Принцип работы аудиоусилителя: Как работает усилитель звуковой частоты / Хабр

Содержание

Как работает усилитель в системе автозвука

Автомобильные усилители берут сигнал от головного устройства, усиливают его, и передают на громкоговорители. Это позволяет получить от динамиков звук мощнее и чище чем, если сигнал подавался бы непосредственно с источника сигнала на громкоговорители. Идеально, если усилитель передает сигнал линейно – сигнал на выходе по форме такой, как и на входе, только с большей амплитудой, которая определяет мощность звука. Такая передача формы сигнала называется АЧХ – амплитудно-частотной характеристикой, которая показывает, как усилитель передает сигнал на разных частотах. Чем ровнее АЧХ, тем лучше для качества сигнала.

Типы усилителей

Производители продолжают создавать новые виды усилителей, но есть три главных вида схем усилителей: класс А, класс АВ, класс D.

  1. Класс А имеет мягкий звук, но он не эффективен по КПД и сильно перегревается.
  2. Класс АВ работает намного эффективнее по КПД, но звук получится обычным, нейтральным.
  3. Усилители класса D являются самыми эффективными по потерям энергии, но они имеют низкий демпфирующий фактор, который показывает степень затухания паразитных колебаний и зависит от выходного сопротивления усилителя.

Усилители обычно делают 5 или 4 канальными, стерео 2 канальные или моноблоки с одним каналом, для подключения сабвуфера. Некоторые производители выпускают усилители и с большим количеством каналов, но они намного меньше применяются в системах автозвука.

Как работает усилитель

Нет ничего важного в принципе работы усилителя, что может пригодиться пользователю. Эта информация больше подойдет для энтузиастов, которые задают себе вопросы, как усилитель работает и как он управляет сигналом. Мы не будем углубляться в работу электрической схемы, в историю транзисторов или в принципы работы трансформаторов, скорее мы рассмотрим, что усилитель делает с сигналом, который он получает от головного устройства и проводит этот сигнал по своим путям.

Обычно считают, что усилитель берет исходный маленький сигнал и увеличивает его до определенной величины. Это верно только от части, фактически усилитель создает новый сигнал, который должен быть точной копией входного сигнала.

Сравним звуковой усилитель и копировальный аппарат. Вы, вероятно, спросите, как можно сравнивать эти две различные технологии. Но если вы делали копию на копировальном аппарате, то вы заметили, что можно с его помощью увеличить исходный документ на определенную величину. Если иметь исходное изображение и увеличить его до других размеров, то вы будете иметь два одинаковых изображения разных размеров, но на разных листах бумаги. Новое изображение – большая копия старой картинки, то есть это новый лист со своим изображением. Теперь перенесем эти принципы работы в усилитель. Он берет сигнал с входа и выдает на выход уже увеличенный сигнал. Однако сигнал на выходе, подобно копировальщику, не тот же что и на входе. Увеличение сигнала происходит только по амплитуде, но не в длине звуковой волны иначе это будут уже помехи и искажения сигнала и копии точной не получиться. Эта аналогия должна вам дать общее представление о работе усилителя.

Усилитель берет слабый сигнал от источника, например, CD проигрывателя и увеличивает его для нормальной работы динамиков. И хотя это не один и тот же сигнал отличие между ними заключается только в их мощности.

Сигналы

Первый шаг к пониманию работы усилителя – это понятие о сигналах. Сигналы используются, чтобы передать данные из одного места в другое. Есть два вида сигнала – аналоговые и цифровые. В нашем примере используется аналоговый сигнал, который передается по аудио кабелям и представляет собой аналогию звуковой волны в электрической форме с помощью изменяющегося уровня напряжения. Головное устройство по кабелям передает в усилитель электрический сигнал, соответствующий звуку (музыке).

Большинство усилителей обрабатывают входной сигнал с помощью трех узлов

1 Входная схема усилителя

Источники звука отличаются по выходному напряжению. Первое головное устройство может подать на усилитель сигнал в 1 вольт, когда другое может подать тот же сигнал уже с напряжением в 3 вольта.
Усилители должны быть способны обрабатывать сигналы разного уровня. Некоторые усилители, особенно штатные, способны обрабатывать только один уровень сигнала, но большинство усилителей обрабатывает два уровня сигналов от источника звука. Один высокий уровень позволяет к головному устройству подключать сразу динамики, а второй низкий уровень сигнала должен пройти через усилитель.

Обязательно чувствительность входной схемы усилителя должна соответствовать уровню сигнала выхода головного устройства. Входная чувствительность регулируется в усилителе и определяет коэффициент усиления, но большая входная чувствительность может привести к большим искажениям сигнала. Поэтому нужно контролировать уровень громкости по регулятору громкости источника сигнала. Ведь регулировка чувствительности используется только что бы устранить несоответствие в уровнях выходного сигнала различных элементов в системе автозвука. Другими словами, если регулятор громкости устанавливается в максимум и на усилитель идет максимальный по уровню сигнал, и нет искажений в динамиках, то в усилителе входная чувствительность отрегулирована правильно.

2 Блок питания

Блок питания отвечает за преобразование напряжения питания автомобиля (напряжение от аккумулятора) в более высокое напряжение. Обычно напряжение с аккумулятора подается постоянное на уровне 13,8 вольт. Это маленькое напряжение и его не достаточно что бы запустить динамики на звуковую мощность требуемую пользователем.

Все автомобильные динамики имеют постоянное сопротивление, в среднем это сопротивление равно 4 Ом.

Если мы будем подавать на наш усилитель питание 13,8 вольт и подключим на выход динамики сопротивлением 4 Ом, то максимальная возможная мощность, которую мы сможем получить, составит не больше 49 Вт. Ведь по формуле мощность (Р) равняется напряжению (V), взятому в квадрате, деленному на сопротивление (R). Если взять питание аккумулятора в 13,8 вольт и возвести в квадрат, то получим 190. Громкоговорители имеют сопротивление 4 Ом, это значение и подставим в формулу. Поделив 190 на 4, получаем максимально возможную мощность нашего усилителя равную 47,5 Ватт, и это с условием, что КПД усилителя 100%.

Если подключить к усилителю динамики на 2 Ом (что плохо может сказаться на качестве звука), и подставим это значение в формулу мощности, то получим максимальную мощность в 95 Ватт. Но и этого может не хватить для большого 15 дюймового низкочастотного динамика.

Так как можно увеличить мощность на выходе усилителя? Ответ один – повысить питающее напряжение. Очевидно, что повысить напряжение питающей сети автомобиля мы не можем, значит, эту задачу будет выполнять усилитель. Фактически, повышение и контроль напряжения — это работа усилителя.

Повышение напряжения осуществляется блоком питания усилителя. Большой и мощный блок питания означает, что выходной каскад усилителя сможет лучше выполнить свою работу и подать на динамики большую мощность. Что бы повысить напряжение сети автомобиля блок питания усилителя использует трансформатор.

Трансформатор – устройство, которое берет напряжение одного уровня и изменяет его на напряжение другого уровня. Трансформаторы бывают повышающие или понижающие. Это означает, что они берут напряжение определенного уровня и на выходе выдают или повышенное или пониженное напряжение. Типичный понижающий трансформатор используется в системах промышленных электропередающих линий, когда нужно понизить напряжение с передающих линий в несколько киловольт до 220 вольт, используемых в наших домах. В автомобильных усилителях используется повышающий трансформатор, который берет напряжение автомобиля и повышает его до уровня, необходимого усилителю для нормальной работы.

Поскольку аудио сигнал – это сигнал АС (переменный ток), то нам понадобиться и положительное и отрицательное напряжение для работы динамиков. Что бы реализовать это с трансформатора снимается два постоянных напряжения, которые противоположны друг другу. Одно из этих напряжений управляет положительными колебаниями сигнала, а другое – отрицательными колебаниями. При комбинации этих колебаний получиться сигнал АС.

Если у нас блок питания, который выдает +25 вольт, то он должен выдавать и -25 вольт. Это положительное и отрицательное напряжение питания усилителя. В этом примере разница напряжения будет 50 вольт. Если подставить это значение в формулу мощности, рассмотренную выше, то получиться максимально возможная мощность усилителя 625 Ватт. Если сказать другими словами, то усилитель имеет пиковую мощность 625 Ватт.

Большая разница напряжения блока питания дает возможность усилителю выдать больше мощности на динамики. Считается, что при питании с большим напряжением усилитель будет иметь больший «headroom» (это зона на шкале уровня сигнала в dB, где кратковременные пики аудио сигнала не приводят к искажениям звука, другими словами – больший уровень сигнала без искажений), чем усилитель с меньшим уровнем питания.

3 Выходной каскад

Выходной каскад усилителя выдает сигнал, который напрямую подается на громкоговорители. Главными элементами выходного каскада являются мощные транзисторы. Наиболее популярными выходными транзисторами являются MOSFET. Транзисторы служат ключами для подачи повышенного напряжения с блока питания на выход усилителя. Что бы сделать это они преобразуют напряжение от блока питания в нужную форму сигнала.

Помните определение сигнала из этой статьи выше? Вот этот сигнал и служит для управления открыванием и закрыванием транзисторов выходного каскада. Так фактически входной сигнал управляет транзисторами, что бы напряжение с блока питания приняло форму аудио сигнала. То есть он переводит транзисторы во включенное и отключенное состояние в соответствии с входным сигналом, когда они воспроизводят входной сигнал в более мощной форме, который подается на выход усилителя и затем на динамики.

Усилитель звука – что это такое, устройство, принцип работы, зачем нужен, основные характеристики Усилитель звука – что это такое, устройство, принцип работы, зачем нужен, основные характеристики

Во многих аудиосистемах бытового и профессионального назначения используется специальный компонент – усилитель звука. Он необходим для качественного, громкого воспроизведения аудиоинформации без помех и искажений. Устройства отличаются исходными характеристиками, совместимостью с другими приборами и сферой применения.

Что такое усилитель звука?

Качественный аудиоприбор, будь то магнитола в автомобиле или акустическая система для домашнего кинотеатра, практически всегда снабжается усилителем звука. Это специальное электрическое устройство, преобразующее слабый электрический сигнал в более сильный с помощью увеличения мощности тока. Усилитель мощности звука может быть как отдельным прибором, входящим в аудиосистему, так и являться внутренним компонентом, например, колонок, входящим в их гибридную систему.

что такое усилитель звука

Устройство усилителя звука

Стандартный усилитель звука для колонок имеет следующие конструкционные особенности:

  1. Входная система усилителя звука. К ней подсоединяется сам источник, который может отличаться выходным напряжением.
  2. Блок питания, отвечающий за преобразование входящего тока в величину с более высоким напряжением. Основным прибором этой группы является трансформатор.
  3. Выходной каскад, главными элементами которого являются транзисторы. Они преобразуют повышенное напряжение от блока питания в нужную форму сигнала, который передается на устройство вывода звука.
  4. Блок регулировки настроек присутствует только в автономных устройствах и позволяет тонко настраивать качество получаемого звука на выходе.

Принцип работы усилителя звука

Любой простой усилитель звука вне зависимости от класса и конструктивных особенностей работает по следующей схеме:

  1. В блоке питания входящий электрический ток от стандартной сети электропитания или автомобильного аккумулятора преобразуется в постоянный ток.
  2. Усилители звука для домашней акустики через входную систему получает сигнал от подключенного устройства (CD-плеера, например) и изменяет (увеличивает) его амплитуду с помощью постоянного тока. Длина звуковой волны остается без изменений.
  3. Усиленный звуковой сигнал передается на выходное устройство (колонки), через которые и воспроизводится в новом, улучшенном качестве.

Зачем нужен усилитель звука?

Обыватели нередко полагают, что усилить звук стараются непременно для повышения его громкости. Такое утверждение верно лишь отчасти. Усилитель звука в машину или для домашнего, профессионального использования необходим для качественного преобразования слабого электрического сигнала в более мощный. Устройства воспроизведения – плееры, магнитофоны и магнитолы имеют разную величину выходного аудиосигнала, которой не всегда хватает для качественного звучания. После таких метаморфоз исходящий звук:

  1. Получается более качественным, без помех и искажений.
  2. В разы громче исходного, поэтому регулятор громкости можно не поворачивать на максимум, тем самым продлевая срок службы аудиоколонок.
зачем нужен усилитель звука

Характеристики усилителя звука

Основные характеристики, которыми обладает усилитель звука для компьютера или другого прибора:

  1. Выходная мощность. Она может быть номинальной, то есть измеряемой при заданном коэффициенте нелинейных искажений и максимальной, которая учитывается при ненормированном коэффициенте.
  2. Даже мини усилитель звука для колонок обладает такими параметрами, как коэффициент усиления и коэффициент полезного действия.
  3. Частотный диапазон, то есть разнообразие частот, с которыми прибор способен работать. Оптимальный вариант – 20-20000 Гц.
  4. Коэффициент гармонических искажений показывает слышимую часть тех самых искажений на частоте 1 кГц и составляет 0,001-0,1%.
  5. Отношение сигнал/шум показывает, на сколько собственные шумы усилителя меньше полезного музыкального сигнала.
  6. Демпинг-фактор или способность подавлять паразитарные напряжения, влияющие на качество мелодии.

В качестве дополнительных характеристик могут быть указаны:

  • коэффициент интермодуляционных искажений;
  • скорость нарастания выходного сигнала;
  • перекрестные помехи.

Виды усилителей звука

Акустическая аппаратура имеет разнообразные характеристики и области применения, поэтому и усилитель звука имеет несколько разновидностей. По мощности бывают:

  • предварительные, являющиеся промежуточным звеном;
  • оконечные, непосредственно увеличивающие мощность;
  • интегральные, объединяющие две предшествующие разновидности в единый прибор.

По элементной базе различают:

  • ламповые;
  • транзисторные;
  • интегральные устройства.

По количеству подключаемых каналов приборы делятся на:

  • одноканальные устройства;
  • двухканальный девайсы;
  • многоканальные усилители.

Важным критерием классификации является и область применения устройства:

  1. Автомобильный усилитель звука.
  2. Домашние аудио комплексы.
  3. Концертная аппаратура.
  4. Студийная аппаратура.
виды усилителей звука

Классы усилителей звука

Выбирая усилитель звука для ноутбука или другого прибора, стоит обратить внимание и на класс понравившейся модели. Он демонстрирует сумму выходного сигнала в зависимости от схемы прибора в течение одного цикла работы при возбуждении входящим синусоидальным сигналом. Все классы можно условно разделить на группы:

  1. Классическую, куда входят приборы класса А, В, АВ и С. Они считаются самыми качественными, дающими на выходе максимально «чистый» звук. В основе лежит ламповый или транзисторный способ преобразования, поэтому приборы применяются в домашней и профессиональной акустике.
  2. Новую, к которой причисляются устройства класса D, E, F, G, T, D. В них используются цифровые схемы и широтно-импульсные модуляции. Такие устройства чаще применяются в малогабаритных приборах.
  3. Отдельно стоит выделить класс H, используемый в автомобильной акустике.

Как выбрать усилитель звука?

Перед покупкой понравившуюся модель усилителя стоит внимательно изучить, а лучше протестировать в магазине в режиме реального времени. Лучшие усилители по качеству звука обладают следующими важными параметрами, указанными производителем:

  1. Совпадение по мощности и частоте с акустическим прибором. Сначала выбирается акустика, а к ней усилитель, не наоборот.
  2. Важно учитывать и площадь помещения, в котором будет работать аппаратура.
  3. Лучше брать прибор с запасом мощности от предполагаемой величины при использовании, чтобы не эксплуатировать прибор на предельно возможных характеристиках.
  4. Уровень интермодуляционных и переходных искажений в пределах 1-3%.
  5. Показатель демпфирования (подавления паразитных колебаний мембран колонок) должен быть не менее 100.
  6. Чем выше показатель сигнал/шум, тем качественнее и чище будет звук на максимальной громкости.
  7. Частотный диапазон лучше выбирать тот, который переходит за слышимые человеческим ухом границы. Тогда качество воспринимаемой мелодии будет лучше.

Рейтинг усилителей звука

При подборе оптимальной модели усилителя звуковой частоты можно ориентироваться и на отзывы профессионалов акустического дела и обычных пользователей. В рейтинг популярных приборов неизменно входят:

  1. SMSL SA-36A Plus – компактный прибор класса D с поддержкой беспроводной сети по протоколу Bluetooth. Стоимость – $70.
  2. рейтинг усилителей звука SMSL
  3. Fiio A3 – портативная модель для использования в комплекте с наушниками. Стоимость – $78.
  4. рейтинг усилителей звука Fiio A3
  5. Yamaha A-S201 – бюджетный прибор известного мультимедийного бренда с отличным качеством звучания при домашнем использовании. Стоимость – $233.
  6. рейтинг усилителей звука Yamaha A-S201
  7. Denon PMA-720AE известная интегральная модель с возможностью фонокоррекции и тонокомпенсации. Стоимость – $420.
  8. рейтинг усилителей звука Denon PMA-720AE
  9. Rotel RA-1572 – премиальная модель для домашней акустики, гарантирующая чистый и мощный звук. Стоимость – $1785.
  10. рейтинг усилителей звука Rotel RA-1572

Усилитель звука своими руками

Некоторые аудиолюбители зная, как сделать усилитель звука, собирают прибор с нужными характеристиками самостоятельно. Для этих целей потребуются навыки работы с радиотехникой и следующие элементы:

  1. Аудио штекер для моно сигнала, стерео сигнала или стерео сигнала с микрофоном. Оптимальный вариант – двухпиновый стерео штекер.
  2. Динамики с одинаковой мощностью и сопротивлением звуковой катушки.
  3. Трансформаторный блок питания нужной мощности, к примеру, 9 или 12 Вт.
  4. Микросхема.
  5. Электролитические конденсаторы нужного напряжения.
  6. Переменный резистор для регулировки уровня громкости.
  7. Разводка печатной платы.

Ход работ не представляет сложности для опытного электронщика:

  1. Все выбранные элементы располагаются на печатной плате.
  2. Соединение элементов проводится с помощью паяльника.
  3. Подключаются вводы штекера и динамиков.
  4. Устанавливается корпус.

Как пользоваться усилителем звука?

Основные правила использования усилителя звука на ПК, в автомобиле и домашней аудиосистеме стандартны:

  1. Начинать важно с качественного прибора подходящего по характеристикам к выбранным проигрывателям и колонкам. Диссонанс системных требований приведет к снижению качества звука или поломке устройств.
  2. Подключать устройство нужно, строго следуя прилагаемой к каждой модели инструкции.
  3. После подключения важно перейти к настройкам прибора, если таковые имеются. Тестирование и подстройка могут проводиться как в ручном, так и автоматическом режиме. После этого можно наслаждаться качественным звучанием любимых мелодий.

 

Как работает усилитель класса D, или Не такой как все / Stereo.ru

История

В мире Hi-Fi класс D имеет самую тяжелую судьбу, и его развитие происходило не благодаря объективным преимуществам, а скорее вопреки сложившемуся мнению. Началось все с того, что классу D буквально сразу повесили обидный, по мнению некоторых аудиофилов, ярлык «цифровой усилитель». И хотя некоторые принципы его работы действительно напоминают работу цифровых схем, по своей сути это абсолютно аналоговое устройство.

Еще одно заблуждение сопровождающее класс D — возраст. Есть мнение, что класс D был разработан совсем недавно и является побочным продуктом современных цифровых технологий. На самом деле, класс D имеет богатую историю, и его первые реализации проектировались еще в эпоху радиоламп. Использовать схемотехнику такого типа для усиления звука (класс D в ламповом исполнении) предложил наш соотечественник Дмитрий Агеев, и произошло это в 1951 году. Примерно в это же время над практической реализацией подобного устройства работал английский ученый Алекс Ривз, а в 1955 году их коллега Роже Шарбонье из Франции, создавая аналогичную схему, впервые применил термин «класс D».

В самом начале, когда велись главным образом теоретические изыскания, судьба класса D казалась безоблачной. Его расчетные характеристики в буквальном смысле достигали предела совершенства. Однако, первая коммерческая реализация 1964 года выявила массу слабых мест, главное из которых — невозможность добиться по-настоящему достойного качества звучания на элементной базе того времени.

Производители не оставляли надежд, и в семидесятых годах попытки вывести усилители класса D на рынок предпринимали такие гиганты Hi-Fi-индустрии, как Infinity и Sony. Обе затеи провалились по той же самой причине, что и в первый раз. Подходящие по быстродействию и классу точности транзисторы стали производиться серийно лишь в восьмидесятых годах, после чего качественная реализация усилителей класса D и стала реальностью. В наше время усилители класса D можно встретить в совершенно различных устройствах: от смартфонов и бытовой аппаратуры до студийного оборудования и High End-систем.

Принцип работы

В основе принципа работы усилителей класса D и любых его модификаций, в том числе имеющих самостоятельные буквенные обозначения (классы T, J, Z, TD и другие), лежит принцип Широтно-Импульсной Модуляции или, сокращенно, ШИМ. Модуляция сигнала как метод существует довольно давно и используется как способ хранения и передачи информации. Суть ее заключается в том, чтобы модулировать полезным сигналом некую несущую частоту. Частота выбирается таким образом, чтобы ее было удобно передавать или записывать на носитель. Процесс воспроизведения подразумевает обратную последовательность: выделение полезного сигнала из модулированной несущей частоты. По такому принципу работает и цифровая техника, и радиосвязь, и теле-радиовещание. Тонкость состоит в том, что в случае с ШИМ преследуется совершенно иная цель. Модуляция позволяет привести сигнал в такой вид, чтобы его усиление было максимально простым и эффективным процессом.

В основе схемотехники класса D лежит генератор СВЧ-импульсов (исчисляемых сотнями МГц) несущей частоты и компаратор — устройство, модулирующие эти импульсы, соответственно форме входящего аналогового сигнала. Далее все просто. Модулированный сигнал имеет форму импульсов равной амплитуды, но разной продолжительности, которые усиливаются с помощью пары симметрично включенных быстродействующих транзисторов типа MOSFET. Далее в схеме используется простейший LC-фильтр, демодулирующий усиленный сигнал, а также отсекающий несущую частоту и сопутствующий высокочастотный шум.

Упоминание транзисторов, используемых для усиления порождает резонный вопрос: «а не проще было бы сразу усилить аналоговый сигнал без всяких модуляций?». И именно этот вопрос раскрывает суть усилителей класса D. В обычных усилителях классов A, B, G и прочих их производных транзистор работает с широкополосным сигналом, постоянно меняющимся и по амплитуде, и по частоте. Поведение даже самого лучшего транзистора на разных амплитудах и частотах не 100% одинаково, что неизбежно приводит к искажениям, которые мы знаем как окрашенность или «характер» усилителя. Модулированный сигнал в усилителях класса D меняется дискретно и на полную амплитуду. Таким образом, режим работы транзисторов существенно упрощается и становится куда более прогнозируемым. По сути, они выступают в роли ключа, находясь либо в закрытом, либо в открытом состоянии без промежуточных значений.

Все, что требуется в таком режиме от транзистора — максимально быстро реагировать на изменение уровня сигнала, а поведение его на промежуточных значениях амплитуды не имеет значения. Кроме того, данный режим работы транзистора крайне положительно сказывается на энергоэффективности усилителя, доводя его теоретический КПД до 100%.

Второй наиболее очевидный вопрос касается сходства модулированного аналогового и цифрового сигналов. Обычно это даже не вопрос, а утверждение: «Усилитель класса D — цифровой, а значит правильно подавать на его вход цифровой сигнал, а не аналоговый». Процесс модуляции аналогового сигнала на входе усилителя класса D, действительно, очень напоминает то, что происходит в АЦП при оцифровке звука, однако принцип модуляции принципиально отличается от того, что используется в формате PCM.

Именно по этой причине цифровые входы интегрированных усилителей, работающих в классе D, используют вполне традиционную схему ЦАПа, с аналогового выхода которой сигнал и поступает на вход платы усилителя мощности. Таким образом, аналоговый сигнал является основным и естественным входящим сигналом для усилителей класса D.

Впрочем, существуют и исключения, которые, если разобраться более детально, ничего не меняют в общей картине, а лишь дополняют типовую схемотехнику класса D. Небезызвестный Питер Лингдорф, еще будучи разработчиком в компании NAD, успешно реализовал схему прямого преобразования PCM-потока напрямую в формат ШИМ без традиционной процедуры цифроаналогового преобразования. Эта технология получила название Direct Digital, или говоря по-русски: прямое усиление цифрового сигнала.

Таким образом удалось сократить протяженность и понизить сложность звукового тракта, а единственное цифроаналоговое преобразование в подобной схеме производится непосредственно перед акустическими клеммами. Однако стоит заметить, что для работы такого усилителя с аналоговым сигналом он должен также иметь и классический входной каскад, использующийся в традиционных усилителях класса D.

На текущий момент технология прямого усиления «цифры» еще не стала массовым явлением, вероятно, потому что г-н Лингдорф грамотно оформил патентные права на технологию или просто предпочитает не раскрывать коллегам всех секретов. Но не так давно подобная схема была успешно реализована в портативной технике, что позволяет надеяться на более широкое распространение технологии в будущем. Не исключено, что спустя некоторое время класс D действительно станет цифровым усилителем.

Плюсы

Главный плюс усилителей класса D, ради которого и затевалась история с модуляцией сигнала — энергоэффективность. Причем и в теоретических выкладках, и в реальных цифрах это дает такой прирост КПД, с которым хоть как-то может сравниться разве что переход от класса А к классам В и АВ, а все достижения класса G и прочих на его фоне кажутся довольно слабой попыткой.

Работая в импульсном режиме, половину времени транзистор проводит в полностью закрытом состоянии, а значит имеет нулевой ток покоя и не потребляет энергии. При этом в момент включения транзистор работает на полную мощность, перенаправляя всю энергию, поступающую от блока питания, на выход усилителя.

В итоге, эти самые теоретические 100% КПД при практической реализации дают действительно превосходные значения порядка 90–95%. А поскольку лишь единицы процента энергии расходуются на нагрев транзисторов, радиаторы можно использовать исчезающе малого размера. Для получения на выходе 100–200 Вт на канал усилитель класса АВ должен иметь радиаторы, занимающие одну или обе боковых стенки корпуса, а усилитель класса D обойдется кусочком алюминия размером в один-два спичечных коробка.

Кстати, то же самое можно сказать о размере платы усилителя мощности: в классе D она получается в разы компактнее, даже если собирается не на микросхемах, а на дискретных элементах. Ну и в завершение всего, усилители класса D имеют меньшую себестоимость, нежели сопоставимые по мощности модели других классов. Впрочем, последнее касается скорее DIY-проектов — производители же предпочитают вкладывать сэкономленные деньги в повышение качества звучания и прочие усовершенствования, тем более что в классе D и вправду есть что улучшать.

Минусы

Обладая совершенно убийственными преимуществами, класс D не завоевал рынок Hi-Fi целиком и полностью лишь потому, что имеет свои слабые места, которые для многих ценителей качественного звука выглядят куда более значительными, нежели энергоэффективность. Наличие в схеме высокочастотного генератора само по себе является потенциальным источником электромагнитных помех, негативно влияющих на звучание самого усилителя и на работу соседствующих с ним компонентов звукового тракта.

Неподготовленный слушатель, возможно, не заметит данного эффекта или не придаст ему значения, но в индустрии Hi-Fi и High End, когда всякая мелочь имеет значение, такое соседство не приветствуется и вынуждает инженеров совершенствовать фильтрующие схемы и идти на прочие ухищрения, чтобы исключить влияние вредоносного СВЧ-генератора несущей частоты на воспроизводимый аудиосигнал.

Высокий КПД усилителей класса D стал причиной одной специфической особенности: высокой зависимости качества и характера звучания от блока питания. Если производитель решит использовать импульсный источник питания и не озаботится достаточным количеством фильтрующих схем, часть шумов обязательно проникнет в колонки и подпортит впечатление от звучания. Плохой блок питания, конечно, и классу АВ на пользу не пойдет, но именно в классе D эта проблема проявляется наиболее остро.

Особенности

Описание плюсов и минусов схемотехники класса D дают совершенно недвусмысленные намеки на то, чем в первую очередь должны заниматься разработчики, которые стремятся добиться от усилителей максимального качественного звука.

Проблему питания усилителей класса D разработчики решают двумя способами. Одни идут проверенным путем, используя классические линейные блоки питания с огромными тороидальными трансформаторами и прочими классическими решениями. Но есть и другой путь, которым идет меньшая часть разработчиков. При должном умении вполне можно создать малошумящий импульсный блок питания, пригодный для установки в усилителях высшего класса качества. И именно они способны дать фору самым мощным и солидным линейным блокам питания за счет лучшего КПД и быстродействия, а как следствие — лучшей динамики звучания и мгновенной реакции усилителя на большие перепады уровней сигнала.

Что же касается специфики работы самого усилителя класса D, его схемотехника обеспечивает существенно более высокий коэффициент демпфирования в сравнении с классом АВ и другими схемотехническими решениями. Это гарантирует не только стабильную работу со сложной нагрузкой, быстрый, четкий бас и большой динамический диапазон, но также обеспечивает меньший уровень искажений, отсутствие каши, вялой атаки или смазывания фронтов и самое главное — способность усилителя одинаково справляться с совершенно разноплановой музыкой.

Практика

Почетная обязанность отстаивать честь усилителей класса D в нашем исследовании выпала усилителю Marantz PM-KI RUBY. Этот аппарат имеет образцово-показательную компоновку, демонстрирующую, как нужно создавать современные усилители. Два модуля Hypex NCore 500, работающие в классе D, питаются от специального малошумящего импульсного блока питания. При этом в конструкции усилителя присутствует классический предварительный каскад, выстроенный на дискретных элементах, согласно фирменной технологии HDAM от Marantz, которая использовалась и в традиционных усилителях класса АВ.

Предварительный каскад питается от линейного блока питания, тороидальный трансформатор которого, судя по размерам, имеет многократный запас мощности, чтобы никоим образом не повлиять на динамику и чистоту звучания. Другими словами, в одном корпусе сочетаются два подхода: классический для предварительного усилителя и современный для усилителя мощности.

Все это обильно приправлено типичным для High End-моделей вниманием к мелочам вроде омедненного шасси, улучшенной виброразвязки, сокращения путей сигнала, симметричной топологии плат, строгого отбора деталей по параметрам и т.п.

В результате, мы имеем едва ли не самый совершенный с технической точки зрения аппарат с коэффициентом демпфирования 500, искажениями менее 0,005% и энергопотреблением 130 Вт при выходной мощности до 200 Вт на канал при 4 Ом нагрузки. Впрочем, всякую претензию на совершенство в мире звука надлежит проверить практикой.

Звук

Усилитель выдает очень свободное красивое звучание с превосходной детализацией, богатыми тембрами и длинными естественными послезвучиями живых инструментов. Сцена выстраивается максимально точно и масштабно, с достоверной передачей пропорций и местоположения виртуальных источников звука в пространстве. Все вполне соответствует представлениям о том, как должен играть хороший усилитель категории High End. Никакой синтетики, жесткости или «дискретности», которую в звучании класса D обнаруживают некоторые адепты старой школы, не наблюдается. Напротив, Marantz PM-KI RUBY успешно сочетает лучшие объективные характеристики с фирменной утонченной и легкой подачей музыкального материала.

Это типично «марантцовское» звучание проявляется, в первую очередь, в излишней интеллигентности при воспроизведении металла и тяжелого рока. В то же время классика любых составов, джаз и вокал звучат очень живо и натурально. Весьма похожий, возможно, даже чуть более красивый и приторный характер звучания проявляли усилители Marantz прошлых лет, работающие в классе АВ, что позволяет сделать вывод о нейтральном характере звучания усилителей мощности класса D.

Подключение к усилителю Marantz PM-KI RUBY акустики разной мощности, с разной чувствительностью и разным импедансом дало вполне ожидаемый результат: отсутствие какой либо выраженной реакции на изменение этих параметров. С любой стереопарой усилитель справлялся одинаково уверенно.

Даже на самой сложной нагрузке и на высокой громкости на удивление стабильно воспроизводились нижние ноты контрабаса — они звучали абсолютно четко, без гула, с натуральной передачей ощущения вибрирующей струны и откликающейся на эту вибрацию деки инструмента. Одним словом, все происходило ровно так, как и должно происходить с усилителем, имеющим заявленное сочетание мощности и коэффициента демпфирования.

Выводы

Все основные преимущества класса D вполне подтверждаются практикой. Но если с точки зрения энергопотребления и других измеряемых характеристик ситуация абсолютно очевидная и бесспорная, звучание по-прежнему остается вопросом дискуссионным. Класс D в чистом виде дает максимально качественный и, как следствие, — нейтральный, не окрашенный звук. Такое придется по вкусу далеко не всем и с наименьшей степенью вероятности порадует тех, чьи предпочтения формировались через прослушивание ламповой и прочей ретро-техники. С этой точки зрения разработчики Marantz продемонстрировали житейскую мудрость, придав своему усилителю фирменный характер звучания путем установки оригинальных модулей предварительного усиления. Одновременно с этим существуют другие производители, в том числе адепты максимально точного и нейтрального звучания, которые используют потенциал класса D, согласно своим представлениям о прекрасном.

В целом же, вывод такой: если производитель не экономил на ключевых элементах схемы, в результате мы получаем усилитель максимально близкий к совершенству. Остальное — дело вкуса.

Продолжение следует…

Другие материалы цикла:

Как работает усилитель класса «А», или Истинный High End и много тепла

Как работает усилитель класса «АВ», или Практичность правит миром

Как работает усилитель класса «G» и «H», или На ступень выше

Как работает усилитель класса XD и XA, или Немного экзотики

Статья подготовлена при поддержке компании «Аудиомания», тестирование усилителей проходило в залах прослушивания салона.

Полезные материалы в разделе «Мир Hi-Fi» на сайте «Аудиомании» и Youtube-канале компании:

• Слушаем музыку с компьютера правильно. Три основных способа

• Что за музыка была «зашита» в популярных ОС

• Что такое Roon? [видео]

Как работает усилитель класса «АВ», или Практичность правит миром / Stereo.ru

Принцип работы

Из самого обозначения класса АВ нетрудно сделать вывод, что данный режим является гибридом класса А и класса В. Как работают усилители класса А, мы уже разобрались, а с классом В ознакомиться не успели, поэтому начнем с него. И для начала вспомним логику, которой руководствовался создатель усилителя класса А. Для того, чтобы получить возможность воспроизводить и положительную, и отрицательную полуволну с помощью одного активного элемента, он применил смещение средней точки (тока покоя) в середину рабочей зоны лампы.

Создатели усилителей класса В рассуждали по-другому: «Если одна лампа или один транзистор с нулевым смещением способен воспроизвести только одну полуволну сигнала, почему бы не добавить в схему еще один активный элемент, разместив его зеркально, чтобы воспроизводить другую полуволну?».

Это вполне логично, ведь при таком раскладе оба транзистора работают с нулевым смещением. Пока на входе усилителя присутствует положительная полуволна — работает один транзистор, а когда приходит время воспроизводить отрицательную полуволну, первый транзистор полностью закрывается и вместо него в работу включается второй. В английском варианте этот принцип действия получил название push-pull или, говоря по-русски, «тяни-толкай», что в общем-то очень хорошо описывает происходящее.

Если сравнивать класс В с классом А, наиболее очевидным преимуществом является то, что в классе В на каждую волну приходится полный рабочий диапазон транзистора (или лампы), в то время как в классе А обе полуволны воспроизводятся одним активным элементом. Это значит, что усилитель класса В будет вдвое мощнее усилителя класса А, собранного на таких же транзисторах.

Второй, чуть менее очевидный, но очень важный плюс класса В — нулевые токи смещения. Когда сигнал на входе равен нулю, ток, протекающий через транзисторы, тоже равен нулю, а это значит, что напрасного расхода энергии не происходит, и энергоэффективность схемы получается в разы выше, чем в классе А.

Однако из этого же факта вытекает и главный недостаток усилителя класса В. Момент включения транзистора в работу после полностью закрытого состояния сопровождается небольшой задержкой, поэтому при прохождении звуковым сигналом нулевой точки, когда один транзистор уже закрылся, второй транзистор не успевает мгновенно подхватить эстафету, и в этой самой переходной точке возникают небольшие временные задержки.

На практике это выражается в особенной нелюбви усилителя к тихой музыке, а также в плохой передаче микродинамики. И хотя история знает успешные реализации класса В, например — легендарный Quad 405, проблемы данного режима работы никуда не делись. Тот же 405-й не только радовал энергичным и мускулистым звучанием, но также имел явную склонность рисовать звуковую картину крупными мазками, масштабно, не размениваясь на мелочи.

Для того, чтобы сохранить все плюсы класса В и решить проблему переходных процессов, инженеры пошли на хитрость. Они включили оба транзистора со смещением, как это делается в классе А, но величина смещения при этом была выбрана существенно меньшая: так, чтобы покрыть лишь те моменты, когда транзистор близок к закрытию, выводя тем самым переходные процессы из рабочей зоны.

Это позволило усилителю класса АВ незаметно преодолевать нулевую точку, а также дало еще один крайне полезный эффект. При малой амплитуде сигнала, укладывающейся в пределы смещения тока покоя, подобный усилитель работает в классе А и, только когда амплитуда выходит за пределы выбранной производителем величины смещения, он переходит в режим АВ.

Плюсы

Рассматривать достоинства и недостатки класса АВ имеет смысл на фоне двух исходных технологий. Класс АВ однозначно и существенно выигрывает у класса А по энергоэффективности. Его реальный КПД достигает 70–80%, если конечно производитель не сильно увлекся поднятием тока покоя. С точки зрения звучания класс АВ превосходит класс А в те моменты, когда сигнал достигает высокой амплитуды или требуется высокая мощность. В то же время на малых уровнях громкости класс АВ обычному классу А не уступает, по крайней мере в теории. В сравнении с классом В, класс АВ куда лучше ведет себя на малых громкостях и способен отрабатывать самые тихие и деликатные моменты в музыке, но при этом сохраняет практически ту же мощь и силу на больших динамических всплесках.

Имея большую мощность и лучшую энергоэффективность, усилители класса АВ куда менее капризны при выборе акустики. Они не нуждаются в высокой чувствительности и легче уживаются со сложными кроссоверами, используемыми в многополосных колонках. Вполне справедливо будет заявить, что подавляющее большинство пассивных акустических систем выпускаемых сегодня на рынок рассчитаны на работу со среднестатистическим транзисторным усилителем класса АВ.

Минусы

Объективные минусы у класса АВ можно разглядеть только на фоне еще более совершенных с технической точки зрения классов G, H или D, о которых мы расскажем чуть позже. В список претензий можно отнести разве что субъективные отзывы от ценителей класса А, которые, в целом, сводятся к тому, что класс АВ звучит не столь чисто, детально и изысканно. Чтобы оценить обоснованность данных претензий, рассмотрим схемотехнику усилителей класса АВ более детально, с точки зрения качества звучания.

Особенности

Одной из практических проблем усилителей класса В и АВ является подбор пар транзисторов, работающих в одном канале усиления. Располагаясь в схеме зеркально, два транзистора должны быть полностью идентичны друг другу. В противном случае, сигналы положительной и отрицательной полуволн будут воспроизводиться не симметрично, и это существенно повысит общий уровень искажений.

В реальной жизни абсолютная идентичность — понятие абстрактное, скорее имеет смысл рассуждать о степени похожести или, говоря техническим языком, о пределах допустимых отклонений транзисторов от заданных характеристик. Чем более похожи два транзистора друг на друга, тем меньше уровень искажений, и тем больше их совместная работа приближается к тому, что мы имеем в классе А, когда обе полуволны воспроизводит один транзистор.

Понимая, что даже при самом строгом отборе по параметрам отличия между двумя транзисторами в паре все же будут иметь место (пусть и в предельно малых значениях), мы вынуждены признать, что при прочих равных условиях один такой же транзистор работающий в классе А будет звучать чуть чище и чуть лучше, чем пара в классе АВ.

Совсем иная ситуация вырисовывается, когда речь заходит о работе на большой амплитуде сигнала и на нагрузке требующей высокой мощности. Имея высокий КПД класс АВ нуждается в менее мощном и громоздком блоке питания, нежели усилитель класса А, и тут уже поклонники однотактников вынуждены признать абсолютное и безоговорочное превосходство класса АВ.

Более того, разработчики имеют возможность гораздо свободнее экспериментировать с блоками питания, управляя характером и динамикой звучания путем подбора рабочих характеристик трансформатора и конденсаторов. Например, можно установить трансформатор с многократным запасом мощности, чтобы на пиках сигнала он не выходил из оптимального режима работы, или использовать улучшенные конденсаторы, способные мгновенно отдавать высокий ток.

Еще одна тонкость: работая в классе А, транзисторы выделяют большое количество тепла, что может негативно сказываться на качестве их работы, особенно при увеличении нагрузки. В классе АВ транзисторы греются в меньшей степени, вследствие чего они быстро приходят в рабочий режим и менее подвержены риску перегрева, снижающего качество звучания при работе усилителя на высокой громкости.

Практика

Защищать честь усилителей класса АВ в сравнительном прослушивании было уготовано мощному двухблочному усилителю Atoll серии Signature, состоящему из усилителя мощности AM200 и предварительного усилителя PR300. Интересующий нас усилитель мощности выстроен в полном соответствии с изложенными выше теоретическими выкладками.

Реализуя потенциал, заложенный в схемотехнике класса АВ, разработчики обеспечили по 120 Вт выходной мощности на канал, чего достаточно для большинства акустических систем за исключением самых низкочувствительных и просто монструозных моделей. Говоря об особенностях своего усилителя, производитель акцентирует внимание на применении подобранных пар транзисторов с последующей подстройкой схемы вручную для минимизации общего уровня искажений.

С целью лучшего разделения каналов и исключения перекрестных помех усилитель выстроен по схеме полного двойного моно, поэтому каждый канал усиления получил собственный блок питания. Суммарная мощность блока питания составляет 670 ВА, что покрывает потребности усилителя мощностью 120 Вт с большим запасом. Солидную дополнительную подпитку на пиках сигнала обеспечат конденсаторы емкостью 62 000 мкФ.

Звук

Внушительная мощность и отличная энергооснащенность усилителя дали в звучании вполне ожидаемое ощущение легкости и непринужденности при работе с любой акустикой и практически на любых уровнях громкости. Если выкрутить ручку громкости посильнее, можно услышать небольшую компрессию, а бас словно отодвигался на задний план, но это были очевидные признаки того, что НЧ-динамики приблизились к пределу своих возможностей, в то время как усилитель только начал разогреваться и был очень далек от состояния перегрузки.

В то же время на малых и средних уровнях громкости Atoll AM200 Signature показывал себя наилучшим образом. Середина была выразительна, детальность превосходна, а сцена — четко очерчена, с хорошо ощутимой глубиной и шириной. При прямом сравнении с усилителями класса А последние давали чуть более свободную и безграничную сцену и чуть тоньше отрабатывали мелкие детали в тихой камерной музыке.

Характер, свойственный классу АВ, наиболее ярко проявлялся у Atoll AM200 Signature на динамичной рок-музыке. Он выдавал очень собранный, быстрый и четкий бас, хорошо справляясь с резкими перепадами громкости и крупными штрихами. На джазе и классической музыке, требующих сочетать динамичность и мощь со способностью воспроизводить тонкие оттенки и нюансы, усилитель вел себя чуть менее уверенно. Казалось, что он слегка упрощает звучание, укрупняя музыкальные образы и уводя внимание от тонких оттенков к основной мелодической линии.

Однако все это можно заметить лишь в прямом сравнении с гораздо более дорогими представителями других классов. По общему впечатлению Atoll AM200 Signature был скорее всеяден и универсален. Являясь примером грамотной реализации класса АВ, когда разработчики приложили массу усилий чтобы минимизировать слабые места и максимально раскрыть потенциал данной схемотехники, он вполне конкурентен на фоне лучших представителей других классов.

Выводы

Высокая мощность, высокий КПД с умеренным тепловыделением, способность справляться со сложной нагрузкой и хорошая динамика — вот что такое усилитель класса АВ. Это делает его, в первую очередь, идеальным решением для массового производства усилителей, что подтверждает сама история развития индустрии Hi-Fi.

Однако крайне ошибочно руководствоваться стереотипным мнением о том, что массовый универсальный продукт и продукт элитный должны быть непременно вылеплены из разного теста. При должном внимании к деталям и глубоком понимании принципов работы данная схемотехника может быть реализована на самом высоком уровне качества. Так что сегодня High End-усилитель, работающий в классе AB — такая же обыденность, как и хайэндный усилитель, работающий в любой другой схемотехнике.

Продолжение следует…

Другие материалы цикла:

Как работает усилитель класса «А», или Истинный High End и много тепла

Статья подготовлена при поддержке компании «Аудиомания», тестирование усилителей проходило в залах прослушивания салона.

Другие полезные материалы в разделе «Мир Hi-Fi» на сайте «Аудиомании» и Youtube-канале компании:

• Выбираем звукосниматель для проигрывателя винила

• Что лучше для звука — линейные или импульсные блоки питания? [видео]

• Музыка из бумаги и картона: краткая история вариофона и «рисованного звука»

Как работают ламповые усилители, или Особенности теплого звука / Stereo.ru

История

Радиолампы, как и другие электронные компоненты, имеют богатую историю, в ходе которой произошла заметная эволюция. Началось все в нулевых годах прошлого века, а закатом ламповой эры можно считать шестидесятые годы, когда свет увидела последняя фундаментальная разработка — миниатюрные радиолампы нувисторы, а транзисторы уже начали активно завоевывать рынок. Но из всей истории нас интересуют лишь ключевые этапы, когда были созданы основные типы радиоламп и разработаны основные схемы их включения.

Первый в мире триод изобретателя Ли де Фореста, 1908 год

Первой разновидностью радиоламп, разработанной для создания усилителей, были триоды. Цифра 3 слышится в названии не случайно — именно столько активных выводов имеет триод. Принцип работы триода предельно прост. Между анодом и катодом лампы последовательно включаются источник питания и первичная обмотка выходного трансформатора (ко вторичной обмотке которого подключается акустика). Полезный сигнал подается на сетку лампы. При подаче напряжения в схему усилителя между катодом и анодом протекает поток электронов, а расположенная между ними сетка модулирует этот поток соответственно изменениям уровня входящего сигнала.

В ходе использования триодов в различных отраслях промышленности потребовалось улучшить их характеристики. Одной из таких характеристик была проходная емкость, величина которой ограничивала максимальную рабочую частоту лампы. В процессе решения этой проблемы появились тетроды — радиолампы, имеющие внутри не три, а четыре электрода. Четвертым стала экранирующая сетка, установленная между управляющей сеткой и анодом. Задачу повышения рабочей частоты это решало в полной мере, что вполне удовлетворило создателей технологии, разрабатывавших тетроды для того, чтобы радиостанции и радиоприемники работали в коротковолновом диапазоне, имеющим более высокие несущие частоты нежели средне- и длинноволновый.

Строение триода

С точки зрения качества воспроизведения звука тетрод не превзошел триод принципиально, поэтому другая группа ученых, озадаченная вопросами воспроизведения звуковых частот, усовершенствовала тетрод, используя, по сути, тот же подход — просто добавив в конструкцию лампы еще одну дополнительную сетку, располагающуюся между экранирующей сеткой и анодом. Это было необходимо для того, чтобы подавить динатронный эффект — обратную эмиссию электронов от анода к экранирующей сетке. Подключение дополнительной сетки к катоду препятствовало этому процессу, делая выходную характеристику лампы более линейной и повышая выходную мощность. Так появился новый тип ламп: пентод.

Принцип работы

Все вышеупомянутые типы ламп в том или ином виде нашли применение в аудиотехнике. При этом пытливые умы аудиоинженеров постоянно искали пути наиболее эффективного их использования. Довольно быстро они пришли к выводу, что место включения экранирующей сетки пентода в схему усилителя — это инструмент, с помощью которого можно принципиально изменить режим его работы. При подключении сетки к катоду мы имеем классический пентодный режим, если же переключить сетку на анод — пентод начинает работать в режиме триода. Это позволяет объединить два типа усилителя в одном с возможностью смены режима с помощью простого переключателя.

Так работает тетрод

Но и этим дело не ограничилось. В 1951 году американские инженеры Дэвид Хафлер и Харберт Керос предложили подключать сетку пентода совершенно иным способом: к промежуточным отводам первичной обмотки выходного трансформатора. Такое подключение является чем-то средним между чистым триодным и чистым пентодным включением, давая возможность комбинировать свойства обоих режимов.

Таким образом, с режимами ламп произошла та же история, что и с классами усиления, когда вслед за «чистыми» классами А и В появился комбинированный класс АВ, сочетающий сильные стороны двух предыдущих.

Обозначение разных типов ламп по ГОСТу

В том, что касается сочетания режимов работы ламп и классов усиления, они могут комбинироваться произвольным образом, что приводит к изрядной путанице и даже жарким спорам в рядах неофитов. Не добавляет ясности и тот факт, что разработчики ламповых усилителей в большинстве случаев указывают не класс усилителя, а принцип схемотехники: однотактный — SE (Single Ended) или двухтактный — PP (Push-Pull). В итоге, пентоды и тетроды нередко ассоциируют исключительно с классом АВ и двухтактной схемой в целом, а триод, напротив, считают синонимом класса А и сугубо однотактного включения. На самом же деле, ни что не препятствует переключить усилитель, работающий в классе А, в пентодный или ультралинейный режим, а на паре триодов можно собрать двухтактный усилитель, работающий в классе В или АВ.

Предпосылкой к неверным ассоциациям является частота использования тех или иных режимов в различных классах усиления. Триоды чаще используют в однотактных схемах и классе А. В свою очередь, пентоды и тетроды лучше подходят для работы в двухтактных схемах, хотя переключение их в триодный режим — реальная опция, встречающаяся на усилителях, работающих в классе АВ, и не имеющая ровным счетом никакого отношения к классу А.

Плюсы

Традиционный триодный режим работы лампы имеет как минимум одно значимое преимущество: способность работать без обратной связи. Пентодный режим имеет свои плюсы: большую линейность работы и возможность достигать более высокой мощности. Ультралинейный режим дает возможность отказаться от общей обратной связи и при этом сохранить мощность, близкую к пентодному включению. При этом триод при прочих равных обходит оба варианта по уровню собственного шума лампы.

Минусы

Слабые места одних режимов ламп вполне закономерно можно обнаружить там, где проявляются сильные места других. Триодный режим имеет меньший КПД и меньшую линейность, хуже переносит динамические нагрузки. Пентодный и ультралинейный режимы проигрывают по уровню шумов, к тому же на практике оказываются более зависимы от качества выходных трансформаторов. Пентодный усилитель невозможен без общей обратной связи, и она может понадобиться в некоторых вариантах ультралинейного режима.

Особенности

С точки зрения качества и характера звучания каждый тип ламп и каждый режим включения имеет свои особенности, настолько очевидные на слух, что даже ультралинейный режим, по факту, не стал золотой серединой. Триоды в чистом виде и триодное включение пентодов обеспечивают наиболее чистый и объемный звук до тех пор, пока дело не дойдет до энергичной музыки с быстрыми и значительными по амплитуде перепадами громкости. Иными словами — для спокойного джаза триоды подходят куда лучше, чем для прослушивания рока.

Пентодный и ультралинейный режимы, напротив, больше подходят для энергичной музыки, но в ряде случаев звучат недостаточно чисто, точно и детально. Особенно часто эти претензии относятся к пентодному режиму, а в целом характер звучания и пентодного, и ультралинейного режимов нередко сравнивают с транзисторными усилителями.

Практика

Ламповая схемотехника — дело тонкое, поэтому большинство производителей упражняются в совершенствовании какого-то одного сочетания режима работы ламп и класса усиления. Стремление разработчиков получать идеальный (согласно их представлениям) звук и следующий за этим отказ от любых альтернативных способов включения ламп вполне понятны, но при поиске испытуемого наша задача состояла как раз в обратном: иметь возможность сравнить один и тот же набор ламп как минимум в двух вариантах включения.

Это существенно сократило выбор кандидатов, однако, подходящий вариант был найден. Им стал Cayin CS-100A — аппарат, буквально созданный для разного рода экспериментов. Его конструкция допускает использование выходных ламп двух типов: тетродов KT88 и пентодов EL34. При этом есть возможность выбора между триодным и ультралинейным режимом с выходной мощностью 50 или 80 Вт на канал, соответственно. При этом схемотехника усилителя в обоих случаях двухтактная, и работает он в классе АВ.

Кроме прочего, Cayin CS-100A является хорошим примером современной реализации традиционного лампового усилителя. Он имеет классическую компоновку со съемной решеткой закрывающей лампы, несет на борту выходные трансформаторы солидных размеров, обеспечивающие не только достаточную мощность, но и широкий диапазон воспроизводимых частот. Комплектующие соответствуют современным требованиям качества: в усилителе применяются угольные резисторы, аудиофильские конденсаторы, тороидальный трансформатор питания и проводка серебряным кабелем. Монтаж при этом реализован навесным способом — так же, как это делали более полувека назад. Это является не столько данью истории, сколько способом сокращения путей сигнала. В целом, Cayin CS-100A — это аппарат, в полной мере попадающий под определение лампового High End.

Звук

Когда речь идет о High End-компонентах, особенно ламповых, не всегда удается четко провести грань между «усилитель не справился» и «так и было задумано». В конце концов, аудиоинженер в мире High End — это тоже в некотором роде художник и он имеет право на свое собственное представление о том, как должна звучать система. Избежать такого рода недоразумений помогло использование в процессе тестирования двух пар акустических систем, обладающих принципиально разными характеристиками. Специфические признаки недостатка мощности и роста искажений можно было заметить на тяжелой нагрузке и на громкости выше средней, что в общем соответствует заявленным характеристикам. С крупными полочниками или напольниками средних размеров со столь же среднестатистическими параметрами мощности, импеданса и чувствительности Cayin CS-100A вполне справится.

В триодном режиме усилитель выдает красивое, тембрально насыщенное звучание с богатым верхним и средним басом. Лучше всего звучала спокойная медленная музыка, вокал, аудиофильский джаз, камерная классика малых составов. Вполне можно было получить удовольствие от ранних Beatles и Led Zeppelin. При этом попытки послушать современный рок и металл не увенчались успехом. Звучание гитар было очень густое, тягучее, округлое и не особенно агрессивное. Самый злющий металл подавался так, словно его записывали в начале семидесятых.

Переключение в ультралинейный режим производится одним нажатием кнопки и меняет картину полностью: рок, металл, танцевальная электроника сбрасывают налет винтажности и начинают звучать не менее энергично, чем на транзисторных усилителях, работающих в классе АВ. В характере остается некоторая теплота и приятная округлость басовых нот, но в весьма умеренных количествах. На медленной музыке и малых составах ультралинейный режим не столь красив и выразителен, как триодный, музыка подается более спокойно и ровно.

Выводы

Каждый режим работы лампы в усилителе имеет свои плюсы и минусы, которые дают хорошо различимые на слух отличия в звучании. Учитывая, что ламповая техника — это всегда техника с характером, выбор усилителя, работающего в том или ином режиме (или переключение режимов на самом усилителе), является инструментом пользователя, позволяющим подобрать усилитель согласно индивидуальным предпочтениям.

Другие материалы цикла:

Как работает усилитель класса «А», или Истинный High End и много тепла

Как работает усилитель класса «АВ», или Практичность правит миром

Как работает усилитель класса «G» и «H», или На ступень выше

Как работает усилитель класса XD и XA, или Немного экзотики

Как работает усилитель класса D, или Не такой как все

Статья подготовлена при поддержке компании «Аудиомания», тестирование усилителей проходило в залах прослушивания салона.

Другие полезные материалы в разделе «Мир Hi-Fi» на сайте «Аудиомании» и Youtube-канале компании:

• Как IT-компания боролась за право продавать музыку

• Как выбрать наушники для домашней Hi-Fi-системы?

• Пластинка в подарок или бесплатная музыка для любителей колы и готовых завтраков

Как работает усилитель звука (УНЧ) на транзисторе

Рубрика: Статьи обо всем Опубликовано 12.04.2020   ·   Комментарии: 0   ·   На чтение: 9 мин   ·   Просмотры:

Post Views: 527

Транзистор — это полупроводниковый прибор, который позволяет генерировать, создавать и усиливать электрические колебания. С помощью него можно усилить любой электрический сигнал. Разберем типовую. схему включения биполярного n-p-n транзистора.

Разбор схемы

Это моно-усилитель мощности звуковой частоты.

Транзистор VT1 является главным элементом в схеме усилителя. Поэтому схема называется транзисторный УНЧ (усилитель низкой частоты).

В данном случае используется n-p-n транзистор. Он включен по схеме с общим эмиттером (ОЭ). Эта схема позволяет выжить максимум из транзистора. Она усиливает и напряжение, и ток одновременно. Итого максимальная мощность.
Как именно определяется схема включения? Входящий сигнал подается на базу и эмиттер, а выходящий снимается с коллектора и эмиттера. То есть, по сути, общий контакт эмиттер. Поэтому схема называется с общим эмиттером. Эмиттер – это силовая часть транзистора, которая позволяет усилить сигнал по максимуму.

Данная схема имеет один каскад усиления.

Что такое каскад

Каскад – это по сути этап усиления, который не зависит от другого. Бывают и двухкаскадные усилители. То есть, например, в схеме есть два транзистора. Один работает как предусилитель, и передает усиленный сигнал на вход второго. Поэтому схема называется двухкаскадной. Они не зависят друг от друга, но первый каскад передает сигнал на второй, что позволяет увеличить мощность сигнала.

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

К тому же, электролитические конденсаторы должны разряжаться после выключения. Тем более, есть предел для увеличения емкости для схемы. Если в эту схему подключить конденсатор емкостью 1 фарад (1 000 000 мкФ), то уровень шума на выходе усилителя будет такой же, как и при 1000 мкФ. Это связано с тем, что у транзистора так же есть и свои «шумы», отсутствие экранировки на входе, динамические искажения и другие параметры.

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

Вход усилителя

Вход усилителя – это клеммы Х1 и Х2.

Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.

Можно подключить как левый канал, так и правый и оба сразу.

Фильтрация входного сигнала

Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.

По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.

Не путайте этот эффект со свистом. Свист – это влияние положительной обратной связи, а в данном случае будет режим насыщения из-за короткого замыкания на входе. И на выходе усилителя будет слышен именно хрип, а не свит или звук.

Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.

Рабочая точка и смещение базы

Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.

Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.
Ток, который протекает через R1 и R2 поступает на базу транзистора VT1, который потом уходит через эмиттер, тем самым его открывая. Это называется базовое смещение транзистора, то есть его открытие. Напряжение смещения определяет рабочую точку. В данном случае усилитель А класса.

Как определяется класс усилителя

Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.

Например, точка по центру это А класс.


А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.

Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.

Также от рабочей точки зависит и чувствительность усилителя.

Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.

Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.

Поэтому, схемотехники и инженеры изобрели цифровые усилители. У них аналоговый сигнал преобразовывается в цифровой, и только потом подается на вход усилителя. Транзистор не искажает входной цифрой сигнал. После усиления сигнал снова преобразовывается в аналоговый с наименьшими потерями и искажениями.

А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.

Стабилизация работы схемы

Когда полупроводник нагревается, его сопротивление уменьшается. Транзистор сделан из полупроводника, и соответственно его p-n переходы тоже.

При работе схемы УНЧ ток течет через транзистор, и он нагревается. Обычно вся мощность рассеивается на коллекторе. И тем не менее, характеристики транзистора резко меняются, поскольку сопротивление его p-n переходом резко снижается по мере повышения температуры.

Чтобы стабилизировать работу транзистора, нужно сбалансировать его сопротивление другим источником. Это можно сделать при помощи дополнительного сопротивления.

Когда сопротивление транзистора VT1 уменьшается, резистор R3 забирает часть напряжения на себя и не позволяет увеличить ток в цепи.

Благодаря этому транзистор:

  • не закрывается;
  • не переходит в режим насыщения;
  • не искажает сигнал;
  • и не перегревается.

Это называется термостабилизация работы усилителя.

А чтобы в нормальном режиме работы, когда VT1 не нагревается, резистор R3 не уменьшал мощность схемы, в цепь включен шунтирующий электролитический конденсатор C2. Через него переменная составляющая входного сигнала проходит без потерь.

Выход усилителя

На выход к усилителю можно подключить как другой усилитель, который усилит сигнал еще больше, так и динамическую головку.
Динамическая головка — это обычный динамик. Он воспроизведёт звук с выхода транзистора VT1.

Однако и тут есть много нюансов.

Самое важное касается согласование сопротивления нагрузки и сопротивления усилителя.

Если сопротивление выхода транзистора намного больше, чем у динамической головки, то он не сможет передать всю мощность. Как минимум большая часть напряжения останется на его контактах.

Для данной схемы нужен динамик с сопротивлением около 1 кОм.

Если поставить меньше, например, на 4 Ома, то и половина мощности не воспроизведется, а коллектор VT1 начнет еще сильнее нагреваться.

Согласование сопротивлений входа, выхода и нагрузки усилителя рассчитывается на этапе проектирования схемы. Поэтому не следует их нарушать.

Как протекает ток по схеме

В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.

Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.

Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.

Входной сигнал притягивается коллектором VT1 и тем самым усиливается.

Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений.

В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.

От чего зависит мощность схемы

У этой схемы есть ограничения. Можно поменять VT1 КТ315 на более мощный, у которого коэффициент усиления будет выше, но этот лимит усиления не бесконечный.

В первую очередь, все зависит от используемого транзистора. Если поменять его на более мощный, то и усиление будет выше. Но следует помнить, что чем мощнее транзистор, тем мощнее нужен входной сигнал. К тому же, придется сделать перерасчет всех компонентов. И подключать предусилитель, собирать схему блока питания, а это уже будет совсем другая схема.

У транзисторов есть ряд параметров, которые влияют на схему. Это коэффициент усиления по току (h31э), напряжению, мощности. А также важный параметр — это рассеиваемая мощность на коллекторе. С повышением мощности потребуется радиатор для отвода тепла.

Как собрать схему

Схему можно собрать на текстолите или на макетной плате. Перейдите по ссылке на эту статью, в ней подробнее описывается процесс сборки и проверки схемы.

Используйте качественные детали и хороший припой. Она рабочая. Это вообще классическая схема включения биполярного транзистора с общим эмиттером.

Также на сайте есть и другие схемы усилителей, которые не сложны в сборке и не дорогие по стоимости деталей.

Как проверить работу схемы

Достаточно прикоснуться до входа УНЧ отверткой, и на выходе послышаться треск. Это переменная наводка, которая усилится схемой.

Post Views: 527

Усилитель | Описание, предназначение, виды усилителей.

Электронный усилитель – это усилитель, задача которого состоит в том, чтобы увеличить сигнал по мощности, при этом сохраняя форму усиливаемого сигнала. Более подробно это определение можно прочесть в Википедии. В этой статье мы поверхностно пробежимся по основам теории усилителей.

Что такое усилитель?

В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона

динамический микрофон

слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник

Усилитель

Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:

зенитный комплекс тор

Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.

Что такое черный ящик в электронике

В общем виде усилитель можно рассматривать как черный ящик. очень черный ящикЧто представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса,  можно предположить, что находится у него внутри.

То есть по сути черный ящик должен иметь какие-либо “сенсоры” для восприятия информации извне, некий “вход”, а также некий “выход” для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.

Усилитель

Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала – значит кошка. Если побежал – значит кот).

Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.

Что такое четырехполюсник

В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник – это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего “электрического черного ящика”.

услитель четырехполюсник

Пассивный четырехполюсник

Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).

Усилитель

В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.

Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.

Активный четырехполюсник

А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал. усилитель на транзисторе

То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.

Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.

усилитель на транзисторе принцип работы

Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.

В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке – это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.

В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .

усилитель в роли черного ящика

Обобщенная схема усилителя

Она  выглядит примерно вот так:

обобщенная схема усилитель

Как мы можем видеть на схеме, ко входу усилительного каскада  через клеммы 1 и 2 подсоединяется какой-либо источник слабого сигнала  с ЭДС  EИ   и внутренним сопротивлением RИ . Именно этот слабый сигнал с этого источника мы будем усиливать. Далее, как и полагается, каждый усилитель обладает своим каким-либо входным сопротивлением Rвх . Сила тока Iвх в цепи  EИ —>RИ—>Rвх , как ни трудно догадаться, будет зависеть от  входного сопротивления усилительного каскада Rвх .

Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).

В выходной цепи усилителя мы получаем усиленный сигнал с ЭДС Eвых и выходным сопротивлением Rвых . Через клеммники 3 и 4 мы цепляем нагрузку Rн , которая уже будет потреблять энергию усиленного сигнала. Сила тока в цепи Eвых —> Rвых —> Rн  будет зависеть от сопротивления нагрузки Rн .

Типы усилителей

Усилители можно разделить на три группы:

Усилитель напряжения

Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:

усилитель напряжения коэффициент

где

KU – это коэффициент усиления по напряжению

Uвых – напряжение на выходе усилителя, В

Uвх – напряжение на входе усилителя, В

Выходное усиленное напряжение не должно меняться от тока нагрузки, а следовательно, и от сопротивления нагрузки. В идеале, выходное сопротивление Rвых должно быть равно нулю, что недостижимо на практике. Поэтому, УН стараются проектировать так, чтобы минимизировать выходное сопротивление Rвых .

схема усилителя

В таком режиме усилитель работает, если выполняются условия, что Rвх намного больше, чем Rвых т. е.  Rвх >>Rи  и Rн намного больше, чем Rвых    (Rн >>Rвых ). Чем больше номинал Rн , тем лучше для усилителя напряжения, так как нагрузка не будет просаживать выходное напряжение Uвых.  Здесь все просто: чем меньше сопротивление нагрузки, тем бОльшая сила тока будет течь по цепи Eвых —> Rвых —> Rн , тем больше будет падение напряжения на выходном сопротивлении Rвых , исходя из формулы ЭДС: Eвых =IвыхRвых +IвыхRн . Об этом можно более подробно прочитать в статье Закон Ома для полной цепи.

Усилитель тока

Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:

Усилитель

где KI   – коэффициент усиления по току

Iвых  – сила тока в цепи нагрузки, А

Iвх  – сила тока во входной цепи Eи —>Rи —>Rвх , А

Смысл работы усилителя тока такой:  при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.

Если сила тока должна быть постоянной, а  значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.

Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх  пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим,  у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.

Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А  усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.

Но также не забываем еще об одном параметре, который у нас находится в выходной цепи усилителя тока. Это выходное сопротивление Rвых . Поэтому, нам необходимо, чтобы выполнялось условие: Rвх << Rи и Rн << Rвых  при которых обеспечивается заданный ток в нагрузке при малом значении напряжения.

Усилитель мощности

Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.

Чем же УМ отличается от УН и УТ?

Если в УТ  мы увеличивали только силу тока, в УН – напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.

Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:

Усилитель

где

P – мощность, Вт

I – сила тока, А

U – напряжение, В

Следовательно, коэффициент усиления по мощности запишется как:

Усилитель

где

KP – коэффициент усиления по мощности

Pвых  – мощность на выходе усилителя, Вт

Pвх  – мощность на входе усилителя, Вт

Для усилителя мощности условия согласования входной цепи с источником входного сигнала и выходной цепи с нагрузкой для передачи максимальной мощности имеют вид: Rвх ≈ Rи и Rн ≈ Rвых .

Усилитель

Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).

Выходная мощность усилителя

Выходная мощность усилителя, отдаваемая в активную нагрузку, будет выражаться формулой:

Усилитель

где

Pвых – выходная мощность усилителя, Вт

Iвых – сила тока в цепи нагрузки, А

UВых  – напряжение на нагрузке, В

Мощность на нагрузку с реактивной составляющей будет уже выражаться через формулу:

Усилитель

где

Pвых – выходная мощность усилителя, Вт

Iвых – сила тока в цепи нагрузки, А

Uвых  – напряжение на нагрузке, В

cosφ  – где φ – это разность фаз между осциллограммой тока и напряжения

Например, разность фаз между током и напряжением в активной нагрузке равна нулю, следовательно, cos0=1. Поэтому формула для активной нагрузки принимает вид

Усилитель

Более подробно про это можно прочитать в статье про активное и реактивное сопротивление.

Максимальная выходная мощность, при которой искажение сигнала на выходе не превышает качественных значений усилителя, называют номинальной мощностью усилителя.

Ну и обобщенное правило, для того, чтобы было проще запомнить все эти три вида усилителя:

В УН KU > 1, KI = 1;       в УТ KI > 1, KU = 1;          в УМ KU > 1 и KI > 1.

 

Виды усилителей по полосе пропускания

По ширине полосы пропускания усилители делятся на:

Усилители низкой частоты

Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц – это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.

Усилители высокой частоты

Они предназначены для усиления сигналов во всем диапазоне частот, используемых электроникой.

Широкополосные усилители

Они позволяют  усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.

Узкополосные усилители

Они усиливают узкую полосу частот. Это могут быть  резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.

Усилители постоянного тока

Усиливают сколь угодно медленные электрические колебания, начиная с частоты, равной нулю герц (постоянный ток).

Если вы желаете больше знать об усилителях, то читайте статью основные параметры усилителя.

Как работают усилители | HowStuffWorks

Когда люди называют «усилители», они обычно говорят о стерео компонентах или музыкальном оборудовании. Но это только небольшое представление спектра аудиоусилителей. На самом деле вокруг нас есть усилители. Вы найдете их в телевизорах, компьютерах, портативных проигрывателях компакт-дисков и большинстве других устройств, использующих динамики для воспроизведения звука.

Звук — захватывающее явление. Когда что-то вибрирует в атмосфере, оно перемещает частицы воздуха вокруг себя.Эти частицы воздуха, в свою очередь, перемещают частицы воздуха вокруг себя, передавая импульс вибрации через воздух. Наши уши улавливают эти колебания давления воздуха и преобразуют их в электрические сигналы, которые мозг может обрабатывать.

Электронное звуковое оборудование работает таким же основным образом. Он представляет звук как переменный электрический ток. Вообще говоря, в этом типе воспроизведения звука есть три этапа:

  • Звуковые волны перемещают диафрагму микрофона вперед и назад, и микрофон преобразует это движение в электрический сигнал.Электрический сигнал колеблется, представляя сжатий и разрежений звуковой волны.
  • Регистратор кодирует этот электрический сигнал в виде шаблона в некоторой среде — например, в виде магнитных импульсов на ленте или в виде канавок в записи.
  • Игрок (например, магнитофон) повторно интерпретирует этот шаблон как электрический сигнал и использует это электричество для перемещения конуса динамика вперед и назад. Это воссоздает колебания давления воздуха, первоначально записанные микрофоном.

Как видите, все основные компоненты этой системы по сути являются трансляторами: они принимают сигнал в одной форме и помещают его в другую. В конце звуковой сигнал переводится обратно в исходную форму, физическую звуковую волну.

Чтобы регистрировать все незначительные колебания давления в звуковой волне, диафрагма микрофона должна быть чрезвычайно чувствительной. Это означает, что он очень тонкий и перемещается только на короткое расстояние. Следовательно, микрофон вырабатывает довольно маленький электрический ток.

Это хорошо для большинства этапов процесса — он достаточно силен для использования, например, в рекордере и легко передается по проводам. Но последний шаг в этом процессе — толкание конуса динамика вперед и назад — сложнее. Чтобы сделать это, вам нужно усилить звуковой сигнал, чтобы он имел больший ток при сохранении той же схемы колебаний заряда.

Это работа усилителя. Он просто производит более мощную версию звукового сигнала.В этой статье мы увидим, что делают усилители и как они это делают. Усилители могут быть очень сложными устройствами с сотнями крошечных кусочков, но вы можете получить четкое представление о том, как работает усилитель, изучив самые основные компоненты. В следующем разделе мы рассмотрим основные элементы усилителей. ,Основы усилителя ESP

— как работают усилители звука

Основы усилителя ESP — как работают усилители звука
ESP Logo
Основы усилителя
Elliott Sound Products — как работают усилители (введение)

© 1999 — Род Эллиотт (ESP)
Последнее обновление 6 апреля 2005 г.


Articles Статьи Index
Index Главный индекс

Введение

Термин «усилитель» в настоящее время является общим и часто считается (в частности, многими пользователями), что означает усилитель мощности для управления громкоговорителями.Это не тот случай (ну, это — это , но это не только ), и в этой статье мы попытаемся объяснить некоторые из основ усиления — что это значит и как это достигается. Эта статья не предназначена для дизайнера (хотя дизайнеры могут ее прочитать, если они того пожелают) и не предназначена для охвата всех возможностей. Это учебник, в котором даются довольно простые объяснения (хотя некоторые, несомненно, будут оспаривать это) каждого из основных пунктов.

Я объясню основные усилительные элементы, а именно клапаны (вакуумные трубки), биполярные транзисторы и полевые транзисторы, все из которых работать к одному и тому же концу, но делать это по-другому.Эта статья основана на принципах усиления звука — радиочастотные (РЧ) усилители сконструированы по-разному из-за особых требований при работе на высоких частотах.

Не исключено, что операционный усилитель также присутствует, поскольку, хотя он и не является в отдельном смысле «отдельным компонентом», он теперь считается самостоятельным строительным блоком.

Эта статья предназначена не для начинающих (хотя они тоже приветствуются), а для тех, кто интересуется промежуточной электроникой или аудио, которые получат наибольшую пользу от приведенных объяснений.


Содержание
Основная терминология

Прежде чем мы продолжим, я должен объяснить некоторые из используемых терминов. Не зная об этом, вы не сможете следить за последующим обсуждением.

Электроблоки
Наименование Измерение aka Символ
Вольт электрическое напряжение В, U, E (EMF)
Ампер поток электронов ток А, I
Вт Мощность Вт, P
Ом сопротивление току Ом, R
Ом импеданс, реактивное сопротивление Ом, Z, X
Фарад емкость F, C
Генри индуктивность H, L
Гц частота Гц

Примечание: «aka» означает «также известен как».Хотя греческая буква омега (Ω) является символом для омов, я буду использовать слово «ом» или букву «R» для обозначения омов. Любое сопротивление, превышающее 1000 Ом, будет отображаться как (например) 1k5, что означает 1 500 Ом или 1 М для 1 000 000 Ом. Второй символ, показанный в таблице, обычно используется в формуле.

Когда речь идет о вольтах и ​​амперах (амперах), у нас есть переменный ток и постоянный ток (переменный и постоянный ток соответственно). Питание от настенной розетки — от сети переменного тока, а также от компакт-диска или магнитофона.Сеть от сетевой розетки находится под высоким напряжением и способна на большой ток, и используется для питания усилительных цепей. Сигнал от вашего аудиоисточника находится под низким напряжением и может подавать только небольшой ток, и его необходимо усилить, чтобы он мог управлять громкоговорителем.

Импеданс
Производная единица сопротивления, емкости и индуктивности в комбинации называется импедансом, хотя не требуется, чтобы все три были включены. Импеданс также измеряется в омах, но это сложная цифра, которая часто не дает никакой полезной информации.Импеданс динамика является показательным примером. Хотя в брошюре может быть указано, что сопротивление динамика составляет 8 Ом, в действительности оно будет варьироваться в зависимости от частоты, типа корпуса и даже от ближайших стен или обстановки.

Единицы
Во всех областях электроники есть много разных вещей, которые было бы очень неудобно писать полностью. Например, конденсатор может иметь значение 0,000001F, а резистор — 150000 Ом.Из-за этого существуют условные единицы, которые применяются для облегчения нашей жизни (ну, в любом случае, когда мы привыкли их использовать, в любом случае). Гораздо проще сказать 1uF или 150k (то же, что и выше, но с использованием стандартных единиц измерения). Эти единицы описаны ниже.

Обычные метрические единицы
Символ Имя Умножение
p pico 1 x 10 -12
n nano 1 x 10 -9
μ микро 1 x 10 -6
м милли 1 x 10 -3
к кило 1 x 10 3
M Mega 1 x 10 6
G Гига 1 x 10 9
T Tera 1 x 10 12

Хотя обычно он обозначается буквой «u», символом «micro» на самом деле является греческая буква mu (μ), как показано на рисунке.В аудио Giga и Tera обычно не встречаются (пока совсем нет — за исключением указания входного сопротивления некоторых операционных усилителей!). Есть и другие (такие как фемто — 1×10 -15 ), которые крайне редки и не были включены. Из стандартных электрических блоков только Фарад настолько велик, что стандартом дефакто является микрофарад (мкФ). Большинство других достаточно разумны в своей основной форме.

Важно понимать, что символом для микрофарад является мкФ (чаще всего мкФ), , а не мкФ — это миллифарад и 1000 мкФ.


Основы усиления

Термин «усиливать» в основном означает сделать сильнее. Сила сигнала (с точки зрения напряжения) называется амплитудой, но нет эквивалента для тока (curritude?, Нет, звучит глупо). Это само по себе сбивает с толку, потому что, хотя «амплитуда» относится к напряжению, оно содержит слово «ампер», как в ампере. Может быть, мы должны ввести «напряжение» — нет? Просто живи с этим.

Чтобы понять, как работает любой усилитель, вам необходимо понять два основных типа усиления и третий «производный» тип:

  • Усилитель напряжения — усилитель, который повышает напряжение входного сигнала
  • Current Amplifier — усилитель, который увеличивает ток сигнала
  • Усилитель мощности
  • — комбинация двух вышеуказанных усилителей
В случае усилителя напряжения небольшое входное напряжение будет увеличено, например, до 10 мВ (0.01V) входной сигнал может быть усилен, так что выходной сигнал составляет 1 вольт. Это представляет собой «усиление» 100 — выходное напряжение в 100 раз больше, чем входное напряжение. Это называется усилением напряжения усилителя.

В случае усилителя тока, входной ток 10 мА (0,01 А) может быть усилен, чтобы дать выход 1 А. Опять же, это усиление 100, и это текущее усиление усилителя.

Если мы теперь скомбинируем два усилителя, затем рассчитаем входную мощность и выходную мощность, мы измерим усиление мощности:


P = V × I (где I = текущий, обратите внимание, что символ изменяется в формуле)

Теперь можно рассчитать входную и выходную мощность:

P в = 0.01 × 0,01 (0,01 В и 0,01 А или 10 мВ и 10 мА)
P в = 100 мкВт
P из = 1 × 1 (1 В и 1A)
P из = 1 Вт

Таким образом, коэффициент усиления составляет 10 000, то есть коэффициент усиления по напряжению, умноженный на коэффициент усиления по току. Несколько удивительно, возможно, мы не заинтересованы в усилении мощности с аудио усилителями.Для этого есть веские причины, которые будут объяснены в оставшейся части этой страницы. Сказав это, в действительности все усилители являются усилителями мощности, поскольку напряжение не может существовать без мощности, если импеданс не равен бесконечности или равен нулю. Это никогда не достигается, поэтому всегда присутствует некоторая сила. Усилители удобно классифицировать как указано выше, и небольшая ошибка терминологии не причинит никакого вреда.

Обратите внимание, что усиление по напряжению или току 100 составляет 40 дБ, а усиление по мощности 10 000 также составляет 40 дБ.

Входное сопротивление Усилители
будут указаны как имеющие определенный входной импеданс. Это говорит нам только о том, какую нагрузку он будет устанавливать на предыдущее оборудование, такое как предварительный усилитель. Это не практично и не полезно согласовывать импеданс предусилителя с усилителем мощности или усилитель мощности с динамиком. Это будет обсуждаться более подробно позже в этой статье.

Нагрузка — это сопротивление или импеданс, размещенные на выходе усилителя. В случае усилителя мощности нагрузка чаще всего представляет собой громкоговоритель.Любая нагрузка потребует, чтобы источник (предшествующий усилитель) был способен обеспечить ее достаточным напряжением и током, чтобы выполнять свою задачу. В случае громкоговорителя усилитель мощности должен обеспечивать напряжение и ток, достаточные для того, чтобы конус (ы) громкоговорителя сдвигался на требуемое расстояние. Это движение преобразуется в звук динамиком.

Несмотря на то, что усилитель может обеспечить достаточно большое напряжение для возбуждения диффузора динамика, он не сможет этого сделать, если не сможет обеспечить достаточный ток.Это не имеет никакого отношения к его выходному сопротивлению. Усилитель может иметь очень низкий выходной импеданс, но может быть способен только на малый ток (например, операционный усилитель или операционный усилитель). Это очень важно и должно быть полностью понято, прежде чем вы сможете полностью оценить сложность процесса усиления.

Выходное сопротивление
Выходной импеданс усилителя — это мера импеданса или сопротивления, «заглядывающего» обратно в усилитель.Это не имеет никакого отношения к фактической загрузке, которая может быть размещена на выходе.

Например, усилитель имеет выходной импеданс 10 Ом. Это подтверждается размещением нагрузки 10 Ом на выходе, и видно, что напряжение уменьшается до ½, что без нагрузки. Однако, если этот усилитель не способен к значительному выходному току, нам, возможно, придется проводить это измерение при очень низком выходном напряжении, иначе усилитель не сможет управлять нагрузкой.

Другой усилитель может иметь выходное сопротивление 100 Ом, но может подавать 10 А в нагрузку.Выходной импеданс и ток полностью разделены и не должны рассматриваться как равнозначные. Обе эти возможности будут продемонстрированы позже в этой серии.

Обратная связь
Feedback — это термин, который создает больше и более кровавых битв между аудио-энтузиастами, чем почти любой другой. Без этого у нас не было бы уровней производительности, которыми мы наслаждаемся сегодня, и многие типы усилителей были бы несостоятельными без него.

Обратная связь в самом широком смысле означает, что определенное количество выходного сигнала «возвращается» на вход.Усилитель — или элемент усилительного устройства — представлен входным сигналом и сравнивает его с «мелкой копией» выходного сигнала. Если есть какая-либо разница, усилитель исправляет это и в идеале гарантирует, что выход является точной копией входа, но с большей амплитудой. Обратная связь может быть как напряжением, так и током, и в обоих случаях имеет схожий эффект.

Во многих конструкциях одна часть всей схемы усилителя (обычно входной каскад) действует как усилитель ошибки и подает точно необходимое количество сигнала на остальную часть усилителя, чтобы гарантировать отсутствие разницы между входом и выходные сигналы, кроме амплитуды.Это (конечно) идеальное состояние, и оно никогда не достигается на практике. Всегда будет какая-то разница, пусть и незначительная.

Инверсия сигнала
При использовании в качестве усилителей напряжения все стандартные активные устройства инвертируют сигнал. Это означает, что если поступает положительный сигнал, он становится более сильным, но теперь отрицательным сигналом. На самом деле это не имеет большого значения, но удобно (и обычно) пытаться сделать усилители неинвертирующими.Для этого необходимо использовать две ступени (или трансформатор), чтобы фаза усиленного сигнала совпадала с фазой входного сигнала.

Точный механизм того, как и почему это происходит, будет объясняться по мере продвижения вперед.

Фаза проектирования
Фаза проектирования усилителя ничем не отличается, независимо от типа компонентов, используемых в самой конструкции. Существует последовательность, которая будет использоваться большую часть времени для завершения дизайна, и она будет (или должна) следовать шаблону.

  • Выходная мощность против импеданса
    Выходная мощность определяется импедансом нагрузки и доступным напряжением и током усилителя. Усилитель, который способен максимум Выходной ток 1.414A не сможет обеспечить больше только потому, что вы этого хотите. Такой усилитель будет ограничен среднеквадратичным значением 16 Вт на 8 Ом, независимо от источника питания. напряжение. Аналогичным образом, усилитель с напряжением питания +/- 16 В (среднеквадратичное значение 11,32 В) не сможет обеспечить среднеквадратичное значение более 16 Вт на 8 Ом, независимо от доступных ток.Наличие большего доступного тока позволит усилителю обеспечить (например) 32 Вт на 4 Ом (пиковый ток 4 А) или 64 Вт на 2 Ом (пиковый ток 8 А), но даст не более 8 Ом, чем напряжение питания и сопротивление нагрузки.
  • Текущий драйвер
    Особенно в случае биполярных транзисторов, ступень возбуждения должна обеспечивать достаточный ток для выходных транзисторов — с МОП-транзисторами, драйвером должен быть способен заряжать и разряжать емкость затвор-источник достаточно быстро, чтобы позволить вам получить необходимую мощность на самых высоких частотах, представляющих интерес.С участием клапаны, драйвер должен быть в состоянии подавать достаточный ток для питания только резисторов смещения, так как сетка клапана потребляет мало или вообще не потребляет ток (за исключением частный случай класса-AB2).

    Для простоты, если биполярные выходные транзисторы имеют коэффициент усиления 20 при максимальном токе в нагрузке, драйверы должны иметь возможность питания достаточно тока базы, чтобы позволить это. Если максимальный ток коллектора составляет 4А, драйверы должны иметь возможность подавать 200 мА базового тока на выходные устройства.

  • Предыдущие этапы
    Ступени, которые предшествуют драйверам, также должны обеспечивать достаточный ток для нагрузки. Драйвер биполярного или полевого МОП-транзистора класса А должен быть в состоянии подавать достаточный ток, чтобы удовлетворить потребности базового тока биполярных драйверов или емкость затвора полевых МОП-транзисторов.

    Опять же, используя приведенный выше биполярный пример, максимальный базовый ток для выходных транзисторов составлял 200 мА. Если драйверы имеют минимальный указанный коэффициент усиления 50, то их базовый ток будет…

    Index 200/50 = 4 мА.

    Поскольку драйвер класса А должен работать в классе А (что удивительно), он должен работать с током, в 1,5-5 раз превышающим ожидаемый максимальный уровень драйвера тока, чтобы он никогда не выключался. То же самое относится и к усилителю MOSFET, который будет ожидать (например) максимального заряда затвора (или разряда) ток 4 мА при самых высоких амплитудах и частотах.

    Обычно это не проблема с усилителями клапанов, так как на ранних стадиях усилителя нет значительного импеданса.Никаких дальнейших определений не требуется (кроме обычных эффектов нагрузки ступеней клапана в целом), хотя неискаженное напряжение может стать ограничивающим фактором.

  • Этапы ввода
    Входные каскады всех транзисторных усилителей должны быть в состоянии обеспечивать базовый ток драйвера класса А. На этот раз запас от 2 до 5 раз Требуется максимальный базовый ток. Если драйвер класса A должен обеспечивать ток покоя, скажем, 8 мА, максимальный ток будет 12 мА (покоя + Ток базы водителя.Предполагая усиление 50 (снова), это означает, что входной каскад должен иметь возможность питания 12/50 = 240 мкА, поэтому он должен работать как минимум ток 240 мкА × 2 = 480 мкА для сохранения линейности.
  • Входной ток
    Входной ток первой ступени определяет входное сопротивление усилителя. Используя приведенные выше цифры, с током коллектора 480uA, база ток будет 4,8 мкА для входных устройств с коэффициентом усиления 100. Если развивается максимальная мощность при входном напряжении 1 В, тогда полное сопротивление составляет 208 кОм (R = V / I).

    Поскольку ступень должна быть смещена, мы применяем те же правила, что и раньше — с запасом от 2 до 5, поэтому максимальное значение резисторов смещения должно быть быть 208/2 = 104k. Более низкое значение является предпочтительным, и я полагаю, что коэффициент 5 является более подходящим, давая 208/5 = 42k (47k можно использовать без проблем).

Это только рекомендации (конечно), и есть много случаев, когда токи больше (или меньше), чем предполагалось. Конечным результатом является производительность усилителя, и подход с использованием учебников не всегда дает ожидаемый результат.Обратите внимание, что в приведенном выше описании есть некоторые существенные упрощения — это обзор, и он предназначен только для того, чтобы дать вам основную идею.


Типы Усилительных Устройств

Для целей этой статьи существует три различных типа усилительных устройств, и каждое из них будет обсуждаться по очереди. У каждого есть свои сильные и слабые стороны, но у всех есть один общий недостаток — они не идеальны.

Идеальный усилитель или другое устройство (обычно называемое «идеальным») будет выполнять свою задачу в определенных заданных пределах, не прибавляя и не вычитая ничего из исходного сигнала.Идеального усилительного устройства не существует, и, как следствие, идеального усилителя не существует, так как все должно быть построено с использованием реальных (неидеальных) устройств.

В настоящее время доступны усилительные устройства:

  • Вакуумная Трубка (Клапан)
  • Биполярный транзистор
  • (BJT)
  • Полевой транзистор (FET)

Существуют также некоторые производные вышеперечисленного, такие как биполярные транзисторы с изолированным затвором (IGBT) и полевые транзисторы на основе оксида металла и полупроводника (MOSFET).Из них MOSFET является популярным выбором среди многих дизайнеров из-за некоторых желательных характеристик, и они будут рассмотрены в их собственном разделе.

Все эти устройства зависят от других неусиливающих («поддерживающих») компонентов, обычно известных как пассивные компоненты. Пассивные устройства — это резисторы, конденсаторы и индукторы, и без них мы бы вообще не смогли создать усилители.

Все устройства, которые мы используем для усиления, имеют выход переменного тока, и только способ их использования позволяет нам создавать усилитель напряжения.Клапаны и полевые транзисторы являются устройствами, контролируемыми напряжением, это означает, что выходной ток определяется напряжением, и ток не берется из источника сигнала (теоретически). Биполярные транзисторы управляются током, поэтому выходной ток определяется входным током. Это означает, что от источника сигнала не требуется напряжение, только ток. Опять же, это в теории, и это не осуществимо на практике.

Только с помощью вспомогательных компонентов мы можем преобразовать токовый выход любого из этих усилительных устройств в напряжение.Наиболее часто используемый для этой цели резистор.


Общий предельный рейтинг

Все активные устройства имеют определенные общие параметры (хотя они будут иметь разные соглашения об именах в зависимости от устройства). По сути это …

  • Максимальное напряжение — Максимальное напряжение, которое может быть приложено между основными клеммами устройства. Это может варьироваться от 25 В (иногда еще меньше) для малых сигнальных транзисторов и полевых транзисторов и до 1200 В или более для некоторых клапанов и транзисторов высокого напряжения.Напряжения MOSFET, как правило, примерно до От 600 до 800 В для коммутационных устройств для использования в источниках питания.
  • Максимальный ток — Максимальный ток, который устройство может безопасно передать. Диапазон от нескольких мА до многих усилителей. Это никогда не будет , пока устройство также имеет максимальное напряжение на нем, так как это приведет к рассеиваемой мощности, намного превышающей …
  • Максимальная рассеиваемая мощность — максимальная мощность, которую устройство может рассеивать (в мВт или Вт) при любых условиях напряжение и ток.(Называется пластиной диссипация для клапанов).
  • Напряжение / ток нагревателя — (клапаны). Рабочее напряжение и / или ток для нити (с прямым нагревом катодов) или нагревателя (для косвенного с подогревом катодов). Это всегда должно быть в пределах 10% от указанного значения, иначе срок службы катода будет значительно сокращен.
  • Максимальная температура перехода — (Полупроводники) Максимальная температура, которую будет выдерживать полупроводниковая матрица без сбоев.В этот По температуре большинство полупроводников не смогут выполнять какую-либо работу, так как это повысит температуру выше максимально допустимой.
  • Понижение температуры — (Полупроводники). Выше указанной температуры допустимая мощность полупроводниковых приборов должна быть снижена до оставаться ниже максимально допустимой температуры соединения. Мощность обычно снижается выше 25 ° C.
  • Термостойкость — (Полупроводники).Тепловое сопротивление между переходом и корпусом (высокая мощность) или переходом и воздухом (низкая мощность). измеренный в градусах C / W, это позволяет определить подходящий радиатор.

Это далеко не все рейтинги, их гораздо больше, и они варьируются от устройства к устройству. Например, некоторые МОП-транзисторы будут иметь пиковые значения тока, которые во много раз превышают непрерывные, но только в течение очень ограниченного времени. Биполярные транзисторы имеют график безопасной рабочей зоны (SOA), который показывает, что при некоторых обстоятельствах вы не должны эксплуатировать устройство где-либо вблизи его максимального рассеивания мощности, иначе оно выйдет из строя из-за явления, называемого вторым выходом из строя (будет описано позже).

Для большинства полупроводниковых приборов во многих случаях будет невозможно использовать их в местах, близких к максимальному рассеиванию мощности, поскольку тепловое сопротивление таково, что тепло просто не может быть удалено из соединения и в радиатор достаточно быстро. В этих случаях может потребоваться использование нескольких устройств для достижения производительности, которую (теоретически) можно получить из одного компонента. Это очень распространено в аудиоусилителях.


Основные формулы электроники

Есть некоторые вещи, от которых вы просто не можете избавиться, и математика — одна из них.(Извините.) Я включу здесь только самое необходимое, но опишу все, что нужно по ходу дела. Я не собираюсь давать урок по алгебре, но лучшая причина для изучения предмета — научиться переносить формулы электроники! Перемещение зависит от вас (если я не буду вынужден сделать это для расчета здесь или там).

Закон Ома
Первым из них является закон Ома, который гласит, что напряжение 1 В на сопротивлении 1 Ом вызовет ток 1 А.Формула …

R = V / I (где R = сопротивление в омах, V = напряжение в вольтах и ​​I = ток в амперах)

Как и все такие формулы, это можно перенести (упс, я сказал, что не собираюсь этого делать, не так ли),

V = R × I (× означает умноженное на), а
I = V / R

Reactance
Затем возникает полное сопротивление (реактивное сопротивление) конденсатора, которое изменяется обратно пропорционально частоте (с увеличением частоты реактивное сопротивление падает и наоборот).

Xc = 1 / (2 & times π × f × C)

, где Xc — емкостное реактивное сопротивление в Омах, π (pi) — 3,14159, f — частота в Гц, а C — емкость в Фарадах.

Индуктивное сопротивление, являющееся реактивным сопротивлением индуктора. Это пропорционально частоте.

X l = 2 × π × f × L

, где X l — индуктивное сопротивление в Омах, а L — индуктивность в Генри (другие, как указано выше).

Частота
Существует много разных расчетов для этого, в зависимости от комбинации компонентов.Частота -3 дБ для сопротивления и емкости (наиболее распространенная в конструкции усилителя) определяется …

f o = 1 / (2 × π × R × C), где f o — частота -3 дБ

Когда сопротивление и индуктивность объединены, формула

f o = R / (2 × π × L)

Мощность
Мощность — это мера работы, которая может быть либо физической работой (перемещение конуса динамика), либо тепловой работой — теплом. Мощность в любой форме, в которой присутствуют напряжение, ток и сопротивление, может быть рассчитана несколькими способами:

P = V × I
P = V² / R
P = I² × R

где P — мощность в ваттах, V — напряжение в вольтах, а I — ток в амперах.

децибел (дБ)
Давно известно, что человеческие уши не могут разрешать очень маленькие различия в звуковом давлении. Первоначально было определено, что наименьшее слышимое изменение составляет 1 дБ — 1 децибел или 1/10 от 1 бел. Кажется довольно общепринятым, что фактический предел составляет около 0,5 дБ, но нередко можно услышать, что некоторые люди могут (или искренне верят, что могут) разрешать гораздо меньшие вариации. Я не буду отвлекаться на это!

дБ = 20 × log (V1 / V2)
дБ = 20 × log (I1 / I2)
дБ = 10 × log (P1 / P2)

Как можно видеть, в расчетах дБ для напряжения и тока используется 20-кратное значение log (основание 10) большей единицы, деленное на меньшую единицу.С силой, умножение 10 используется. В любом случае, падение на 3 дБ представляет половину мощности, и наоборот.

Есть много других, но пока их будет достаточно. Я не намерен, чтобы это был полный курс по электронике, поэтому я дам вам то, что необходимо, чтобы понять оставшуюся часть статьи — в остальном, есть много отличных книг по электронике, и у них будет каждая формула, которую вы когда-либо разыскивается.


Далее (Часть 1 — Клапаны)



Articles Статьи Index
Main Index Главный указатель
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь всеми текстами и диаграммами, является интеллектуальной собственностью Рода Эллиота и является авторским правом © 1999, 2005. Воспроизведение или повторная публикация любыми средствами, будь то электронные, механические или электромеханические, строго запрещено международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только для личного использования, а также разрешает делать одну (1) копию для справки. Коммерческое использование запрещено без письменного разрешения Rod Elliott.

,

Как работают усилители | HowStuffWorks

Основным компонентом большинства усилителей является транзистор . Основными элементами в транзисторе являются полупроводники, материалы с различной способностью проводить электрический ток. Как правило, полупроводник сделан из плохого проводника, такого как кремния , к которому добавлено примесей (атомов другого материала). Процесс добавления примесей называется , легирование .

В чистом кремнии все атомы кремния идеально связаны со своими соседями, не оставляя свободных электронов для проведения электрического тока. В легированном кремнии дополнительные атомы изменяют баланс, добавляя свободные электроны или создавая дыры , куда могут попасть электроны. Электрический заряд перемещается, когда электроны перемещаются из дыры в дыру, поэтому любое из этих добавлений сделает материал более проводящим. (См., Как Полупроводники Работают для полного объяснения.)

N-типа полупроводники характеризуются дополнительными электронами (которые имеют отрицательный заряд).Полупроводники P-типа имеют множество дополнительных отверстий (которые имеют положительный заряд).

Давайте рассмотрим усилитель, построенный на базовом -биполярном транзисторе . Транзистор такого типа состоит из трех полупроводниковых слоев — в данном случае полупроводника p-типа , зажатого между двумя полупроводниками n-типа . Эта структура лучше всего представлена ​​в виде столбца, как показано на диаграмме ниже (фактический дизайн современных транзисторов немного отличается).

Первый уровень n-типа называется эмиттером , уровень p-типа называется базой , а второй уровень n-типа называется коллектором . Выходная схема (схема, которая управляет динамиком) подключена к электродам на эмиттере и коллекторе транзистора. Входная цепь соединяется с эмиттером и базой.

Свободные электроны в слоях n-типа естественно хотят заполнить отверстия в слое p-типа.Свободных электронов намного больше, чем дырок, поэтому дырки заполняются очень быстро. Это создает зон истощения на границах между материалом n-типа и материалом p-типа. В зоне истощения полупроводниковый материал возвращается в свое первоначальное изоляционное состояние — все отверстия заполнены, поэтому нет свободных электронов или пустых пространств для электронов, и заряд не может течь. Когда зоны истощения имеют большую толщину, от эмиттера к коллектору может перемещаться очень мало заряда, даже если между двумя электродами существует сильная разница напряжений.

В следующем разделе мы увидим, что можно сделать, чтобы изменить эту ситуацию.

,
Создание великолепного звучащего усилителя звука (с усилением басов) из LM386

В этом уроке я покажу вам, как создать великолепный звучащий усилитель звука с низковольтным усилителем мощности звука LM386. Я построил около десятка различных схем аудиоусилителя с LM386, но большинство из них было слишком много шума, трещин и других помех. Наконец я нашел один, который звучит великолепно, поэтому я собираюсь показать вам, как его построить.

Это не аудиоусилитель с «минимальными компонентами».Я добавил несколько дополнительных конденсаторов, чтобы уменьшить шум, и добавил регулятор усиления низких частот, чтобы он звучал еще лучше. Но прежде чем приступить к сборке, было бы полезно сначала получить небольшую справочную информацию…

БОНУС: Загрузите мой список запчастей для усилителя LM386 со схемой усиления низких частот, чтобы увидеть, какие компоненты использовать для хорошего качества звука.

LM386 Основы

LM386 — довольно универсальный чип. Для работы усилителя звука требуется всего пара резисторов и конденсаторов.Чип имеет опции для регулировки усиления и усиления низких частот, и его также можно превратить в генератор, способный выводить синусоидальные или прямоугольные волны.

Существует три варианта LM386, каждый с различной номинальной выходной мощностью:

  • LM386N-1: 0,325 Вт
  • LM386N-3: 0,700 Вт
  • LM386N-4: 1,00 Вт

Фактическая выходная мощность, которую вы значение будет зависеть от вашего напряжения питания и сопротивления динамика. В таблице есть графики, которые вам скажут.В качестве источника питания я использовал батарею 9 В, и она отлично работает, но вы можете снизить напряжение до 4 В или до 12 В.

Распиновка показана на диаграмме ниже:

Загрузите таблицу для получения дополнительной информации о выходной мощности, характеристиках искажений и минимальных / максимальных значениях:

LM386 Лист данных

LM386 — это тип операционного усилителя ( Op-Amp). Операционные усилители имеют основную задачу. Они принимают входной потенциал (напряжение) и создают выходной потенциал, который в десятки, сотни или тысячи раз превышает величину входного потенциала.В схеме усилителя LM386 принимает входной аудиосигнал и увеличивает его потенциал в 20–200 раз. Это усиление известно как усиление напряжения.

Gain vs Volume

После того, как вы построите этот усилитель и поиграете с регуляторами громкости и усиления, вы заметите, что оба они увеличивают или понижают интенсивность звука, выходящего из динамика. Так в чем же разница? Gain — усиление входного потенциала и является характеристикой усилителя. Громкость позволяет регулировать уровень звука в диапазоне усиления, установленном усилением. Усиление устанавливает диапазон возможных уровней громкости. Например, если ваше усиление установлено на 20, диапазон громкости составляет от 0 до 20. Если ваше усиление установлено на 200, диапазон громкости составляет от 0 до 200.

Регулирование усиления может быть достигнуто путем подключения конденсатора 10 мкФ между контактами 1 и 8. Без конденсатора между контактами 1 и 8 коэффициент усиления будет установлен на 20. С конденсатором 10 мкФ коэффициент усиления будет установлен на 200.Коэффициент усиления можно изменить на любое значение от 20 до 200, поместив резистор (или потенциометр) последовательно с конденсатором.

A Минимальный усилитель звука LM386

Теперь, когда у нас есть небольшая справочная информация о LM386, давайте начнем с создания голого усилителя LM386 с минимальным количеством компонентов, необходимых для его работы. Таким образом, вы можете сравнить его с лучшим звучанием, которое мы создадим позже.

Вот схема:

Вот как это можно подключить, если вы используете макет:

На схеме подключения, приведенной выше, земля аудио входа проходит по тому же пути, что и земля аудио выхода.Заземление на выходе «шумит» и приведет к искажению входного сигнала, если он подключен таким образом. Заземление аудио входа чувствительно к любым помехам, и любой шум будет усиливаться через усилитель.

Задайте цель максимально разделить входное заземление от других путей заземления. Например, вы можете подключить заземление для источника питания, входа и выхода непосредственно к выводу заземления (вывод 4) LM386 следующим образом:

Это уменьшит расстояние, которое входное заземление проходит через выходное заземление.Такое подключение должно звучать лучше, чем в первом контуре, но вы, вероятно, все равно заметите шум, статический шум и треск. Мы исправим это в следующей цепи, добавив развязывающие конденсаторы и пару RC-фильтров.

Отличное звучание Усилитель звука LM386

Теперь, когда вы увидели минимум того, что требуется для создания усилителя звука с LM386, давайте создадим версию с более высокой точностью воспроизведения с регулируемой регулировкой усиления.

Примечание. Большинство значений компонентов в этой цепи не являются критическими.Если у вас нет определенного значения, попробуйте заменить что-то близкое, и это, вероятно, сработает.

Вот схема:

Несколько вещей в этой схеме делают его звучание лучше:

  1. Конденсатор 470 пФ между положительным входным сигналом и землей, который фильтрует радиопомехи, обнаруживаемые проводами аудиовхода.
  2. 100 мкФ и 0,1 мкФ конденсаторы между положительной и отрицательной силовыми шинами для разъединения источника питания. Конденсатор 100 мкФ будет фильтровать низкочастотный шум, а 0.Конденсатор 1 мкФ будет фильтровать высокочастотный шум.
  3. Конденсатор 0,1 мкФ между контактами 4 и 6 для дополнительной развязки питания микросхемы.
  4. Резистор 10 кОм и конденсатор 10 мкФ последовательно между контактом 7 и заземлением для развязки входного аудиосигнала.

Эта диаграмма покажет вам, как подключить все, если вы используете макет:

При подключении любого аудиоусилителя следует иметь в виду, что при сохранении всех проводных соединений будет получаться самый чистый звук. и компоненты как можно ближе к чипу.Сохранение проводов как можно короче также поможет.

Усилитель звука LM386 с усилением басов

Отличная особенность LM386 — возможность добавить регулируемое усиление басов к усилителю. Вы, вероятно, обнаружите, что это лучшая схема звучания. Усиление низких частот в основном является фильтром нижних частот, и оно устраняет большую часть шума, не поглощаемого развязывающими конденсаторами. Все, что вам нужно для схемы усиления низких частот, — это конденсатор емкостью 0,033 мкФ и потенциометр 10 кОм последовательно между контактами 1 и 5:

Вот схема подключения:

Простой способ подключения аудиовхода в этих цепях это путем резки 3.5 мм аудиоразъем от старого комплекта наушников и подключение его к макетам. Прочтите эту статью «Как взломать разъем для наушников», чтобы узнать, как это сделать с некоторыми распространенными типами наушников.

Вот видео версия этого урока, если вы хотите посмотреть, как я собираю усилители, и послушать их:

Спасибо за чтение! Надеюсь, вам было так же интересно экспериментировать с этими усилителями, как и я. Если вы готовы создать еще более качественные и мощные усилители, у нас есть учебники по нескольким другим:

LM3886 — безусловно, лучший по звучанию усилитель, но это довольно сложный проект.Если вы только начинаете создавать аудиоусилители, я бы порекомендовал вам перейти к нему, начав с TDA2003, а затем перейдя к TDA2050.

Не забудьте подписаться, чтобы оставаться в курсе наших сообщений, как только они будут опубликованы. И не стесняйтесь оставлять комментарии, если у вас есть какие-либо вопросы или вам нужна помощь с чем-либо в этой статье.


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *