Рабочий цикл 4 тактного двигателя: Рабочий цикл четырехтактного двигателя — как это работает

Содержание

Рабочий цикл четырехтактного двигателя — как это работает

В числе процессов, характеризующих работу мощных и производительных машин и механизмов, следует отметить рабочий цикл четырехтактного двигателя. Это совокупность процессов, повторяющихся в определенной последовательности, во время которых цилиндр наполняется рабочей смесью, после чего происходит ее сжатие и воспламенение. Газы, образовавшиеся при сгорании, расширяются, а затем – удаляются из цилиндра.

Рабочий цикл четырехтактного двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.

Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на автомобилях не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторах. Это связано прежде всего с тем, что они имеют сравнительно высокий расход топлива и недостаточное наполнение горючей смеси из-за плохой очистки цилиндров от отработавших газов.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска. В карбюраторном четырехтактном одноцилиндровом двигателе рабочий цикл происходит следующим образом.

Такт впуска

Поршень находится в в.м.т. и по мере вращения коленчатого вала (за один его полуоборот) перемещается от в.м.т. к н.м.т. При этом впускной клапан открыт, а выпускной клапан закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре создается разряжение, равное

0,07—0,095 МПа, в результате чего свежий заряд горючей смеси, состоящей из паров бензина и воздуха, засасывается через впускной трубопровод в цилиндр. От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру 75—125 °С.

Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотных карбюраторных двигателей находится в пределах 0,65—0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.

Такт сжатия

После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от н.м.т. к в.м.т. Впускной клапан закрывается, а выпускной закрыт. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от степени сжатия давление в конце такта сжатия может составлять

0,8—1,5 МПа, а температура газов 300— 450 °С.

Такт расширения, или рабочий ход

В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от в.м.т. к н.м.т. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах

3,5—5 МПа, а температура газов 2100—2400 °С.

При такте расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3—0,75 МПа, а температура — до 900—1200 °С.

Такт выпуска

Коленчатый вал через шатун перемещает поршень от н.м.т. к в.м.т. При этом выпускной клапан открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубопровод. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до

0,105—0,120 МПа, а температура газов в начале такта выпуска составляет 750— 900 °С, понижаясь к его концу до 500—600 °С. Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.

Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах

0,06—0,12. По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.

Двухтактный двигатель – особенности работы

Весь цикл работы двухтактного двигателя происходит за один оборот коленвала. Это позволяет на выходе получать приблизительно в 1,4-1,8 раз большую мощность, с того же рабочего объема, имея те же самые обороты двигателя. Разумеется, коэффициент полезного действия у таких агрегатов значительно ниже, чем у тех же 4 тактных моделей. Это используется при создании тяжелых и низкооборотных двигателей судов. Здесь они напрямую соединяются с гребным валом. Нашли свое применение такие модели и в мотоциклах.

Это так же приводит к тому, что модели, работающие в 2 такта, очень сильно греются. Здесь выделятся большая тепловая энергия. В некоторых случаях приходится подключать к ним дополнительное охлаждение, чтобы агрегат всегда находился в работоспособном состоянии. Однако, можно выделить и плюс подобной технологии. Ввиду того, что работа поршня ограничивается 2 тактами, он совершает гораздо меньше движений за единицу времени, поэтому потери на трение минимальны. Это напрямую отражается на износе основных рабочих деталях двухтактного двигателя.

Еще одной актуальной проблемой для данной модели является тот факт, что постоянно нужно искать компромисс между потерями свежего заряда и качеством продувки.

Да, принцип работы заставляет ведущих инженеров и техников трудится над созданием универсальной системы, которая бы сводила к минимуму потери. 4 тактный двигатель вытесняет отработанные газы в тот момент, когда его поршень находится в верхней мертвой точке. Здесь ситуация коренным образом меняется. Вся отработка вылетает в трубу в тот момент, когда цилиндр практически полностью свободен, то есть этот процесс захватывает его объем полностью. Качество обдува играет в этом очень важную роль.

Именно поэтому не всегда удается разделить свежую рабочую смесь от выхлопных газов. В любом случае они будут смешиваться. Особенно отчетливо такая проблема выделяется у карбюраторных моделей моторов, которые напрямую подают готовое к работе горючее в цилиндр. Естественно, в данном случае стоит говорить о большем количестве используемого воздуха. Отсюда возникает необходимость применения сложных по структуре и составу воздушных фильтров. 4 тактный двигатель обделен этим недостатком.

Принцип работы данной модели двигателя говорит о том, что его применение может быть ограничено ввиду особенностей конструкции и большого количества потерь. Однако от 2 тактов еще никто не отказывается, создавая все больше устройств на его основе. Стоит отметить, что сегодня на рынке представлено множество различных механизмов, которые используют как 4 тактный двигатель внутреннего сгорания, так и двухтактный. Кстати, тот экземпляр, о котором мы решили поговорить сегодня, может иметь не только простейшее строение, в некоторых механизмах используются достаточно сложные его варианты.

Рабочий цикл двухтактного двигателя – достоинства и недостатки

Самое главное преимущество двухтактных двигателей – более высокая, по сравнению с четырехтактными, литровая мощность. Дело здесь в том, что при равном количестве цилиндров и количестве оборотов коленчатого вала в минуту, каждый цилиндр совершает рабочий ход вдвое чаще. При этом, за счет того, что фактический рабочий ход двухтактного двигателя короче (он укорочен за счет процессов газообмена), реально объем двигателя увеличивается на 50-60%.

Не менее важное преимущество – компактность. Благодаря этому качеству двухтактные двигатели нашли широкое применение не только в небольших транспортных средствах наподобие снегоходов, но и в садовой технике, а также инструментах (к примеру, в бензопилах). Кроме того, отсутствие газораспределительного механизма заметно делает конструкцию проще и дешевле в производстве. Есть у двухтактных ДВС и существенные недостатки. Они расходуют больше топлива впустую, так как при открытии выпускного окна в систему выхлопа попадает часть несгоревшей смеси. Система смазки классического двухтактного мотора крайне примитивна – бензин смешивается с маслом заранее, и оба эти вещества попадают в камеру сгорания одновременно. Обусловлено это тем, что организовать масляную ванну в картере невозможно – картер участвует в процессе газообмена.

В результате масло, не пошедшее на смазывания стенок цилиндра, сгорает вместе с топливом. Ресурс двухтактного двигателя также значительно меньше, главным образом, за счет высоких оборотов коленвала. По этой причине в двигателях этого типа применяется только специальное высококачественное масло, разработанное для применения в двухтактных двигателях. Экологические параметры также оставляют желать лучшего: в выхлопе, из-за особенностей газораспределения, содержится большое количество СО и СН.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Рабочий цикл четырехтактного карбюраторного двигателя


Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом,по которому они работают.

Рабочий цикл –это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.

Рабочий процесс,происходящий в цилиндре за один ход поршня, называется тактом.

По числу тактов,составляющих рабочий цикл, двигатели делятся на два вида:

четырехтактные,в которых рабочий цикл совершается за четыре хода поршня,

двухтактные,в которых рабочий цикл совершается за два хода поршня.

На легковых автомобилях, как правило, применяются четырехтактныедвигатели, а на мотоциклах и моторных лодках – двухтактные.О путешествиях по водным просторам поговорим как-нибудь потом, а с четырьмя тактами работы автомобильного двигателя разберемся сейчас.

Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:

– впуск горючей смеси,

– сжатие рабочей смеси,

– рабочий ход,

– выпуск отработавших газов.

Рис. 8. Рабочий цикл четырехтактного карбюраторного двигателя:а) впуск; б) сжатие; в) рабочий ход; г) выпуск

Первый такт – впуск горючей смеси(рис. 8а

).

Горючей смесьюназывается смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор или форсунка, о чем мы поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху примерно 1:15считается оптимальным для обеспечения нормального процесса сгорания.

При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.

Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.

В процессе заполнения цилиндра горючаясмесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется рабочая.

Второй такт – сжатие рабочей смеси(рис. 8б

)
.
При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке. Оба клапана плотно закрыты, поэтому рабочая смесь сжимается.

Из школьной физики всем известно, что при сжатии газов их температура повышается. Давление в цилиндре над поршнем в конце такта сжатия достигает 9–10 кг/см², а температура 300–400°С.

В заводской инструкции к автомобилю можно увидеть один из параметров двигателя с названием – «степень сжатия» (например 8,5). А что это такое?

Степень сжатияпоказывает, во сколько раз полный объем цилиндра больше объема камеры сгорания (Vn/Vc –см. рис. 7). У бензиновых двигателей в конце такта сжатия объем над поршнем уменьшается в 8–11 раз.

В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. От начала первого такта и до окончания второго, он повернется уже на один оборот.

Третий такт – рабочий ход(рис. 8в

)
.
Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал.

Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.

В самом конце такта сжатия рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. Поскольку впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход – давить на подвижный поршень.

Под действием давления, достигающего величины 50 кг/см², поршень начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила в несколько тонн, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент.

При такте рабочего хода температура в цилиндре достигает более 2000 градусов.

Коленчатый вал при рабочем ходе делает очередные пол-оборота.

Четвертый такт – выпуск отработавших газов(рис. 8г

).

При движении поршня от нижней мертвой точки к верхней мертвой точке открывается выпускной клапан (впускной все еще закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.

Вот почему слышен тот сильный грохот, когда по дороге движется автомобиль без глушителя, но об этом позже. А пока обратим внимание на коленчатый вал двигателя – при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.

После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск… и так далее.

Теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается одноцилиндровым двигателем только в течение одного такта – такта рабочего хода!Остальные три такта (выпуск, впуск и сжатие) являются лишь подготовительными и совершаются они за счет кинетической энергии вращающихся по инерции коленчатого вала и маховика.

Маховик(рис. 9)это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода поршень через шатун и кривошип раскручивает коленчатый вал двигателя, который передает маховику запас энергии вращения.

Рис. 9. Коленчатый вал двигателя с маховиком:1 шатунная шейка; 2 – противовес; 3 – маховик с зубчатым венцом; 4 – коренная (опорная) шейка; 5 – коленчатый вал двигателя

Запасенная в массе маховика энергия вращения позволяет ему в обратном порядке через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. Поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска) именно за счет отдаваемой маховиком энергии.

Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик, конечно, тоже помогает.

В детстве у вас наверняка была игрушка, которая называлась волчок. Вы раскручивали его энергией своей руки

(
рабочий ход
)
и радостно наблюдали за тем, как долго он вращается. Точно так же и массивный маховик двигателя – раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.

Рабочий цикл четырехтактного дизеля

В отличие от карбюраторного двигателя в цилиндр дизеля воздух и топливо вводятся раздельно.

Такт впуска

Поршень движется от в.м.т. к н.м.т. (рисунок а), впускной клапан открыт, в цилиндр поступает воздух.

Такт сжатия

Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т. (рисунок б) и сжимает воздух. Вследствие большой степени сжатия (порядка 14…18) температура воздуха становится выше температуры самовоспламенения топлива.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного дизеля: а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска

В конце такта сжатия при положении поршня, близком к в.м.т., в цилиндр через форсунку начинает впрыскиваться жидкое топливо. Устройство форсунки обеспечивает тонкое распыливание топлива в сжатом воздухе.

Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и оставшимися газами, образуется рабочая смесь. Большая часть топлива воспламеняется и сгорает, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Поршень движется от в.м.т. к н.м.т. (рисунок в). В начале такта расширения сгорает остальная часть топлива.

Преимущества четырёхтактных двигателей:

В отличие от двухтактного двигателя, в котором смазка коленвала, подшипников коленвала, компрессионных колец, поршня, пальца поршня и цилиндра осуществляется благодаря добавлению масла в топливо; коленвал четырехтактного двигателя находится в масляной ванне. Благодаря этому нет необходимости смешивать бензин с маслом или доливать масло в специальный бачок. Достаточно залить чистый бензин в топливный бак и можно ехать, при этом отпадает необходимость покупки специального масла для 2-тактных двигателей.

Так же на зеркале поршня и стенках глушителя и выхлопной трубы образуется значительно меньше нагара. К тому же, в 2-тактном двигателе происходит выброс топливной смеси в выхлопную трубу, что объясняется его конструкцией.

Впуск

Итак, в камере сгорания силового агрегата циклы преобразований энергии начинаются с реакции горения топливной смеси. При этом поршень находится в самой верхней своей точке (положение ВМТ), а затем движется вниз. В результате в камере сгорания двигателя возникает разрежение. Под его воздействием горючая жидкость всасывает топливо. Впускной клапан при этом находится в открытом положении, а выпускной закрыт.

Когда поршень начинает движение вниз, то над ним увеличивается объем. Это и вызывает разрежение. Оно составляет примерно 0,071-0,093 МПа. Таким образом, в камеру сгорания попадает бензин. В инжекторных двигателях топливо впрыскивается форсункой. После поступления смеси в цилиндр ее температура может составлять 75 до 125 градусов.


Смотреть галерею

То, как сильно цилиндр будет заполнен топливной смесью, определяют по коэффициентам заполнения. Для двигателей с карбюраторной системой питания данный показатель составит от 0,64 до 0,74. Чем выше значение коэффициента, тем более мощный мотор.

Такт расширения газов в дизельном двигателе

Когда поршень дизельного двигателя еще не дошел до верхней точки примерно на 30 градусов по коленвалу, ТНВД через форсунку подает в цилиндр топливо под высоким давлением. Значение в 18 МПа необходимо, чтобы горючее могло тонко распыляться и распределиться по всему объему в цилиндре.


Смотреть галерею

Далее топливо под действием высоких температур воспламеняется и быстро сгорает. Поршень движется к нижней точке. Температура внутри цилиндра в этот момент составляет около 2000 градусов. К концу такта температура снижается.

От чего зависит мощность четырехтактного ДВС

Тут вроде бы всё ясно — мощность поршневого двигателя в основном определяется:

  1. объёмом цилиндров;
  2. степенью сжатия рабочей смеси;
  3. частотой вращения.

Поднять мощность четырехтактного двигателя также можно повысив пропускную способность тактов всасывания и выхлопа, увеличив диаметр клапанов (особенно впускных).

Так же максимальная мощность получается при максимальном заполнении цилиндров, для этого используют турбины принудительной подкачки воздуха в цилиндр. В следствии чего повышается давление в цилиндре и соответственно КПД двигателя значительно возрастает.

Рекомендуем: Таблица вязкости моторного масла

Двухтактный двигатель – особенности работы

Если рассматривать двухтактный двигатель, следует отметить, что газовый топливный обмен совершается при нахождении поршня возле нижней предельной точки (мертвой), несколько не доходя до нее. Отработанные газы начинают удаляться из цилиндра при изменении их объема за небольшой промежуток времени. Очистка цилиндра в классическом двухтактном двигателе производится с помощью продувки воздуха, поступающего через компрессор.

Во время продувки воздух частично удаляется, а выпуск отработанных газов производится с помощью выпускных окон до того, как они будут закрыты поршнем. После этого наступает начало процесса сжатия, протекающего, как и в обычном четырехтактном двигателе. При движении поршня снизу вверх происходит перекрытие продувочных окон, после чего воздух из компрессора в цилиндр уже не подается.

Порядок работы

Описанные этапы составляют рабочий цикл четырехтактного бензинового двигателя. Нужно понимать, что каких-либо строгих соответствий между тактами и процессами в поршневых двигателях нет. Это легко объяснить тем, что при эксплуатации силового агрегата фазы газораспределительного механизма и то, в каком состоянии находятся клапаны, будет накладываться на движения поршней в различных моторах совершенно по-разному.

В любом цилиндре рабочий цикл четырехтактного карбюраторного двигателя протекает именно таким образом. Каждая камера сгорания в двигателе нужна для вращения единственного коленчатого вала, воспринимающего усилие от поршней.

Это чередование называют порядком работы. Такой порядок задается на этапе конструирования силового агрегата через особенности распределительного и коленчатого валов. Он не изменяется в процессе эксплуатации механизма.

Реализация порядка работы осуществляется чередованием искр, которые поступают на свечи от системы зажигания. Так, четырехцилиндровый мотор может работать в следующих порядках – 1, 3, 4, 2 и 1, 2, 4, 3.


Смотреть галерею

Узнать порядок, в котором работают цилиндры двигателя, можно из инструкции к автомобилю. Иногда порядок работы указан на корпусе блока.

Вот как протекает рабочий цикл четырехтактного карбюраторного двигателя или любого другого. Система питания никак не влияет на принцип действия агрегата. Разница лишь в том, что карбюратор – это механическая система питания, имеющая определенные недостатки, а в случае с инжекторами этих недостатков в системе нет.

Недостатки четырёхтактных двигателей:

Все холостые ходы (впуск, сжатие, выпуск) совершаются за счёт кинетической энергии, запасённой кривошипно шатунным механизмом и связанными с ним деталями во время рабочего хода, в процессе которого химическая энергия топлива превращается в механическую энергию движущихся частей двигателя. Поскольку сгорание происходит в доли секунд, то оно сопровождается быстрым увеличением нагрузки на крышку (головку) цилиндра, поршень и другие детали двигателя внутреннего сгорания. Наличие такой нагрузки неизбежно приводит к необходимости увеличить массу движущихся деталей (для повышения прочности), что в свою очередь сопровождается ростом инерционных нагрузок на движущиеся детали.

Уступают по мощности двухтактным.

Рабочий ход

Это третий такт рабочего цикла четырехтактного двигателя внутреннего сгорания. Он самый важный в работе силового агрегата. Именно на данном этапе работы двигателя энергия от сгорания топлива преобразуется в механическую, заставляющую вращаться коленчатый вал.


Смотреть галерею

Когда поршень находится в позиции, близкой к ВМТ, еще в процессе сжатия топливная смесь принудительным образом воспламеняется от свечи зажигания двигателя. Топливный заряд сгорает очень быстро. Еще до начала этого такта сгоревшие газы имеют максимальное значение давления. Эти газы являются рабочим телом, сжатым в небольшом объеме камеры сгорания двигателя. Когда поршень начнет двигаться вниз, газы начинают интенсивно расширяться, высвобождая энергию.

Среди всех тактов рабочего цикла четырехцилиндрового двигателя именно этот самый полезный. Он функционирует на нагрузку агрегата. Только на этом этапе коленвал получает разгонное ускорение. Во всех прочих мотор не вырабатывает энергию, а потребляет ее от того же коленчатого вала.

Четырехтактный двигатель: принцип работы, основные отличия

Четырехтактный двигатель представляет собой поршневой мотор внутреннего сгорания. Рабочий процесс всех цилиндров в этих агрегатах занимает 2 кругооборота коленчатого вала или четыре поршневых такта. С середины ХХ века 4 тактный двигатель — самый распространенный вид поршневых моторов.

Принцип работы и основная характеристика

Рабочий цикл ДВС (двигателя внутреннего сгорания) состоит из ряда процессов, при которых усиливается мощность двигателя, воздействующего на коленчатый вал. Состоит рабочий цикл из нескольких этапов:

  • цилиндр заполняется топливной смесью;
  • смесь сжимается;
  • топливная смесь воспламеняется;
  • газы расширяются и цилиндр очищается.

В ДВС поршень двигается в одном направлении (вниз или вверх). Коленчатый вал совершает один оборот в два такта. Рабочим ходом поршня называют тот, при котором совершается полезная работа, и расширяются сгоревшие газы.

Двухтактными называют двигатели, в которых цикл совершается в один оборот коленчатого вала или за два такта. Четырехтактные агрегаты характеризуются совершением рабочего цикла за два оборота коленвала или за четыре такта.

Основные характерные показатели 4 тактного двигателя:

  1. За счет движения рабочего поршня происходит обмен газов.
  2. Агрегат оснащен газораспределительным механизмом, позволяющим цилиндровую полость переключать на впуск и выпуск.
  3. Происходит обмен газов в момент отдельного полуоборота коленвала.
  4. Шестерные редукторы и ременная цепная передача дают возможность изменить моменты впрыскивания бензина, зажигания и привода газораспределительного механизма по отношению к частоте вращения коленвала.

История

Приблизительно в 1854—1857 годах итальянцами Феличче Матоци и Евгением Барсанти было создано устройство, которое по имеющимся сегодня сведениям было похоже на четырехтактный мотор. Изобретение итальянцев было утеряно и только в 1861 году. Алфоном де Роше был запатентован двигатель такого типа.

Впервые пригодный к работе четырехтактный мотор создал немецкий инженер Николаус Отто. В его честь был назван четырехтактный цикл работы циклом Отто, а 4-тактный мотор, применяющий свечи зажигания, называют двигателем Отто.

Особенности работы 4-х тактного двигателя

В двухтактном моторе смазывание поршневых и цилиндровых пальцев, коленвала, поршня, подшипника и компрессорных колец проводят, заливая масло в бензин. Коленчатый вал 4тактного мотора располагается в масляной ванне, что является существенным отличием. Именно поэтому отсутствует необходимость смешивать топливо и добавлять масло. Все, что необходимо сделать владельцу автомобиля — наполнить бензином топливный бак.

Автовладельцу, таким образом, незачем приобретать специальное масло, без которого не может функционировать двухтактный мотор. Кроме того, при наличии четырехтактного мотора на поршневом зеркале и на стенах глушителя уменьшается количество нагара. Еще одно важное отличие — в двухтактном моторе в выхлопную трубу выплескивается горючая смесь, что обусловлено его устройством.

Следует признать, что у четырехтактных двигателей также имеются небольшие недостатки. Например, у них не особо качественными являются рабочие моменты по регулированию теплового клапанного зазора.

Конструкция агрегата

Распредвал четырехтактного мотора размещается в крышке цилиндра. Он приводится в действие ведущим колесом, вмонтированном в коленчатый вал. Распределительный вал открывает и закрывает один из клапанов: выпускной или впускной, в зависимости от расположения поршня. На распределительном вале также расположены кулачки, которые приводят в действие клапанные коромысла.

Коромысла после срабатывания, начинают воздействовать на определенный клапан и открывают его. Важно, что между регулировочным винтом и клапаном должен быть тепловой зазор (узкий промежуток). При нагреве металл расширяется, поэтому, если зазор слишком маленький или его нет вообще, клапаны не могут закрыть полностью каналы выпуска и впуска.

У клапана впуска зазор должен быть меньше, чем у клапана выпуска, потому как газы выхлопа горячее, чем смесь. Соответственно клапан впуска нагревается меньше, чем клапаны выпуска.

Работа двигателя

Как уже было отмечено работа четырехтактного мотора состоит из четырех тактов поршня или из двух оборотов коленвала.

Этапы работы :

  1. Впуск. Поршень движется в нижнюю сторону, открывая клапан впуска. Из карбюратора горючая смесь поступает в цилиндр. Когда поршень достигает нижнего положения, клапан впуска закрывается.
  2. Сжатие. Поршень движется вверх, провоцируя сживание горючей смеси. Когда он приближается к верхней точке, сжатый бензин возгорается.
  3. Расширение. Бензин возгорается и сгорает. В результате чего происходит растяжение горючих газов, и поршень движется вниз. При этом два клапана оказываются закрытыми.
  4. Выпуск. Коленчатый вал по инерции продолжает двигаться вокруг своей оси, а поршень движется вверх. Вместе с этим открывается клапан выпуска, и выхлопные газы поступают в трубу. При прохождении клапаном мертвой точки, клапан впуска закрывается.

Конструктивные и эксплуатационные отличия четырехтактных двухтактных бензиновых двигателей

Главное отличие четырехтактного двигателя от двухтактного обусловлено разными механизмами газообмена, а именно: удалением отработанных газов и подачей топливно-воздушной смеси в цилиндр.

Процессы заполнения цилиндра и его очистки в четырехтактном двигателе происходят с помощью газораспределительного специального механизма, который в определенное время открывает и закрывает рабочий цикл.

Очистка цилиндра и его заполнение в двухтактном двигателе выполняется в одно время с с расширением и сжатием при нахождении поршня поблизости мертвой нижней точки. В стенках цилиндра для этого имеется два отверстия: продувочное или впускное и выпускное. Через выпускное отверстие поступает топливная смесь, и выходят отработанные газы.

Основные отличия двухтактных и четырехтактных двигателей:

  1. Литровая мощность. В четырехтактном двигателе на два оборота коленчатого вала приходится один рабочий ход. Поэтому теоретически двухтактный двигатель должен иметь литровую мощность вдвое больше, чем четырехтактный. Но на практике превышение составляет около 1,8 раза, благодаря использованию поршня при расширении хода, а также наличия худшего механизма освобождения цилиндра от отработанных газов и больших затрат на продувку части мощности.
  2. Потребление топлива. Двухтактный двигатель превосходит четырехтактный в удельной и литровой мощности, но уступает в экономичности. Отработанные газы вытесняются воздушно — топливной смесью, которая поступает в цилиндр из шатунно-кривошипной камеры. Часть топливной смеси при этом поступает в выхлопные каналы и удаляется с отработанными газами.
  3. У двухтактного и четырехтактного двигателей принцип смазки двигателя существенно отличается. Двухтактные модели характеризуются необходимостью смешивания бензина с моторным маслом в определенных пропорциях. Масляная воздушно-топливная смесь циркулирует в поршневой и кривошипной камерах, смазывая подшипники коленчатого вала и шатуна. Мельчайшие капли масла при возгорании топливной смеси сгорают вместе с бензином. Продукты сгорания уходят вместе с отработанными газами.

Смешивают бензин с маслом двумя способами. Это может быть простое перемешивание, которое проводится перед тем, как залить в бак топливо и раздельная передача. Во втором случае масляно-топливная смесь образуется во впускном патрубке, расположенном между цилиндром и карбюратором.

Двигатель в последнем случае оснащен масляным бачком с трубопроводом, соединенным с плунжерным насосом. Насос подает масло во впускной патрубок в том количестве, которое необходимо. Производительность насоса зависит от того, как расположена ручка подачи «газа». Поступление масла тем больше, чем больше подается топливо. Более совершенной является раздельная система смазки двухтактного двигателя. Отношение бензина к маслу при ней может достигать 200:1. Это приводит к снижению расхода масла и к уменьшению дымности. Такую систему используют, например, на современных скутерах.

В четырехтактных двигателях бензин с маслом не смешивают, а подают отдельно, для чего двигатели имеют классическую систему смазки, которая состоит из фильтра, масляного насоса, трубопроводной магистрали и клапанов. В качестве масляного бачка может выступать картер двигателя (смазка с «мокрым «картером) либо отдельный бачок («сухой» картер).

В первом случае насос всасывает из поддона масло, направляет его во входную полость, а затем по каналам -к деталям шатунно-кривошипной группы, к подшипникам коленвала и газораспределительному механизму.

В случае смазки с «сухим» картером масло заливают в бочок. Оттуда оно при помощи насоса попадает к трущимся поверхностям. Стекающую в картер часть масла откачивают дополнительным насосом и возвращают в бачок.

Для очищения масла от разных продуктов износа двигатель имеет фильтр. Кроме того при необходимости устанавливают охлаждающие фильтра, потому как температура масла в процессе работы может очень сильно подниматься.

«Рабочий цикл 4-х тактного бензинового двигателя»

4. Изучение нового материала – 25 мин.

Итак, тема нашего занятия: «Рабочий цикл четырехтактного бензинового двигателя».

Цель, которая будет стоять перед нами — разобраться, из чего состоит рабочий цикл четырехтактного бензинового двигателя?

Я надеюсь, что ответ на этот вопрос вы найдете в течение нашего занятия.

«Ребята, как вы думаете, что такое рабочий цикл четырехтактного бензинового двигателя?»

Рабочий цикл четырёхтактного бензинового двигателя состоит из тактов впуска, сжатия, расширения, и выпуска (рис. 4.1).
Такт впуска. При такте впуска поршень в цилиндре перемещается от в.м.т. до н.м.т. Коленчатый вал поворачивается под действием стартера (если производится запуск двигателя) или по инерции от маховика и/или крутящего момента, создаваемого поршнями других цилиндров (если двигатель работает). Впускные клапаны при такте впуска открыты, выпускные закрыты. За счёт разрежения, создаваемого движущимся поршнем, топливно-воздушная смесь из впускного трубопровода через открытые впускные клапаны поступает в цилиндр. Разрежение в цилиндре на такте впуска может достигать 0,07 МПа.
Разряжение в 0,07 МПа является существенной величиной и определяет чувствительность двигателя к негерметичности соединений, через которые в цилиндр поступает «лишний» воздух. «Лишний» воздух обедняет рабочую смесь, что приводит к неустойчивой работе двигателя, особенно на режиме холостого хода.
Температура в цилиндре к концу такта впуска опускается до 130 – 100°С. Клапаны, стенки камеры сгорания и стенки цилиндров, поршни и другие детали ЦПГ охлаждаются новой порцией смеси, заполняющей цилиндр.
Пройдя нижнюю мёртвую точку, поршень начинает движение к верхней мёртвой точке при такте сжатия.
Такт сжатия. Поршень движется к в.м.т., но сжатие смеси начинается не тогда когда поршень начинает движение «вверх» а спустя некоторое время после этого, когда закроется впускной клапан.
Время открытия и закрытия как впускных, так и выпускных клапанов, как правило, не совпадает с моментом прихода поршня в мёртвую точку. Открытие клапанов происходит раньше этого момента, а закрытие позже, что необходимо для более полного наполнения цилиндров свежей порцией горючей смеси и для лучшей очистки цилиндров от отработавших газов. Время открытия и закрытия клапанов удобно выражать в углах поворота коленчатого вала, так как угол поворота проще измерить и проконтролировать. В этом случае говорят об углах опережения открытия и углах запаздывания закрытия клапанов относительно мёртвых точек.
При сжатии рабочей смеси в цилиндре растёт давление и температура, которые достигают максимума  при приближении поршня к в.м.т. (8 –14 кгс/см2 и 400 — 500°С, соответственно). В конце такта сжатия (поршень не доходит до в.м.т. на 1 — 30° по углу поворота КВ) смесь в цилиндре воспламеняется от электрической искры и сгорает. Температура горения топливной смеси бензиновых двигателей может достигать 2800°С. Под воздействием температуры давление газов в цилиндре возрастает до 30 – 70 кгс/см2 и поршень начинает движение к н.м.т., совершая полезную работу, т.е. через шатун вращает коленчатый вал двигателя.
Воспламенение (зажигание) рабочей смеси в камере сгорания происходит раньше прихода поршня в в.м.т. Такое зажигание называетсяранним зажиганием. Физический смысл необходимости «раннего» воспламенения смеси упрощённо сводится к следующему: Топливо необходимо сжечь к моменту прихода поршня в верхнюю мёртвую точку, для того чтобы максимальное давление газов начало действовать на поршень с началом его движения к н.м.т. В этом случае мощность двигателя будет наибольшей, а расход топлива оптимальным. Если смесь сгорает до прихода поршня в в.м.т., зажигание слишком раннее, если смесь горит при движении поршня к н.м.т.  зажигание позднее (на самом деле процесс горения смеси продолжается некоторое время при такте рабочего хода). Как при чрезмерно раннем, так и позднем зажигании, рабочие характеристики двигателя ухудшаются. Так как с увеличением оборотов коленчатого вала двигателя поршень движется быстрее, то и зажигание должно быть более ранним. Время воспламенения топливной смеси (также как и время открытия – закрытия клапанов) выражается в углах поворота коленчатого вала относительно в.м.т. и называется углом опережения зажигания. В зависимости от оборотов КВ угол опережения зажигания современных двигателей меняется в пределах от 0 до 30 и, иногда более градусов. Угол опережения зажигания, устанавливаемый для оборотов «холостого хода», называется начальным углом опережения зажигания.
Такт расширения. Пройдя верхнюю мёртвую точку, поршень движется к н.м.т. под давлением расширяющихся газов. Процесс сгорания смеси начинается до прихода поршня в в.м.т. в конце предыдущего такта и длится 40 — 60° в углах поворота КВ. Впускные и выпускные клапаны закрыты, но за 45 — 60° до прихода поршня в н.м.т. начинает открываться выпускной клапан. С открытием выпускных клапанов давление в цилиндре быстро снижается до 5 – 3кгс/см2, температура к концу такта опускается до 1300 — 900°С. К моменту перехода поршнем нижней мёртвой точки выпускной клапан будет полностью открыт, а цилиндр «готов» к очистке от отработавших газов.
Такт выпуска. Двигающийся к верхней мёртвой точке поршень, через выпускные клапаны, вытесняет отработавшие газы в систему выпуска двигателя. Вследствие сопротивления выпускной системы и ряда других факторов, часть отработавших газов остаётся в цилиндре и участвует при последующем такте впуска в смесеобразовании, часть газов на впуске искусственно возвращается в цилиндр (рециркулируется), с целью снижения содержания в отработавших газах окислов азота. Давление в конце такта выпуска немногим больше атмосферного, температура опускается до 400 — 300°С. За 9 — 40° до прихода поршня в в.м.т. открывается впускной клапан. Выпускной клапан при этом продолжает быть открытым вплоть до начала очередного такта впуска, и некоторое время спустя, после того как поршень начнёт движение «вниз».
Угол поворота кривошипа коленчатого вала, при котором впускной и выпускной клапаны одновременно приоткрыты, называется углом перекрытия клапанов.  Моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала относительно мёртвых точек, называют фазами газораспределения. Фазы газораспределения «среднестатистического» бензинового двигателя, в виде круговой диаграммы, показаны на рис. 4.2.
При дальнейшем вращении КВ, рассмотренные нами такты будут чередоваться в той же последовательности.
Как мы видим, протекание того или иного такта в цилиндре двигателя зависит от положения клапанов (открыты или закрыты) и направления движения поршня. Например, такт впуска возможен, если поршень движется вниз, впускные клапаны открыты, а выпускные закрыты. За своевременное открытие – закрытие клапанов «отвечает» распределительный вал, за направление движения поршней – коленчатый вал. Для обеспечения рабочего цикла двигателя работа кривошипно-шатунного и газораспределительного механизмов должна быть синхронизирована. «Синхронизация» обеспечивается установкой коленчатого и распределительного валов в «стартовую позицию» по специальным меткам, выбитым на шкивах валов и корпусных деталях двигателя и получившим название — «метки фаз газораспределения». Если метки фаз газораспределения, по каким либо причинам не совпадают (например, при сборке двигателя механик не обеспечил правильную установку валов) двигатель будет работать неустойчиво или попросту не заведётся. В худшем случае может произойти поломка двигателя из-за «встречи» (столкновения) клапана и поршня. Типовое расположение меток на шкивах коленчатых и распределительных валов показано на рис. 4.3.

Учащиеся записывают название темы занятия.

Учащиеся отвечают на поставленный преподавателем вопрос.

Учащиеся самостоятельно работают с наглядным пособием, слушают объяснения преподавателя и записывают в тетради рабочий цикл четырехтактного бензинового двигателя.

Учащиеся записывают в тетради изменения, происходящие в цилиндре при такте впуска.

Учащиеся записывают в тетради изменения, происходящие в цилиндре при такте сжатия.

Учащиеся записывают в тетради изменения, происходящие в цилиндре при такте расширения.

Учащиеся записывают в тетради изменения, происходящие в цилиндре при такте выпуска.

Учащиеся самостоятельно работают с наглядным пособием, слушают объяснения преподавателя и записывают в тетради «Диаграмму фаз газораспределения четырехтактного двигателя».

Учащиеся самостоятельно работают с наглядным пособием, слушают объяснения преподавателя и записывают в тетради «Типовое расположение меток на шкивах коленчатых и распределительных валов».

Преподаватель сообщает тему урока и нацеливает учащихся на изучение нового материала.

Изучение нового материала начинается с вопроса: «Что такое рабочий цикл четырехтактного бензинового двигателя?»

Преподаватель обращает внимание на изменения, происходящие в цилиндре при такте впуска.

Преподаватель обращает внимание на изменения, происходящие в цилиндре при такте сжатия.

Преподаватель обращает внимание на изменения, происходящие в цилиндре при такте расширения.

Преподаватель обращает внимание на изменения, происходящие в цилиндре при такте выпуска.

Применяется объяснительно-иллюстрированный метод, используются наглядное пособие «Диаграмма фаз газораспределения четырехтактного двигателя»

Применяется объяснительно-иллюстрированный метод, используются наглядное пособие «Типовое расположение меток на шкивах коленчатых и распределительных валов».

Рабочий цикл четырехтактного дизельного двигателя

Категория:

   Автомобили и трактора

Публикация:

   Рабочий цикл четырехтактного дизельного двигателя

Читать далее:



Рабочий цикл четырехтактного дизельного двигателя

Рабочий цикл четырехтактного дизельного двигателя проходит в той же последовательности, что и цикл четырехтактного карбюраторного двигателя. Отличие заключается в характере протекания рабочего цикла, в способе смесеобразования и воспламенения топлива.

Такт впуска. При движении поршня вниз через впускной трубопровод и открытое отверстие впускного клапана и цилиндр поступает чистый воздух. Отсутствие карбюратора уменьшает гидравлические сопротивления и несколько повышает давление в конце впуска (0,09-0,95 ЛШа), а температура воздуха составляет 50-80 С°.

Такт сжатия. Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Поршень сжимает воздух, заполнивший цилиндр. Вследствие большой степени сжатия (е 14—20) давление конца сжатия достигает 4…..5 МПа, а температура 500-700 С°. Такое повышение температуры и давления необходимо для воспламенения топлива, впрыскиваемого в цилиндр двигателя в конце такта сжатия насосом высокого давления через форсунку.

Рекламные предложения на основе ваших интересов:

Такт расширения. В конце такта сжатия, когда поршень еще не дойдет до ВМТ на 15—30° по углу поворота коленчатого вала, насос высокого давления через форсунку впрыскивает дизельное топливо под большим давлением 15—18 МПа. Давление впрыска топлива должно значительно превышать давление воздуха, сжатого в камере сгорания для обеспечения более тонкого рас-пыливания топлива и распределения его по всему объему воздуха, сосредоточенного в камере сгорания.

Струя топлива при выходе из распиливающих отверстий сопла форсунки под действием высокого давления приобретает огромную скорость и, пронизывая массу сжатого воздуха, дробится на мелко распыленные частицы (диаметром 0,002…….0,005 мм). Продолжительность впрыска составляет 6—30 угла поворота коленчатого вала двигателя. Распыленное топливо под воздействием высокой температуры сжатого воздуха воспламеняется и быстро сгорает. Поршень под действием газов перемещается от ВМТ к НМТ, т. е. совершает механическую работу.

Давление газов в конце сгорания достигает -8 МПа, а температура 1800— 2000 С. К концу такта расширения давление в цилиндре падает до 0,3— 0,4 МПа, а температура до 700—800 С°.

Такт выпуска. При этом такте выпускной клапан открыт. Поршень движется от НМТ к ВМТ и через открытый выпускной клапан и выпускной трубопровод из цилиндра удаляются отработавшие газы. Давление выпуска равно 0,105—0,11 МПа, а температура 600—700 С°.

При дальнейшем вращении коленчатого вала двигателя все перечисленные такты повторяются в такой же последовательности.

Четырехтактные дизельные двигатели в настоящее время получили преимущественное распространение на тракторах и автомобилях большой грузоподъемности.

Рекламные предложения:


Читать далее: Рабочий цикл двухтактного карбюраторного двигателя

Категория: — Автомобили и трактора

Главная → Справочник → Статьи → Форум


Рабочий цикл четырехтактного двигателя — особенности, схема и описание

На чтение 27 мин. Просмотров 19

Общий принцип действия

Двигатель работает следующим образом. В камеру сгорания попадает топливная смесь, далее она сжимается под воздействием поршня. После этого смесь воспламеняется. Это приводит к расширению продуктов сгорания, они давят на поршень и выходят из цилиндра.

В двухтактных двигателях один оборот коленчатого вала совершается в два такта. Четырехтактный поршневой двигатель совершает рабочий цикл за два оборота коленчатого вала. Двигатели оснащаются ГРМ. Что это за механизм? Это элемент, который позволяет впускать топливную смесь в камеры и выпускать оттуда продукты сгорания. Обмен газов осуществляется в момент отдельного оборота коленчатого вала. Газообмен происходит за счет движения поршня.

Как работает четырехтактный двигатель

Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:

  • цилиндр;
  • поршень – выполняет возвратно-поступательные движения внутри цилиндра;
  • клапан впуска – управляет процессом подачи топливовоздушной смеси в камеру сгорания;
  • клапан выпуска – управляет процессом выброса отработавших газов из цилиндра;
  • свеча зажигания – осуществляет воспламенение образовавшейся топливовоздушной смеси;
  • коленчатый вал;
  • распределительный вал – управляет открытием и закрытием клапанов;
  • ременной или цепной привод;
  • кривошипно-шатунный механизм – переводит движение поршня во вращение коленчатого вала.

Рабочий цикл четырехтактного двигателя
Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:

  1. Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
  2. Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
  3. Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
  4. Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.

В ходе каждого такта коленчатый вал двигателя совершает поворот на 180°. За полный рабочий цикл коленвал поворачивается на 720°.

Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.

В четырёхтактном дизеле рабочие процессы происходят следующим образом.

Поршень движется от НМТ к ВМТ. Впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает имеющийся в цилиндре воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива.

– Такт расширения, или рабочий ход При подходе поршня к ВМТ в цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом высокого давления (ТНВД). Впрыснутое топливо, перемешиваясь с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. Под действием давления газов поршень перемещается от ВМТ к НМТ. Происходит рабочий ход.

– Такт выпуска Поршень перемещается от НМТ к ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

На этом видео показана работа реального двигателя. Камера встроена в цилиндр блока.

Рабочий цикл 4-х тактного бензинового двигателя

Итак, тема нашего занятия: «Рабочий цикл четырехтактного бензинового двигателя».

Цель, которая будет стоять перед нами — разобраться, из чего состоит рабочий цикл четырехтактного бензинового двигателя?

Я надеюсь, что ответ на этот вопрос вы найдете в течение нашего занятия.

«Ребята, как вы думаете, что такое рабочий цикл четырехтактного бензинового двигателя?»

Рабочий цикл четырёхтактного бензинового двигателя состоит из тактов впуска, сжатия, расширения, и выпуска (рис. 4.1).


Такт впуска. При такте впуска поршень в цилиндре перемещается от в.м.т. до н.м.т. Коленчатый вал поворачивается под действием стартера (если производится запуск двигателя) или по инерции от маховика и/или крутящего момента, создаваемого поршнями других цилиндров (если двигатель работает). Впускные клапаны при такте впуска открыты, выпускные закрыты. За счёт разрежения, создаваемого движущимся поршнем, топливно-воздушная смесь из впускного трубопровода через открытые впускные клапаны поступает в цилиндр. Разрежение в цилиндре на такте впуска может достигать 0,07 МПа. Разряжение в 0,07 МПа является существенной величиной и определяет чувствительность двигателя к негерметичности соединений, через которые в цилиндр поступает «лишний» воздух. «Лишний» воздух обедняет рабочую смесь, что приводит к неустойчивой работе двигателя, особенно на режиме холостого хода. Температура в цилиндре к концу такта впуска опускается до 130 – 100°С. Клапаны, стенки камеры сгорания и стенки цилиндров, поршни и другие детали ЦПГ охлаждаются новой порцией смеси, заполняющей цилиндр. Пройдя нижнюю мёртвую точку, поршень начинает движение к верхней мёртвой точке при такте сжатия. Такт сжатия. Поршень движется к в.м.т., но сжатие смеси начинается не тогда когда поршень начинает движение «вверх» а спустя некоторое время после этого, когда закроется впускной клапан. Время открытия и закрытия как впускных, так и выпускных клапанов, как правило, не совпадает с моментом прихода поршня в мёртвую точку. Открытие клапанов происходит раньше этого момента, а закрытие позже, что необходимо для более полного наполнения цилиндров свежей порцией горючей смеси и для лучшей очистки цилиндров от отработавших газов. Время открытия и закрытия клапанов удобно выражать в углах поворота коленчатого вала, так как угол поворота проще измерить и проконтролировать. В этом случае говорят об углах опережения открытия и углах запаздывания закрытия клапанов относительно мёртвых точек. При сжатии рабочей смеси в цилиндре растёт давление и температура, которые достигают максимума при приближении поршня к в.м.т. (8 –14 кгс/см2 и 400 — 500°С, соответственно). В конце такта сжатия (поршень не доходит до в.м.т. на 1 — 30° по углу поворота КВ) смесь в цилиндре воспламеняется от электрической искры и сгорает. Температура горения топливной смеси бензиновых двигателей может достигать 2800°С. Под воздействием температуры давление газов в цилиндре возрастает до 30 – 70 кгс/см2 и поршень начинает движение к н.м.т., совершая полезную работу, т.е. через шатун вращает коленчатый вал двигателя. Воспламенение (зажигание) рабочей смеси в камере сгорания происходит раньше прихода поршня в в.м.т. Такое зажигание называетсяранним зажиганием. Физический смысл необходимости «раннего» воспламенения смеси упрощённо сводится к следующему: Топливо необходимо сжечь к моменту прихода поршня в верхнюю мёртвую точку, для того чтобы максимальное давление газов начало действовать на поршень с началом его движения к н.м.т. В этом случае мощность двигателя будет наибольшей, а расход топлива оптимальным. Если смесь сгорает до прихода поршня в в.м.т., зажигание слишком раннее, если смесь горит при движении поршня к н.м.т. – зажигание позднее (на самом деле процесс горения смеси продолжается некоторое время при такте рабочего хода). Как при чрезмерно раннем, так и позднем зажигании, рабочие характеристики двигателя ухудшаются. Так как с увеличением оборотов коленчатого вала двигателя поршень движется быстрее, то и зажигание должно быть более ранним. Время воспламенения топливной смеси (также как и время открытия – закрытия клапанов) выражается в углах поворота коленчатого вала относительно в.м.т. и называется углом опережения зажигания. В зависимости от оборотов КВ угол опережения зажигания современных двигателей меняется в пределах от 0 до 30 и, иногда более градусов. Угол опережения зажигания, устанавливаемый для оборотов «холостого хода», называется начальным углом опережения зажигания. Такт расширения. Пройдя верхнюю мёртвую точку, поршень движется к н.м.т. под давлением расширяющихся газов. Процесс сгорания смеси начинается до прихода поршня в в.м.т. в конце предыдущего такта и длится 40 — 60° в углах поворота КВ. Впускные и выпускные клапаны закрыты, но за 45 — 60° до прихода поршня в н.м.т. начинает открываться выпускной клапан. С открытием выпускных клапанов давление в цилиндре быстро снижается до 5 – 3кгс/см2, температура к концу такта опускается до 1300 — 900°С. К моменту перехода поршнем нижней мёртвой точки выпускной клапан будет полностью открыт, а цилиндр «готов» к очистке от отработавших газов. Такт выпуска. Двигающийся к верхней мёртвой точке поршень, через выпускные клапаны, вытесняет отработавшие газы в систему выпуска двигателя. Вследствие сопротивления выпускной системы и ряда других факторов, часть отработавших газов остаётся в цилиндре и участвует при последующем такте впуска в смесеобразовании, часть газов на впуске искусственно возвращается в цилиндр (рециркулируется), с целью снижения содержания в отработавших газах окислов азота. Давление в конце такта выпуска немногим больше атмосферного, температура опускается до 400 — 300°С. За 9 — 40° до прихода поршня в в.м.т. открывается впускной клапан. Выпускной клапан при этом продолжает быть открытым вплоть до начала очередного такта впуска, и некоторое время спустя, после того как поршень начнёт движение «вниз». Угол поворота кривошипа коленчатого вала, при котором впускной и выпускной клапаны одновременно приоткрыты, называется углом перекрытия клапанов. Моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала относительно мёртвых точек, называют фазами газораспределения. Фазы газораспределения «среднестатистического» бензинового двигателя, в виде круговой диаграммы, показаны на рис. 4.2.


При дальнейшем вращении КВ, рассмотренные нами такты будут чередоваться в той же последовательности. Как мы видим, протекание того или иного такта в цилиндре двигателя зависит от положения клапанов (открыты или закрыты) и направления движения поршня. Например, такт впуска возможен, если поршень движется вниз, впускные клапаны открыты, а выпускные закрыты. За своевременное открытие – закрытие клапанов «отвечает» распределительный вал, за направление движения поршней – коленчатый вал. Для обеспечения рабочего цикла двигателя работа кривошипно-шатунного и газораспределительного механизмов должна быть синхронизирована. «Синхронизация» обеспечивается установкой коленчатого и распределительного валов в «стартовую позицию» по специальным меткам, выбитым на шкивах валов и корпусных деталях двигателя и получившим название — «метки фаз газораспределения». Если метки фаз газораспределения, по каким либо причинам не совпадают (например, при сборке двигателя механик не обеспечил правильную установку валов) двигатель будет работать неустойчиво или попросту не заведётся. В худшем случае может произойти поломка двигателя из-за «встречи» (столкновения) клапана и поршня. Типовое расположение меток на шкивах коленчатых и распределительных валов показано на рис. 4.3.

История

Первое устройство, напоминающее четырехтактный мотор, изобрели Феличче Матоци и Евгений Барсанти. Но данное изобретение невероятным образом утеряли. Лишь в 1861 году похожий агрегат запатентовали.

А первый пригодный к использованию двигатель разработал инженер из Германии Николаус Отто. Мотор получил имя изобретателя, а рабочий цикл четырехтактного двигателя также носит имя этого инженера.

Двухтактный двигатель.

Двухтактный и четырехтактный цикл схожи лишь тем, что в них присутствует сжатие и расширение рабочего тела. Такты наполнения топливом двигателя и его последующей очистки от продуктов сгорания заменены продувкой двигателя вблизи НМТ положения поршня. А весь рабочий цикл укладывается в течение одного оборота коленвала.

Если говорить о двухтактном цикле, то он делится на следующие такты: изначально, поршень поднимается вверх, сжимая рабочую смесь в цилиндре, а также создавая разрежение в кривошипной камере. Клапан впускного коллектора открывается от воздействия этого разряжения, и новая порция горючей смеси (зачастую с добавлением масла) втягивается в кривошипную камеру. При опускании поршня вниз закрывается клапан в кривошипной камере, а также повышается давление. В остальном же: поджег, сгорание топлива, и расширение рабочего тела происходят идентично, как и в четырехтактных двигателях. Но есть один нюанс, в момент, когда поршень опускается, примерно за 60° до НМТ открывается выпускное окно (поршень перестает его перекрывать). Выхлопные газы, находящиеся под большим давлением, устремляются в выпускной коллектор через это окно. Немного позже, поршень открывает и впускное окно, которое расположено со стороны впускного коллектора. Новая порция топлива из кривошипной камеры, попадает в рабочий объем цилиндра, под воздействием опускающегося поршня, и вытесняет оставшиеся отработанные газы. При этом, небольшая часть рабочей смеси попадает в выпускной коллектор, однако на обратном ходе поршня она втягивается обратно в кривошипную камеру.

Основные отличия четырехтактных моторов

В двухтактном двигателе поршневые и цилиндровые пальцы, коленчатый вал, подшипники и компрессионные кольца смазываются за счет масла, которое доливают в топливо. В четырехтактном моторе все узлы установлены в масляной ванне. Это существенное отличие. Поэтому в четырехтактном агрегате нет необходимости смешивать масла и бензин.

Преимущества системы заключаются в том, что на зеркале в цилиндрах и на стенках глушителя количество нагара значительно меньше. Еще одно отличие – в двухтактных двигателях в выхлопную трубу попадает горючая смесь.

Работа двигателя

Вне зависимости от типа мотора, принцип его работы аналогичен. Сегодня существуют карбюраторные моторы, дизельные, инжекторные. Во всех моделях происходит один и тот же рабочий цикл четырехтактного двигателя. Давайте подробно рассмотрим, какие же процессы работают внутри мотора и заставляют его приходить в движение.

Четырехтактный цикл – это последовательность из четырех рабочих тактов. За начало обычно принимается такт, когда в камеры сгорания попадает горючая смесь. Хоть за время его течения в двигателе проходят и другие действия, обозначаемый такт – это один рабочий процесс. К примеру, такт сжатия – это не только сжатие. В этот период смесь перемешивается в цилиндрах, начинается формирование газа, она воспламеняется.

То же самое можно сказать и о других этапах работы двигателя. Самое важное здесь то, что разные процессы для лучшего понимания и упрощения рабочего цикла четырехтактного двигателя раскладывают лишь на четыре такта.

Особенности работы двухтактных моторов

Основой того, чем отличается двухтактный двигатель от четырехтактного, можно назвать тот факт, что в первом за один рабочий цикл коленвал совершает два оборота, а во втором весь рабочий цикл укладывается в один оборот коленвала (360°). Поршень при этом совершает лишь два хода. Процессы, происходящие в камере сгорания в течение рабочего цикла у двухтактного мотора, не отличаются от четырехтактных, но впуск горючей смеси и выпуск отработавших газов выполняются одновременно с тактами сжатия и расширения.

Процесс одновременного удаления отработавших газов и нагнетания в цилиндр свежего заряда, происходящий в двухтактном двигателе, получил название продувка.

Принцип работы простейшего двухтактного двигателя заключается в следующем:

  1. Такт сжатия. В начале цикла поршень находится в НМТ и движется в положение ВМТ такта сжатия. При этом происходит перекрытие окна продувки (впуска), а затем канала выпуска. В момент, когда поршень закрывает окно выпуска, начинается сжатие горючей смеси, и в пространстве под поршнем возникает разрежение. Это обеспечивает нагнетание топлива в камеру через приоткрытый клапан впуска.
  2. Такт расширения (рабочего хода). Когда поршень приближается к ВМТ, происходит срабатывание свечи зажигания, и горючая смесь воспламеняется. Это провоцирует резкое повышение давления и температуры, в результате чего поршень начинает движение вниз. Таким образом, газы совершают полезную работу, а поршень при движении к НМТ увеличивает компрессию топливовоздушной смеси. С ростом давления клапан начинает закрываться и препятствует попаданию горючей смеси во впускной коллектор. При достижении поршнем выпускного окна, происходит открытие последнего, и отработавшие газы удаляются в систему выхлопа. Давление в камере снижается, а дальнейшее движение поршня открывает канал продувки и топливовоздушная смесь подается в камеру, вытесняя отработавшие газы.

В зависимости от того, как реализована система продувки в устройстве двухтактного двигателя, их разделяют на разные типы:

  • С контурной кривошипно-камерной продувкой. Горючая смесь подается в камеру цилиндра напрямую из картера двигателя. При этом она всасывается в момент движения поршня к ВМТ, а при движении поршня к НМТ обеспечивается продувка за счет избыточного давления.
  • С клапанно-щелевой продувкой. Применяется для одноцилиндровых двигателей. Газораспределение реализуется путем перекрытия окон, выполненных в стенке цилиндра.
  • С прямоточной продувкой. В такой конструкции впуск выполняется через специальные продувочные окна, выполненные по окружности цилиндра в его нижней части. В свою очередь, выпуск реализуется через выхлопной клапан.
  • С использованием продувочных насосов. Применяется на многоцилиндровых двухтактных двигателях. При этом воздух для продувки сжимается специальным компрессором.

В отличие от четырехтактного, двухтактный двигатель не имеет системы газораспределения. Не требуют такие конструкции и организации сложной системы смазки. С другой стороны, четырехтактные моторы более экономичны по расходу топлива, а также меньше подвержены вибрации и обеспечивают более чистый выхлоп.

Впуск

Итак, в камере сгорания силового агрегата циклы преобразований энергии начинаются с реакции горения топливной смеси. При этом поршень находится в самой верхней своей точке (положение ВМТ), а затем движется вниз. В результате в камере сгорания двигателя возникает разрежение. Под его воздействием горючая жидкость всасывает топливо. Впускной клапан при этом находится в открытом положении, а выпускной закрыт.

Когда поршень начинает движение вниз, то над ним увеличивается объем. Это и вызывает разрежение. Оно составляет примерно 0,071-0,093 МПа. Таким образом, в камеру сгорания попадает бензин. В инжекторных двигателях топливо впрыскивается форсункой. После поступления смеси в цилиндр ее температура может составлять 75 до 125 градусов.

То, как сильно цилиндр будет заполнен топливной смесью, определяют по коэффициентам заполнения. Для двигателей с карбюраторной системой питания данный показатель составит от 0,64 до 0,74. Чем выше значение коэффициента, тем более мощный мотор.

Эксплуатационные показатели в сравнении

Сопоставляя двухтактный двигатель и четырехтактный двигатель, разницу между ними можно заметить не только в устройстве, но и в эксплуатационных характеристиках. Сравнивать их можно по следующим показателям:

  • литровая мощность;
  • удельная мощность;
  • экономичность;
  • экологичность;
  • шумность;
  • ресурс работы;
  • простота обслуживания;
  • вес;
  • цена.

Литровой называется мощность, снимаемая с литра объёма цилиндра. Теоретически она должна быть в два раза больше у двухтактного. Однако на деле этот показатель составляет 1,5−1,8. Сказывается неполное использование рабочего хода газов, затраты энергии на продувку, неполное сгорание и потери топлива.

Первый такт — впуск.

Поршень перемещается с ВМТ в НМТ. Освобождающаяся над поршневая полость цилиндра заполняется горючей смесью через открытый впускной клапан из-за возникающего разрежения. Горючая смесь, поступая в цилиндр, смешивается с остатками отработавших газов от предыдущего цикла, образует рабочую смесь. В конце такта давление в цилиндре составляет 0,07—0,95 МПа, температура — 350—390 К, коэффициент наполнения цилиндра — 0,6—0,7.

Рабочий ход

Это третий такт рабочего цикла четырехтактного двигателя внутреннего сгорания. Он самый важный в работе силового агрегата. Именно на данном этапе работы двигателя энергия от сгорания топлива преобразуется в механическую, заставляющую вращаться коленчатый вал.

Когда поршень находится в позиции, близкой к ВМТ, еще в процессе сжатия топливная смесь принудительным образом воспламеняется от свечи зажигания двигателя. Топливный заряд сгорает очень быстро. Еще до начала этого такта сгоревшие газы имеют максимальное значение давления. Эти газы являются рабочим телом, сжатым в небольшом объеме камеры сгорания двигателя. Когда поршень начнет двигаться вниз, газы начинают интенсивно расширяться, высвобождая энергию.

Среди всех тактов рабочего цикла четырехцилиндрового двигателя именно этот самый полезный. Он функционирует на нагрузку агрегата. Только на этом этапе коленвал получает разгонное ускорение. Во всех прочих мотор не вырабатывает энергию, а потребляет ее от того же коленчатого вала.

Основы работы и конструкции двигателя

Рабочий цикл четырехтактного карбюраторного двигателя

В отличие от дизеля у карбюраторного двигателя воздух и топливо поступают в цилиндр одновременно в виде горючей смеси, приготовленной карбюратором.

Воспламенение горючей смеси происходит от искры, которая образуется в искровой свече зажигания, установленной в головке цилиндра.

Рабочий цикл четырехтактного карбюраторного двигателя протекает следующим образом.

Впуск. Поршень перемещается вниз. Впускной клапан открыт. Вследствие разрежения внутрь цилиндра через впускной канал поступает горючая смесь, которая перемешивается с остаточными газами, в результате чего образуется рабочая смесь.

Сжатие. Поршень движется вверх. Впускной и выпускной клапаны закрыты.

Объем над поршнем уменьшается, и рабочая смесь сжимается, благодаря чему улучшается испарение и перемешивание паров бензина с воздухом. К концу такта давление достигает 1,0… 1,2 МПа, а температура — 350… 400°С.

Рабочий ход или сгорание и расширение. Оба клапана закрыты. В конце такта сжатия рабочая смесь воспламеняется от искры.

Поршень под действием давления расширяющихся газов перемещается от в.м.т. к н.м.т. Давление газов достигает 2,5…4,0 МПа, а температура доходит до 2300°С.

Выпуск

После совершения газами полезной работы они должны выйти из цилиндра, чтобы освободилось место для новой порции горюче-воздушной смеси. Это последний такт в рабочем цикле четырехтактного двигателя.

Газы на этом этапе находятся под давлением, существенно превышающем атмосферное. Температура к концу такта снижается примерно до 700 градусов. Коленвал посредством шатуна двигает поршень к ВМТ. Далее открывается выпускной клапан, газы выталкиваются в атмосферу через выхлопную систему. Что касается давления, то оно высокое только в самом начале. В конце такта оно снижается до 0,120 МПа. Естественно, полностью избавиться от продуктов сгорания в цилиндре невозможно. Поэтому они при следующем такте впуска смешиваются с топливной смесью.

Такт расширения газов в дизельном двигателе

Когда поршень дизельного двигателя еще не дошел до верхней точки примерно на 30 градусов по коленвалу, ТНВД через форсунку подает в цилиндр топливо под высоким давлением. Значение в 18 МПа необходимо, чтобы горючее могло тонко распыляться и распределиться по всему объему в цилиндре.

Далее топливо под действием высоких температур воспламеняется и быстро сгорает. Поршень движется к нижней точке. Температура внутри цилиндра в этот момент составляет около 2000 градусов. К концу такта температура снижается.

Описание рабочего цикла четырехтактного двс

На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании. Рассмотрим принцип устройства и работы двигателя внутреннего сгорания (ДВС), а также его рабочие циклы.

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

• Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации – Фото 2-5

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье “как устроены бензиновые и дизельные двигатели”.

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 – 0.75 МПа, а температура до 950 – 1200оС.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

В отличие от бензинового двигателя, при такте “впуск” в цилиндры дизеля поступает чистый воздух. Во время такта “сжатие” воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Как протекает рабочий цикл четырехтактного карбюраторного двигателя?

Рабочий цикл четырехтактного карбюраторного двигателя

Рабочий цикл (рис. 2, а) совершается за два оборота коленчатого вала. Цикл состоит из пяти процессов: впуска, сжатия, горения, расширения и выпуска. Эти пять рабочих процессов происходят за четыре хода поршня и составляют четыре такта: впуск, сжатие, рабочий ход и выпуск. Рабочий ход состоит из двух рабочих процессов – горения и расширения. Остальные такты состоят каждый из одного рабочего процесса.

Впуск – это процесс заполнения цилиндра двигателя свежим зарядом (горючей смесью). Поршень движется от в. м. т. к н. м. т. Объем над поршнем увеличивается. В цилиндре создается разрежение, и через открытый впускной клапан цилиндр заполняется горючей смесью, которая внутри цилиндра смешивается с продуктами сгорания, оставшимися от предыдущего цикла. Так образуется рабочая смесь.

Когда коленчатый вал повернется на 180°, цилиндр заполнится рабочей смесью, впускной клапан закроется и впуск закончится. В конце впуска давление в цилиндре двигателя меньше атмосферного (0,70 – 0,85 кг/см 2 ). Это объясняется наличием сопротивлений, которые встречают на своем пути воздух при прохождении через воздушный фильтр и горючая смесь при прохождении через карбюратор, трубопроводы и клапаны.

При создании двигателей стремятся повысить давление рабочей смеси в конце впуска, так как, чем выше давление, тем больше вес свежего заряда, тем лучше наполнение цилиндра, тем больше развиваемая двигателем мощность. Соприкасаясь с нагретыми частями двигателя и продуктами сгорания, горючая смесь нагревается, и в конце впуска температура ее достигает 70 – 130° С. Это обеспечивает хорошее испарение бензина. Но чем выше температура рабочей смеси, тем меньше ее удельный вес. Поэтому температуру рабочей смеси нельзя чрезмерно повышать во избежание уменьшения мощности двигателя. Кроме того, повышение температуры рабочей смеси при впуске может вызвать ее самовоспламенение во время такта сжатия.

Сжатие – процесс уменьшения объема рабочей смеси в цилиндре, в результате которого быстрее и полнее сгорает рабочая смесь, повышается экономичность и мощность двигателя. Поршень движется от н. м. т. к в. м. т. при закрытых клапанах и сжимает рабочую смесь.

К концу сжатия давление в цилиндре возрастает до 7 – 12 кг/см 2 , а температура – до 350 – 400° С. Повышение температуры и давления определяется степенью сжатия. Степень сжатия – это отношение полного объема цилиндра к объему камеры сгорания. Чем выше степень сжатия, тем выше давление и температура в конце сжатия.

Но величина степени сжатия ограничивается свойствами применяемого в двигателе горючего, его антидетонационными качествами. Чем выше октановое число бензина, тем выше допускаемая степень сжатия. Современные двигатели имеют степень сжатия 6 – 7,5, и только двигатели легковых автомобилей высокого класса, работающие на специальных бензинах, имеют более высокую степень сжатия. Несоответствие степени сжатия антидетонационным качествам бензина приводит к возникновению детонации.

Некоторого повышения допустимой величины степени сжатия при том же октановом числе бензина добиваются увеличением числа оборотов коленчатого вала, выбором рациональной формы камеры сгорания и уменьшением рабочего объема цилиндров двигателя.

Горение – превращение химической энергии горючего в тепловую. Сгорание рабочей смеси в карбюраторном двигателе происходит взрьтоподобно, фронт пламени распространяется со скоростью 20 – 40 м/сек. Такая скорость сгорания обеспечивает резкое повышение давления и температуры газов в цилиндре двигателя: давление возрастает до 25 – 40 кг/см 2 , а температура – до 2200- 2500° С. В карбюраторном двигателе смесь воспламеняется от электрической искры, проскакивающей между электродами искровой зажигательной свечи.

Расширение – процесс увеличения объема продуктов сгорания в цилиндре двигателя. При этом тепловая энергия, выделившаяся при сгорании рабочей смеси, превращается в механическую работу.

При расширении поршень движется от в. м. т. к н. м. т., объем над поршнем возрастает, температура и давление газов падают. В конце расширения давление равно 3 – 5 кг/см 2 , а температура – 1200 – 1500° С.

Выпуск – процесс удаления продуктов сгорания (отработавших газов) из цилиндра двигателя. Поршень движется от н. м. т. к в. м. т., выпускной клапан открыт, и газы с большой скоростью выталкиваются из цилиндра. Давление в конце выпуска равно 1,1 – 1,2 кг/см 2 , а температура – 700 – 800° С. Избыточное давление отработавших газов объясняется сопротивлением, которое оказывают им выпускной клапан, трубопроводы и глушитель шума выпуска. Абсолютно полная очистка цилиндра невозможна, в нем всегда остается некоторое количество продуктов сгорания (в объеме камеры сгорания), смешивающихся с горючей смесью в процессе впуска.

Полезная механическая работа совершается двигателем только в течение одного такта – рабочего хода. Остальные три такта – выпуск, впуск и сжатие – называются подготовительными и совершаются за счет кинетической энергии маховика, вращающегося по инерции в промежутках между рабочими ходами. Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других цилиндрах.

Порядок работы

Описанные этапы составляют рабочий цикл четырехтактного бензинового двигателя. Нужно понимать, что каких-либо строгих соответствий между тактами и процессами в поршневых двигателях нет. Это легко объяснить тем, что при эксплуатации силового агрегата фазы газораспределительного механизма и то, в каком состоянии находятся клапаны, будет накладываться на движения поршней в различных моторах совершенно по-разному.

В любом цилиндре рабочий цикл четырехтактного карбюраторного двигателя протекает именно таким образом. Каждая камера сгорания в двигателе нужна для вращения единственного коленчатого вала, воспринимающего усилие от поршней.

Это чередование называют порядком работы. Такой порядок задается на этапе конструирования силового агрегата через особенности распределительного и коленчатого валов. Он не изменяется в процессе эксплуатации механизма.

Реализация порядка работы осуществляется чередованием искр, которые поступают на свечи от системы зажигания. Так, четырехцилиндровый мотор может работать в следующих порядках – 1, 3, 4, 2 и 1, 2, 4, 3.

Узнать порядок, в котором работают цилиндры двигателя, можно из инструкции к автомобилю. Иногда порядок работы указан на корпусе блока.

Вот как протекает рабочий цикл четырехтактного карбюраторного двигателя или любого другого. Система питания никак не влияет на принцип действия агрегата. Разница лишь в том, что карбюратор – это механическая система питания, имеющая определенные недостатки, а в случае с инжекторами этих недостатков в системе нет.

Такт сжатия в дизельном двигателе

На данном этапе работы поршень в камере сгорания идет по направлению вверх к ВМТ. Оба клапана в двигателе автомобиля находятся в закрытом состоянии. В результате работы поршня воздух в цилиндре сжимается. Степень сжатия в дизельном двигателе более высокая, чем в бензиновых моторах, а давление внутри цилиндра может достигать 5 МПа. Сжатый воздух существенно нагревается. Температуры могут достигать 700 градусов. Это нужно, чтобы воспламенилось топливо. Оно на дизельных моторах подается через форсунки, установленные на каждом цилиндре. В зимнее время в работе участвуют свечи накаливания. Они предварительно подогревают холодную смесь. Таким образом мотор легче запускается в зимнее время. Но такая система есть не на всех авто.

Источники


  • https://lom-s.ru/obuchenie/rabochij-cikl-4-taktnogo-dvigatelya.html
  • https://AvtoKart.ru/opyt-i-sovety/vpusk-szhatie-rabochij-hod-vypusk.html
  • https://dlobal.ru/rabochij-tsikl-karbyuratornogo-chetyrehtaktnogo-dvigatelya/
  • https://avto-layn.ru/obuchenie/rabochij-cikl-chetyrehtaktnogo-dvigatelya.html
  • https://garage-mo.ru/sovety/rabochij-cikl-chetyrehtaktnogo-karbyuratornogo-dvigatelya-2.html
  • https://toyota-chr2.ru/sovety/cikly-dvs.html
  • https://mbmsystems.ru/dvigatel/kak-protekaet-rabochij-tsikl-chetyrehtaktnogo-karbyuratornogo-dvigatelya.html

Рабочий цикл четырехтактного карбюраторного двигателя — Общее устройство и работа двигателя — Двигатель — Автомобиль

8 июня 2011г.

Рабочий цикл четырехтактного карбюраторного двигателя (смотрите цветной рисунок) состоит из следующих тактов: впуск, сжатие, рабочий ход (сгорание — расширение), выпуск.


Схема рабочего цикла четырехтактного карбюраторного двигателя

Схема рабочего цикла четырехтактного карбюраторного двигателя:

А — такты рабочего цикла;
Б — индикаторная диаграмма.


Впуск. Поршень перемещается от в.м.т. к н.м.т., впускной клапан открыт, в цилиндре образуется разрежение, вследствие чего в него поступает горючая смесь, которая перемешивается с отработавшими газами, оставшимися в небольшом количестве в цилиндре от предыдущего цикла, и образует рабочую смесь. Температура смеси в конце впуска равна 100 — 130° С, а давление примерно 70 — 80 кн/м2 (0,7 — 0,8 кгс/см2). На индикаторной диаграмме процесс впуска изображен линией rа.

Сжатие. Поршень перемещается от н.м.т. к в.м.т. Оба клапана закрыты, рабочая смесь сжимается, и температура ее повышается, благодаря чему улучшается испарение и перемешивание бензина с воздухом.

К концу такта сжатия давление в цилиндре повышается до 800 — 1200 кн/м2 (8 — 12 кгс/см2), температура смеси достигает 280 — 480°G. На индикаторной диаграмме процесс сжатия показан линией ас.

Рабочий ход (сгорание — расширение). Рабочая смесь в цилиндре воспламеняется электрической искрой и сгорает за 0,001 — 0,002 сек, выделяя при этом большое количество теплоты. Оба клапана закрыты. Температура в конце сгорания достигает свыше 2000° С, а давление — 3,5 — 4,0 Мн/м2 (35 — 40 кгс/см2). На индикаторной диаграмме процесс сгорания изображен линией cz. Под действием силы давления газов поршень перемещается к н.м.т., вращая через шатун коленчатый вал, В процессе расширения внутренняя энергия преобразуется в механическую работу. В конце расширения давление в цилиндре падает до 300 — 400 кн/м2 (3 — 4 кгс/см2), а температура снижается до 800 — 1100 °С. На индикаторной диаграмме процесс расширения газов характеризуется линией zb.

Выпуск. Открывается выпускной клапан. Поршень перемещается к в.м.т. и очищает цилиндр от отработавших газов, выталкивая их в атмосферу. Давление к концу такта выпуска снижается до 105 — 115 кн/м2 (1,05 — 1,15 кгс/см2), а температура — до 300 — 400 °С. На индикаторной диаграмме процесс выпуска отработавших газов изображен линией br.

Рабочий процесс четырехтактного двигателя протекает за четыре хода поршня, т. е. за два оборота коленчатого вала.

Из четырех тактов рабочий ход является основным, остальные три
— вспомогательными. Поэтому одноцилиндровый двигатель работает неравномерно. Для обеспечения равномерности вращения коленчатого вала автомобильные двигатели изготовляют с несколькими цилиндрами.

«Автомобиль», под. ред. И.П.Плеханова

Цикл четырехтактного двигателя

Большинство двигателей внутреннего сгорания работают по одному из двух принципов работы: двухтактный или четырехтактный. Четырехтактные двигатели являются преобладающим типом в авиации общего назначения и составляют тему этого поста.

Циклы поршневого двигателя

Поршневые двигатели классифицируются по количеству отдельных шагов, которые двигатель выполняет за один полный цикл двигателя. Двухтактные двигатели совершают цикл за один оборот коленчатого вала с двумя движениями; ход поршня вверх и вниз, который включает впуск, сжатие, сгорание и выпуск.Двухтактные двигатели распространены на легких легких и некоторых небольших сверхлегких самолетах, поскольку эти двигатели имеют меньшее количество деталей, что делает их более простыми в эксплуатации и более дешевыми в приобретении и обслуживании.

Четырехтактные двигатели являются наиболее распространенным типом двигателей, используемых в авиастроении общего назначения, и именно этот тип двигателя мы будем изучать далее. Четырехтактному двигателю требуется два оборота коленчатого вала для завершения одного цикла двигателя, при этом поршень перемещается на 180 ° для завершения каждого этапа цикла.Четырехтактный цикл включает в себя этап впуска и сжатия (один оборот коленчатого вала) и этап мощности и выпуска (один оборот коленчатого вала).

Номенклатура циклов

Есть ряд определений, которые следует хорошо понять, прежде чем переходить к деталям четырехтактного цикла. См. Изображение ниже и определения под изображением.

Рисунок 1: Диаметр цилиндра и ход поршня, движущегося в цилиндре

ВМТ (ВМТ) — это относится к положению поршня, когда он находится в верхней части своего хода.Поршень расположен рядом с верхней частью головки блока цилиндров, а шатунная шейка находится в крайнем верхнем положении.

Нижняя мертвая точка (НМТ) — это точка цикла, в которой поршень находится в нижней части своего хода, а шатунная шейка находится в самом нижнем положении.

Ход — ход двигателя — это возвратно-поступательное расстояние, на которое поршень перемещается в цилиндре от НМТ до ВМТ.

Диаметр цилиндра — это внутренний диаметр цилиндра.

Степень сжатия — объем пространства в цилиндре можно определить с поршнем в НМТ и ВМТ. Соотношение между ними дает степень сжатия. Например, двигатель со степенью сжатия, равной 9, имеет объем в цилиндре в девять раз больше при поршне в НМТ, чем в ВМТ.

Стреловидный объем — это разница между объемом цилиндра с поршнем в ВМТ и в НМТ. Это можно рассчитать, умножив диаметр отверстия на ход:

$$
S.2} {4} \ times Ход
$$
Где:
\ (D: \) Диаметр цилиндра
\ (S.V .: \) Рабочий объем

Четырехтактный цикл

Пока двигатель работает, он будет продолжать непрерывно повторять четыре шага в четырехтактном цикле. Каждый этап цикла представляет собой поворот поршня на 180 °, что соответствует половине оборота коленчатого вала. Поскольку для завершения одного четырехтактного цикла требуется два оборота коленчатого вала, полный цикл будет завершен при половине оборотов двигателя e.Двигатель g, работающий на 3000 об / мин, выполнит 1500 полных циклов за одну минуту.

Двигатель всегда завершает цикл в одном и том же порядке:

Рисунок 2: Элементы четырехтактного цикла

Впускной или индукционный

Целью такта впуска или впуска является втягивание смеси воздуха и топлива в цилиндр. Этот ход происходит при движении поршня вниз из ВМТ в НМТ. Впускной клапан должен быть открыт, чтобы воздушно-топливная смесь попала в цилиндр, в то время как выпускной клапан остается закрытым.Движение поршня вниз вызывает падение давления в цилиндре, в результате чего смесь засасывается в полость, оставленную движением поршня.

Рисунок 3: Такт всасывания или всасывания

Сжатие

Как следует из названия, такт сжатия предназначен для сжатия топливовоздушной смеси, которая всасывается в головку блока цилиндров перед воспламенением. Это достигается перемещением поршня вверх от НМТ к ВМТ. Движение поршня уменьшает объем, занимаемый смесью, вызывая повышение давления и температуры внутри цилиндра.Впускной и выпускной клапаны остаются закрытыми на протяжении большей части хода (впускной клапан остается открытым примерно на 50 ° после НМТ, чтобы обеспечить поступление оптимального количества смеси в цилиндр). Когда поршень приближается к ВМТ, свеча зажигания загорается, воспламеняя смесь. Искра рассчитана таким образом, что инерция движущегося вверх поршня не замедляется зажиганием, а продолжается до ВМТ, где ход заканчивается.

Рисунок 4: Такт сжатия

Мощность

Быстро расширяющийся газ, воспламеняемый свечой зажигания, вызывает скачок давления внутри цилиндра, заставляя поршень вернуться из ВМТ в НМТ.По мере того, как поршень движется вниз, увеличивающийся объем вызывает снижение давления и температуры в цилиндре. Именно этот рабочий ход заставляет коленчатый вал вращаться, что в конечном итоге приводит в движение гребной винт и создает тягу. Впускной и выпускной клапаны остаются закрытыми на протяжении большей части рабочего хода, при этом выпускной клапан открывается непосредственно перед тем, как поршень достигает НМТ. Время открытия клапана устанавливается таким образом, чтобы обеспечить выработку максимальной мощности и в то же время обеспечить наиболее эффективное удаление сгоревшего газа во время такта выпуска.

Рисунок 5: Рабочий ход

Выхлоп

Выпускной клапан открывается непосредственно перед завершением рабочего хода и остается открытым во время движения поршня из НМТ в ВМТ. Движение поршня вытесняет выхлопные газы через открытый выпускной клапан, очищая цилиндр до начала такта впуска. На этом цикл завершается, и поршень снова начинает двигаться вниз по мере повторения шага индукции.

Рисунок 6: Такт выпуска

, полный четырехтактный цикл

Полный цикл показан на изображении ниже.

Рисунок 7: Полный четырехтактный цикл

Работа клапана

Одно из фундаментальных свойств материи — то, что она обладает массой и, следовательно, инерцией. Это означает, что, как и твердое тело, топливно-воздушная смесь подчиняется законам Ньютона и требует силы для преодоления ее инерции и ускорения в цилиндре. Эта сила возникает из-за падения давления в цилиндре при движении поршня вниз, но движение газа не происходит мгновенно. Следовательно, открытие впускного и выпускного клапанов в ВМТ и НМТ соответственно не приведет к максимальной мощности, вырабатываемой двигателем из-за инерции газа.В результате впускной и выпускной клапаны открываются и закрываются не в ВМТ или НМТ, а скорее по обе стороны от этих положений, чтобы обеспечить оптимальную производительность. Важно помнить, что во время нормальной работы двигателя поршни двигаются с очень высокими оборотами, что очень затрудняет отслеживание газом движения поршня.

Вывод клапана — клапан открывается преждевременно (до ВМТ или НМТ) для оптимальной работы двигателя.

Задержка клапана — закрытие клапана задерживается (после ВМТ или НМТ) для улучшения характеристик двигателя.

Вывод клапана Задержка клапана
Впускной клапан Впускной клапан открывается до достижения ВМТ во время такта выпуска, чтобы подготовить цилиндр к приему топливно-воздушной смеси в начале такта впуска. Впускной клапан не закрывается, поскольку НМТ достигается во время такта впуска, а скорее задерживается, пока поршень не пройдет мимо НМТ и не начнет такт сжатия.
Выпускной клапан Выпускной клапан открывается в конце рабочего хода непосредственно перед достижением НМТ.Это позволяет наиболее эффективно отводить газ во время такта выпуска. Выпускной клапан немного закрывается после ВМТ сразу после начала такта впуска. Это помогает удалить весь выхлопной газ, поскольку свежая смесь, поступающая в цилиндр, вытесняет последний оставшийся газ.

Опережение клапана и запаздывание приводят к периоду около ВМТ и НМТ, когда впускной и выпускной клапаны открыты одновременно. Этот период определяется как перекрытие клапана .На изображении ниже представлено графическое представление цикла четырехтактного двигателя, где периоды перекрытия клапанов можно увидеть по перекрытию двух цветных дуг.

Рисунок 8: Области перекрытия клапанов в четырехтактном двигателе

Цикл Отто

Четырехтактный цикл, описанный выше, приводит к изменениям давления и объема газа внутри цилиндра, когда поршень перемещается вверх и вниз во время различных ходов цикла. Термодинамическое представление этого цикла упоминается как цикл Отто, названный в честь немецкого инженера Николауса Отто ; первый человек, построивший рабочий четырехтактный двигатель в 1860-х годах.

Цикл Отто может быть представлен на графике с объемом по оси x и давлением по оси y, и описывает четырехтактный цикл следующим образом:

Рисунок 9: Цикл Отто

Процесс 0–1: газообразная топливно-воздушная смесь (заряд) фиксированной массы втягивается в цилиндр при постоянном давлении (ход впуска).

Процесс 1–2: заряд сжимается адиабатически (предполагается, что нет потерь тепла в окружающую среду), когда поршень перемещается из НМТ в ВМТ (ход сжатия).

Процесс 2–3: Заряд воспламеняется свечой зажигания, что приводит к быстрому увеличению давления в цилиндре. Это происходит при постоянном объеме и представляет собой момент, когда поршень находится в ВМТ перед движением вниз для завершения рабочего хода.

Процесс 3–4: Воспламеняющийся заряд заставляет поршень двигаться вниз, что приводит к адиабатическому (изэнтропическому) расширению газа (рабочий ход).

Процесс 4–1: Вся энергия (тепло), выделяемая при сгорании заряда, была преобразована в движение цилиндра вниз, и тепло рассеивается в процессе постоянного объема, пока поршень находится в НМТ.

Процесс 1–0: Масса воздуха и любого остаточного топлива, которое остается после сгорания, выбрасывается в атмосферу через открытый выпускной клапан в процессе постоянного давления (такт выпуска).

Нумерация цилиндров и порядок зажигания

Важно понимать, что не все цилиндры в любом двигателе одновременно выполняют одну и ту же часть цикла; скорее, каждый из них срабатывает в определенной последовательности, предназначенной для обеспечения плавной работы двигателя и передачи постоянной мощности на винт.Производители авиационных двигателей всегда маркируют каждый цилиндр двигателя и публикуют порядок запуска двигателя.

Порядок зажигания разработан для максимального уравновешивания двигателя за счет обеспечения (в случае горизонтально расположенного двигателя) того, что противоположные поршни движутся в одном направлении. В четырехтактном четырехцилиндровом двигателе каждый цилиндр должен одновременно совершать один из четырех тактов.

Предварительное зажигание и детонация

Предварительное зажигание и детонация — это два отдельных, но схожих явления, которые приводят к преждевременному воспламенению топливно-воздушного заряда, вызывая повреждение поршней и потерю мощности.

Предварительное зажигание: это относится к воспламенению топливно-воздушной смеси перед воспламенением свечи зажигания и вызвано любым источником в цилиндре, достаточно горячим, чтобы вызвать воспламенение. Распространенными причинами преждевременного воспламенения являются горячие точки в камере сгорания, горячий выпускной клапан, перегретая свеча зажигания или раскаленные частицы углерода, отложившиеся в цилиндре. Предварительное воспламенение обычно происходит в одном цилиндре (самом горячем цилиндре), тогда как детонация происходит во всех цилиндрах одновременно.

Детонация (детонация): во время такта сжатия топливно-воздушный заряд подвергается быстро возрастающему давлению и температуре по мере уменьшения объема. Чем выше степень сжатия двигателя, тем горячее становится заряд. При очень высоких степенях сжатия может возникнуть ситуация, когда заряд мгновенно воспламенится (взорвется) до назначенного момента возгорания. Это называется детонацией и вызывает удар, похожий на молоток, по поршню вместо контролируемого плавного толчка во время рабочего хода.При использовании топлива с неправильным октановым числом может возникнуть детонация. Топливо с более высоким октановым числом способно выдерживать большее сжатие перед воспламенением; поэтому крайне важно использовать топливо с правильным октановым числом для конкретного двигателя. Если топливо с рекомендованным октановым числом недоступно, следует использовать топливо с самым высоким октановым числом. Использование топлива с октановым числом ниже рекомендованного может сделать человека уязвимым для детонации.

Детонация все еще может происходить, даже если используется топливо с правильным октановым числом.Следующие элементы также могут вызвать детонацию, если их не устранить во время полета:

  • Полет с более высоким давлением в коллекторе, чем рекомендовано — это приведет к повышению температуры и давления головки цилиндров за пределы нормальных рабочих пределов.
  • Полет на слишком бедной смеси — более бедная смесь увеличивает температуру головки блока цилиндров. Детонация может произойти при добавлении мощности, но без предварительного обогащения смеси.
  • Допускает повышение температуры головки цилиндров сверх нормальных рабочих пределов из-за отсутствия аэродинамического охлаждения.Авиационные двигатели с воздушным охлаждением могут перегреваться во время набора высоты, если за ними не следить. В случаях, когда температура головки блока цилиндров приближается к пределу, может потребоваться уменьшить скорость набора высоты или выполнить ступенчатый набор высоты.

На этом мы подошли к концу нашего обсуждения цикла четырехтактного двигателя внутреннего сгорания. В следующем посте мы перейдем к более практическим аспектам эксплуатации поршневого самолета. Мы начнем с кабины и обсудим инструменты двигателя, общие для большинства легких самолетов, прежде чем перейти к некоторым общим проблемам с двигателями; как их диагностировать и что делать, если вы видите их во время полета.

Вам понравился этот пост? Почему бы не продолжить чтение этой серии статей о поршневых двигателях самолетов и их системах?

Анимированные двигатели — четырехтактный

Четырехтактный двигатель

Четырехтактный двигатель был впервые продемонстрирован Николаусом Отто в 1876 ​​ 1 , поэтому он также известен как Otto цикл . Технически правильным термином на самом деле является четырехтактный цикл . Четырехтактный двигатель, вероятно, является наиболее распространенным типом двигателей в настоящее время.На нем установлены почти все легковые и грузовые автомобили.

Четыре такта цикла — это впуск, сжатие, мощность и выхлоп. Каждый соответствует одному полному ходу поршня; следовательно, полный цикл требует двух оборотов коленчатого вала для полный.

Впуск

Во время такта впуска поршень движется вниз, вытягивая свежий заряд испаренной топливно-воздушной смеси. Изображенный двигатель имеет тарельчатый впускной клапан , который открывается под действием вакуума, создаваемого впускной ход.Некоторые ранние двигатели работали таким образом; однако самые современные двигатели включают дополнительный кулачок / подъемник, как показано на выхлопной клапан. Выпускной клапан удерживается закрытым пружиной (не показано здесь).

Сжатие

Когда поршень поднимается, тарельчатый клапан принудительно закрывается из-за повышенного давления. давление в баллоне. Импульс маховика движет поршень вверх, сжатие топливно-воздушной смеси.

Мощность

В верхней части такта сжатия свеча зажигания загорается, воспламеняя сжатое топливо.Когда топливо сгорает, оно расширяется, приводя в движение поршень. вниз.

Выхлоп

В нижней части рабочего такта выпускной клапан открывается механизмом кулачка / подъемника. Восходящий ход поршень вытесняет отработанное топливо из цилиндра.


Система зажигания

На этой анимации также показана простая система зажигания, использующая прерыватель. точки, катушка, конденсатор и аккумулятор.

Ряд посетителей написали, что указали на проблему с точки прерывания на моей иллюстрации.В этой схеме зажигания свеча зажигания загорится, как только откроются точки прерывателя . Иллюстрация похоже, это наоборот.

На самом деле, иллюстрация верна; он просто движется так быстро, что это трудно увидеть! Вот кадры в точке, где розетки:

Моим первоначальным намерением было точно показать, что точки должны оставаться закрывается всего на долю секунды, называется задержкой . Автор иллюстрируя это, я непреднамеренно скрыл общую работу схема.Возможно, когда-нибудь я подготовлю более подробную иллюстрацию только система зажигания.

Более крупные четырехтактные двигатели обычно включают более одного цилиндра, имеют различные приспособления для распределительного вала (сдвоенные, верхние и т. д.), иногда с системой впрыска топлива, турбокомпрессорами, несколькими клапанами и т. д. эти усовершенствования изменяют базовую работу двигателя.

Рабочий цикл ДВС

Изобретение относится к двигателестроению, т.е.е. двигатели внутреннего сгорания для автомобилей, тракторов и т. д. Способ выполнения рабочего цикла заключается в начале сжатия в момент прекращения выпускных отверстий в стенке цилиндров и перекрытии впускных отверстий открытого клапана на головке цилиндров, когда поршень снизу мертвая точка к верхней мертвой точке, сгорание топлива, рабочий ход, начало вентиляции и выхлопа, сочетание выхлопа и забора чистого воздуха, движение поршня при вентиляции в нижнюю мертвую точку и начало движения поршень в верхнюю мертвую точку, причем рабочий цикл двухтактный, первый ход выполняет часть вентиляции цилиндра и сжатие, второй ход рабочий ход и частичную вентиляцию, а комбинация впуска и выпуска за счет 30 % первого отведения и 30% второго удара.Изобретение обеспечивает повышенную мощность двигателя. 2 ил. Изобретение найдет применение в машиностроении, а точнее в области двигателей, т.е. в производстве двигателей внутреннего сгорания для автомобилей, тракторов и т. Д. В настоящее время в мире и двухтактный рабочий цикл; б) четырехтактный рабочий цикл. Оба метода выполнения рабочего цикла достаточно хорошо описаны в следующих учебниках: 1. Автомобильные двигатели. Под ред. Човаха М.С. — М .: Машиностроение, 1997.- 591 С.2. Двигатели внутреннего сгорания: Учебник для вузов. — М .: Высшая школа, 1978. — 208 С.3. Гуревич А.М., Сорокин Е.М. Тракторы и автомобили. — М .: Колос, 1971. — 325 с.4. Мельников Д. И. Тракторы. — М .: Колос, 1981. — 335 с. Двигатели внутреннего сгорания с двухтактным рабочим циклом осуществляют полный рабочий цикл, двухтактный, то есть один полный оборот коленчатого вала, а всасываемая топливная смесь проходит через картерное пространство. двигателя, причем первый цикл включает в себя впуск топливной смеси и сжатие топливной смеси в цилиндре, второй этап объединяет два процесса — рабочий такт и выхлоп.Второй способ реализации рабочего цикла (четырехтактный) — рабочий цикл четырехтактный, имеется два полных оборота коленчатого вала. В то время как впуск топливной смеси через головку блока цилиндров и каждый процесс, впуск, сжатие, ход и выпуск выполняются отдельно на каждом этапе. Наиболее близким к изобретению. Четырехтактный рабочий цикл выглядит следующим образом, показанным на Фиг. 1: при подъеме поршня 2 из НМТ в ВМТ с закрытыми окнами 5 и 6 клапаны 3 и 4 находятся под сжатым воздухом в цилиндре 10, то есть первый удар «сжатия»; при приближении поршня 2 на 2-3 мм до ВМТ в цилиндр 10 через форсунку 7 впрыскивается топливо, которое воспламеняется, и дымовые газы начинают оказывать давление на поршень 2, первый цикл заканчивается и начинается вторая стадия. «ход», продолжавшийся до прихода поршня 2 в ТНВД; как только поршень 2 начинает двигаться вверх, заканчивается второй удар и третий удар «выпуска», открывается выпускной канал 6 клапана 3 и выхлопные газы начинают выталкиваться поршнем 2 цилиндра 10. ; когда поршень 2 достигает ВМТ, выпускной канал 6 закрывается клапаном 3, а всасывающая коробка 5 открывается клапаном 4, и поршень 2, двигаясь вниз до НМТ, втягивается в цилиндр 10, воздух является четвертым ударом «впуск», и как только поршень 2 будет удерживаться НМТ, закроет клапан 4 и закроет впускную коробку 6, а клапан 3 останется закрытым, так что снова начинается первый цикл, и цикл повторяется.Из изложенного выше принципа работы четырехтактного двигателя очевидно, что значительный вал только на третьей ступени получает энергию сгорания топлива и преобразует ее в механическую энергию движения поршня, остальные три движутся, один и тот же Половина оборотов вала являются вспомогательными и получаются на третьем этапе энергии, затрачиваемой на выполнение вспомогательных операций. Автор предлагает третий способ реализации рабочего цикла, при котором каждый второй ход на каждый оборот коленчатого вала будет получать энергию от сгорание топлива и только один такт вспомогательный, что приведет к существенному увеличению мощности двигателя 1.В 5-2 раза.Задача изобретения — увеличение мощности двигателя. Задача решается за счет того, что способ реализации бизнес-цикла в двигателях внутреннего сгорания, заключающийся в начале степени сжатия в момент перекрытие выпускной коробки, расположенной на стенке цилиндра, и перекрытие впускного отверстия, открытие клапана на головке блока цилиндров при перемещении поршня из нижней мертвой точки в верхнюю мертвую точку, сгорание топлива, работающее при движении поршня из верхней мертвой точки центр к нижней мертвой точке, конец хода, начало вентиляции и выхлопа, когда выходное отверстие поршня и входное отверстие открывают клапан на головке блока цилиндров, комбинация во время вентиляции выхлопа и она мертвая точка, кроме того, рабочий цикл — двухтактный, первый ход выполняет часть цилиндра вентиляции и сжатия, второй ход — рабочий ход и частичную вентиляцию, в то время как комбинация впуска и выпуска за счет 30% первого отведения и 30% второго удара.Принцип работы двигателя с предложенным рабочим циклом следующий, представленный на фиг. 2: первый процесс «сжатия» происходит, когда поршень 1, двигаясь вверх, закрывает выпускную коробку 4 и одновременно закрывает впускной клапан 3. начинается сжатие воздуха в цилиндре 2; не доходя до ВМТ 2-3 мм в цилиндр 2 через форсунку 6 впрыскивает топливо и его сгорание, первый процесс «компрессия» закончился и завершился 1-й цикл, второй начинается процесс «рабочий такт», газы от сгорания толкает поршень 1 вниз, поршень 1 достигает выпускных отверстий 4, открывается и «ход» заканчивается, начинается третья технологическая вентиляция, отходящие газы через открытое окно 4 выходят наружу и в это время открывается входное окно 5 клапан 3 и воздух под давлением заполняет цилиндр 2, вытесняет выхлопные газы, за это время поршень 1 проходит НМТ и движется вверх, 2-й цикл закончился и начал первый цикл, используя процесс «сжатия», рабочий цикл повторяется.Из вышесказанного очевидно, что в двигателе, исходя из предложенного рабочего цикла, каждый ход вниз сопровождается выработкой энергии от сгорания топлива. В четырехтактном двигателе только каждый второй ход вниз получает энергию от сгорания топлива. Сравнивая эквивалентные двигатели, легко убедиться, что двигатель с уменьшенным рабочим циклом будет в 1,5-2 раза выше рабочего хода. Таким образом, техническим результатом предлагаемого способа реализации бизнес-цикла является возможность создания двигателя внутреннего сгорания с другим циклом, аналогичного по конструкции четырехтактному двигателю, но с большей мощностью, чем у прототипа 1.5-2 раза. Вероятность того, что двигатель спроектирован по предложенному рабочему процессу, немного отличается по конструкции от четырехтактного двигателя, а именно выходная коробка должна располагаться на стенке цилиндра. Высота положения окна от НМТ определяется расчетом при полной вентиляции цилиндра при прохождении поршня через НМТ с момента открытия выходного ряда корешка двигателя с предполагаемым рабочим циклом в два раза в сутки. Сравнение с прототипом определяется расчетом по формуле, это также видно из описания в главе сущности.Если поршень получает вдвое больше энергии в единицу времени, а полезная работа поршня увеличивается вдвое, то практические характеристики двигателя с заданным рабочим циклом не вызывают сомнений в любой двигателестроительной компании.

п.п.

Способ проведения рабочего цикла в двигателях внутреннего сгорания, заключающийся в начале степени сжатия в момент перекрытия выпускной коробки, расположенной на стенке цилиндра, и перекрытия впускного открытого клапана на головке блока цилиндров. когда поршень из нижней мертвой точки в верхнюю мертвую точку, сгорание топлива, работа во время движения поршня из верхней мертвой точки в нижнюю мертвую точку, конец хода, начало вентиляции и выхлоп, когда поршень выпускное отверстие и впускное отверстие открывают клапан на головке блока цилиндров, сочетание во время вентиляции выхлоп и всасывание чистого воздуха, движение поршня при вентиляции в нижнюю мертвую точку и начало движения поршня в верхнюю мертвую точку , а рабочий цикл — двухтактный — первый такт выполняет частично вентцке и отпускает за счет 30% первого хода и 30% второго хода.

Четырехтактный двигатель | Автопедия | Fandom

Четырехтактный цикл, используемый в бензиновых двигателях. Правая синяя сторона — это впуск, а левая желтая сторона — выхлоп. Стенка цилиндра представляет собой тонкую гильзу, окруженную охлаждающей водой.

Сегодня в двигателях внутреннего сгорания автомобилей, грузовиков, мотоциклов, самолетов, строительной техники и многих других чаще всего используется четырехтактный цикл . Четыре такта относятся к тактам впуска, сжатия, сгорания (мощность) и выпуска, которые происходят во время двух оборотов коленчатого вала за рабочий цикл бензинового двигателя и дизельного двигателя.Менее техническое описание четырехтактного цикла звучит так: «Всасывай, Сжимай, Взрывай, Удар».

Цикл начинается в верхней мертвой точке (ВМТ), когда поршень находится дальше всего от оси коленчатого вала. Под ходом понимается полный ход поршня от верхней мертвой точки (ВМТ) до нижней мертвой точки (НМТ).

Ход 1 из 4 «Всасывание»: На впуске или всасывании ход поршня, поршень опускается от верхней части цилиндра к нижней части цилиндра, уменьшая давление внутри цилиндра.Смесь топлива и воздуха нагнетается атмосферным (или более высоким) давлением в цилиндр через впускной канал. Затем впускной клапан (ы) закрывается.

Ход 2 из 4 «Сжатие»: При закрытых впускных и выпускных клапанах поршень возвращается в верхнюю часть цилиндра, сжимая топливно-воздушную смесь. Это известно как ход сжатия , ход .

Ход 3 из 4 «Взрыв»: Когда поршень находится в верхней мертвой точке или близко к ней, смесь сжатого воздуха и топлива воспламеняется, обычно от свечи зажигания (для бензиновых двигателей или двигателей с циклом Отто) или от тепло и давление сжатия (для дизельного двигателя или двигателя с воспламенением от сжатия).Возникающее при сгорании сжатой топливно-воздушной смеси огромное давление с огромной силой толкает поршень обратно в нижнюю мертвую точку. Это известно как ход power , который является основным источником крутящего момента и мощности двигателя.

Ход 4 из 4 «Удар»: Во время хода на выпуске поршень снова возвращается в верхнюю мертвую точку при открытом выпускном клапане. Это действие удаляет продукты сгорания из цилиндра, проталкивая отработанную топливно-воздушную смесь через выпускной клапан (ы).

Расширение и отвод тепла при постоянном объеме.

Основная статья: Октановое число

Мощность двигателя внутреннего сгорания в основном возникает из-за расширения газов в рабочем такте. Сжатие топлива и воздуха в очень маленьком пространстве увеличивает эффективность рабочего такта, но увеличение степени сжатия цилиндра также увеличивает нагрев топлива при сжатии смеси (согласно закону Чарльза).

Легковоспламеняющееся топливо с низкой температурой самовоспламенения может загореться до того, как цилиндр достигнет верхней мертвой точки (ВМТ), что может привести к обратному вращению поршня.В качестве альтернативы топливо, которое самовоспламеняется в ВМТ, но до того, как цилиндр начал движение вниз, может повредить поршень и цилиндр из-за чрезмерной тепловой энергии, сконцентрированной в очень маленьком пространстве без какого-либо облегчения. Это повреждение часто называется детонацией двигателя и может привести к необратимому повреждению двигателя, если оно происходит часто.

Октановое число является мерой устойчивости топлива к самовоспламенению за счет повышения температуры, при которой оно будет самовоспламеняться. Топливо с более высоким октановым числом обеспечивает более высокую степень сжатия без риска повреждения из-за самовоспламенения.

Дизельные двигатели работают от самовоспламенения. Они решают проблему повреждения двигателя, раздельно впрыскивая топливо под высоким давлением в цилиндр незадолго до того, как поршень достиг ВМТ. Воздух без топлива можно сжимать до очень высокой степени, не беспокоясь о самовоспламенении, а топливо под высоким давлением в системе впрыска топлива не может воспламениться без присутствия воздуха.

Предел выходной мощности

Четырехтактный цикл
1 = ВМТ
2 = НМТ
c: Впуск
a: Компрессия
d: Мощность
D: Выпуск

Максимальная мощность, вырабатываемая двигателем, составляет определяется максимальным количеством всасываемого воздуха.Количество мощности, вырабатываемой поршневым двигателем, зависит от его размера (объема цилиндра), двухтактной или четырехтактной конструкции, объемного КПД, потерь, соотношения воздух-топливо, теплотворной способности топлива. , содержание кислорода в воздухе и скорость (об / мин). Скорость в конечном итоге ограничена прочностью материала и смазкой. Клапаны, поршни и шатуны испытывают сильные ускоряющие силы. При высоких оборотах двигателя может произойти физическая поломка и дрожание поршневых колец, что приведет к потере мощности или даже к разрушению двигателя.Флаттер поршневого кольца возникает, когда кольца колеблются вертикально внутри поршневых канавок, в которых они находятся. Флаттер кольца нарушает уплотнение между кольцом и стенкой цилиндра, что приводит к потере давления и мощности в цилиндре. Если двигатель вращается слишком быстро, пружины клапанов не могут действовать достаточно быстро, чтобы закрыть клапаны. Это обычно называют «смещением клапана», и это может привести к контакту поршня с клапаном, серьезно повредив двигатель. На высоких скоростях смазка поверхности раздела стенок поршневого цилиндра имеет тенденцию к разрушению.Это ограничивает скорость поршня промышленных двигателей примерно до 10 м / сек.

Поток через впускное / выпускное отверстие

Выходная мощность двигателя зависит от способности впуска (воздушно-топливной смеси) и выхлопных газов быстро перемещаться через отверстия клапана, обычно расположенные в головке блока цилиндров. Для увеличения выходной мощности двигателя неровности на впускном и выпускном трактах, такие как дефекты литья, могут быть устранены, а с помощью стенда для измерения расхода воздуха радиусы поворотов порта клапана и конфигурация седла клапана могут быть изменены для уменьшения сопротивление.Этот процесс называется переносом, и его можно выполнить вручную или с помощью станка с ЧПУ.

Нагнетатель

Одним из способов увеличения мощности двигателя является нагнетание большего количества воздуха в цилиндр, чтобы можно было производить больше мощности за каждый рабочий ход. Первоначально это было сделано с использованием типа устройства сжатия воздуха, известного как нагнетатель, который приводится в действие коленчатым валом двигателя.

Нагнетание увеличивает пределы выходной мощности четырехтактного двигателя, но нагнетатель всегда работает.Непрерывное сжатие всасываемого воздуха требует некоторой механической энергии для достижения, поэтому нагнетатель имеет стоимость пониженной топливной эффективности, когда двигатель работает на низких уровнях мощности или когда двигатель просто разгружен и работает на холостом ходу.

Турбонаддув

Турбокомпрессор был разработан как частичный метод сжатия большего количества воздуха в головке блока цилиндров. Он состоит из двухкомпонентной высокоскоростной турбины в сборе, одна сторона которой сжимает всасываемый воздух, а другая сторона приводится в действие за счет выхода выхлопных газов.

На холостом ходу и на низких или средних оборотах турбокомпрессор не включается, и двигатель работает без наддува. Когда требуется гораздо большая выходная мощность, частота вращения двигателя увеличивается до тех пор, пока выхлопные газы не станут достаточными для «раскрутки» турбины турбонагнетателя, чтобы начать сжимать во впускной коллектор гораздо больше воздуха, чем обычно.

Турбонаддув обеспечивает более эффективную работу двигателя на низких и средних оборотах, но существует конструктивное ограничение, известное как турбо-задержка.Увеличенная мощность двигателя доступна не сразу из-за необходимости резко увеличить обороты двигателя, чтобы раскрутить турбонаддув, прежде чем турбо начнет производить полезное сжатие воздуха.

Передаточное отношение штока и поршня к ходу поршня

Отношение штока к ходу — это отношение длины шатуна к длине хода поршня. Более длинный шток снижает боковое давление поршня на стенку цилиндра и силы напряжения, тем самым увеличивая срок службы двигателя. Это также увеличивает стоимость, высоту и вес двигателя.

«Прямоугольный двигатель» — это двигатель, диаметр цилиндра которого равен длине его хода. Двигатель, у которого диаметр отверстия больше, чем длина его хода, является двигателем с квадратным сечением, и, наоборот, двигатель с диаметром отверстия, который меньше его длины хода, является двигателем с квадратом.

Передаточное отношение штока и поршня к ходу поршня

Отношение штока к ходу — это отношение длины шатуна к длине хода поршня. Более длинный шток снижает боковое давление поршня на стенку цилиндра и силы напряжения, тем самым увеличивая срок службы двигателя.Это также увеличивает стоимость, высоту и вес двигателя.

«Прямоугольный двигатель» — это двигатель, диаметр цилиндра которого равен длине его хода. Двигатель, у которого диаметр отверстия больше, чем длина его хода, является двигателем с квадратным сечением, и, наоборот, двигатель с диаметром отверстия, который меньше его длины хода, является двигателем с квадратом.

Энергетический баланс

Двигатели

Otto имеют КПД около 35% — другими словами, 35% энергии, генерируемой при сгорании, преобразуется в полезную энергию вращения на выходном валу двигателя, а остальная часть выделяется в виде отработанного тепла.Напротив, шестицилиндровый двигатель может преобразовывать более 50% энергии сгорания в полезную энергию вращения.

Современные двигатели часто преднамеренно строятся так, чтобы они были немного менее эффективными, чем они могли бы быть в противном случае. Это необходимо для контроля выбросов, таких как рециркуляция выхлопных газов и каталитические нейтрализаторы, уменьшающие смог и другие атмосферные загрязнители. Снижению эффективности можно противодействовать с помощью блока управления двигателем, использующего методы сжигания обедненной смеси. [1]

См. Также

Список литературы

  • Харденберг, Хорст О., Средние века двигателя внутреннего сгорания , Общество автомобильных инженеров (SAE), 1999
  • scienceworld.wolfram.com/physics/OttoCycle.html

Внешние ссылки

  1. ↑ Загрязнение воздуха от автомобилей Асиф Фаиз, Кристофер С. Уивер, Майкл П. Уолш

Рабочий цикл в случае четырехтактного двигателя соответствует классу 11 по физике CBSE

Подсказка: Четырехтактный двигатель — это двигатель с внутренним воспламенением, который использует четыре отдельных хода цилиндра (поршня) (такт впуска, такт сжатия, мощность -такт и такт выпуска) для завершения одного рабочего цикла.\ circ \] — это два полных оборота коленчатых валов.
Итак, правильный вариант — B.

Дополнительная информация:


Четырехтактный двигатель совершает четыре хода за один рабочий цикл. Это
(i) Ход всасывания: он также известен как ход всасывания или всасывания. В этом процессе ход поршня начинается в верхней мертвой точке (T.D.C) и заканчивается в нижней мертвой точке (B.D.C). При такте впуска впускной клапан должен открываться, когда поршень втягивает топливовоздушную смесь в цилиндр, создавая вакуумное давление в цилиндре за счет его движения вниз.По мере того, как поршень движется вниз, воздух всасывается за счет нисходящего движения к поршню.
(ii) такт сжатия: он начинается в конце такта впуска. В этом процессе поршень сжимает топливовоздушную смесь для подготовки к воспламенению во время рабочего такта. Как впускной, так и выпускной клапаны закрыты во время такта сжатия.
(iv) рабочий такт: этот процесс является началом второго оборота цикла четырехтактного двигателя. В начале этого хода коленчатый вал совершил полный оборот на 360 градусов.Пока поршень стоит на T.D.C. (конец такта сжатия) сжатая топливовоздушная смесь воспламеняется свечой зажигания (в бензиновом двигателе), которая принудительно возвращает поршень в положение B.D.C. Этот ход вызывает механическую работу двигателя по проворачиванию коленчатого вала.
(iv) Выходной ход: также известен как выходной ход. Во время этого процесса поршень снова возвращается из B.D.C. в T.D.C. пока выпускной клапан открыт. При такте выпуска отработанная топливовоздушная смесь выбрасывается через выпускной клапан.

Примечание: Четырехтактные двигатели имеют несколько преимуществ по сравнению с двухтактными двигателями. У них лучшая топливная эффективность, долговечность, большая мощность и, следовательно, больший крутящий момент и более чистые выбросы. Но они более дорогие и сложные в изготовлении, и для них нужны клапаны для впуска и выпуска газов.

4-тактный двигатель | Как работает четырехтактный двигатель?

Двигатели наиболее широко используются во всем мире для множества приложений . Они используются в различных транспортных средствах, таких как автобусы, грузовики, фургоны, мотоциклы и т. Д.Существуют разные типы двигателей, и четырехтактный двигатель является одним из них. По количеству ходов поршня двигатели имеют два основных типа :

  1. 2-тактный двигатель
  2. Двигатель 4-х тактный

В предыдущей статье мы обсуждали двухтактный двигатель. Поэтому в этой статье в основном речь пойдет о четырехтактном двигателе.

Что такое 4-тактный двигатель?

4-тактный двигатель — это двигатель внутреннего сгорания, в котором для завершения рабочего цикла используются четыре хода поршня.Он преобразует тепловую энергию топлива в полезную механическую работу из-за движения вверх и вниз поршня . Следовательно, он относится к категории поршневых двигателей .

Четырехтактный двигатель завершает энергетический цикл после завершения двух оборотов коленчатого вала и четырех тактов поршня. Эти двигатели наиболее широко используются в различных транспортных средствах, таких как легкие грузовики, автобусы, фургоны, легковые автомобили и т. Д.

В этом поршневом двигателе процесс сжатия происходит из-за движения поршня вверх и вниз.

Основное отличие между 2-тактными двигателями и 4-тактными заключается в том, что 2-тактный двигатель завершает рабочий цикл всего за двухтактных двигателей , в то время как четырехтактный двигатель завершает рабочий цикл за четыре такта поршня. Двухтактный двигатель производит меньше загрязнений по сравнению с двухтактным двигателем.

Читайте также: Двигатели разные

Как работает 4-тактный двигатель?

Четырехтактный двигатель работает в следующих этапах:

  1. Процесс всасывания
  2. Процесс сжатия
  3. Энергетический процесс
  4. Выхлоп
Рабочий цикл 4-тактного двигателя

1) Ход впуска

  • Когда поршень совершает возвратно-поступательное движение в направлении BCD от ВМТ (вниз), внутри камеры сжатия (цилиндра) начинает образовываться разрежение.
  • Когда в камере сжатия создается разрежение, выпускной клапан закрывается, а впускной клапан открывается.
  • Когда открывается впускной клапан, топливовоздушная смесь начинает поступать в камеру сжатия.

2) Ход сжатия

  • Когда внутреннее давление камеры сжатия становится равным внешнему давлению, впускной клапан закрывается и начинается такт сжатия.
  • По мере того, как поршень движется вверх (из BCD в ВМТ), он сжимает топливовоздушную смесь внутри камеры сжатия и увеличивает температуру и давление топливовоздушной смеси.

3) Рабочий ход

  • Рабочий ход также известен как ход сгорания.
  • Когда такт сжатия почти завершен, свеча зажигания сжигает сжатую топливовоздушную смесь.
  • Когда топливо воспламеняется, генерируется энергия, так что поршень перемещается из ВМТ в НМТ за счет расширения химической реакции. Поэтому этот ход называется СИЛОВЫМ ХОДОМ.
  • Вследствие этого процесса горения температура и давление смеси становятся очень высокими.Из-за увеличения давления топливовоздушная смесь толкает поршень вниз (в направлении BCD от ВМТ) и приводит в движение коленчатый вал, который дополнительно перемещает автомобиль.
  • Во время этого процесса впускной и выпускной клапаны остаются закрытыми.

4) Ход выпуска

  • После завершения рабочего такта начинается такт выпуска.
  • В такте выпуска поршень снова движется вверх (из НМТ в ВМТ).
  • Во время этого хода впускной клапан закрывается, а выпускной открывается.Поршень выталкивает выхлопные газы из камеры сгорания.
  • После завершения такта выпуска поршень снова движется вниз (из ВМТ в НМТ), всасывает топливовоздушную смесь и весь цикл повторяется. Этот последний ход вытесняет отработанные газы / выхлопные газы из цилиндра.

Фотоэлектрическая диаграмма четырехтактного двигателя

Следующая диаграмма PV представляет рабочий цикл 4-тактного двигателя. Четырехтактный двигатель выполняет рабочий цикл в следующих этапах:

Четырехтактный цикл
  • Изобарический процесс (от 0 до 1): В изобарическом процессе поршень движется вниз и создает вакуум внутри камеры сгорания.Во время создания вакуума возникает перепад давления между атмосферным давлением и внутренним давлением камеры. За счет этого перепада давления открывается впускной клапан, и топливовоздушная смесь попадает в камеру сгорания.
  • Адиабатический процесс (от 1 до 2): После завершения изобарного процесса впускной клапан закрывается, а поршень движется вверх и создает давление в топливовоздушной смеси. Во время этого процесса поршень повышает температуру и давление смеси, но его тепло не меняется.
  • Изохорный процесс (от 2 до 3): Свеча зажигания воспламеняет топливовоздушную смесь в конце такта сжатия (адиабатический процесс). Этот процесс увеличивает температуру и давление топливовоздушной смеси и превращает ее в смесь с высокой температурой и давлением. Этот процесс воспламенения также увеличивает энтропию (тепло) топливовоздушной смеси.
  • Силовой ход (Процессы с 3 по 4): В этом такте тепло, выделяемое в процессе зажигания, используется для того, чтобы толкать поршень вниз, что дополнительно перемещает коленчатый вал.Движение коленчатого вала приводит в движение автомобиль. Поэтому этот процесс называется силовым ходом.
  • Фаза выпуска отработавших газов (от 4 до 1): На этой фазе поршень снова перемещается вверх и открывается выпускной клапан, который отводит отработанное тепло из камеры сгорания. Из-за отвода ненужного тепла кинетическая энергия молекул топливовоздушной смеси уменьшается. Опять же, разница давления возникает между атмосферным давлением и внутренним давлением камеры, и весь цикл повторяется.

История

Цикл Аткинсона
  • В 1882 году Джеймс Аткинсон сконструировал двигатель цикла Аткинсона. Это был однотактный двигатель внутреннего сгорания.
  • Этот цикл был изобретен для обеспечения эффективности за счет удельной мощности. В настоящее время двигатель цикла Аткинсона используется в некоторых новейших гибридных электрических системах.
  • Оригинальный 4-тактный поршневой двигатель с циклом Аткинсона позволял такт впуска, такта сжатия, рабочего хода и такта выпуска за один оборот коленчатого вала, чтобы предотвратить нарушение определенных патентов, касающихся двигателя Отто.
  • Уникальная конструкция коленчатого вала двигателя
  • Atkinson может приводить к различным степеням сжатия и расширения. Рабочий ход длиннее, чем такт сжатия, что дает двигателю большую энтальпию (тепловой КПД), чем у обычных поршневых двигателей.
  • Первоначальная конструкция двигателя Аткинсона — не более чем историческая диковинка. Некоторые новейшие двигатели имеют нетрадиционные фазы газораспределения для создания более длинного рабочего хода или более короткого хода сжатия, что обеспечивает улучшение экономии топлива.

Дизельный цикл
  • Дизельный двигатель — это практическое усовершенствование двигателя Отто 1876 года.
  • В 1861 году Отто почувствовал, что производительность двигателя можно повысить, сжав топливно-воздушную смесь перед зажиганием, и Рудольф Дизель захотел создать более эффективный двигатель, способный работать на более тяжелых видах топлива.
  • По тем же причинам, что и Отто, Дизель захотел спроектировать двигатель, который мог бы снабжать небольшие промышленные компании своей собственной энергией, чтобы конкурировать с большими компаниями, такими как Отто, и снижать потребности населения в топливе.Как и Отто, ему потребовалось много времени, чтобы построить двигатель с высокой степенью сжатия, который мог бы самопроизвольно воспламенять впрыскиваемое в цилиндр топливо. Дизель использовал смесь воздуха и топлива в своем первом двигателе.
  • В 1893 году двигатель Diesel был разработан как успешный двигатель. Двигатели с высокой степенью сжатия, которые воспламеняют топливо из-за высокой степени сжатия воздушно-топливной компрессии, известны как дизельные двигатели. Дизельный двигатель доступен как в четырехтактном, так и в двухтактном исполнении.
  • 4-тактные дизельные двигатели
  • используются в большинстве тяжелых грузовых автомобилей, таких как грузовые автомобили, автобусы, лопастные фургоны и т. Д.В этом двигателе используется мазут, который содержит больше энергии и требует меньше переработки для производства.

Ограничения выходной мощности четырехтактного двигателя

Выходная мощность двигателя зависит от количества воздуха, всасываемого в . Производительность поршневого двигателя (будь то 4-тактный двигатель или 2-тактный двигатель) зависит от скорости (об / мин), теплотворной способности топлива, потерь, воздушно-топливного отношения, объемного КПД, содержания кислорода в топливно-воздушная смесь и размер камеры сгорания.В конечном итоге скорость двигателя регулируется смазкой и прочностью материала.

Шатун , поршень и клапан торца двигателя сильные силы ускорения . Высокие обороты двигателя могут привести к повреждению двигателя, потере мощности, дрожанию поршневых колец или другим физическим повреждениям. Когда поршневое кольцо вибрирует вертикально в канавке поршня, в которой находится поршневое кольцо, поршневое кольцо колеблется.

Цель флаттера кольца — установить уплотнение между стенкой цилиндра и кольцом, что приводит к потере мощности и давления в цилиндре.

Если двигатель вращается слишком быстро, пружина клапана не сможет закрыть клапан достаточно быстро. Это часто называют «поплавком клапана», когда поршень ударяется о клапан и вызывает серьезную поломку двигателя.

На высоких оборотах смазка на стыке поршня и стенки цилиндра имеет тенденцию к повреждению. Поэтому скорость поршня промышленного двигателя ограничена до 10 м / с.

Компоненты 4-тактного дизельного двигателя

Четырехтактный двигатель состоит из следующих основных компонентов:

  1. Форсунка
  2. Поршень
  3. Впускной клапан
  4. Выпускной клапан
  5. Коленчатый вал
  6. Шатун
  7. Блок двигателя
  8. Маховик

1) Поршень и поршневое кольцо

Поршень 4-тактного дизельного двигателя совершает возвратно-поступательное движение.Он соединяется с коленчатым валом через шатун. Он передает свое движение на коленчатый вал через шатун. Поршень движется вниз и вверх внутри цилиндра двигателя.

Когда поршень движется вверх, он всасывает воздух внутри цилиндра, в то время как он сжимает воздух, когда движется вниз. Из-за этого движения поршня температура и давление топливовоздушной смеси внутри цилиндра повышаются.

Поршень двигателя имеет сложную конструкцию со стальной головкой и юбкой из высокопрочного чугуна.В этой юбке используется смазка под давлением, чтобы обеспечить подачу масла к гильзе цилиндра при каждой рабочей ситуации. Масло поступает в охлаждающий канал в верхней части поршня через шатуны. Все поршневые кольца хромированы для предотвращения износа. Поршневое кольцо содержит пружинное маслоуправляемое кольцо и 2 направляющих компрессионных кольца. Канавка поршневого кольца имеет отличную износостойкость и стабилизируется.

2) Цилиндр линейный

Этот компонент четырехтактного двигателя имеет высокую жесткую манжету для уменьшения деформации.Этот линейный материал представляет собой сплав серого чугуна с высокой прочностью и прекрасной износостойкостью. Точно расположенные вертикальные отверстия для охлаждающей воды обеспечивают точный контроль температуры. Чтобы избежать риска полировки отверстия, линейка оснащена защитным полировальным кольцом.

Пространство между гильзой цилиндра и уплотнениями блока цилиндров уплотняется двойным уплотнительным кольцом. Верхний конец линейки оборудован антиполированным кольцом, которое предотвращает полировку внутренних отверстий и снижает расход смазочного масла.

3) Подшипники шатуна и коренные подшипники

Подшипник шатуна представляет собой футеровку из свинцовой бронзы с задними частями из трехметаллической стали и толстым плавным слоем. Биметаллический подшипник, а также трехметаллический подшипник истощены как основные подшипники.

4) Шатун

Основная статья: Шатун

Этот компонент 4-тактного дизельного двигателя соединяет коленчатый вал двигателя и поршень. Он изготовлен из легированной стали и выкован как одно целое.Шатун имеет круглое поперечное сечение. Нижняя сторона шатуна раскалывается в горизонтальном направлении, так что шатун и поршень можно снять с гильзы цилиндра. Подшипник поршневого пальца состоит из трехметалла.

Все болты шатуна затянуты гидравлически. Отверстия в шатуне направляют масло к поршням и подшипнику поршневого пальца. Этот компонент двигателя передает движение поршня на коленчатый вал, который затем движется к колесу транспортного средства.

5) Коленчатый вал

Коленчатый вал преобразует возвратно-поступательное движение поршня двигателя во вращательное движение. Это важный компонент для всех двигателей. Эта часть передает конечную мощность в виде кинетической энергии. Он выполнен в виде цельного куска. Шатун образует связь между коленчатым валом и поршнем двигателя.

6) Блок двигателя

Эта часть двигателя изготовлена ​​из высокопрочного чугуна и подходит для всех цилиндров.Крышки основных подшипников крепятся снизу двумя гидравлическими натяжными винтами. Эти колпачки направлены снизу и сверху по бокам блока цилиндров. Горизонтальный боковой винт с гидравлической затяжкой поддерживает крышку коренного подшипника.

7) Распределительный вал

Используется для открытия и закрытия впускных и выпускных клапанов, а также для управления топливным насосом в дизельном двигателе с высоким давлением.

8) Свеча зажигания

Используется в бензиновых двигателях или двигателях SI.Он использует искру для воспламенения топливовоздушной смеси.

9) Топливная форсунка

Используется для впрыска топлива в цилиндры двигателя.

10) Маховик

Деталь четырехтактного бензинового двигателя, установленного на чугунной опоре. Он хранит энергию в виде инерции.

Преимущества и недостатки 4-тактных двигателей

Четырехтактный двигатель имеет следующие достоинства и недостатки:

Преимущества четырехтактного двигателя
  1. Надежность: Эти типы дизельных двигателей более надежны и экономичны.
  2. Долговечность: Эти двигатели обладают большей долговечностью, чем двухтактные.
  3. Экологичность: Эти двигатели безопасны для окружающей среды, поскольку 4-тактный двигатель выделяет меньше опасных паров, чем 2-тактный двигатель.
  4. Эти двигатели лучше всего подходят для тяжелых грузов и тяжелых транспортных средств.
  5. Топливная эффективность: Эти двигатели имеют более высокую топливную экономичность, чем двухтактные двигатели.
  6. Шум: Они работают тише, чем двухтактные двигатели
  7. Больше крутящего момента: На низких оборотах четырехтактные двигатели развивают больший крутящий момент, чем двухтактные двигатели.
  8. Больше топливной экономичности: Этот тип двигателя внутреннего сгорания имеет более высокую топливную эффективность, чем двухтактный двигатель.
  9. Не требуется дополнительное масло: Этот двигатель не требует дополнительной смазки или масла для добавления топлива. Промежуточно требуется смазка только для токарных деталей.
  1. Эти дизельные двигатели производят самый маленький NO X .

Недостатки четырехтактного двигателя
  1. Мощность: Этот двигатель имеет меньшую мощность, чем двухтактный двигатель.
  2. Дорого: Четырехтактный двигатель состоит из множества деталей. Следовательно, он имеет большую стоимость, чем двухтактный двигатель.
  3. Масса: Эти двигатели имеют больший вес, чем двухтактные двигатели
  4. Требуемая площадь: Требуется большая площадь для установки.
  5. Ход поршня: Требуется большее количество ходов поршня для завершения энергетического цикла.
  6. Конструкция: Эти двигатели имеют сложную конструкцию.

В чем разница между 4-тактным дизельным двигателем и 4-тактным бензиновым двигателем?
Бензиновый двигатель Дизельный двигатель
Этот двигатель работает на основе цикла Отто. Работает на базе дизельного двигателя.
В этом двигателе процесс воспламенения происходит за счет искры, создаваемой свечой зажигания. В этом двигателе воспламенение происходит из-за сильного сжатия топливовоздушной смеси.
В качестве рабочей жидкости используется бензин или бензин. Использует дизельное топливо.
Этот двигатель менее эффективен. Он самый работоспособный.
Имеет низкую степень сжатия. Этот двигатель имеет высокую степень сжатия.
Использует меньше топлива. Использует мало топлива.
Эти двигатели в основном используются в небольших приложениях, таких как велосипеды, мотоциклы, генераторы и т. Д. Эти двигатели в основном используются в тяжелых условиях, таких как автобусы, грузовики, фургоны и т. Д.

FAQ Раздел

Что подразумевается под четырехтактным двигателем?

Двигатель, который совершает рабочий ход за четыре хода поршня, известен как 4-тактный двигатель.

Какие примеры четырехтактных двигателей?

Четырехтактные двигатели чаще всего используются в тяжелых грузовиках, автобусах, внедорожниках , фургонах , тракторах и других тяжелых транспортных средствах.

Какой двигатель производит меньше загрязнения, 2-тактный или 4-тактный?

Двухтактный двигатель производит больше загрязнения, чем четырехтактный. Это связано с тем, что в двухтактном двигателе используются отверстия для всасывания и выпуска топлива.

Что быстрее: 2-тактный или 4-тактный?

2-тактный двигатель имеет более низкие части, чем 4-тактный двигатель.Для сравнения, двухтактный двигатель завершает рабочий цикл (всего за 2 хода поршня) быстрее, чем четырехтактный двигатель. Следовательно, двухтактный двигатель быстрее четырехтактного.

Есть ли шестицилиндровый двигатель?

6-тактный двигатель — это самая современная версия двигателя внутреннего сгорания, основанная на конструкции 4-тактного двигателя, но этот двигатель имеет два дополнительных электрических такта для уменьшения выбросов и повышения эффективности. 6-тактный двигатель использует свежий воздух (чистый воздух из атмосферы) для 5 -го -тактного вдоха 2-го -го -го всасывания.

различных ударов — Obsidian Motorsport Group

пора.

10.11.2014

Понятие времени — это то, о чем люди писали с незапамятных времен (извините, я знаю, что это неудобно читать). Однако время в отношении систем управления двигателем и впрыска топлива — это не то, о чем люди особо задумываются. Я подумал, что было бы неплохо рассказать, насколько важно время для впрыска топлива и управления двигателем (в этой статье мы в основном сосредоточимся на времени впрыска топлива.)

Возгорание происходит довольно быстро, даже с возможно скучным двигателем, например, в минивэне вашей мамы. Смысл и цель этой статьи — показать вам, как быстро происходит это событие и почему это важно для вас и вашего выбора инжектора.

Основы портовых топливных форсунок довольно просты:

— (часть 1) У вас есть форсунка, которая пропускает заданное количество топлива в минуту. (Большинство знает, что это фунт / час или куб.см / мин).

— (часть 2) Форсунка может работать в течение всего цикла двигателя с двумя оборотами коленчатого вала.(Помните, что 4-тактному двигателю требуется два полных оборота для завершения цикла двигателя). Если форсунка открыта в течение всего этого времени, это представляется как 100% рабочий цикл форсунки (или 100% IDC).

100% IDC следует избегать любой ценой. Плохие вещи могут случиться с форсункой при IDC выше 95%. Безопасное место для намотки
составляет не более 85%.

— (часть 3) Этот расчет времени цикла двигателя действительно прост.

Часть 1:
Если вы покупаете комплект форсунок у кого-либо (но давайте будем честными, вам действительно стоит покупать форсунки с ID www.injectordynamics.com * конец бесстыдной пробки *), они будут иметь номинальный расход 1000 куб. см / мин, 500 фунтов / час и т. д. Это означает, что инжектор на 1000 куб. Примечательно то, что почти все форсунки имеют линейное соотношение потока, превышающее 2 миллисекунды времени включения. Возьмем пример:

У вас есть форсунка, которая пропускает 60 фунтов топлива в час (630 куб. См в минуту для метрических людей). Если разделить 60 фунтов топлива в час на 60 минут, вы получите 1 фунт топлива в минуту.

Если вы знаете, что вам нужно 0,6 фунта топлива в минуту для достижения определенного соотношения воздух-топливо при определенных оборотах в минуту (скажем, 8000). из этого легко вывести, что вам придется работать с рабочим циклом 60%, чтобы расход топлива составлял 0,6 фунта в минуту.

Примечание: существуют действительно удобные уравнения для определения расхода воздуха, основанные на некоторых стандартах и ​​некоторых значениях, таких как смещение, VE, тип топлива и некоторые другие. Если будет достаточно заинтересованных людей, я пройду через весь процесс.Это красиво, но долго! Фактически вы можете рассчитать необходимое количество топлива в минуту, указанное выше (0,6 фунта топлива в минуту).

Часть 2:
Цикл 4-тактного двигателя — это именно то, что 4 отдельных события, которые должны произойти в последовательном порядке для завершения одного цикла двигателя.

Ход всасывания (когда поршень движется вниз)
Ход сжатия (когда поршень движется обратно вверх)
Рабочий ход (когда поршень движется обратно вниз после взрыва)
Ход выхлопа (когда поршень движется обратно вверх для вытеснения выхлопных газов ).

В автомобиле с распределенным впрыском топлива топливная форсунка находится за впускным клапаном, и поэтому топливо, попадающее в двигатель, в конечном итоге регулируется положением впускного клапана. Топливная форсунка может оставаться открытой в течение всего цикла двигателя (все 4 такта), и топливо будет поступать в цилиндр для воспламенения только при открытом впускном клапане. Если он включен в течение всего цикла двигателя, это означает 100% рабочий цикл форсунки.

Примечание на полях: Прямой впрыск сейчас есть в ряде автомобилей, и этот принцип совершенно другой, так как форсунка находится НАПРЯМУЮ (видите, что я там делал?) В камере сгорания.Максимальный рабочий цикл, при котором они могут работать, составляет около 50%. Непосредственный впрыск довольно удобен, если учесть ограничения рабочего цикла, диапазоны давления топлива 400–3000 фунтов на квадратный дюйм и тот факт, что ЭБУ OE контролируют несколько впрысков за цикл в зависимости от нагрузки и скорости двигателя.

Часть 3:
Итак, в части 1 мы узнали, что у нас есть воображаемый двигатель, которому требуется 0,6 фунта топлива в минуту для достижения определенного соотношения воздух-топливо (AFR) при 8000 об / мин, и что для этого потребуется 60% нагрузки форсунки. Цикл для этого основан на использовании инжектора 60 фунтов в минуту.

Это на самом деле не имеет большого значения, если вы не можете сказать топливной форсунке, как долго работать. 60% IDC на самом деле мало что значит для ECU. В некоторых случаях это так, но не совсем с форсунками. Итак, давайте выясним, сколько именно времени означает 60% IDC, или, более конкретно, сколько именно времени нужно, чтобы инжектор был открыт.

Допустим, наш двигатель работает на 8000 об / мин. Мы хотим выяснить, сколько времени занимает один цикл двигателя (4 такта).

Сначала нам нужно взять частоту вращения двигателя и разделить ее на 2, чтобы получить количество циклов.2 здесь, потому что для одного цикла двигателя требуется 2 оборота.

8000/2 = 4000 циклов двигателя в минуту.

Затем мы хотим вычислить количество циклов в секунду. Итак, мы разделим количество циклов в минуту на 60 секунд, чтобы узнать количество циклов в секунду.

4000/60 = 66,66 цикла в секунду. (довольно дико, если подумать, правда?)

Затем мы хотим вычислить время, необходимое для каждого цикла двигателя. Таким образом, мы можем просто разделить 1 на количество циклов в секунду.

1 / 66,66 = 0,015 секунды на цикл. Это соответствует 15 миллисекундам на цикл.

Итак, теперь мы знаем, сколько времени занимает каждый цикл при 8000 об / мин. Итак, мы знаем из вышесказанного, что нашему воображаемому двигателю требуется 0,6 фунта / мин топлива для достижения нашей целевой AFR при 8000 об / мин, и мы знаем, что ему потребуется 60% рабочего цикла для потока 0,6 фунта / мин с топливной форсункой 60 фунтов / час. .

Теперь это просто! Нам просто нужно умножить время, которое занимает рабочий цикл двигателя, на рабочий цикл (разделенный на 100)

(15 мс * (60/100)) = 9 миллисекунд

Вы все еще читаете? Надеюсь, вы не более запутались, чем когда начинали.

Так что меня не обвиняют (снова) в создании скучно выглядящей стены текста, вот график, показывающий время цикла двигателя в зависимости от числа оборотов.

Вот забавный факт, чтобы закончить это. Велосипеды Moto GP имеют ограничители оборотов около 17 500–18 000 об / мин. Если посчитать, то при 18000 об / мин этот двигатель совершает два оборота за 6,6 миллисекунды. Это 0,006 секунды! Ого.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *