится, ведь давления в рампе и форсунках все равно нет, значит и топливо не будет подаваться.

Ремонт и обслуживание инжекторных моторов требует специального диагностического оборудования. На ВАЗ 2110 устанавливались в основном инжекторные двигатели рабочим объемом 1.5 и 1.6 литра, как 8-ми, так и 16 клапанные версии. Далее приведем краткие характеристики этих моторов в таблице ниже.

Модель двигателя
Рабочий объемКоличество клапановМощность л.с.(кВт)Крутящий момент Нм
ВАЗ 21111499 см3876 (56)115.7
ВАЗ 21121499 см31693.5 (69)128
ВАЗ 211141596 см3882 (60)125
ВАЗ 211241596 см31689 (65.5)131

Самый мощный мотор из всех, что устанавливались на «десятку», это инжекторный 16-клапанник ВАЗ-2112 объемом 1.5 литра. Однако данный силовой агрегат имеет один недостаток, если рвется ремень ГРМ, то поршня встречаются с клапанами, что приводит к серьезному и дорогостоящему ремонту силового агрегата. А качественный ремонт и обслуживание инжекторных моторов ВАЗ-2110 требует специального диагностического оборудования. Часто неисправность одного лишь датчика приводит к нестабильной работе всего двигателя.

Устройство для впрыска

— обзор

Чрезмерная коррекция, недостаточная коррекция и асимметрия

Даже самые лучшие инжекторы иногда будут получать некачественные результаты лечения. Введение инъекций пациентам, у которых наблюдается опухание, кровотечение или онемение от местной анестезии, может дать результат, который хорошо выглядит в кресле, но может быть неприемлемым через несколько дней или недель. Возвращение пациента в офис для проверки после инъекции — отличный способ обеспечить контроль качества. Это также хорошее время для фотографирования, которое можно использовать в маркетинговых и образовательных целях.Если пациентов регулярно повторно назначают для последующего наблюдения, хирург иногда находит пациентов, которым требуется дополнительное лечение. Недокоррекция — это наиболее простое повторное лечение, поскольку обычно требуется только дополнительный наполнитель (рис. 10.146). Вопрос о том, кто будет платить за этот дополнительный наполнитель, может быть неудобным, и этот вопрос следует решить во время предварительного информированного согласия. Неспособность внимательно следить за пациентами может привести к плохим результатам, если вы будете гулять по вашему городу, производя негативный маркетинг без вашего ведома.

Обработка избытка наполнителя в значительной степени зависит от типа используемого наполнителя и места впрыска (ов). Наполнители без гиалуроновой кислоты дают постоянные результаты, но также могут вызывать необратимые осложнения. Я видел множество пациентов из других офисов с сильным переполнением силиконом (рис. 10.142 и 10.145) в таких областях, как щеки. Попытка удалить этот наполнитель из нескольких плоскостей тканей щеки чрезвычайно трудна и может повредить нервы, сосуды, околоушный проток и мягкие ткани.Небольшие болюсы наполнителя иногда возникают в результате инъекции или даже удаленно от места инъекции. Этот заблудший наполнитель часто можно надрезать и выдавить (рис. 10.147).

«Страховкой» наполнителей гиалуроновой кислоты является тот факт, что они могут гидролизоваться ферментом гиалуронидазой. Как правило, это быстрый процесс, который может происходить в течение нескольких часов и довольно эффективен. Такая обратимость чрезвычайно важна, когда встречается недовольный пациент или в экстренных ситуациях, связанных с сосудистой инъекцией, описанной ранее.Все инъекторы должны иметь под рукой гиалуронидазу для немедленного или планового использования, если это необходимо. Хотя гиалуронидаза является очень безопасным лекарством, которое десятилетиями использовалось в косметической хирургии лица, оно может вызывать немедленные или замедленные реакции гиперчувствительности, и на вкладышах в упаковке говорится о тестировании кожи на аллергию перед использованием. Сообщается также о гиперчувствительности или аллергии у пациентов с аллергией на укусы ос или пчел.

В случае инъекции наполнителя, который требует растворения, важно ввести правильное количество гиалуронидазы в правильную плоскость ткани.Если наполнитель вводился в нескольких плоскостях, гиалуронидазу следует вводить в каждой плоскости, хотя она имеет относительное проникновение в ткани. Что касается дозировки, то официального точного режима дозирования не существует. Поскольку препарат доброкачественный, проблемы с дозировкой вторичны. Хотя препарат можно разбавить физиологическим раствором, стерильной водой или местной анестезией, я предпочитаю вводить его неразбавленным с помощью иглы 32-го размера. Как правило, если я хочу уменьшить результат, но не полностью изменить его, я ввожу 15 единиц в область избытка.Если у меня есть большая область, такая как прорезь, губа или щека, которая требует полной отмены результата, я введу примерно 80 единиц гиалуронидазы в эту область. Введение гиалуронидазы также может растворить часть нативной гиалуроновой кислоты пациента и придать ткани сморщенный вид. Пациентов следует предупредить об этом и заверить их, что нормальное состояние нормализуется через 1-2 дня. Рис. 10.148–10.150 показано лечение нежелательного наполнителя гиалуронидазой.

Прозрачные гелевые наполнители с гиалуроновой кислотой имеют много преимуществ, но при слишком поверхностном введении, особенно под тонкой кожей, например под веками, может появиться синеватый оттенок.Это называется эффектом Тиндаля и возникает из-за того, что более короткие волны рассеиваются обратно к наблюдателю (рис. 10.151). Рассеяние света обратно пропорционально четвертой степени длины волны. Более короткие волны отражаются обратно к наблюдателю, тогда как более длинные волны проходят через болюс наполнителя. Эффект Тиндаля (или Рэли) отвечает за голубые глаза и голубое небо. У кареглазых пациентов есть желтый и коричневый пигмент в каждом слое радужной оболочки, который определяет цвет.У пациентов с голубыми глазами темно-коричневый пигмент присутствует только на сетчатке, а в строме радужной оболочки его нет. В радужной оболочке действительно есть суспензия мелких частиц, а короткие синие волны рассеиваются обратно к наблюдателю, и, таким образом, эффект Тиндаля отвечает за голубые глаза. У младенцев иногда появляются голубые глаза вскоре после рождения, поскольку меланин в строме радужной оболочки еще не сформировался.

Электронное устройство впрыска топлива (Патент)

Нагано, М., Атаго, Т. Устройство электронного управления впрыском топлива . США: Н. П., 1988. Интернет.

Nagano, M, & Atago, T. Устройство электронного управления впрыском топлива . Соединенные Штаты.

Нагано М. и Атаго Т. Вт. «Устройство электронного управления впрыском топлива».Соединенные Штаты.

@article {osti_5280925,
title = {Электронное устройство управления впрыском топлива},
author = {Нагано, М. и Атаго, Т.},
abstractNote = {Описано устройство впрыска топлива с электронным управлением, содержащее (a) клапан впрыска топлива, расположенный в системе впуска и приводимый в действие электрически, (b) средство оценки запуска для определения состояния запуска двигателя внутреннего сгорания, (c) впрыск топлива средство формирования сигнала запуска для формирования сигнала начала впрыска, определяющего момент начала впрыска клапана впрыска топлива, когда средство определения запуска определяет состояние проворачивания; и (d) средство генерации импульса впрыска для генерирования импульса впрыска для открытия клапана впрыска топлива между предшествующими и последующими сигналами начала впрыска, генерируемыми средством генерации сигнала начала впрыска, отличающееся тем, что дополнительно содержит средство коррекции импульсов для управления средством генерирования импульсов впрыска в таким образом, что количество импульсов впрыска увеличивается с понижением температуры двигателя внутреннего сгорания.},
doi = {},
url = {https://www.osti.gov/biblio/5280925}, журнал = {},
номер =,
объем =,
place = {United States},
год = {1988},
месяц = ​​{1}
}

Система двигателя с непосредственным впрыском бензина

Микроконтроллеры Renesas

в сочетании с преобразователями сигналов датчиков (SSC) создают решение, которое позволяет ускорить вывод на рынок, обеспечивает модель поддержки систем и сокращает циклы отладки для приложений с системами прямого впрыска.

Системы прямого впрыска, в которых топливный насос высокого давления нагнетает топливо для впрыска непосредственно в цилиндр с помощью инжектора, обеспечивают большую свободу в выборе момента впрыска и объема, чем системы многоточечного впрыска (MPI). Можно ожидать, что это обеспечит улучшенную экономию топлива.

В качестве решения для таких все более сложных требований управления, как эти, Renesas поставляет микроконтроллеры, сочетающие в себе высокопроизводительные процессоры и низкое энергопотребление для систем ЭБУ двигателя и обширную линейку аналоговых и силовых устройств.Формирователи сигналов датчиков (SSC) в сочетании с микроконтроллерами создают решение, которое ускоряет вывод на рынок, обеспечивает модель поддержки системы и сокращает циклы отладки.

Основные характеристики:

  • Поддерживает ISO26262-Req. & Автомобильная промышленность-Электромагнитная совместимость и -Надежность
  • Позволяет снизить общую стоимость системы
  • Более точные результаты калибровки SSC всего за один проход
  • Эффективный OWI (однопроводный интерфейс) — связь @ EoL для низкой стоимости калибровки

Сопутствующие товары

Категория Описание Избранный документ Заказ
Компаратор
UPC277 / UPC177 Низкое энергопотребление Выбрать конкретное устройство Выбрать конкретное устройство
Отказоустойчивый переключатель
UPD166033T1U 42 В / 6 мОм, TO252-7, одноканальный, интеллектуальное устройство питания высокого напряжения (IPD) Лист данных Связаться с отделом продаж
UPD166034T1U 42 В / 8 мОм, TO252-7, одноканальный, интеллектуальное устройство питания высокого напряжения (IPD) Лист данных Связаться с отделом продаж
UPD166031AT1U 42 В / 10 мОм, TO252-7, одноканальный, интеллектуальное устройство питания высокого напряжения (IPD) Лист данных Связаться с отделом продаж
UPD166032T1U 42 В / 12 мОм, TO252-7, одноканальный, интеллектуальное устройство питания высокого напряжения (IPD) Лист данных Связаться с отделом продаж
Микроконтроллер
(основной)
RH850 / E2UH MCU для управления двигателем 16 МБ ПЗУ, 2048 КБ ОЗУ, рабочая частота 400 МГц Выбрать конкретное устройство Выбрать конкретное устройство
RH850 / E2H MCU для управления двигателем, 12 МБ ПЗУ, 1152 КБ ОЗУ, рабочая частота 400 МГц Выбрать конкретное устройство Выбрать конкретное устройство
RH850 / E2M MCU для управления двигателем, 8 МБ ПЗУ, 768 КБ ОЗУ, рабочая частота 400 МГц Выбрать конкретное устройство Выбрать конкретное устройство
RH850 / E1M-S2 MCU для управления двигателем 4M ROM, 352K RAM, рабочая частота 240-320MHz Выбрать конкретное устройство Выбрать конкретное устройство
RH850 / E1L MCU для управления двигателем 2M ROM, 192K RAM, рабочая частота 160-240 МГц Выбрать конкретное устройство Выбрать конкретное устройство
Микроконтроллер
(Sub)
RL78 / F15 8/16-битные микроконтроллеры со сверхнизким энергопотреблением
128–512 КБ ПЗУ, 10–32 КБ ОЗУ, рабочая частота 24-32 МГц
Выбрать конкретное устройство Выбрать конкретное устройство
RL78 / F14 8/16-битные микроконтроллеры со сверхнизким энергопотреблением
48–256 КБ ПЗУ, 4–20 КБ ОЗУ, рабочая частота 24–32 МГц
Выбрать конкретное устройство Выбрать конкретное устройство
RL78 / F13 8/16-битные микроконтроллеры со сверхнизким энергопотреблением
16–128 КБ ПЗУ, 1–8 КБ ОЗУ, рабочая частота 24-32 МГц
Выбрать конкретное устройство Выбрать конкретное устройство
Операционный усилитель
ЧИТАТЬ 2351JSP Полный диапазон ввода / вывода, операционный усилитель с низким энергопотреблением Лист данных Купить / Образец
ЧИТАТЬ 2352JSP Вход / выход полного диапазона, операционный усилитель с высокой скоростью нарастания Лист данных Купить / Образец
UPC1251 / UPC451 Операционный усилитель с низким энергопотреблением Выбрать конкретное устройство Выбрать конкретное устройство
UPC842 / UPC844 Операционный усилитель с высокой скоростью нарастания напряжения Выбрать конкретное устройство Выбрать конкретное устройство
Преобразователь сигнала датчика
ZSSC41xx Серия Преобразователь сигналов автомобильного датчика Выбрать конкретное устройство Выбрать конкретное устройство
Привод линейного соленоида трансмиссии
UPD166035GR 35 В / 2 А / 100 мОм, Power SOP 8, одноканальный, интеллектуальное устройство питания высокого напряжения (IPD) Лист данных Связаться с отделом продаж
UPD166036GR 35 В / 2 А / 100 мОм, Power SOP 8, одноканальный, интеллектуальное устройство питания высокого напряжения (IPD), встроенный операционный усилитель Лист данных Связаться с отделом продаж

Устройство управления впрыском топлива для двигателя внутреннего сгорания (Патент)

Исобе, Т., Оба, Х. Устройство управления впрыском топлива для двигателя внутреннего сгорания . США: Н. П., 1987. Интернет.

Isobe, T, & Oba, H. Устройство управления впрыском топлива для двигателя внутреннего сгорания . Соединенные Штаты.

Исобе, Т., Оба, Х.Вт. «Устройство управления впрыском топлива для двигателя внутреннего сгорания». Соединенные Штаты.

@article {osti_6096725,
title = {Устройство управления впрыском топлива для двигателя внутреннего сгорания},
author = {Исобе, Т. и Оба, Н},
abstractNote = {Устройство управления впрыском топлива описано для двигателя внутреннего сгорания, включая средство измерения количества всасываемого воздуха для измерения количества всасываемого воздуха Q, средство определения частоты вращения двигателя для определения количества оборотов N двигателя за фиксированное время и количества впрыскиваемого топлива средство установки для установки основного количества впрыскиваемого топлива в соответствии с сигналом количества всасываемого воздуха, генерируемым средством измерения количества всасываемого воздуха, и сигналом частоты вращения двигателя, генерируемым средством определения частоты вращения двигателя.Устройство управления впрыском топлива состоит из: средства определения момента начала переходной операции для определения момента начала ускорения или момента начала замедления двигателя; средство измерения числа оборотов двигателя для измерения заданного количества оборотов двигателя из момента начала ускорения или момента начала замедления; средство определения угла дроссельной заслонки для обнаружения того, что угол дроссельной заслонки выходит за пределы установленного диапазона; и средство для установки верхнего предельного клапана и / или нижнего предельного значения Q / N, рассчитанного на основе сигнала количества всасываемого воздуха и сигнала частоты вращения двигателя, когда средство определения угла дроссельной заслонки генерирует сигнал, показывающий, что угол дроссельной заслонки выходит за пределы установленного диапазона до тех пор, пока средство измерения числа оборотов двигателя не измерит заданное число оборотов двигателя.},
doi = {},
url = {https://www.osti.gov/biblio/6096725}, журнал = {},
номер =,
объем =,
place = {United States},
год = {1987},
месяц = ​​{9}
}

Engler Machine & Tool

О НАС

Энглер Machine & Tool специализируется на системах впрыска топлива на 600 и 1000 микрон. спринты, карлики, 305-е, 360-е, 410-е и большие блоки.Мы можем создать индивидуальный инъекция для удовлетворения ваших конкретных потребностей. Мы посвящаем себя предоставление высококачественных тяговых шасси, валов, специальных Продукция с ЧПУ и некоторые виды обработки на заказ.

У нас есть Engine Dyno для испытания двигателя и недавно добавленное шасси Dyno. У нас также есть топливный стенд для проверки топливных насосов. Когда вы заказываете новый впрыск топлива от нас, проливаем вашу топливную систему БЕСПЛАТНО! http://www.youtube.com / watch? v = blKMLzk-_l4


Мы теперь предлагают механический и электронный впрыск для микро-спринтов. Мы продаем полный впрыск с форсунками, топливный насос, спинальный клапан, малая скорость, высокая скорость, быстросъемный держатель таблеток, воздухоочиститель заготовки, переходник насоса и вал, и электрический водяной насос. У нас их еще нет в Интернете, но если если вы хотите заказать его, позвоните нам по телефону 812-386-6254.


ШАССИ ENGLER

С участием более 30 лет опыта, мы стремимся обеспечить высочайшее качество шасси в тягаче трактора.Шасси Engler выиграли многочисленные NTPA, PPL, Чемпионаты ATPA и TNT по очкам. В настоящее время у нас есть шасси в Канаде, Германия, Англия, Нидерланды, Голландия и США. Владелец, Тим Энглер был введен в Зал славы NTPA в 2006 году и получил награду Награда Lucas Oil Lifetime Achievement Award в 2008 году. Шасси недоступны для заказать онлайн, но вы можете позвонить нам, и мы будем рады принять ваш заказ заказывать.

Прямой впрыск или порт впрыска топлива


Хотя старые технологии улучшаются, некоторые из них остаются на некоторое время по той или иной причине.Это справедливо в отношении аргумента прямого впрыска по сравнению с портом топливного впрыска. Последний является более новой технологией, в то время как PFI все еще используется в некоторых из самых популярных автомобилей автомобильной промышленности для продажи. С середины 1920-х годов дизельные двигатели имели своего рода впрыск топлива, тогда как любой вид системы впрыска топлива на бензиновом двигателе — это повышение производительности, начиная примерно с 1980-х годов до современных автомобилей.
Портовый впрыск топлива
Портовый впрыск топлива — это когда топливо (бензин или дизельное топливо) впрыскивается до клапана и цилиндра, где происходит сгорание.Еще в начале 1900-х годов Bosch и Clessie Cummins (да, запчасти Bosch и дизельное топливо Cummins) решили улучшить оригинальную воздушно-струйную систему Рудольфа Дизеля, впрыскивая топливо прямо во впускной клапан. распыляет топливо в воздух, попадающий в двигатель. Оттуда свечи зажигания воспламеняют взвесь воздуха и топлива под давлением, толкая головку блока цилиндров вниз и вращая коленчатый вал. Теперь это происходит в каждом из цилиндров, поэтому, если у вас двигатель V6 с впрыском в порт, это происходит так быстро, что вы даже не заметите цикл, кроме шума.
Прямой впрыск
Вместо того, чтобы смешивать топливо с воздухом перед клапаном, при прямом впрыске топливная суспензия поступает непосредственно в камеру сгорания. Это было значительным улучшением карбюраторной системы и обеспечивает большую мощность системы без использования слишком большого количества топлива. В то время как старые системы впрыска топлива могут запускаться механически в автомобилях, произведенных в 1900-х годах, большинство систем впрыска теперь управляются электронным способом через двигатель. ECU (электронный блок управления) и имеют более экологичные возможности.Большинство систем теперь представляют собой системы с замкнутым контуром (улучшенные топливно-воздушные смеси) с кислородным датчиком, передающим информацию в ЭБУ, который контролирует фактическое смешивание воздуха с топливом. Большинство автомобилей, построенных с 1990-х годов, имеют двигатели с прямым впрыском.
Плюсы и минусы обоих
Поскольку дизельные двигатели не имеют свечей зажигания или крышек распределителя, требуется меньше усилий для настройки. Тем не менее, они не будут так полезны для окружающей среды, как прямой впрыск бензина. Хотя непосредственный впрыск бензина становится дешевле в разработке, он по-прежнему немного дороже, поэтому вы можете найти его только на некоторых моделях, а не на всех транспортных средствах. .Однако прямой впрыск можно использовать вместе с другими технологиями, такими как турбокомпрессоры или нагнетатели, что позволяет максимально эффективно использовать двигатель.

* * * * *

Чтобы проверить автомобиль с прямым впрыском топлива, позвоните или посетите вашего местного розничного продавца AutoNation уже сегодня!

Носимые устройства для инъекций для здравоохранения

Осмос

— мощная приводная система

Вода и соль составляют двигатель устройства, в отличие от традиционных приводных механизмов, использующих двигатели и аккумуляторы или пружины.Соль выделяется с одной стороны полупроницаемой мембраны при активации устройства. Избыток чистой воды, втянутой затем в солевую сторону, приводит в движение резиновую пробку в стандартном картридже с лекарством.

Текущая конфигурация обеспечивает скорость потока около 1 мл / мин. Однако осмос может медленно создавать высокое давление, в результате чего пользователь устройства может вводить высоковязкие лекарства через тонкие иглы, в отличие от пружинной системы, которая мгновенно высвобождает всю энергию.

Удобные и интуитивно понятные устройства для инъекций

Устройство предназначено для хранения лекарственного средства в холодильнике; в текущей конфигурации объемом 3 мл длина корпуса устройства составляет 76 мм (три дюйма).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *