Кпп робот что это: 6 правил, о которых мало кто знает :: Autonews

Содержание

Как работает роботизированная коробка передач — ДРАЙВ

Чтобы ответить на этот вопрос, придётся вспомнить устройство обычной механической коробки передач. Основу классической «механики» составляют два вала — первичный (ведущий) и вторичный (ведомый). На первичный вал через механизм сцепления передаётся крутящий момент от двигателя. Со вторичного вала преобразованный момент идёт на ведущие колёса. И на первичный, и на вторичный валы посажены шестерни, попарно находящиеся в зацеплении. Но на первичном шестерни закреплены жёстко, а на вторичном — свободно вращаются. В положении «нейтраль» все вторичные шестерни прокручиваются на валу свободно, то есть крутящий момент на колёса не поступает.

Перед включением передачи водитель выжимает сцепление, отсоединяя первичный вал от двигателя. Затем рычагом КПП через систему тяг на вторичном валу перемещаются специальные устройства — синхронизаторы. При подведении муфта синхронизатора жёстко блокирует на валу вторичную шестерню нужной передачи.

После включения сцепления крутящий момент с заданным коэффициентом начинает передаваться на вторичный вал, а от него — на главную передачу и колёса. Для сокращения общей длины коробки вторичный вал часто делят на два, распределяя ведомые шестерни между ними.

Упрощённая схема работы 5-ступенчатой механической коробки передач.

Принцип действия роботизированных коробок передач абсолютно тот же. Единственное отличие в том, что смыканием/размыканием сцепления и выбором передач в «роботе» занимаются сервоприводы — актуаторы. Чаще всего это шаговый электромотор с редуктором и исполнительным механизмом. Но встречаются и гидравлические актуаторы.

Роботизированная КПП SensoDrive применяется на автомобилях марки Citroen.

Управляет актуаторами электронный блок. По команде на переключение первый сервопривод выжимает сцепление, второй перемещает синхронизаторы, включая нужную передачу. Затем первый плавно отпускает сцепление.

Таким образом, педаль сцепления в салоне больше не нужна — при поступлении команды электроника всё сделает сама. В автоматическом режиме команда на смену передачи поступает от компьютера, учитывающего скорость движения, обороты двигателя, данные ESP, ABS и других систем. А в ручном — приказ на переключение отдаёт водитель при помощи селектора КПП или подрулевых лепестков.

Фирма Ricardo на примере «робота» Easytronic от модели Opel Corsa предложила заменить раздельные актуаторы для сцепления и выбора передачи одиночным электромагнитным актуатором. Благодаря этому уменьшились размеры и масса агрегата. И самое главное — механизм выбора передачи стал работать в восемь раз быстрее, а общий период разрыва потока мощности сократился до 0,35 с. Вверху — серийный Easytronic, внизу — рисунок разработки Ricardo.

Проблема «робота» — отсутствие обратной связи по сцеплению. Человек чувствует момент смыкания дисков и может переключить скорость быстро и плавно. А электроника вынуждена перестраховываться: чтобы избежать рывков и сохранить сцепление, «робот» надолго разрывает поток мощности от двигателя к колёсам во время переключения. Получаются дискомфортные провалы на разгоне. Единственный способ достичь комфорта при переключениях — сократить их время. А это, увы, означает рост цены всей конструкции.

Пионером массового использования преселективных коробок стал концерн Volkswagen, использующий DSG (S tronic у Audi) как на переднеприводных, так и на полноприводных моделях с продольно и поперечно установленными двигателями. Аббревиатура DSG (Direct Shift Gearbox — коробка прямого включения) стала нарицательным для коробок с двумя сцеплениями — хотя на самом деле это просто товарный знак.

Революционным решением стала появившаяся в начале 80-х трансмиссия с двумя сцеплениями DCT (dual clutch transmission). Рассмотрим её работу на примере 6-ступенчатой коробки DSG концерна Volkswagen. У коробки два вторичных вала с расположенными на них ведомыми шестернями и синхронизаторами — как у шестиступенчатой «механики» Гольфа.

Фокус в том, что первичных валов тоже два: они вставлены друг в друга по принципу матрёшки. Каждый из валов соединяется с двигателем через отдельное многодисковое сцепление. На внешнем первичном валу закреплены шестерни второй, четвёртой и шестой передач, на внутреннем — первой, третьей, пятой и заднего хода. Допустим, автомобиль начинает разгон с места. Включается первая передача (муфта блокирует ведомую шестерню первой передачи). Замыкается первое сцепление, и крутящий момент через внутренний первичный вал передаётся на колёса. Поехали! Но одновременно с включением первой передачи умная электроника прогнозирует последующее включение второй — и блокирует её вторичную шестерню. Именно поэтому такие коробки ещё называют преселективными. Таким образом, включены две передачи сразу, но заклинивания не происходит, — ведущая шестерня второй передачи находится на внешнем валу, сцепление которого пока разомкнуто.

Состояние DSG при движении на первой передаче. Муфтами блокированы шестерни 1-й и 2-й передач.

Когда машина достаточно разгонится и компьютер решит повысить передачу, размыкается первое сцепление и одновременно замыкается второе. Крутящий момент теперь идёт через внешний первичный вал и пару второй передачи. На внутреннем валу уже выбрана третья. При замедлении те же операции происходят в обратном порядке. Переход происходит практически без разрыва потока мощности и с фантастической скоростью. Серийная коробка Гольфа переключается за восемь миллисекунд. Сравните со 150 мс на Ferrari Enzo!

Состояние DSG после переключения на 2-ю передачу. 3-я передача ожидает своей очереди.

Коробки с двойным сцеплением экономичнее и быстрее традиционных механических, а также более комфортны, чем «автоматы». Главный их недостаток — высокая цена. Вторую проблему — неспособность передавать большой крутящий момент — решили с появлением DSG фирмы Ricardo на 1000-сильном купе Bugatti Veyron. Но пока удел большинства суперкаров — «роботы». Хотя, например, коробка Ferrari 599 GTB Fiorano — не чета опелевскому Изитронику: время переключения у суперробота исчисляется десятками миллисекунд.

Роботизированная коробка AMG Speedshift, устанавливаемая на новейший SL 63 AMG, представляет собой модифицированный мерседесовский «автомат» 7G-Tronic. Только крутящий момент вместо тяжёлого и инертного гидротрансформатора передаёт одинарное многодисковое «мокрое» сцепление. Благодаря применению сложных электрогидравлических актуаторов время переключения составляет 0,1 с.

Сегодня коробки DCT есть не только у Фольксвагена, но и у компаний BMW, Ford, Mitsubishi и FIAT. Преселективные коробки признали даже инженеры Porsche, которые используют в своих машинах только проверенные технологии. Аналитики прогнозируют, что в будущем наиболее распространёнными трансмиссиями станут DCT и вариаторы. А дни третьей педали, похоже, сочтены — скоро она исчезнет даже из самых драйверских спорткаров. Человечество выбирает то, что удобнее.

РКПП — роботизированная коробка передач, «робот»

РКПП — роботизированная коробка передач (коробка «робот), которая позволяет выбирать и включать необходимую передачу без участия водителя, то есть автоматически. При этом ошибочно полагать, что роботизированная трансмиссия является одной из разновидностей АКПП (гидромеханический автомат).

Прежде всего, чтобы понять, что такое роботизированная коробка передач, для начала необходимо вспомнить устройство и принцип работы обычной механической коробки (МКПП). Так вот, фактически роботизированная коробка является той же «механикой», однако автоматическое переключение передач в данном типе КПП становится возможным благодаря наличию боков управления и электронно-механических исполнительных устройств.

Устройство, особенности и принцип работы роботизированной коробки передач

Как уже было сказано выше, РКПП состоит из механической коробки передач, а также дополнительных устройств для выжима сцепления, выбора и переключения передачи. Данные устройства называются актуаторами (актуатор сцепления, актуатор выбора передачи). Также коробка «робот» имеет собственную систему управления, которая представляет собой ЭБУ коробкой и ряд электронных датчиков, взаимодействующих с блоком.

Получается, данный тип КПП представляет собой механическую коробку с автоматическим управлением и принципиально отличается от классического «автомата», а также бесступенчатого вариатора.

Роботизированная КПП, как и обычная МКПП, имеет сцепление, в ней не используется трансмиссионная жидкость ATF в качестве рабочей для управления и т.д. Добавим, что в современных «роботах» может быть как одно, так и два сцепления. В первом случае следует понимать однодисковый «робот», а во втором преселективную роботизированную коробку передач с двумя сцеплениями.

Если говорить об устройстве коробки — робот, можно выделить следующие базовые составные элементы:

  • Коробка передач, которая по устройству напоминает «механику;
  • Актуаторы (сервоприводы), отвечающие за выжим сцепления и включение передачи;
  • Блок управления коробкой (микропроцессорный ЭБУ) и внешние датчики;

Давайте рассмотрим устройство РКПП на примере 6-и ступенчатой роботизированной коробки передач с двумя сцеплениями. Сама коробка похожа на МКПП, однако имеет сразу два ведущих вала. Если просто, эти валы расположены друг в друге (внешний вал имеет внутреннюю полость, куда вставлен еще один внутренний первичный вал).

На внешнем валу установлены шестерни привода 2, 4 и 6 передачи. На внутреннем валу ставятся шестерни 1, 3, 5 передачи, а также передачи заднего хода. Для каждого из валов имеется отдельное сцепление.

Актуаторы роботизированной коробки представляют собой электрические или гидросервоприводы. Электрический актуатор -электромотор с редуктором, гидравлический является гидроцилиндром, шток которого связан с синхронизатором. Главной задачей как первого, так и второго типа устройств становится механическое перемещение синхронизаторов КПП, а также включение и выключение сцепления.

Блок управления коробкой передач является микропроцессорным ЭБУ, к которому подключены внешние датчики, которые задействованы в ЭСУД автомобиля. Другими словами, контроллер коробки передач взаимодействует с датчиками от двигателя, а также ряда других систем (например, ABS и т. д.). Часто блок управления коробкой совмещен с ЭБУ двигателем, при этом коробка работает по собственному заданному алгоритму.

Как работает роботизированная коробка передач

Что касается принципов работы РКПП, для начала движения и дальнейшего плавного переключения передач необходимо задействовать сцепление (как и в МКПП). Включение сцепления реализует актуатор, который получает сигнал от ЭБУ коробкой и начинает медленно вращать редуктор.

В коробке с двумя сцеплениями сначала включается первое сцепление внутреннего первичного вала. Далее актуатор выбора и включения передачи подводит синхронизатор к шестерне первой передачи. В результате шестерня блокируется на валу и начинает вращаться вторичный вал.

После того, как автомобиль начал движение, водитель продолжает нажимать на педаль газа для разгона. В однодисковых роботах с одним сцеплением для включения второй передачи требуется некоторое время, в результате чего возникает характерный «провал».

Чтобы избавиться от такой задержки и сократить время переключений в конструкцию коробки добавили второе сцепление и еще один вал. В результате появилась так называемая преселективная роботизированная КПП.

Если просто, пока включена первая передача, вторая уже также готова к включению, так как одновременно задействовано второе сцепление. Получается, после сигнала от микропроцессорного блока быстро сработает включение второй передачи.

Подобным образом происходит переключение на последующие высшие передачи, а также понижение передач при езде. При этом время переключения минимально и занимает доли секунды, исключены перегазовки, практически отсутствует разрыв тяги и т.д. Результат — динамичная езда и максимальная топливная экономичность.

Работа в автоматическом режиме становится возможной благодаря тому, что ЭБУ коробкой постоянно анализирует сигналы с внешних датчиков. Блок учитывает нагрузку на ДВС, скорость движения ТС, положение педали газа, пробуксовку колес и т. д.

Также РКПП имеют возможность ручного переключения передач, имитируя работу гидромеханической АКПП в ручном режиме (например, Типтроник). Еще на некоторых «роботах» можно заблокировать включение повышенных передач.

Простыми словами, водитель при помощи селектора выбирает режим, при котором ЭБУ коробкой не будет инициировать включение, например, 3 передачи и выше, что помогает преодолевать сложные участки пути (снег, гололед, грязь и т.д.).


Преимущества и недостатки коробки — робот

Сегодня коробка-робот является достаточно распространенным решением. Например, концерн VAG активно устанавливает подобные коробки, которые знакомы потребителям, как DSG, на разные модели Audi, Volkswagen, Porsche, Skoda и т.д. Также роботизированную трансмиссию массово ставят на модели Ford, Mitsubishi, Honda и машины целого ряда других мировых производителей.

На первый взгляд может показаться, что РКПП имеет только плюсы: надежность и ремонтопригодность «механики», быстрота переключений, топливная экономичность, возможность выдерживать большой крутящий момент и т.д.

При этом по заверениям самих производителей РКПП должны в скором времени полностью вытеснить «классические» АКПП с гидротрансформатором и вариаторные коробки. Однако на практике этого не произошло.

Дело в том, что в плане комфорта работа «однодисковых» роботизированных коробок (с одним сцеплением) далека от АКПП и, тем более, от бесступенчатого вариатора. Автомобиль с такой коробкой дергается при езде, переключения «затянуты», имеются провалы и т.п.

Также ресурс сцепления на «роботе» и актуаторов достаточно низкий (в среднем, около 80-100 тыс. км.). При этом стоимость актуаторов высокая, а ремонтопригодность данных элементов сомнительная. По этой причине многие сервисы практикуют узловую замену, то есть актуатор просто меняется на новый.

Что касается более сложных и дорогих преселективных коробок с двумя сцеплениями, переключения в этом случае более плавные и больше напоминают работу обычной АКПП. Однако ресурс такого «робота» (например, DSG 6 или DSG 7) все равно снижен, нередко возникают проблемы по части механики и электроники, а ремонт в ряде случаев потребует значительных расходов.

В качестве итога отметим, что многие автопроизводители, особенно из Японии, начали постепенно отказываться от установки коробки-робот на свои модели, заменяя ее классической АКПП с гидротрансформатором (ГДТ).

Например, Hondа Civic 8 хэтчбек, который изначально выпускался с РКПП, но в дальнейшем после рестайлинга получил полноценный «автомат». То же самое можно сказать о популярной Toyota Corolla 2007 года, которая позднее получила вместо «робота» автоматическую гидромеханическую коробку.


что это такое и как работает

Благодаря активному развитию автомобилестроения сегодня потребителю доступны несколько типов КПП: традиционная механическая коробка, «классический» гидромеханический автомат АКПП, бесступенчатый вариатор CVT, а также роботизированная коробка передач РКПП.

При этом коробка-робот является самым современным типом среди автоматических трансмиссий. Хотя работы по созданию подобного агрегата велись достаточно давно, успешная реализация и внедрение в массовое производство  стало возможным только в последние десятилетия.

В этой статье мы рассмотрим КПП робот, что это такое и как работает, а также какие преимущества и недостатки имеют роботизированные трансмиссии  по сравнению с другими видами коробок передач.

Содержание статьи

Роботизированная коробка: устройство и принцип работы

Итак, коробка – робот фактически является обычной механикой МКПП, где выключение сцепления и выбор/переключение передач осуществляется не самим водителем, а автоматикой. Другими словами, процессы  в коробке робот, представляющей собой механическую трансмиссию, попросту автоматизированы (роботизированы).

Главным преимуществом робота по сравнению с автоматом или вариатором является то, что данная трансмиссия достаточно проста в производстве,  что позволяет снизить начальную себестоимость автомобиля. Также роботизированная коробка передач  обеспечивает комфорт (по аналогии с автоматом), отличается высокой производительностью, позволяет добиться топливной экономичности.

С учетом таких особенностей автогиганты повсеместно устанавливают такие КПП на свои модели, причем как в бюджетном, так и в «топовом» сегменте.

  • Устройство роботизированной коробки передач в общих чертах представляет собой механическую коробку, которая оснащена отдельными системами для управления сцеплением, а также выбором и включением передач.

Сцепление, по аналогии с МКПП, фрикционного типа, однако диск сцепления может быть одним или же представлять собой так называемый пакет сцепления коробки робот. Еще возможен вариант, когда сцеплений сразу два.

Двойное сцепление устанавливается на преселективных коробках типа DSG или Powershift. Такие трансмиссии выгодно отличатся от обычных АМТ, так как обеспечивают высокий уровень комфорта и передачу крутящего момента без потерь во время переключений (нет разрыва потока мощности).

Часто коробка робот является агрегатом, который создан уже на базе готовых решений. За основу может быть взят гидромеханический автомат, где гидротрансформатор меняется на фрикционное многодисковое сцепление. Еще возможен вариант, где обычная «механика» получает электрический, гидравлический (электрогидравлический) привод сцепления.

Электропривод означает, что  используются специальные сервомеханизмы (электродвигатели) и механическая передача. Гидравлический (электрогидравлический) привод работает благодаря наличию в конструкции гидроцилиндров. Эти цилиндры управляются электромагнитными клапанами.

Электрический привод принято считать более простым и дешевым вариантом. При этом его скорость работы (то есть время переключения передач) достаточно низкая. Гидравлический привод заметно быстрее, однако решение требует наличия жидкости в системе под давлением, что увеличивает энергозатраты.

Как правило, робот с электрическим приводом ставится на более простые и дешевые модели, тогда как с гидравлическим приводом  на машины среднего и высокого класса.

  • Как и в случае с любым другим автоматом, роботизированной коробкой также управляет электронная система. Указанная система состоит из ЭБУ, входных датчиков, а также исполнительных механизмов.

Датчики следят за рабочими параметрами КПП (частота вращения на входе и выходе, в каком положении находятся вилки положение включения передач, режим селектора, температура и давление масла  в версиях с гидроприводом сцепления и т.д.)

Затем данные передаются в ЭБУ коробкой робот, который на основании полученной информации  формирует и отсылает сигналы на исполнительные механизмы с учетом заранее прописанных в контроллере алгоритмов. Также коробки с гидравлическим приводом имеют гидроблок (по аналогии с АКПП) для управления гидроцилиндрами и давлением масла в системе.

Коробка робот с двойным сцеплением: особенности

Как уже было сказано выше, робот с одним сцеплением достаточно прост конструктивно, однако его минусом считается большой промежуток  времени во время переключения передач. В движении это часто приводит к толчкам, провалам, рывкам и т.д.

Получается, заметно страдает комфорт. В результате была разработана коробка робот  с двумя сцеплениями. Такая коробка переключает передач намного быстрее, то есть практически незаметно для водителя. При этом при переключениях передач не происходит разрыва потока мощности, что положительно сказывается на динамике, экономичности и ездовых характеристиках.

Если просто, данная КПП представляет собой сразу две МКПП в одном корпусе. Одна коробка отвечает за четные передачи, тогда как другая за нечетные. Каждая из коробок имеет свое сцепление, что и позволяет  заранее выбрать следующую передачу и уже практически включить ее, пока автомобиль еще движется на предыдущей передаче.

Включение происходит почти моментально, а сам агрегат называется преселективная коробка передач (от англ. preselect, что означает  предварительный выбор). Преселективный  робот с двумя сцепления получился эффективным и компактным, что позволяет ставить данную КПП на разные автомобили.

Двойное сцепление на таких коробках бывает «мокрым» и «сухим». В первом случае пакеты сцепления находятся в масле, тогда как во втором используется сухое сцепление. Отметим, что мокрое сцепление принято считать боле долговечным, тогда как сухой аналог отличается меньшим сроком службы.  

Указанные роботизированные коробки, независимо от типа самого сцепления, обычно имеют гидравлический привод сцепления и передач. Использование электрического привода также возможно, однако встречается очень редко.

Как работает роботизированная коробка передач

Все коробки роботы имеют как автоматический, так и ручной режим работы (аналог Типтроник на АКПП). Также роботизированные коробки часто могут быть условно названы адаптивными КПП, так как система управления работает гибко, «подстраиваясь» под индивидуальный стиль вождения.

Еще отметим, что работа в ручном режиме позволяет водителю реализовать последовательное переключение передач «вверх» и «вниз» при помощи селектора, отдельной кнопки на селекторе и/или подрулевых переключателей-лепестков (в зависимости от особенностей и исполнения органов управления КПП). Некоторые РКПП имеют как возможность переключения селектором, так и подрулевыми лепестками.

С учетом особенностей такого режима работы, роботизированная трансмиссия иногда также называется секвентальной коробкой передач (когда переключения можно осуществлять только последовательно).

Что в итоге

Как видно, коробка робот представляет собой современное и достаточно эффективное решение. Однако, как и любой другой агрегат, данная трансмиссия не лишена определенных недостатков. Как правило, ответом на вопрос, чем плоха коробка DSG или коробка робот с одним сцеплением, является низкая ремонтопригодность, дороговизна и сложность ремонта, отсутствие запчастей и т.д.

Рекомендуем также прочитать статью о том, как правильно ездить на коробке робот. Из этой статьи вы узнаете об особенностях эксплуатации КПП данного типа, а также что нужно учитывать при езде на машине с роботизированной коробкой передач.

В любом случае, данное решение все равно продолжает выглядеть достаточно привлекательно, особенно при покупке нового автомобиля, который имеет официальную гарантию производителя. Если же говорить о приобретении авто б/у с коробкой робот, в этом случае нужно отдельно принимать во внимание тип установленной коробки, ее особенности, срок службы, неисправности и т.д.

Читайте также

что это такое, отличия от акпп, плюсы и минусы

Существует 4 вида коробок переключения передач (КПП). Доля автомобилей с роботизированной коробкой передач, классическим автоматом и вариатором на дорогах постоянно растет, ведь все больше автолюбителей отказываются от ручной механики. Коробки передач, работающие без участия человека, постоянно совершенствуются. Их качество, скорость реакции на дорожные события, плавность действий становятся лучше, а любая поездка комфортнее.

С роботизированной коробкой передач намного удобнее.

Что такое роботизированная коробка передач

Роботизированная коробка передач (РКПП, или робот) — это часть трансмиссии транспортного средства. Иногда ее путают с автоматической коробкой, но они отличны друг от друга. РКПП состоит из механической КПП, автоматических переключателей электрического или гидравлического типа (актуаторы) и блока управления этими переключателями (ЭБУ). То есть сама коробка — механика, автоматическим является только управление ее работой.

Для водителя РКПП выглядит почти как АКПП. Под рукой нет рычага переключения скоростей (на некоторых моделях вместо него ручка селектора), а под ногами — педали сцепления. Во время езды передачи переключаются в автоматическом режиме.

Как она работает

Механической коробкой передач, снабженной диском сцепления с маховиком двигателя, управляет робот. Алгоритм, заложенный разработчиками в ЭБУ, реагирует на показания датчиков, подавая команды сервоприводам.

Это выглядит так:

  • водитель давит на педаль газа;
  • повышаются обороты двигателя, автомобиль ускоряется;
  • по достижении заложенных в программу значений срабатывают актуаторы сцепления и вилки переключения;
  • происходит включение повышенной передачи.

Если водитель продолжает ускорение, то на следующих запрограммированных оборотах двигателя и скорости движения ЭБУ снова подает сигнал и актуаторы опять переключают передачу.

По тому же принципу во время торможения передачи переключаются с высоких на пониженные. Высокопродуктивные процессоры позволяют создавать сложные программы, имитирующие поведение человека в разных ситуациях. И чем они сложнее, тем динамичнее и комфортнее езда.

Особенности РКПП

Работа роботизированной коробки передач.

Приводы переключения скоростей на роботах оснащаются либо электрическими моторчиками, либо поршневой гидравлической системой. Но выполняют они одну и ту же задачу — передвигают синхронизаторы шестеренок вторичного вала и выжимают сцепление.

Главное отличие в том, что гидравлика работает быстрее и мягче. Но она более дорогая в производстве, поэтому такими РКПП снабжены в основном автомобили высокого класса. Самой востребованной является DSG от немецкого концерна Volkswagen.

ЭБУ для коробок делают и отдельным, и совмещенным с блоком управления ДВС. Последний вариант наиболее целесообразен, если алгоритм управления робота учитывает показания тех же систем, что и управление двигателем, например ABS или ESP.

Устройство сцепления в роботе

Роботизированные коробки по методу взаимодействия с двигателем бывают двух типов:

  • однодисковые;
  • двухдисковые (используют два сцепления, включаемые попеременно).

Однодисковая коробка ничем не отличается от механической. В ней есть первичный и вторичный валы.

Первичный соединен с диском сцепления. Вторичный вал передает крутящий момент непосредственно на колеса. Оба вала взаимодействуют посредством шестерней разного диаметра. Переключение происходит в тот момент, когда выбранная для нужной передачи шестерня на вторичном валу блокируется. В РКПП это делают электрические манипуляторы, получающие сигнал от ЭБУ. Гидравлические приводы-манипуляторы на однодисковых коробках используются крайне редко.

Двухдисковые имеют два ведущих первичных вала, каждый из которых соединен со своим диском сцепления. Один вал отвечает за четные передачи, а второй — за нечетные и заднюю. Такое техническое решение позволило делать включение выбранной передачи более плавным. Синхронизаторы приводов работают попеременно. В момент перехода на одном валу с 1 на 2 передачу ЭБУ уже дает сигнал на подготовку к включению 3. Поэтому их еще называют преселективными, т. е. с предварительным выбором. В результате сам процесс переключения ускоряется до 0,2 и менее секунд.

Некоторые производители так настраивают работу актуаторов и алгоритмы, что робот функционирует не хуже человека.

Режимы работы

Управление водителем коробкой передач сводится к выбору режима селектором:

  1. Нейтраль обозначается «N». В этом режиме двигатель работает, но крутящий момент на колеса не передается. Включать перед началом движения, после остановки, при длительной стоянке.
  2. Движение вперед обозначается «А/М», «Е/М» или «D». Включив этот режим, отпускают педаль тормоза и нажимают педаль газа. Машина движется вперед, автоматически переключая скорости в зависимости от ускорения или торможения.
  3. Ручное управление обозначается «М». Автомобиль движется вперед, водитель самостоятельно переключает скорости, нажимая подрулевые лепестки или селектор в положения «+» или «-». При этом переключение происходит только на одну ступень.
  4. Движение задним ходом обозначается «R». Выбрав этот режим, можно ехать назад.
  5. На некоторых РКПП возможно наличие режимов «зимний» и «спортивный».
Понятие роботизированной коробки передач.

Есть также и свои особенности при езде, к которым водитель должен привыкнуть, иначе будет попадать в неприятные ситуации.

Это следующее:

  1. Езда в автоматическом режиме подразумевает дороги с хорошим твердым покрытием. Заехав летом в грязь, а зимой в рыхлый глубокий снег, рискуете забуксовать. Алгоритм станет выдавать ошибочные команды, и передачи будут включаться некорректно. Такие ситуации повышают износ деталей и механизмов, что увеличивает риск поломок.
  2. Педаль газа нужно нажимать плавно, ни в коем случае нельзя ее давить в пол. Нужно следить за оборотами двигателя, фиксируя моменты переключения скоростей, и избегать перегазовки.
  3. Если на авто отсутствует функция помощи при трогании в подъем, нужно поступать так же, как при пользовании ручной КПП, — использовать стояночный тормоз для предотвращения отката назад.
  4. При длительных остановках (больше 60 секунд) на запрещающий сигнал светофора или в пробке нужно переключать селектор в положение «нейтраль».
  5. Для длительной остановки на парковке сначала переводят селектор в «нейтраль», затем включают стояночный тормоз, после чего отпускают педаль тормоза и глушат двигатель.
  6. Каждый производитель указывает, с какой частотой по пробегу нужно проводить перекалибровку ЭБУ (ее еще называют инициализацией или обучением). Это нужно делать из-за износа диска сцепления. Следует проводить процедуру каждые 10000-15000 км.
  7. Зимой, при низких температурах воздуха, прогрев коробки занимает ровно столько времени, сколько его потребуется на прогрев двигателя.

Основные отличия РКПП от АКПП

Оба вида трансмиссии выполняют одну функцию — освобождают водителя от необходимости переключения передач во время движения автомобиля.

Но из-за того, что конструктивно это разные механизмы, в эксплуатации и обслуживании они отличаются друг от друга:

  1. В АКПП частью рабочего механизма является жидкость ATF. В РКПП для смазки механических узлов присутствует масло, но его в несколько раз меньше по объему. Кроме того, его надо гораздо реже менять.
  2. Автомобиль с роботом динамичнее в движении и потребляет меньше топлива. Потому что масса и габариты автомата превосходят те же показатели у робота, а переключения скоростей в РКПП происходят быстрее.
  3. На машине с АКПП ездить гораздо комфортнее, потому что передачи переключаются плавно, а роботизированная коробка не может так гасить рывки.
  4. Износ фрикционов идет медленнее, чем стирание диска сцепления.
  5. На роботизированной коробке можно переключиться на ручное управление. Оно не полное, потому что переключение производится только на одно положение и нельзя перейти, например, со 2 сразу на 4. Но автомат не дает водителю и такой возможности.

Плюсы и минусы

Широкое распространение роботизированные коробки передач получили благодаря своим достоинствам. Однако у них есть и недостатки, о которых лучше знать до покупки автомобиля, чтобы быть к ним готовым.

Схема работы системы SensoDrive.

Преимущества:

  1. Время разгона до 100 км/ч при аналогичности других параметров почти не отличается от времени разгона на ручной коробке.
  2. Расход топлива сопоставим с расходом на автомобилях с РКПП и до 30% ниже, чем на моделях с автоматическими коробками.
  3. Диск сцепления изнашивается медленнее, чем при ручном переключении.
  4. Робот работает аккуратнее человека, поэтому валы и шестерни коробки будут изнашиваться меньше, а служить дольше, чем в ручной механике.
  5. Стоимость ремонта и обслуживания в среднем ниже, чем у АКПП.

Отрицательные моменты:

  1. Во время движения при включении скоростей могут ощущаться рывки и дерганье.
  2. Алгоритм, заложенный в ЭБУ, не обладает реакцией человека на ситуации, возникающие во время движения. Поэтому могут возникать ошибки, когда необходимо экстренно разогнаться или затормозить.
  3. Роботу для принятия решения нужны более «длинные» передачи, а для сохранения динамики при этом необходим более мощный двигатель.
  4. Если нет системы помощи при подъеме, то во время начала движения «в гору» возможен откат автомобиля назад.
  5. Невозможность «прошивки» блока управления. Алгоритм переключения передач — это разработка производителя, которая корректировке не подлежит.
  6. Движение в пробках плохо сказывается на узлах и механизмах коробки, приводя их к раннему разрушению.

https://youtube.com/watch?v=f3D8P4MmIgo

Признаки неисправности

Как и любой механизм, роботизированная коробка подвержена износу во время работы и может ломаться. Неисправности делятся на механические и блока управления. Каждая имеет свои проявления.

Признаки механических поломок:

  • пробуксовка во время движения по ровному твердому дорожному полотну говорит об износе диска сцепления;
  • если не переключаются передачи, это может говорить о поломке актуаторов;
  • посторонние шумы во время движения могут быть вызваны целым рядом причин, и для выявления поломки следует провести диагностику узлов и механизмов;
  • усиление рывков во время переключения передач может происходить из-за износа и разрушения зубчатых соединений на валах коробки, износа вилок выбора шестеренок;
  • загоревшаяся лампа Check Engine на панели приборов говорит о необходимости компьютерной диагностики.

Признаки ошибок в ЭБУ:

  • сбивается режим работы робота, переключения передач происходят некорректно и не вовремя;
  • рывки во время включения передач становятся сильнее;
  • при выборе селектором положения движения вперед или назад машина не едет;
  • загорается контрольная лампочка Check Engine.

Чтобы разобраться, из-за чего возникли неприятности, нужно провести правильную диагностику с применением специального оборудования.

Актуальность коробки в России

Автомобили с коробками-роботами у наших автолюбителей пользуются хорошим спросом. Опросы показывают, что доля россиян, готовых купить авто с РКПП, колеблется в пределах 15-20%. При этом надо отметить, что доля желающих пользоваться классическим автоматом все же в 2 раза выше.

В крупных городах платежеспособные слои населения выбирают АКПП из-за более комфортной езды и гораздо меньших проблем, связанных с эксплуатацией в условиях частых пробок на дорогах. Притом цены на автомат и хороший преселективный агрегат находятся на одном уровне. Но, если цена на горючее будет продолжать расти, многие предпочтут авто с РКПП (как более дешевый в эксплуатации), особенно когда поездки не ограничиваются маршрутом работа-дом.

Чем отличается коробка автомат от робота и что такое робот

Современные автомобили оборудуются разными типами коробок передач и потребителю особенно при покупке своей первой машины бывает тяжело сделать правильный выбор среди этого разнообразия трансмиссий.

Поэтому в этой статье попробуем понять, чем отличается коробка автомат от робота, именно этот вопрос волнует многих будущих автовладельцев.

Отличие робота от автомата

Коробка автомат. Как вы знаете, в состав автоматической коробки передач входят два основных узла — это гидротрансформатор и редуктор. Гидротрансформатор обеспечивает плавное и безрывковое переключение передач, по сути, он работает вместо сцепления, которое есть на машинах с механической коробкой передач.

Редуктор автомата состоит из определённого набора шестерёнок, они находятся в зацеплении и образуют несколько ступеней: 4, 5, 6 и даже 8.

Из-за особенностей конструкции, автоматическая коробка передач исходя от оборотов мотора и нагнетания масляного давления сама переключает ступени (скорости), без вмешательства водителя. Благодаря такому переключению скоростей, электроника используется по минимуму.

КПП робот что это? Если сказать просто, то на механическую коробку передач поставили блок управления, который состоит из гидропривода и сервопривода (электронный узел). Вот этот блок, без вмешательства человека, заведуют сцеплением и переключением передач.

Коробка робот

Принцип работы робота как у механики, только всё происходит автоматически — гидравлика с электронным управлением всё сделает сама.

Плюсы и минусы автомата и робота

Чтобы лучше понять, чем отличается автоматическая коробка передач от роботизированной, давайте рассмотрим их эксплуатационные характеристики.

1. АКПП значительно снизила нагрузку на водителя при управлении автомобилем, особенно это заметно при движении в городских условиях. Современные автоматические коробки передач (адаптивные) способны даже подстраиваться под каждого водителя, под его стиль езды. Также, автомату свойственно мягкое и незаметное переключение скоростей.

Есть у автоматической коробки передач и минусы — это повышенный расход топлива, особенно в городе и ремонт автомата, который иногда случается, выльется в приличную сумму.

2. Робот относится к механике, значит обслуживание и ремонт будет дешевле, чем у автомата. Расход топлива у автомобиля с коробкой роботом приравнивается к МКПП, а в условиях города даже ниже, что не может не радовать. Ещё, роботы кушают масла по меньше, чем автоматы.

Роботы передают крутящий момент от мотора к колёсам автомобиля без существенных потерь, чего не скажешь об автомате. Большой плюс роботизированной коробки в том, что она поддерживает ручное переключение скоростей, чего нет у многих автоматов.

Есть у робота и минусы — это медленное переключение скоростей и толчки с рывками в работе коробки, это случается довольно часто, если водитель очень сильно давит на педаль газа. Также, в городской черте во время стоянок необходимо рычаг селектора ставить в положение «нейтраль».

А зачем так делать, можете узнать в этом видео, где рассказано о коробке робот.

Подведём итоги, чем отличается автомат от робота:

  • робот — это механическая коробка передач с блоком управления, автомату присуща своя конструкция;
  • при переключениях передач автомат выигрывает у робота по скорости и плавности переключений;
  • у робота есть ручное переключение, а у многих автоматов подобная функция отсутствует;
  • коробка робот потребляет топлива и масла меньше, чем автомат;
  • обслуживание и ремонт роботизированной коробки дешевле, чем автоматической коробки.

Заключение. Моё мнение: робот — это тёмная лошадка, от которой можно ожидать неприятных сюрпризов. Я выбираю автомат, он изучен и предсказуем в работе, тем более, новые автоматические коробки с большим набором передач приближаются уже по расходу топлива к механике и также, эти автоматы могут подстраиваться под каждого водителя.

Кто не согласен с моей точкой зрения, может поделиться в комментариях.

Загрузка…

Что такое коробка передач робот, в чем разница с автоматом и вариатором

 Рядовому автолюбителю достаточно сложно уследить за изменениями конструкции автомобилей, особенно в тех случаях, когда они касаются таких сложных и дорогостоящих агрегатов, как коробка передач.
Что значит коробка «робот» в машине?
Чем отличается робот от автомата и вариатора?
Какая коробка надёжней – автомат или робот?
Для того, чтобы разобраться с этими и другими вопросами, прежде всего, нужно знать, как работает коробка передач робот – хотя бы в общих чертах, не вдаваясь в детали.

Содержание статьи

Коробка автомат и робот — в чём разница

Принцип работы коробки робот

 

Схема работы коробки передач робот (РКПП)


 

Роботизированная КПП работает как и механическая, но включение-выключение передач и сцепления осуществляется при помощи сервоприводов, приводимых в действие актуаторами.

Прежде, чем сравнивать различия в принципе работы коробки робот от автомата, правильнее будет описать работу традиционной «механики» – так легче понять принципиальную разницу работы механизмов.
В случае с «механикой» все действия, связанные с изменением передаточного числа трансмиссии, осуществляются водителем. То есть Вы сначала выключаете муфту сцепления – тем самым разъединяете двигатель и трансмиссию.
Далее нужно включить требуемую передачу и включить сцепление, для того, чтобы крутящий момент (значение которого зависит от выбраннои передачи, или ступени) от двигателя передался через КПП к колёсным приводам.
Роботизированная коробка передач работает сходным образом, но включение передач и включение-выключение сцепления осуществляется при помощи сервоприводов, приводимых в действие актуаторами. Актуаторы могут быть как электрическими, так и гидравлическими, электропневматическими и пр.
Электрический актуатор – это одноходовой электрический двигатель и его работа полностью идентична работе электрического дверного замка (конечно же, автомобильного). Гидравлический и пневматический актуаторы работают сходным образом, но приводятся в действие маслом или воздухом.
Управление сервоприводами осуществляет электронный блок управления, считывая и обрабатывая информацию, поступающую от различных датчиков – АБС, выключателя стоп-сигнала, датчика положения дроссельной заслонки и т.п.
 

Коробка передач робот (РКПП) в разрезе


 
Как видите, робот – это, в принципе, та же «механика», но управляемая уже не вручную. Муфта сцепления и валы КПП устроены так же, как и на обычной коробке.

РКПП – это, в принципе, та же «механика», но управляемая уже не вручную. Муфта сцепления и валы КПП устроены так же, как и на механической коробке.

Исключение составляют так называемые преселекторные КПП – они имеют две муфты сцепления и два первичных вала, которые вставлены один внутри другого. Такое усложнение конструкции вызвано медленной работой исполнительных механизмов, в результате которой во время разгона автомобиля был заметный провал, так как актуаторы не могут работать с достаточной скоростью, и в момент смены ступеней (передач) муфта сцепления остаётся разъединённой – дольше, чем при ручном включении-выключении.
Двойное сцепление и двойной первичный вал в преселекторных роботизированных КПП работают согласованно. Например, во время разгона блок управления, как бы прогнозируя дальнейший разгон, включает повышенную передачу на одном из валов, но муфта сцепления ещё разъединена – крутящий момент передаётся другой парой муфта-вал. В нужный момент включается вторая муфта, и усилие передаётся через другой вал – со включенной заранее повышенной передачей.
То есть, преселекторная КПП – это практически две коробки, вставленные одна в другую, что, конечно же, сказывается на стоимости подобных агрегатов – устанавливаются они только на дорогих суперкарах. Время переключения передач в такой КПП, по сравнению с обычным роботом, сокращено примерно в 20 раз.

Чем же отличается робот от автомата

 

Автоматическая коробка передач (АКПП) в разрезе


 
В «классической» гидротрансформаторной АКПП иной даже способ передачи крутящего момента. Он осуществляется не за счёт силы трения, возникающей между ведущим и ведомым дисками сцепления, а за счёт передачи кинетической энергии насосного колеса гидротрансформатора, жёстко закрепленного на маховике, турбинному колесу, соединённому с валом АКПП. Проще говоря, лопасти насосного колеса толкают (закручивают) масло (ATF), которое, в свою очередь, приводит во вращение турбинное колесо.

Автоматическая КПП принципиально отличается от РКПП конструктивными особенностями и способом передачи крутящего момента.

Это, конечно же, упрощенная схема работы АКПП – в конструкции гидротрансформатора есть ещё такая деталь, как реактор – именно он превращает гидромуфту в гидротрансформатор, то есть в узел, который не просто передаёт крутящий момент, но, при необходимости, и меняет его значение. Например, при разгоне реактор обеспечивает увеличение крутящего момента, «подталкивая» турбинное колесо.
Иную конструкцию имеют и валы АКПП – их шестерни уже имеют иной – планетарный – тип зацепления, а муфта сцепления, как таковая, вообще отсутствует – её заменяют пакеты фрикционов.
По сравнению с роботом, АКПП имеет большее быстродействие и плавность хода при разгоне, так как исполнительные механизмы приводятся в действие тем же маслом, которым смазываются детали агрегата, и срабатывают практически мгновенно – при условии, что АКПП прогрета.

Коробка-робот — отзывы

 

 
В силу своей конструкции коробка-робот имеет свои плюсы и минусы. Многие автовладельцы отмечают, что коробка робот плоха тем, что не имеет той плавности хода, которая характерна для гидротрансформаторной коробки. Преселективные же роботы, хоть и лишены этого недостатка, имеют довольно, если можно так сказать, «неуклюжую» конструкцию – уж слишком дорогой ценой в них достигается быстродействие.

Роботизированные коробки передач, в отличии от автоматических КПП, переключают быстрее и плюс они более экономны.

Но робот обладает и несомненными достоинствами – в силу того, что это лишь видоизменённая «механика», ремонт коробки-робота достаточно легко осуществить в условиях обычного автосервиса.
В гидротрансформаторной АКПП, несмотря на то, что она кажется более простой, решающее значение имеет точность изготовления деталей. В результате этого многие её неисправности очень сложно диагностировать – малейшая потеря давления масла может послужить причиной сбоев в работе трансмиссии. Иногда даже замена масла и масляного фильтра может иметь неблагоприятные последствия – авто начинает дёргаться, иногда даже при равномерном движении.
Но в целом всё же, если проанализировать отзывы владельцев, то на вопрос – «что лучше – автомат или робот?» можно сказать, что автомат всё-таки лучше. Может быть, развитие технологий и изменит эту ситуацию – ведь ещё не так давно осуществить выпуск роботизированных коробок передач было невозможно именно из-за того, что технологии недавнего прошлого не позволяли наладить выпуск сервоприводов, обладающих приемлемыми компактностью и быстродействием.
Вариатор, строго говоря, не является коробкой выбора передач – изменение величины крутящего момента осуществляется бесступенчато, поэтому вариаторная трансмиссия требует отдельного изучения.

Как управлять коробкой робот

Управление автомобилем с коробкой робот принципиально не отличается от управления машиной с АКПП. Для наглядности можете сравнить рычаги (селекторы) той и другой коробки, изучив фото:
 

Рычаги управления (селекторы) коробками передач


 

Отличий в правилах буксировки машин с РКПП нет – достаточно лишь избегать резких нажатий на педаль «газа» и динамичных разгонов – во избежание рывков трансмиссии.

Как видно из фотографии, выбор передач на роботе можно осуществлять вручную – достаточно лишь на краткое время переместить селектор в положение, соответствующее повышенной («+») или пониженной (« – «) передаче. Блок управления контролирует работу КПП и в режиме ручного управления, поэтому излишний «перескок» при выборе передачи исключается.
Некоторых автолюбителей интересует, можно ли возить прицеп на авто с коробкой робот, а также – можно ли буксировать машину с коробкой-роботом. Отличий в правилах буксировки для таких авто нет – достаточно лишь избегать резких нажатий на педаль «газа» и динамичных разгонов – во избежание рывков трансмиссии.
В остальном же, если Вы купите машину с РКПП, особенных вопросов, как пользоваться коробкой робот, у Вас не возникнет – современные авто сделаны для пользователей, а не для профессионалов, поэтому управление ими, как правило, интуитивно понятно.
Скорее всего, вопросы о том, как правильно пользоваться коробкой робот, связаны с привыканием к новой машине – ведь даже два автомобиля, сошедшие с конвейера один за другим, немного отличаются друг от друга.
 

как правильно пользоваться роботизированной КПП, ее плюсы и минусы с фото и видео

Современные автомобили оборудуются новыми типами трансмиссий, среди которых роботизированная КПП. Чтобы разобраться в основных моментах, связанных с ее эксплуатацией, нужно понимать, что такое коробка передач робот.

Содержание

[ Раскрыть]

[ Скрыть]

Что собой представляет роботизированная коробка передач?

Роботизированная коробка на автомобиле означает нечто среднее между МКПП и автоматической трансмиссией. Фактически роботизированная КПП представляет собой «механику», оборудованную автоматическим сцеплением и возможностью переключения скоростей. Работа этого типа агрегата зависит не от водителя, а от функционирования управляющего электронного модуля. Во время движения водитель должен только правильно передавать входящие данные для обеспечения правильной работы КПП.

Перед покупкой авто с таким агрегатом рекомендуется разобраться с основными характеристиками и принципом действия устройства.

Устройство роботизированной КПП

Схематическое устройство конструктивных компонентов РКПП

Чтобы понять, что такое коробка передач робот, надо разобраться в устройстве агрегата. Дополнительные элементы, предназначенные для выжима сцепления, а также переключения и выбора скоростей, называются актуаторами.

Роботизированная трансмиссия оснащается собственной управляющей системой, выполненной в виде блока управления, а также нескольких контроллеров. Эти датчики предназначены для взаимодействия с блоком. Роботизированная КПП принципиально отличается от традиционной автоматической коробки и вариаторных трансмиссий.

Коробки передач робот, как и механические, оснащаются сцеплением. В таких типах агрегатов не применяются трансмиссионные масла ATF.

В зависимости от производителя автомобиля, роботизированная трансмиссия может оснащаться одним либо двумя сцеплениями:

  • если сцепление одно, то это однодисковый агрегат;
  • если два, то трансмиссия считается преселективной.

Основные компоненты устройства роботизированного агрегата:

  1. Сама КПП.
  2. Актуаторы или сервоприводы. Предназначены для выжима сцепления и активации скоростей.
  3. Управляющий модуль, являющийся микропроцессорным блоком. Используется для обработки и передачи команд.
  4. Внешние контроллеры. Количество датчиков может отличаться в зависимости от производителя машины.
КПП

Подробнее с устройством роботизированного агрегата рекомендуем разобраться на примере шестиступенчатой коробки, оснащенной двумя сцеплениями. Агрегат выполнен в виде механической КПП, но оборудуется двумя ведущими шкивами. Один из этих элементов устанавливается внутри другого. Внешний шкив обладает внутренней полостью, в которую устанавливается внутренний компонент. На внешнем шкиве располагаются шестеренки привода второй, четвертой и шестой скоростей, а на внутреннем — шестерни первой, третьей, пятой и задней передачи.

Каждый вал роботизированной коробки передач оборудуется отдельным сцеплением.

Актуаторы или сервоприводы

Актуаторные устройства могут быть электрическими либо гидравлическими. Электрический тип элементов выполнен в виде электрического моторчика с редукторным устройством, а гидравлический считается гидроцилиндром. Шток последнего связывается с синхронизаторным устройством. Основное предназначение актуаторных элементов заключается в механическом перемещении синхронизаторных составляющих, а также активации и деактивации сцепления.

Управляющий модуль

Управляющий модуль — микропроцессорный блок, на который установлены внешние контроллеры. Эти датчики задействованы в электронной системе управления мотором машины. Датчик трансмиссии взаимодействует с контроллерами от силового агрегата и прочих систем, к примеру, ABS. Управляющий модуль может быть совмещен с микропроцессорным блоком управления ДВС, но трансмиссия будет функционировать по своему алгоритму.

Канал Carvizor подробно рассказал об устройстве и конструктивных особенностях РКПП.

Особенности роботизированной КПП

Электрический привод сцепления функционирует за счет электромотора, а также механической скорости. Работа гидравлического привода основана на специальных цилиндрических устройствах, управление которыми осуществляется посредством электромагнитного клапана. Иногда роботизированный агрегат может быть дополнен электромотором, использующимся для перемещения цилиндрических элементов и рассчитанного на поддержку функционирования гидромеханического модуля. Это устройство, оснащенное приводом, характеризуется долгим переключением скорости, которая может составить до половины секунды.

Если сравнить с гидравлическим устройством, то для работы агрегата не требуется постоянная поддержка нужного уровня давления. В некоторых моделях Опель гидравлические агрегаты характеризуются быстрым циклом переключения скорости, обеспечивающего переключение за 0,06 сек. Но такие роботы обычно устанавливаются на спорткары.

Принцип работы коробки передач робот

Схема функционирования роботизированного агрегата

Роботизированный агрегат работает наподобие механики — для начала езды и переключения скоростей водителю надо выжимать педаль сцепление. Процедура активации этого механизма выполняется посредством актуаторного устройства, получающего импульс от управляющего модуля. После подачи сигнала узел медленно вращает редукторный узел.

Если трансмиссия оборудована двумя сцеплениями, то изначально производится активация первого. После этого актуаторное устройство выбора и активации скорости подводит синхронизаторный узел к шестеренке первой скорости. Это приводит к ее блокировке на валу и началу вращения вторичного шкива. Когда машина тронулась с места, водитель жмет на газ. Если трансмиссия однодисковая, активация следующей скорости произойдет через определенный временной промежуток. В итоге появляется так называемый провал во времени.

Для предотвращения появления временной задержки и снижения время переключения передач агрегат оборудуется вторым сцеплением и другим валом. Это привело к созданию преселективной коробки. Во время включения первой скорости вторая готова к активации, поскольку второе сцепление уже задействовано. Когда на агрегат поступает сигнал от управляющего модуля, происходит быстрое переключение с первой скорости на вторую.

Аналогично выполняется последующее переключение на более высокие и низкие скорости во время движения. Временной интервал при переключении минимальный. Любые перегазовки исключаются, также нет провала тяги двигателя и других нюансов. В результате автомобиль едет динамично, а экономия потребления горючего максимальная. Функционирование в режиме автомата достигается благодаря регулярному анализу микропроцессорного модуля импульсов, подающихся с внешних контроллеров.

При получении сигналов и их отправке микропроцессор учитывает:

  • величину нагрузки на силовой агрегат;
  • скорость езды;
  • положение, в котором находится педаль газа.

Роботизированные коробки обладают возможностью ручного переключения скоростей, эту особенность можно назвать имитацией гидромеханического автомата. Некоторые типы агрегатов позволяют выполнить блокировку при активации повышенной скорости.

Блок-схема функционирования роботизированной системы I-Shift на автомобилях Хонда

Режимы работы

Микропроцессорный модуль может функционировать в нескольких режимах:

  1. Спорт. Обычно его активация производится при движении на трассе, когда автомобиль стабильно едет на повышенной скорости.
  2. Городской режим. Активируется при движении по городу либо стоянии в пробке.
  3. Эконом. Позволяет максимально сэкономить топливо. Но скорость езды будет минимальной.

Как научится ездить на роботизированной коробке передач? Основные особенности управления

Чтобы не допустить появления неисправностей в работе трансмиссии, надо знать, как пользоваться роботом, а именно:

  • как выполнять прогрев агрегата;
  • как правильно начинать движения;
  • как пользоваться трансмиссией при эксплуатации авто в режиме города.

Прогрев роботизированной коробки переключения передач и особенности эксплуатации

Многие производители авто утверждают, что роботизированные агрегаты не нуждаются в прогреве. Но в этом вопросе надо учитывать температуру рабочей жидкости в смазочной системе, а также как масло ведет себя в условиях мороза. Некоторые типы расходных материалов при низких температурах загустевают и собираются в нижней части агрегата. По стандарту процесс прогрева состоит в запуске двигателя и выжидании 2-3 минут. При прогреве автомобиля не нужно трогать рычаг КПП.

Если автомобиль находится в гараже, то выгонять его нужно спокойно и плавно, чтобы не допустить толчков и рывков. При прогреве надо следить за количеством оборотов, их число в идеале будет минимальным и составит около 1 тысячи в минуту. Выполнять прогрев агрегата следует и летом, благодаря этому все составляющие компоненты робота будут качественно смазаны. Выполнение прогрева позволит не допустить быстрого износа и стирания компонентов агрегата.

Основные особенности эксплуатации, которые позволят увеличить ресурс работы агрегата в целом:

  1. Нельзя допустить буксования при езде в мороз. Это приведет к быстрому износу исполнительных механизмов и узлов. Регулярное буксование станет причиной разкалибровки агрегата.
  2. Специалисты не советуют часто ездить по сильно заснеженным поверхностям. Транспортное средство может застрять, что в итоге станет причиной пробуксовок.
  3. В качестве зимней резины рекомендуется использовать изделия, оснащенные шипами. При установке на колеса обычных шин есть вероятность пробуксови на гололеде.
  4. При длительных простоях, составляющих несколько дней и более, селектор коробки передач рекомендуется устанавливать в положение Е. Мотор должен быть заглушен.
  5. Если состояние дороги плаченое, специалисты советуют начинать движение со второй скорости, но при этом сильно не газовать.

Об основных принципах управления роботизированной КПП на примере Лады Гранты рассказал Алексей Рыков.

Правила правильного старта на коробке робот

Владельцам машин, оборудованных роботизированными КПП, надо учитывать, что некоторые транспортные средства не имеют дополнительной опции помощи при старте. В частности, речь идет о начале движения на возвышенности, в гору. Поэтому важно правильно научиться трогаться с места. Процедура троганья выполняется так же, как на машине с механическим агрегатом.

Более подробно о начале езды:

  1. Рычаг стояночного тормоза должен быть поднят.
  2. Рычаг коробки передач устанавливается в режим А.
  3. Водитель легко, без усилий жмет на газ.
  4. Одновременно с этим отключается рычаг стояночного тормоза.

Если при начале езды на улице минусовая температура и высокая влажность, селектор коробки можно перевести в положение М1. Сила воздействия на педаль газа должна быть допустимой, чтобы не произошла перебуксовка. Если машина оборудована гироскопом, то при выборе автоматического режима микропроцессор агрегата сам выберет необходимую скорость и будет выполнять переключение. Это позволит переключаться скоростям на понижение. Если водитель опытный, то с учетом ситуации он может установить режим М при фиксации установленной передачи.

Если изначально устанавливается скоростной режим, то скорость передвижения не рекомендуется менять. Количество оборотов двигателя должно составить от 2500 до 5000 в минуту, но не за пределами этого диапазона. При начале езды на спуске селектор трансмиссии устанавливается в режим А и отключается рычаг ручного тормоза.

Эксплуатация роботизированной коробки передач в городских условиях

Регулярная эксплуатация автомобиля в режиме города и пробок может привести к быстрому износу компонентов трансмиссии. Для предотвращения этого при остановке машины следует переводить рычаг коробки передач в режим N. Затем производится активация стояночного тормоза и остановка мотора. Если остановки кратковременные, к примеру, в условиях пробок, то режим нейтрали можно не включать, достаточно остановиться, когда рычаг установлен в режим А. Если автомобиль простоит в пробке больше одной минуты, то двигатель надо будет остановить.

О тонкостях использования машин с установленным роботом рассказал Василий Костин.

Преимущества

Плюсы роботизированных агрегатов:

  1. Надежность конструкции агрегата в целом. В основе устройства лежит механическая составляющая, которая прошла многочисленные испытания и изучена специалистами. Благодаря этому по надежности данный тип КПП лучше, чем обычные автоматы и вариаторы.
  2. Эксплуатация автомобиля с установленным роботизированным агрегатом позволяет сэкономить горючее. Если коробка и двигатель машины не изношены, то экономия горючего может быть до 30%.
  3. Для заправки в роботизированный агрегат требуется меньше смазочной жидкости, в среднем это не более трех литров. Для сравнения — в вариаторные коробки заливается около семи литров. Такое преимущество позволяет сэкономить финансовые средства.
  4. Количество передач в роботах соответствует числу скоростей на механике.
  5. Благодаря тому, что основу КПП составляет механическая часть, это позволяет выполнить простой ремонт. Навыками подобного ремонта владеют многие специалисты, чего не скажешь о вариаторных агрегатах. Большинство распространенных неисправностей можно решить самостоятельно при правильном подходе.
  6. Срок службы системы сцепления больше, чем на механических КПП, примерно на 40%. Речь идет не только об экономии финансовых средств, но и о безопасности.
  7. При эксплуатации авто в городских условиях начать движение без нагрузки на агрегат позволяет функция переключения скоростей в ручном режиме.

Недостатки

Роботизированные КПП имеют не только плюсы, но и минусы, они приведены в соответствии с отзывами владельцем машин с РКПП:

  1. Основной минус в РКПП заключается в проблемах при программировании трансмиссии. Автовладельцу может быть затруднительно перепрограммировать программное обеспечение, чтобы повысить динамику машины и сэкономить ресурсы агрегата. Поэтому возникают сложности с настройкой трансмиссии под определенный стиль езды. Водителю потребуется время, чтобы привыкнуть к манере функционирования авто для удобной эксплуатации.
  2. Низкая скорость активации скоростей и замедленная реакция агрегата. Это обусловлено издержками в программировании устройства. Данная проблема характерна и для многих автоматических КПП.
  3. При езде в условиях города и пробок, а также по неровным дорогам водителю следует переходить на ручной режим управления. В противном случае элементы системы сцепления изнашиваются быстрее. Это отражается и на ресурсе эксплуатации агрегата в целом.
  4. Во время переключения скоростей ощущаются рывки и толчки. Не на всех агрегатах, но на многих. Это связано с тем, что газ не сбрасывается перед тем, как произойдет переключение скорости. Для ликвидации данной проблемы можно не выжимать полностью педаль газа.
  5. При движении в гору может разомкнуться сцепление. Проблема связана с перегревом трансмиссионного агрегата. Если автомобиль движется на подъем, рекомендуется переходить на ручное управление.

Решить проблему с перепрограммированием можно путем замены прошивки микропроцессора, но это надо делать, когда закончится срок гарантийного обслуживания.

Каналом HPC представлен реальный негативный отзыв потребителя о работе роботизированного узла на авто.

Отличие роботизированной коробки передач от автоматической

Основные отличия роботизированных трансмиссий от автоматических агрегатов:

  1. Конструктивные особенности. Робот представляет собой механический агрегат, оборудованный управляющим микропроцессорным устройством. Автоматические КПП имеют свое устройство. В него также входит электронный модуль, но механической составляющей в автоматах нет.
  2. Автоматические трансмиссии выигрывают у роботизированных агрегатов в плане быстроты переключения скоростей. Также на автоматах процедура переключения выполняется более плавно.
  3. Роботизированные устройства обладают опцией ручного переключения. На автоматических агрегатах возможности ручного управления нет.
  4. Автомобили, оборудованные роботизированным агрегатом, потребляют меньше горючего. Для их заправки требуется меньше смазочной жидкости.
  5. Процедура ремонта и обслуживания коробок передач робот обойдется потребителю дешевле, нежели АКПП.

Актуальность коробки робот в России

Российские производители автомобилей почти не устанавливают роботизированные агрегаты на свои продукты. В 2015 году руководство автоконцерна ВАЗ заявило, что модели машин Лада Приора будут оснащаться роботизированными КПП. Общий вес устройства составляет примерно 35 кг. Сам агрегат адаптирован под отечественные дороги, а также погодные условия, характерные для климата России.

К примеру, автоматы могут отказать в запуске мотора авто, если температура упадет ниже -25 градусов. Роботизированные агрегаты смогут эффективно функционировать и заводить ДВС при -40 градусах. Производитель АвтоВАЗ дает гарантию на три года на КПП, но утверждает, что в среднем срок службы устройства составит около десяти лет. Такой шаг был сделан представительством концерна для увеличения продаж автомобилей Лада Приора.

Сегодня из отечественных автомобилей роботизированные КПП устанавливаются только на Лады Гранты и Приоры.

Официальный канал Лада представил сюжетный ролик о производстве роботизированных агрегатов для автомобилей Лада Гранта.

Советы по выбору роботизированной коробки передач

Перед покупкой транспортного средства с РКПП надо собрать максимум информации о функционировании конкретного типа трансмиссии. Рекомендуется изучить отзывы потребителей, поскольку отдельные варианты роботов обладают «глюками», характерными для всей линейки. В частности, надо узнать о временном интервале при переключении передач. Лучше отдать предпочтение вариантам, в которых процедура переключения выполняется максимально быстро.

Выбирая авто, надо учесть и параметр индивидуальности устройства. Одинаковые трансмиссии могут различаться между собой. Проблемы, связанные с работой агрегата, часто можно удалить посредством перепрошивки микропроцессорного блока.

Основные неисправности в работе роботов

Симптомы, которые могут сообщить о неполадках в работе устройства:

  1. На контрольном щитке появился сигнализационный индикатор. Это может быть лампочка Чек Энджин или специальный символ, сообщающий о проблемах в работе коробки передач.
  2. При езде водитель слышит посторонние звуки. О неполадках в работе трансмиссии могут сообщить нехарактерный вой или жужжание.
  3. Отсутствует реакция при нажатии на газ. Обороты двигателя не увеличиваются либо увеличиваются, а скорость движения не растет.
  4. Появление масляной лужи под автомобилем. Это свидетельствует об утечке расходной жидкости из агрегата.
  5. Происходит буксовка системы сцепления.
  6. Когда водитель жмет на газ и делает это плавно либо при переключении скоростей, появляется толчок или рывок.
  7. Трансмиссионный узел сам по себе прекращает функционировать, автомобиль останавливается и не двигается.

Большая часть неполадок обусловлена некорректной работой микропроцессорного устройства. Если говорить о механических проблемах, то большая часть из них связана с износом составляющих элементов. Такие детали обычно ремонту не подлежат и меняются.

Механические неполадки:

  • износ вилки, предназначенной для выбора скорости;
  • подшипниковые устройства качения изнашиваются, из-за этого может наблюдаться гул.

Фотогалерея

Фото роботов от разных автопроизводителей приведены в этом разделе.

Видео «Как не допустить быстрого выхода из строя роботизированной КПП»

Пользователь JoRick Revazov рассказал о вещах, которые нельзя делать с роботизированным узлом на автомобиле.

 Загрузка . ..

границ | Компактные редукторы для современной робототехники: обзор

Введение

Промышленные роботы составляют основу нескольких крупных традиционных производств, включая автомобилестроение и электронику. Сегодня многие регионы мира видят реальную возможность вернуть обрабатывающую промышленность, внедряя роботов на малых и средних предприятиях (МСП) и в вспомогательные услуги, как правило, в здравоохранении (SPARC, 2015).

Для крупномасштабных промышленных сред с высокой степенью автоматизации преимущество роботизированных решений по сравнению с людьми-операторами в основном заключается в (i) большей доступности и (ii) способности перемещать — обычно большие — полезные грузы с исключительной точностью позиционирования и с высокой скоростью.Эти аспекты имеют решающее значение при разработке и выборе подходящих технологий для промышленного робота, особенно для первичных двигателей и трансмиссий, обеспечивающих движение этих устройств.

Применения в производстве и персональном обслуживании МСП бросают вызов этой традиционной парадигме робототехники. Ключ к успеху в этих новых приложениях лежит в очень высокой степени гибкости, необходимой для обеспечения безопасного и эффективного прямого сотрудничества с людьми для достижения общих целей.Эта цель требует, чтобы роботы сначала развили способность безопасно взаимодействовать с людьми в дисциплине, обычно называемой pHRI — физическое взаимодействие человека и робота.

pHRI оказывает широкое влияние на срабатывание роботов. Опыт, накопленный за последние десятилетия, в основном в области робототехники в сфере здравоохранения, показывает, что для безопасного и эффективного взаимодействия с людьми роботы должны в основном двигаться, как люди, и, следовательно, жертвовать некоторыми из своих традиционных преимуществ с точки зрения полезной нагрузки, точности и скорости.Эта ситуация привела к обширным исследованиям в последние годы, охватывающим оптимальный выбор первичных двигателей и передач для срабатывания HRI (Zinn et al., 2004; Ham et al., 2009; Iqbal et al., 2011; Veale and Xie, 2016 ; Verstraten et al. , 2016; Groothuis et al., 2018; Saerens et al., 2019).

Эти работы относятся к более широкой области исследований, изучающих оптимизацию соединения между первичным двигателем и коробкой передач для данной задачи в автоматических машинах. Краткий обзор основных разработок в этой области дает полезные сведения, позволяющие понять влияние коробки передач на общую производительность системы.Паш и Серинг (1983) определили важность инерции при срабатывании и предложили использовать передаточное число для согласования инерции двигателя и отраженной нагрузки в качестве средства минимизации потребления энергии для чисто инерционной нагрузки. Чен и Цай (1993) применили эту идею к области робототехники и определили результирующую способность к ускорению конечного эффектора как определяющий параметр. Ван де Стрете и др. (1998) разделили характеристики двигателя и нагрузки, чтобы распространить этот подход на общую нагрузку, и предоставили метод определения подходящих передаточных чисел для дискретного набора двигателей и коробок передач. Roos et al. (2006) изучали выбор оптимального привода для трансмиссии электромобилей, добавляя вклад КПД коробки передач. Giberti et al. (2010) подтверждают инерцию ротора, передаточное отношение, эффективность коробки передач и инерцию коробки передач как наиболее важные параметры для выбора срабатывания и предлагают графический метод оптимизации этого выбора для динамической задачи. Петтерссон и Олвандер (2009) снова сосредоточились на промышленных роботах и ​​представили метод, моделирующий коробку передач с упором на массу, инерцию и трение.Резазаде и Херст (2014) используют очень точную модель двигателя и включают фундаментальный критерий выбора полосы пропускания в дополнение к минимизации энергии. Дрессчер и др. (2016) исследуют влияние трения на планетарный редуктор, в котором кулоновское трение является доминирующим механизмом трения, и демонстрируют, как КПД редуктора обычно становится преобладающим над КПД двигателя при высоких передаточных числах.

По сравнению с исходными моделями коробок передач, использовавшихся в этих работах, где коробки передач моделировались как идеальные передаточные числа, сложность моделей постепенно возрастала. Тем не менее, необходимо сделать важные — и нереалистичные — упрощения, чтобы добиться хорошей практической применимости этих методов. Таким образом, не учитываются важные эффекты, такие как жесткость на кручение и потерянное движение, в то время как модели инерции и эффективности коробки передач сильно упрощены. Это оправданный подход для множества приложений, где упрощенные методы могут помочь инженерам выбрать подходящие трансмиссии. Однако в HRI эти свойства слишком важны для пригодности коробки передач, и их нельзя так сильно упростить.

Следовательно, необходим другой подход, чтобы предоставить полезные рекомендации по выбору коробки передач в HRI, избегая чрезмерной сложности задач оптимизации в этой области. Предоставление подробных сведений об эксплуатационных свойствах и характеристиках различных технологий редукторов для обоснованного выбора — еще один вариант, следуя традициям таких работ, как Schempf and Yoerger (1993) или Rosenbauer (1995). Следуя этому подходу, Siciliano et al. (2010), Ли (2014), Шейнман и др.(2016) и Pham and Ahn (2018) предоставляют интересные обзоры высокоточных редукторов для современной робототехники. Однако технологии не анализируются достаточно подробно, чтобы получить хорошее представление о сложных механизмах, в которых они влияют на выполнение роботизированной задачи.

Основная цель этого обзора, следовательно, состоит в том, чтобы дополнить эти работы подробным анализом основных принципов, сильных сторон и ограничений доступных технологий. Помимо возможности прогнозирования будущего технологий редукторов в робототехнике, этот подход может помочь неспециалистам по редукторам определить подходящие технологии компактных редукторов для многофакторных требований новых робототехнических приложений (López-García et al., 2018). Для специалистов по коробкам передач из других областей этот анализ может помочь им получить полезную информацию о конкретных потребностях приложений HRI.

Это исследование начинается с краткого описания основных требований к будущим роботизированным трансмиссиям, чтобы затем представить структуру оценки, предназначенную для оценки пригодности и потенциала конкретной технологии коробок передач для этой области. Эта структура включает сильную перспективу pHRI и новый параметр — коэффициент скрытой мощности — для оценки эффективности, присущей определенной топологии редуктора.Эта новая структура используется в первую очередь для обзора традиционных технологий редукторов, используемых в промышленных роботах, и новых технологий передачи, которые в настоящее время находятся в процессе выхода на рынок. Наконец, в конце документа приводится краткое изложение выводов, сделанных в результате этого обзора, вместе с нашими выводами и рекомендациями.

Система оценки роботизированных трансмиссий с расширенными возможностями HRI

Контроль

Управление роботизированными устройствами — очень широкая и сложная тема, которая является предметом обширной исследовательской литературы.В этом разделе мы ограничимся введением основных принципов линейности и отраженной инерции, которые являются основными для понимания влияния редуктора на управление.

Хотя в целом скорость и точность являются противоречивыми требованиями, обычные робототехнические устройства превосходны в достижении высокой точности позиционирования на высокой скорости благодаря использованию жестких приводов с очень линейным поведением (Cetinkunt, 1991). Включение роботизированной трансмиссии влияет на сложность управления в основном двумя способами: вносит дополнительную нелинейность и сильно влияет на отраженную инерцию.

Нелинейности, вызванные включением трансмиссии, принимают в основном форму люфта и / или трения и уменьшают полосу пропускания системы, создавая важные проблемы управления (Schempf, 1990). Заявление о зубчатых колесах приводит к люфту, трению и (нежелательному) соответствию, что затрудняет точное управление. (Hunter et al., 1991) сегодня так же актуально, как и почти 30 лет назад. Для некоторых технологий большие кинематические ошибки передачи и, в частности, нелинейное трение также могут вызывать значительные нелинейности.

Коробки передач также сильно влияют на отраженную инерцию системы. В роботизированном устройстве инерция первичного двигателя обычно на несколько порядков меньше, чем у полезной нагрузки, что делает систему нестабильной и создает серьезные проблемы с управлением. Добавление трансмиссии сильно снижает инерцию полезной нагрузки, которую видит первичный двигатель и которая отражается на него, на коэффициент, равный квадрату передаточного отношения трансмиссии. Таким образом, тщательный выбор трансмиссии может привести к более сбалансированной инерции на обеих сторонах трансмиссии, способствуя минимизации энергопотребления и созданию более надежной, стабильной и точной системы (Pasch and Seering, 1983).

Отраженная инерция особенно важна, когда рабочие органы претерпевают быстрые и частые изменения скорости и / или крутящего момента, что очень часто встречается в задачах автоматизации и робототехники. В этих случаях вводится перспектива пропускной способности, чтобы подтвердить способность системы отслеживать эти изменения (Sensinger, 2010; Rezazadeh and Hurst, 2014). Это лежит в основе принципа управляемости задним ходом, способности системы демонстрировать низкий механический импеданс, когда она приводится в действие с естественной выходной мощности (с обратным приводом).Это особенно важно при частом двунаправленном обмене энергией между роботом и его пользователем, что типично для реабилитационных устройств или экзоскелетов. Как демонстрируют Ван и Ким (2015), управляемость коробки передач задним ходом включает в себя комбинированный эффект отраженной инерции, отраженного демпфирования и кулоновского трения, и поэтому она тесно связана с эффективностью коробки передач.

Это подчеркивает важность для оценки управляющего воздействия определенной технологии коробки передач как возможностей передаточного числа, так и нелинейностей (люфт, трение), которые она вносит.

Безопасность

Промышленные роботы традиционно размещаются за забором в хорошо структурированной среде, где они могут воспользоваться преимуществами своих быстрых и точных роботизированных движений, не подвергая опасности целостность человека-оператора.

Безопасный pHRI, включающий способность безопасно перемещаться в неструктурированной / неизвестной среде, обязательно тесно связан с управляемостью. Текущая стратегия, используемая робототехниками для достижения этой цели, состоит из формирования механического импеданса (Calanca et al., 2015), то есть позволяя контроллеру соответствия управлять сложным динамическим соотношением между положением / скоростью робота и внешними силами (Hogan, 1984).

Принцип прост: чтобы обеспечить хорошую адаптацию к неопределенной среде, а также целостность человека-оператора / пользователя во время взаимодействия с роботизированным устройством, последний должен двигаться согласованно, как человек (Karayiannidis et al. др., 2015). Это подчеркивает важность импеданса и внутреннего соответствия (De Santis et al., 2008) и объясняет появление нового типа внутренне гибких исполнительных механизмов для pHRI (Ham et al., 2009), где требуется высокая степень соответствия (Haddadin and Croft, 2016).

С точки зрения управления, инерция полезной нагрузки, отраженная к первичному двигателю, уменьшается на коэффициент, соответствующий квадрату передаточного числа. Таким же образом обычно небольшая инерция ротора первичного двигателя усиливается тем же фактором при отражении в сторону полезной нагрузки, который должен быть добавлен к инерции, возникающей в результате движения роботизированного устройства и груза по соображениям безопасности, а также ограничение рабочих скоростей.

Хотя в большинстве актуаторов pHRI сегодня используются редукторы с высоким передаточным числом, некоторые известные робототехники Seok et al. (2014), Сенсингер и др. (2011) видят большой потенциал робототехники в использовании двигателей с высоким крутящим моментом (бегунков), требующих очень малых передаточных чисел. Новые производители робототехнических решений, такие как Genesis Robotics из Канады или Halodi Robotics AS из Норвегии, предлагают приводы для робототехники, основанные на этих принципах. По их мнению, увеличение инерции двигателя и уменьшение передаточного числа должно приводить к снижению инерции двигателя, отражаемой на рабочий орган, что позволяет повысить рабочие скорости и / или полезную нагрузку без ущерба для целостности оператора.Низкие передаточные числа также имеют дополнительное преимущество в пропускной способности: они имеют меньшее трение и люфт, уменьшая нелинейность, вносимую коробкой передач. С другой стороны, умеренное передаточное число не может компенсировать нелинейные условия сцепления — обычно зубчатый крутящий момент (Siciliano et al., 2010).

При более внимательном рассмотрении технических характеристик этих новых двигателей возникают некоторые вопросы с точки зрения достижимой эффективности, веса или компактности, а также последствий для оборудования, возникающих в результате чрезмерной тяги к высоким электрическим токам (HALODI Robotics, 2018; GENESIS Robotics, 2020).

Подводя итог, нет полного согласия о том, как лучше всего подойти к безопасному срабатыванию для робототехники. Тем не менее, сильные естественные связи между безопасностью и управляемостью столь же очевидны, как и решающее значение передаточного числа трансмиссии и ее нелинейностей.

Вес и компактность

Облегченная конструкция имеет первостепенное значение для обеспечения совместимости безопасности и хорошей производительности в новых приложениях робототехники (Albu-Schäffer et al., 2008). Новейшие коллаборативные роботы (коботы), такие как облегченный робот KUKA, разработанный в сотрудничестве с Институтом робототехники и мехатроники Немецкого аэрокосмического центра (DLR), живут по этому принципу и, следовательно, сильно отличаются от тяжелых и громоздких традиционных промышленных роботов.Благодаря более низкой инерции, легкие коботы обеспечивают более высокую производительность — более высокие скорости — без ущерба для безопасности пользователя.

Этот выгодный аспект облегченной конструкции имеет и другие преимущества. Для мобильных робототехнических систем меньший вес означает большую автономность. В носимых вспомогательных роботизированных устройствах, включая протезы и экзоскелеты, легкий вес также является ключевым аспектом для повышения комфорта (Toxiri et al., 2019).

Высокая компактность — еще одна характеристика этих новых роботизированных устройств: от коботов до вспомогательных устройств, компактность дает преимущества в маневренности и удобстве взаимодействия.

В роботизированных приложениях, предполагающих тесное сотрудничество с людьми или предоставление мобильных услуг, позиции по своей сути весьма неопределенны. Легкие и компактные конструкции особенно выгодны (Loughlin et al., 2007) для этих применений с двумя последствиями: первичные двигатели и трансмиссии — обычно самые тяжелые элементы в роботизированном устройстве — должны быть легкими и компактными, но легкие конструкции имеют тенденцию требовать меньший крутящий момент.

В отличие от веса коробки передач, определение подходящего критерия для оценки вклада коробки передач в компактность системы является более сложной задачей. Физический объем определенно играет роль, но наш опыт показывает, что фактическая форма коробки передач имеет тенденцию иметь большее влияние. Еще один аспект, о котором стоит упомянуть, — это наличие в некоторых конфигурациях редукторов свободного пространства для размещения материала или движущихся частей, таких как электродвигатели или выходные подшипники, также могут представлять особый интерес. Поэтому мы решили включить в нашу схему оценки приблизительную форму (диаметр × длина) выбранной коробки передач, в то время как наличие дополнительного места можно напрямую оценить с помощью предоставленных цифр для каждой из конфигураций.

Эффективность и виртуальная мощность

КПД

В таких областях, как автомобильные или ветряные турбины, эффективность редукторов долгое время находилась в центре внимания. С другой стороны, в робототехнике эффективность до недавнего времени не становилась ключевым параметром при выборе подходящей коробки передач (Arigoni et al. , 2010; Dresscher et al., 2016).

Более высокая эффективность — более низкие потери — позволяют снизить потребление энергии и прямо положительно влияют как на эксплуатационные расходы, так и на экологический след машины или устройства.Для мобильных и носимых роботизированных устройств повышение эффективности также помогает снизить вес системы — требуются батареи меньшего размера — и в конечном итоге приводит к большей автономности и лучшему удобству использования (Kashiri et al., 2018).

В коробках передач есть еще одно дополнительное преимущество в снижении потерь: большинство механических трансмиссий, используемых в робототехнике, имеют замкнутую форму и используют некоторый вид контакта зубьев для передачи крутящего момента и движения между первичным двигателем и рабочим органом. Благодаря этому кинематическое соотношение между входной ω In и выходной скоростями ω Out заблокировано количеством зубцов и определяет его передаточное число i K . В коробке передач без потерь передаточное отношение i τ между выходным и входным крутящими моментами τ точно соответствует обратному кинематическому передаточному отношению с противоположным знаком. Но в реальной коробке передач наличие потерь изменяет это равенство, и поскольку кинематическое передаточное число блокируется числом зубьев, абсолютное значение передаточного числа крутящего момента должно уменьшаться пропорционально потерям:

ωInωOut = iK = — η iτ = -ητOutτIn; где η — КПД системы.

Следовательно, высокие потери в коробке передач означают, что меньший крутящий момент доступен для рабочего органа и требуются более высокие передаточные числа для достижения такого же усиления крутящего момента.

Коробки передач подвержены нескольким видам потерь. Чтобы классифицировать их, мы принимаем критерии, предложенные Talbot и Kahraman (2014), и разделяем их на зависимые от нагрузки (механические) потери мощности, возникающие из-за скольжения и качения контактных поверхностей, как в контактах шестерен, так и в подшипниках, и нагрузки -независимые (спиновые) потери мощности — возникают из-за взаимодействия вращающихся компонентов с воздухом, маслом или их смесью.

Виртуальная сила

Термин виртуальная мощность, насколько известно авторам, был первоначально введен Ченом и Анхелесом (2006), но это явление, объясняющее аномально высокие потери, присутствующие в некоторых планетных топологиях, долгое время было известно под разными названиями, включая Blindleistung (Wolf, 1958; Mueller, 1998) и скрытая или бесполезная мощность (Macmillan and Davies, 1965; Yu and Beachley, 1985; Pennestri and Freudenstein, 1993; Del Castillo, 2002).

Из-за своего принципа действия коробка передач всегда включает в себя высокоскоростную сторону с низким крутящим моментом и сторону с высоким крутящим моментом и низкой скоростью. Следовательно, его внутренние зубчатые зацепления обычно подвержены либо высокому крутящему моменту и низкой скорости, либо условиям высокой скорости и низкого крутящего момента. Однако в некоторых коробках передач из-за их специфической топологии некоторые зацепления шестерен могут одновременно взаимодействовать с высокой скоростью и высоким крутящим моментом. Зубчатые зацепления могут легко достичь КПД выше 98%, но поскольку генерируемые потери приблизительно пропорциональны произведению относительной скорости двух зубчатых элементов и крутящего момента, передаваемого через зацепление (Niemann et al., 1975), на этих высоконагруженных сетках появляются неожиданно большие потери. Виртуальная мощность обеспечивает основу для оценки вклада этого явления, которое в дальнейшем мы будем называть топологической эффективностью коробки передач.

Некоторые из вышеупомянутых авторов предлагают методы для оценки топологической эффективности данной конфигурации и определения ее влияния на общую эффективность системы. В рамках Chen and Angeles (2006) виртуальная мощность определяется как мощность, измеренная в движущейся — неинерциальной — системе отсчета.Скрытая мощность , представленная Ю и Бичли (1985), соответствует виртуальной мощности, когда опорная рамка является несущим элементом коробки передач, а виртуальная передаточная мощность — это соотношение между виртуальной мощностью и мощностью, генерируемой внешним крутящим моментом. применяется по ссылке. Используя эти элементы, мы определяем Latent Power Ratio топологии коробки передач как отношение суммы скрытых мощностей во всех зацеплениях к мощности, потребляемой коробкой передач.Таким образом, большой коэффициент скрытой мощности соответствует низкой топологической эффективности и указывает на сильную тенденцию к возникновению больших потерь за счет зацепления.

Чтобы облегчить понимание практического влияния на общую эффективность топологической эффективности, характеризующейся скрытым коэффициентом мощности, данной конфигурации редуктора, мы используем на этом этапе уравнения, предложенные Макмилланом и Дэвисом (1965) для расчета упрощенный пример.

Полная коробка передач робототехники обычно включает в себя несколько зацепляющих контактов, каждый из которых имеет разные рабочие условия и параметры, что приводит к различной эффективности зацепления.Эти КПД очень высоки в оптимизированных зубчатых зацеплениях — часто выше 99% — и позволяют упростить наши расчеты, учитывая общую уникальную эффективность зацепления η м = 99% во всех зацепляющих контактах в нашем редукторе.

Во-первых, эталонный редуктор, идеальный с точки зрения топологической эффективности, имел бы только одно зацепление и коэффициент скрытой мощности L = 1. Таким образом, потери мощности внутри этого эталонного редуктора можно легко рассчитать как функцию входной мощности. как:

Таким образом, общая эффективность зацепления всего редуктора соответствует эффективности одиночного зацепляющего контакта:

ηsys, идеально = PIN-PLossPIN = ηm = 99%;

Неидеальный редуктор с таким же типовым η m во всех его зацеплениях и со скрытым коэффициентом мощности L, характеризующим его топологический КПД, указывает на то, что общие потери в редукторе можно приблизительно оценить следующим образом:

Ploss, L≈ PIN * L * (1-ηm)

И общая эффективность зацепления всей коробки передач теперь составляет:

ηsys, L = PIN-PLoss, LPIN≈L * ηm + (1-L)

Что для η м = 99% и для значения L = 50 дает:

Этот результат следует частично релятивизировать, потому что накопленные потери в первых зацеплениях, задействованных вдоль различных внутренних потоков мощности в коробке передач, приводят к тому, что меньшая виртуальная мощность, прогнозируемая этими уравнениями, будет течь через последующие зацепления. Результатом этого является то, что КПД обычно будет падать немного медленнее с коэффициентом скрытой мощности, а более реалистичное значение для предыдущего расчета обычно будет между 55 и 60%.

Чтобы частично компенсировать это большое влияние топологической эффективности на общую эффективность, конфигурации с большим скрытым коэффициентом мощности требуют чрезвычайно высокой эффективности зацепления: для достижения эффективности системы> 70% системе с L = 100 требуется средняя эффективность зацепления. выше 99.5%.

Поэтому в нашем дальнейшем анализе мы сосредоточимся только на оценке вклада топологической эффективности в эффективность коробки передач. Это позволяет нам использовать упрощенный метод для расчета коэффициента скрытой мощности, который, в первую очередь, не учитывает влияние на потери, вызванные уменьшением крутящего момента. Соответствующие расчеты, использованные для определения коэффициента скрытой мощности различных конфигураций редукторов, проанализированных в этой работе, включены в Приложение I.

Подводя итог, чтобы охарактеризовать важный эффект КПД коробки передач, мы оценим порядок величины трех параметров: (i) потери, зависящие от нагрузки, (ii) пусковой момент без нагрузки и (iii) коэффициент скрытой мощности.Хотя на него дополнительно влияет статическое трение, а не только кулоновское и вязкое трение, мы выбрали пусковой крутящий момент без нагрузки (относительно номинального крутящего момента) в качестве практического способа характеристики потерь, не зависящих от нагрузки. Наши обмены с производителями редукторов показывают, что это обычная практика, она не зависит от входной мощности и легко доступна в технических данных производителя.

Производительность

По сравнению со специальными машинами и машинами для автоматической сборки промышленные роботы не могут достичь тех же стандартов точности и скорости.Оба аспекта пришлось скомпрометировать, чтобы обеспечить большую степень гибкости и мобильности, а также рабочего пространства (Rosenbauer, 1995). С этой точки зрения HRI — это всего лишь еще один шаг в том же направлении: чтобы соответствовать дальнейшим потребностям гибкости и мобильности в неструктурированной среде, необходимы дополнительные компромиссы с точки зрения точности и скорости. Этот переход отражен на рисунке 1.

Рисунок 1 . Графическое описание перехода основных задач задач от машин через промышленных роботов и коботов к людям-операторам.

Точность и повторяемость

Множество аспектов редуктора вносят вклад в общую точность полного роботизированного устройства. Эти аспекты долгое время находились в центре внимания традиционной робототехники и сегодня хорошо изучены, так как работы, подобные работам Майра (1989), Шемпфа и Йоргера (1993) или Розенбауэра (1995), содержат очень хорошие ссылки для понимания этих сложных влияний. Эти исследования указывают на особо важную роль, которую играют потерянный ход и жесткость на кручение.

Lost Motion — это дальнейшее развитие принципа люфта, который описывает полное вращательное смещение, создаваемое приложением ± 3% от номинального входного крутящего момента.

Жесткость на кручение характеризует податливость на кручение всех элементов коробки передач, задействованных во всем потоке сил, под действием внешнего крутящего момента. Это достигается путем блокировки входа редуктора и постепенного увеличения крутящего момента, прилагаемого на выходе, при этом регистрируются изменения жесткости на кручение, приводящие к отклонениям от идеально линейного поведения.

По своей природе точные — малые потери хода и линейная высокая жесткость на кручение — редукторы упрощают задачу управления и обеспечивают высокую точность, идеально подходят для управления положением, в то время как менее точные редукторы создают более серьезные проблемы для управления положением и могут использоваться для более гибкого срабатывания. . В технологиях редукторов, где скорость оказывает сильное влияние на потери или с особенно нелинейным трением, также необходимо учитывать вклад этих элементов в точность.

Чтобы охарактеризовать возможности точности, наша конструкция включает потерю движения и жесткость на кручение, а также субъективную оценку изменения эффективности, вызванного изменениями скорости / крутящего момента.

Скорость и полезная нагрузка

Промышленные роботы могут обрабатывать большие полезные нагрузки за счет большой инерции. Для коботов, с другой стороны, соображения безопасности подразумевают, что они не должны обрабатывать такие большие полезные нагрузки, но благодаря более легкой конструкции они действительно могут достичь большего отношения полезной нагрузки к массе.

Соображения безопасности также ограничивают степень, в которой это снижение массы может быть использовано для увеличения рабочих скоростей (Haddadin et al., 2009). Тем не менее, более низкий крутящий момент способствует использованию более легких и быстрых электродвигателей, что в принципе требует более высоких передаточных чисел для этих приложений.

Критерий для характеристики вклада коробки передач в скорость и характеристики полезной нагрузки должен отражать эти аспекты и побуждать нас использовать в нашей структуре (i) максимальную входную скорость, (ii) максимальный повторяемый выходной крутящий момент — так называемый момент ускорения — и номинальный крутящий момент, (iii ) передаточное число и (iv) отношение крутящего момента к массе как для номинального, так и для момента ускорения.

Сводка

Определение характеристик роботизированных коробок передач — сложная задача: высокая универсальность этих устройств и их сложное взаимодействие с первичными двигателями и системами управления делают прямое сравнение их характеристик особенно сложным.

Передаточное число продемонстрировало сильное влияние на производительность робототехнической системы. Это объясняет его предпочтительную роль в литературе, посвященной оптимизации срабатывания роботов, и растущий интерес робототехников к возможностям использования переменных передач (Kim et al., 2002; Карбон и др., 2004; Страмиджоли и др., 2008; Жирар и Асада, 2017). Хотя мы убеждены, что трансмиссии с регулируемой передачей являются очень многообещающими и определенно будут способствовать формированию будущего ландшафта робототехники, мы ограничили наш анализ здесь компактными коробками передач с постоянным передаточным числом. На данный момент мы считаем, что нам лучше всего подойдет этот ограниченный объем, который может также способствовать выявлению потенциальных областей применения и подходящих технологий для трансмиссий с переменным передаточным числом.

На основе этого анализа мы предлагаем схему оценки будущих роботизированных коробок передач на основе следующих параметров:

• Передаточное число

• Ускорение и номинальный выходной крутящий момент

• Вес

• Форма: диаметр × длина

• Ускорение и номинальный крутящий момент к массе

• КПД: пиковое значение и субъективная зависимость от скорости и крутящего момента

• Топологическая эффективность: коэффициент скрытой мощности

• Пусковой крутящий момент при прямом и обратном движении без нагрузки в% от номинального входного крутящего момента

• Потери, не зависящие от нагрузки

• Потерянное движение

• Максимальная входная скорость

• Жесткость на кручение

Наша структура включает также эталонный вариант использования, характерный для множества задач pHRI согласно нашему собственному опыту: моменты ускорения более 100 Нм и передаточные числа более 1: 100, для которых необходимо оптимизировать вес, компактность и эффективность.

Обзор технологий передачи данных, используемых в настоящее время в промышленных роботах

Электродвигатели, оснащенные механическими трансмиссиями, обычно используются в качестве исполнительных механизмов в робототехнике (Rosenbauer, 1995; Scheinman et al., 2016), а также в промышленных роботах. Эти механические трансмиссии почти неизбежно основаны на какой-то зубчатой ​​передаче (Sensinger, 2013).

Благодаря их большей способности снижать общий вес и поскольку электродвигатели имеют тенденцию иметь более высокий КПД на высоких рабочих скоростях, другой характеристикой промышленных роботизированных трансмиссий является использование относительно больших коэффициентов передачи (передаточных чисел), обычно более 1:40 (Розенбауэр, 1995).

Планетарные редукторы

: чрезвычайно универсальная платформа

Планетарные зубчатые передачи

(PGT) — это компактные, универсальные устройства, широко используемые в силовых передачах. Благодаря характерной коаксиальной конфигурации и хорошей удельной мощности они особенно подходят для вращающихся первичных двигателей, таких как электродвигатели.

PGT

могут использовать две дифференцированные стратегии для достижения высоких коэффициентов усиления: (i) добавление нескольких ступеней обычных высокоэффективных PGT — здесь называемых редукторами и представленных на Рисунке 2 — или (ii) использование особенно компактных конфигураций PGT с возможностью получения высоких передаточные числа.

Рисунок 2 . Внутреннее расположение редуктора Neugart с указанием его основных элементов, адаптировано из Neugart (2020) с разрешения © Neugart GmbH. Он также включает схему базовой топологии.

Хотя использование нескольких ступеней редукторов позволяет наилучшим образом использовать эффективность зацепления высоких шестерен и приводит к высокоэффективным редукторам, это обычно приводит к тяжелым и громоздким решениям. Компактные конфигурации PGT с другой стороны могут достигать высоких передаточных чисел в очень компактных формах, но они страдают от удивительно высоких потерь, связанных с высокими виртуальными мощностями (Crispel et al., 2018).

Особенно компактная конфигурация PGT для высоких передаточных чисел была впервые изобретена Вольфромом (1912) и использовалась в редукторах серии RE компании ZF Friedrichshafen AG (ZF), предназначенных для промышленных роботов (Looman, 1996). Эта конфигурация, показанная на рисунке 3, сильно зависит от Virtual Power, и ZF представляет собой единственное известное коммерческое применение конфигураций PGT, отличное от обычных редукторов. Хотя производство серии RE было прекращено в 90-х годах, Wolfrom PGT в последнее время пользуются растущим интересом сообщества исследователей робототехники, как мы резюмировали в предыдущей статье авторов (López-García et al., 2019а).

Рисунок 3 . Внутреннее устройство ZF’s RG Series Wolfrom PGT для роботизированных приложений адаптировано из Looman (1996) с разрешения © 1998 Springer-Verlag Berlin Heidelberg. Он также включает схему базовой топологии.

Таблица 1 представляет оценку PGT. Несмотря на завышенные размеры для нашего теста, мы использовали ZF RG350 Wolfrom PGT, чтобы попытаться оценить потенциал конфигураций PGT с высоким коэффициентом передачи, основываясь на имеющихся доказательствах его пригодности для достижения высоких коэффициентов (Арнаудов и Караиванов, 2005; Mulzer, 2010 ; Капелевич и AKGears LLC, 2013).Для редукторов мы выбрали — при поддержке производителей — подходящие решения из портфолио Wittenstein и Neugart. Стоит отметить важную роль, которую играет максимальное передаточное число на ступень в редукторе: в то время как Виттенштейн ближе к максимуму осуществимости, определяемому избеганием контакта между соседними планетами, Нейгарт выбирает в своей серии PLE (серия PLFE может достигать 1: 100 соотношений только в два этапа) более ограничительный подход и, следовательно, для достижения общего усиления 1: 100 требуется три этапа вместо двух для Виттенштейна.Это приводит к менее компактным решениям и более низкой эффективности для приложения 1: 100, но позволяет Neugart достичь более высокого прироста — до 1: 512 — без фундаментальных изменений веса, размера или эффективности.

Таблица 1 . Схема оценки решений с планетарной зубчатой ​​передачей.

Редукторы

имеют вес около 4 кг, что нельзя напрямую сравнивать с увеличенными размерами RG350. RG350 имеет форму с большим диаметром и меньшей длиной, чем редукторы.Что касается отношения крутящего момента к весу, значения обоих решений кажутся относительно близкими.

Редукторы

имеют сильное преимущество в их хорошем КПД (выше 90%), который также менее чувствителен к изменениям рабочих условий, а пусковые моменты холостого хода очень низкие. Конфигурации с высоким коэффициентом полезного действия показывают, насколько сильно ограничивается топологическая эффективность, что приводит к снижению эффективности. Это, вероятно, объясняет, почему редукторы сегодня являются доминирующей технологией PGT в робототехнике.

PGT

показывают самые высокие входные скорости (до 8 500 об / мин), но их потери хода также самые большие (4–6 Arcmin) в обычных редукторах. В робототехнике PGT широко использовались в первых промышленных роботах, тогда как в последние десятилетия их использование сильно сократилось, в основном из-за их ограничений, связанных с уменьшением люфта. Несмотря на то, что существуют механизмы, ограничивающие по своей природе более значительную обратную реакцию PGT, на практике они основаны на введении определенной предварительной нагрузки, что отрицательно сказывается на их эффективности (Schempf, 1990).

Гармонические приводы: без люфта, легкий редуктор деформационной волны

Редуктор Strain Wave был изобретен Массером (1955) и нашел широкое применение в 70-х годах, первоначально в аэрокосмической отрасли. Его основное космическое применение было в качестве элемента механической передачи в аппарате лунохода Аполлона-15 в 1971 году (Schafer et al., 2005).

Его название происходит от характерной деформации Flexspline , нежесткой, тонкой цилиндрической чашки с зубьями, которая служит выходом.Flexspline входит в зацепление с неподвижным сплошным круглым кольцом с внутренними зубьями шестерни Circular Spline , в то время как он деформируется вращающейся эллиптической заглушкой — волновым генератором , как это видно на рисунке 4. Этот тип редуктора является наиболее распространенным. обычно называют Harmonic Drive © (HD) из-за очень эффективной стратегии защиты IP.

Рисунок 4 . Внутренняя конфигурация коробки передач Harmonic Drive CSG (слева), адаптированная из Harmonic Drive (2014) с разрешения © 2019 Harmonic Drive SE, и редуктора E-Cyclo (справа), адаптированная из SUMITOMO (2020) с разрешения © Sumitomo Drive, 2020 Germany GmbH.Также включена схема их базовой топологии KHV, используемая для расчета его скрытого коэффициента мощности в Приложении I.

Для нашего сравнительного анализа мы выбрали два подходящих редуктора Harmonic Drive, CSD-25-2A, предназначенный для интеграции в роботизированное соединение, чтобы обеспечить адекватные структурные граничные условия, и сверхлегкий редуктор CSG-25-LW, представляющий конструктивно достаточное решение. что может быть более прямо по сравнению с другими технологиями. Совсем недавно компания SUMITOMO представила новую коробку передач E-CYCLO, работающую также на принципе действия волны деформации.SUMITOMO предоставил нам доступ к своему самому последнему каталогу (SUMITOMO, 2020), что позволило нам включить его в наш тест (Таблица 2). Еще одна интересная волна деформации, очень похожая на гармонический привод, недавно была также представлена ​​GAM в своей серии коробок передач для робототехники, которая также включает планетарные зубчатые передачи и циклоидные приводы (GAM, 2020).

Таблица 2 . Схема оценки решений волн деформации.

Выбранная модель CSG имеет значительно больший крутящий момент, чем предполагалось в нашем тесте.Форма имеет больший диаметр, чем длина, а вес значительно ниже, чем у других технологий, и приводит к лучшему соотношению крутящего момента к массе из проанализированных технологий. Действительно, характерное зацепление с несколькими зубьями обеспечивает большее сопротивление крутящему моменту, чем в PGT, что делает эту технологию очень подходящей для соединений, расположенных ближе к рабочему органу, где они часто встречаются в современных промышленных роботах.

Пиковый КПД ниже, чем у редукторов, и ближе к RG350, а КПД особенно чувствителен к условиям эксплуатации.Поезда Strain Wave демонстрируют большие потери, не зависящие от нагрузки, и пусковые моменты без нагрузки — особенно в условиях обратного движения, которые становятся особенно критическими для высоких скоростей и / или низких крутящих моментов (Harmonic Drive, 2014). Для роботизированных устройств HRI, подверженных частым изменениям скорости и полезной нагрузки в сочетании с обменом энергией между роботизированным устройством и пользователем, это означает, что средняя эффективность быстро падает ниже 40–50% (López-García et al., 2019b). Также стоит отметить их большой коэффициент скрытой мощности, указывающий на одновременное присутствие высоких крутящих моментов и скоростей в зацеплении зубьев, что также помогает объяснить относительно низкий КПД.

Еще раз, благодаря зацеплению с несколькими зубьями, можно достичь потерянных движений ниже 1 угловой минуты, что дает этому редуктору сильное преимущество, которое помогает гармоническим приводам находить широкое применение в промышленных роботах. Они смогли вытеснить PGT из многих приложений, особенно после значительного улучшения характеристик в результате новой геометрии зубьев, представленной этой компанией в 90-х годах, что также улучшило линейность их жесткости (Slatter, 2000).

Максимальная входная скорость раньше была сильным ограничением для использования редукторов HD (Schempf, 1990), но новые достижения и улучшения конструкции позволяют им теперь достигать 7500 об / мин.

Циклоидные приводы: для высокой прочности и жесткости на кручение

С момента своего изобретения Лоренцем Брареном в 1927 году (Li, 2014) циклоидные приводы нашли применение в основном в лодках, кранах и некотором крупном оборудовании, таком как прокатные станы или станки с ЧПУ. В циклоидных приводах эксцентричное входное движение создает шаткое циклоидальное движение одиночного большого планетарного колеса, которое затем преобразуется обратно во вращение выходного вала и приводит к высокой редукционной способности (Gorla et al., 2008), см. Рисунок 5.

Рисунок 5 . Внутренняя конфигурация циклоидных приводов SUMITOMO Fine Cyclo F2C-A15 и Fine Cyclo F2C-T155, идентифицирующая их основные элементы, адаптирована из SUMITOMO (2017) с разрешения © Sumitomo Cyclo Drive Germany GmbH, 2017. Он также включает схему лежащих в основе топологий.

Таблица 3 включает лидера рынка (NABTESCO RV) в этом сегменте и основных претендентов (SPINEA и SUMITOMO). RV от NABTESCO и серия Fine-Cyclo T от SUMITOMO включают в себя обычную ступень PGT с предварительным зацеплением.Полезная нагрузка этих устройств больше, чем требуется для нашего теста, и приводит к большому весу. Это уже дает ценную информацию: более компактные решения недоступны на рынке и, согласно информации, предоставленной некоторыми производителями, менее интересны, поскольку для них потребуется высочайшая точность производства и, в конечном итоге, приведет к высоким затратам.

Таблица 3 . Схема оценки решений для циклоидных приводов.

Формы аналогичны коробкам передач с волновой деформацией, а по весу больше и ближе к весам PGT по вышеупомянутым причинам.Отношение крутящего момента к массе больше, чем у PGT, но немного ниже, чем у редукторов с волновой деформацией. Основное преимущество циклоидных приводов заключается именно в их способности выдерживать большие нагрузки и особенно ударные нагрузки, а также в минимальных требованиях к техническому обслуживанию.

Пиковый КПД выше, чем у редукторов с волновой деформацией, и ближе к КПД PGT, но КПД сильно зависит от условий эксплуатации (Михайлидис и др., 2014), а пусковые моменты холостого хода и коэффициент скрытой мощности высокие, как аналогично редукторам с волновой деформацией.

Хотя они, как правило, имеют некоторый люфт, который часто компенсируется в их конструкции для достижения уровней, сопоставимых с уровнями редукторов с волновой деформацией, вероятно, за счет немного более высокого трения. Их жесткость на кручение — самая большая из проанализированных технологий редукторов.

Циклоидные приводы

имеют неотъемлемое ограничение на работу с высокими входными скоростями, вызванное наличием большого и относительно тяжелого планетарного (кулачкового) колеса, что приводит к большим инерциям и дисбалансу.Это мотивирует использование, как правило, двух планетарных колес, расположенных последовательно и смещенных на 180 градусов друг к другу, для устранения дисбаланса, уменьшения вибраций и увеличения входной скорости. Это объясняет, как благодаря объединению циклоидных приводов со ступенями предварительного зацепления, состоящими из обычных ступеней PGT, циклоидные приводы получили широкое распространение в робототехнике. Такое расположение повышает эффективность, снижает чувствительность к высоким входным скоростям и обеспечивает легкую адаптацию их передаточных чисел.В 90-х годах гармонические приводы доминировали на рынке роботизированных коробок передач, но усовершенствования циклоидной технологии позволили циклоидным приводам начать покорять бездорожье, сначала в Японии, а затем в других местах (Rosenbauer, 1995). В настоящее время производители, такие как NABTESCO, SUMITOMO или NIDEC, предлагают циклоидные гибриды с интегрированным передаточным механизмом PGT, покрывающие более 60% рынка роботизированных коробок передач, и поэтому стали новой доминирующей технологией, особенно для проксимальных суставов, подверженных более высоким нагрузкам и меньшим ограничениям по весу (WinterGreen Исследования, 2018).

Наконец, стоит упомянуть наличие относительно большой пульсации крутящего момента, которая вносит нелинейности и усложняет их контроль. Эта пульсация крутящего момента связана с необходимостью использования циклоидных профилей зубьев, чтобы избежать столкновения зубьев между большим планетарным колесом / колесами и зубчатым венцом, что делает эти устройства чрезвычайно чувствительными к изменениям межцентрового расстояния, возникающим даже из-за небольших производственных ошибок. Существует несколько попыток улучшить эту ситуацию, используя эвольвентные зубья, менее чувствительные к изменениям межцентрового расстояния, с уменьшенными углами давления и / или коэффициентами контакта для минимизации радиальных сил и повышения эффективности (Морозуми, 1970), а также с использованием других форм нестандартных зубьев. -инволютные зубы (Коряков-Савойский и др., 1996; Хлебаня, Куловец, 2015).

Обзор новых технологий передачи для робототехники

Усилитель крутящего момента REFLEX

Genesis Robotics привлекла большое внимание в сообществе робототехники с появлением их двигателя с прямым приводом, LiveDrive © . Согласно Genesis, LiveDrive в двух доступных топологиях — радиальном и осевом потоках — обеспечивает сравнительные характеристики в соотношении крутящего момента к массе. Двигатель с осевым магнитным потоком может достигать 15 Нм / кг, в то время как радиальный поток ограничивается максимум 10 Нм / кг.

Чтобы расширить спектр применения, Genesis Robotics представила совместимую коробку передач под названием Reflex , показанную на рисунке 6. Эта литая под давлением сверхлегкая пластиковая коробка передач предназначена для легких роботов, и хотя изначально она была разработана для совместной работы с LiveDrive. и поэтому он нацелен на передаточные числа ниже 1:30, он также способен обеспечивать передаточные числа до 1: 400 (GENESIS, 2018).

Рисунок 6 . Внутренняя конфигурация и основные элементы редуктора Reflex адаптированы из GENESIS Robotics (2020) с разрешения © 2019 Genesis Robotics.Он также включает схему базовой топологии.

Базовая топология — топология Wolfrom PGT с несколькими меньшими планетами (Klassen, 2019), в которой реактивное (стационарное) зубчатое колесо разделено на две части для балансировки в соответствии с конструкцией, первоначально предложенной Россманом (1934) и используемой в качестве хорошо в передаче Hi-Red Tomcyk (2000).

В редукторе Reflex выходное кольцо также разделено для облегчения сборки с косозубыми зубьями. Еще одним интересным аспектом этой конструкции является заклеенная лентой форма планет, которая, как подозревают авторы, связана с возможностью предварительной нагрузки системы для достижения нулевого люфта, который, как утверждает Genesis, возможен с этой коробкой передач.По заявлению компании, гибкость пластиковых планетарных колес также дает преимущество в уменьшении люфта.

К сожалению, пока недоступны независимые тесты, подтверждающие данные характеристики, и никаких официальных данных, особенно по эффективности, на данный момент от Genesis не имеется, поэтому в Таблицу 4 включено только значение Latent Power Ratio, вытекающее из его топологии.

Таблица 4 . Схема оценки новых технологий редукторов.

Таким образом, хотя лежащая в основе топология Wolfrom указывает на то, что эффективность, безусловно, будет сложной задачей, эта инновационная коробка передач демонстрирует большой потенциал, доступный для переосмысления существующих технологий и их адаптации к будущим потребностям робототехники. Genesis Robotics недавно вступила в интересное партнерство с известными промышленными компаниями, такими как Koch Industries Inc. и Demaurex AG.

Проезд Архимеда

IMSystems из Нидерландов является дочерним предприятием Делфтского технологического университета, созданным в 2016 году для использования изобретения Archimedes Drive (Schorsch, 2014).

Привод Архимеда снова повторяет топологию редуктора Wolfrom (также с разрезным реактивным зубчатым венцом в некоторых его конструкциях), но включает в себя революционное нововведение в использовании роликов вместо шестерен для замены зубчатых контактов контактами качения, см. Рисунок 7. Контролируемая деформация планетарных роликов позволяет передавать крутящий момент между планетами аналогично колесам транспортного средства.

Рисунок 7 . Внутренняя конфигурация привода Архимеда с деталями, показывающими его планеты Flexroller, адаптирована из IMSystems (2019) с разрешения © 2019 Innovative Mechatronic Systems B.V., со схемой лежащей в основе топологии.

Характеристики, представленные в таблице 4, взятой из брошюры компании (IMSystems, 2019) и доступной по запросу, показывают, что использование топологии Wolfrom дает этому устройству возможность достигать очень высоких передаточных чисел в компактной форме, но это также приводит к низкой топологической эффективности. Согласно IMSystems, замена контакта зубчатого колеса на контакт качения способствует минимизации потерь в контакте, которые, в частности, при передаче крутящего момента между планетарной передачей и кольцевыми роликами должны компенсировать высокое латентное соотношение мощности и приводить к максимальному КПД. около 80% (IMSystems, 2019).Никаких данных о пусковых моментах или потерях, не зависящих от нагрузки, не приводится.

Чтобы обеспечить передачу высокого крутящего момента без проскальзывания, необходимо строго контролировать деформацию роликов планетарного механизма, а также производственные допуски коробки передач. Это представляет собой одну из основных технологических проблем, и это ядро ​​инноваций, вносимых этой технологией (Schorsch, 2014).

NuGear

STAM s.r.l. — частная инженерная компания из Генуи, которая помогла разработать роботизированный сустав для гуманоидного робота I-Cub.Их NuGear — это нутационная коробка передач, которая изначально была задумана (Барбагелата и Корсини, 2000) для космических приложений, но могла бы развить свой потенциал и для робототехники за счет исследования альтернативных производственных средств.

Пока нет общедоступной информации о рабочих характеристиках этой коробки передач, что означает, что мы можем предоставить здесь только предварительный анализ ее топологии и результирующих характеристик, которых можно ожидать на основе ограниченной информации, доступной в основном из проекта Caxman EU ( CAxMan, 2020), для которого NuGear был вариантом использования, и из доступных патентов (Barbagelata et al., 2016).

На рисунке 8 внутренняя структура NuGear представлена ​​с использованием эквивалентной конфигурации PGT — для облегчения понимания абстрагируется аспект нутации. Таким образом становится ясно, что NuGear напоминает два PGT Wolfrom, для которых несущая используется в качестве входа, соединенных последовательно, и где каждый из них соответствует одному из двух этапов, определенных в Barbagelata et al. (2016). Это еще раз указывает на то, что в этой коробке передач будет присутствовать относительно высокий коэффициент скрытой мощности.Для передаточного числа 1: 100 и при условии сбалансированного усиления 1:10 на каждой из двух ступеней, как предложено в Barbagelata et al. (2016), мы получаем, используя уравнения, выведенные в Приложении I, коэффициент скрытой мощности 32, что указывает на топологическую эффективность, аналогичную эффективности PGT от Wolfrom.

Рисунок 8 . Внутренняя конфигурация двухступенчатой ​​коробки передач NuGear для версии с оппозитными контактами планет адаптирована из CAxMan (2020) с разрешения © Stam S.r.l. Он также включает схему базовой топологии.

Еще предстоит подтвердить, в какой степени использование методов аддитивного производства может помочь STAM s.r.l. снизить большие затраты на производство конических зубчатых колес, а также определить, сможет ли операция нутации достичь достаточной надежности и более компактной формы, которые могут открыть дверь для ее использования в области робототехники (CAxMan, 2020).

Двусторонний привод

Компания FUJILAB в Иокогаме предложила в Fujimoto (2015) коробку передач с высокой степенью управляемости для робототехники, которая особенно подходит для работы без датчика крутящего момента (Kanai and Fujimoto, 2018).

Как видно на Рисунке 9, конфигурация этого устройства снова аналогична PGT Wolfrom. При такой топологии Fujimoto et al. смогли достичь при передаточном числе 1: 102 КПД при движении вперед 89,9% и КПД при движении задним ходом 89,2%. Пусковой крутящий момент без нагрузки в обратном направлении составил 0,016 Нм в коробке передач с внешним диаметром ~ Φ50 мм (Kanai and Fujimoto, 2018). Стратегия достижения такой высокой эффективности с топологией Wolfrom заключается в оптимизации коэффициентов сдвига профиля (Fujimoto and Kobuse, 2017).

Рисунок 9 . Внутренняя конфигурация двустороннего привода, высокоэффективной коробки передач, способной обеспечивать передаточное число 1: 102 с использованием топологии Wolfrom, любезно предоставлено © Yasutaka Fujimoto.

Эти многообещающие результаты — см. Таблицу 4 — показывают, что выравнивание соотношений подвода и углубления посредством оптимизации коэффициентов смещения профиля может привести к чрезвычайно высокой эффективности зацепления. Насколько известно авторам, эта стратегия была первоначально предложена Хори и Хаяши (1994) и особенно интересна в топологии Wolfrom, где она в конечном итоге может обеспечить эффективность выше 90% в сочетании с высокими передаточными числами и компактными топологиями.

Привод подшипника шестерни

Вслед за новаторской работой в этой области Джона М. Враниша из НАСА, результатом которой стало изобретение планетарной шестерни без водила во Вранише (1995) и подшипников частичной зубчатой ​​передачи (Враниш, 2006), NASA Goddard Space Центр управления полетами представил свою концепцию нового зубчатого подшипника в Вайнберге и др. (2008).

Северо-Восточный университет в Бостоне продолжил разработку этого нового привода для применения в роботизированных соединениях.Как видно на Рисунке 10, он включает в себя коробку передач Wolfrom, адаптированную для включения конструкции Vranish без опоры и зубчатых подшипников. Подшипники шестерен представляют собой контакты качения, которые предусмотрены для каждой пары зубчатых колес в соответствии с их делительным диаметром и уменьшают нагрузку на подшипники коробки передач (Brassitos et al., 2013). Эта топология обеспечивает удобную интеграцию электромотора, который, следовательно, встроен в полую часть большого солнечного зубчатого колеса в конфигурации, специально предназначенной для космических приложений (Brassitos and Jalili, 2017).

Рисунок 10 . Внутренняя конфигурация зубчатого подшипника, включая встроенный бесщеточный двигатель, адаптирована из Brassitos and Jalili (2017) с разрешения © 2017 Американское общество инженеров-механиков ASME. Справа также показана лежащая в основе топология Wolfrom с расщепленным реакционным кольцом.

В Brassitos and Jalili (2018) металлический прототип привода с зубчатым подшипником с передаточным числом 1:40 характеризуется жесткостью, трением и кинематической погрешностью.Измерения полностью соответствуют показателям FUJILAB и подтверждают низкий пусковой крутящий момент без нагрузки в этой конфигурации (0,0165 Нм для внешнего диаметра коробки передач ~ 100 мм). После экспериментального измерения жесткости, трения и кинематической погрешности их привода (Brassitos and Jalili, 2018) интегрировали эти значения в динамическую модель, которая затем была смоделирована и сравнена с откликом скорости разомкнутого контура системы при свободном синусоидальном движении. корреляция и предлагает очень удобную высокую линейность передачи.

Предварительные измерения показали хороший комбинированный КПД двигателя и коробки передач Wolfrom с передаточным числом 1: 264 (Brassitos et al., 2013), что не очень хорошо коррелирует с рассчитанным скрытым коэффициентом мощности 196. КПД не был определен. снова в центре внимания недавних статей авторов, и мы, к сожалению, не смогли на данный момент подтвердить окончательные уровни эффективности, которых могут достичь новые прототипы.

В любом случае привод с зубчатым подшипником дает очень интересные возможности для использования потенциала топологии Wolfrom в робототехнике.Возможность удаления несущего элемента и встраивания электродвигателя в коробку передач в общем корпусе позволяет получить впечатляюще компактные конструкции. Возможность использования продольных роликов зубчатых подшипников для уменьшения радиальной нагрузки на подшипники также является многообещающим вариантом для повышения компактности и повышения эффективности (Brassitos et al., 2019).

Галакси Драйв

Schreiber and Schmidt (2015) защищает основные инновации, включенные в Galaxie Drive, коробку передач, которую WITTENSTEIN в настоящее время выводит на рынок прецизионных редукторов через свой стартап Wittenstein Galaxie GmbH, созданный в апреле 2020 года.

Хотя таблица данных и подробная информация еще не доступны, также раскрыты принцип работы и ожидаемая прибыль. Galaxie Drive представляет новый кинематический подход, основанный на линейном наведении одиночного зуба в зубчатом каркасе Teeth Carrier , но, по мнению этих авторов, его топология напоминает топологию деформационно-волнового механизма, см. Рис. 11. Гибкая линия заменена зубьями. Держатель, включающий два ряда отдельных зубцов, выполнен с возможностью радиального перемещения и зацепления с круговым шлицем в качестве вращающегося многоугольного вала выполняет роль генератора волн с многоугольным периметром (Schreiber and Röthlingshöfer, 2017).Следовательно, несколько отдельных зубьев входят в зацепление одновременно с круговым шлицем — так же, как в Harmonic Drive. По словам производителя, это вместе с двухточечным контактом с высокой устойчивостью к крутящему моменту между каждым отдельным зубом и зубчатым каркасом обеспечивает этому устройству характерный нулевой люфт, высокую жесткость на кручение и эталонное соотношение крутящего момента к весу.

Рисунок 11 . Деталь зацепления зубьев коробки передач Galaxy (R) DF адаптирована из Schreiber (2015) с разрешения © 2020 Wittenstein Galaxie GmbH.Он включает схему базовой топологии KHV.

В ходе прямого обмена мнениями представители Виттенштейна подтвердили, что очевидная проблема трения между отдельными зубьями и их направляющим круговым кольцом решена, и Galaxie может достичь максимальной эффективности выше 90%. Из-за лежащей в основе конфигурации KHV ожидаются большие коэффициенты скрытой мощности, но пока невозможно получить дальнейшее представление об эффективности зацепления, которая будет результатом радиального движения зубьев, которое включает новую логарифмическую спиральную боковую поверхность зуба (Мишель, 2015).

Первоначально привод Galaxie Drive предназначался для высокоточного оборудования, где высокая жесткость и сопротивление крутящему моменту могут помочь увеличить скорость и повысить производительность. В будущем мы, безусловно, сможем оценить потенциал этой инновационной технологии также для робототехнических приложений.

Обсуждение

Новое поколение робототехнических устройств меняет приоритеты в выборе подходящих коробок передач. Вместо высочайшей точности на высоких скоростях эти устройства предъявляют более строгие требования к легким и очень эффективным устройствам с механическим усилением.

Сверхлегкие приводы деформационных волн (HD, E-cyclo), безусловно, находятся в очень хорошем положении для удовлетворения этих потребностей, что подтверждается их нынешним доминированием в области коботов. При рассмотрении привода деформационной волны для роботизированной задачи pHRI работа при низких крутящих моментах и ​​скоростях должна быть сведена к минимуму, если эффективность должна быть максимальной. Хотя их оптимизированная геометрия зубьев способствует более линейной жесткости на кручение, трение остается очень нелинейным и зависит от направления, вызывая также определенные ограничения использования.Храповик как следствие ударной нагрузки — это еще одно ограничение, которое следует учитывать для этого типа редуктора, которое E-Cyclo не должен иметь (SUMITOMO, 2020).

Циклоидные приводы

прошли долгий путь, чтобы в конечном итоге стать доминирующей технологией в промышленных роботах. Благодаря технологическим достижениям, направленным на уменьшение люфта и ограничения скорости ввода, они теперь могут обеспечивать хорошую точность с приемлемой эффективностью, несмотря на высокие скрытые коэффициенты мощности, возникающие из-за базовой топологии KHV, эквивалентной топологии приводов с волновой деформацией.Использование ступени перед зацеплением также вносит важный вклад в достижение этой цели за счет повышения базовой топологической эффективности. Сверхлегкие конструкции, такие как SPINEA, демонстрируют интересный потенциал, но в конечном итоге потребуются более прорывные подходы, такие как пластиковые материалы, чтобы удовлетворить потребности в более легких коробках передач и более высоких передаточных числах, необходимых для HRI. Пока это не станет возможным, циклоидные приводы можно рассматривать только для больших полезных нагрузок, когда их больший вес и результирующая инерция не критичны для работы.Когда исключительная точность не требуется, можно избежать мер компенсации люфта в пользу повышения эффективности и более низких пусковых моментов. В любом случае следует позаботиться о том, чтобы адекватно управлять пульсацией крутящего момента, и, вероятно, необходимо будет остаться на этапе перед включением, чтобы обеспечить высокие скорости входного двигателя.

Невозможность планетарных редукторов уменьшить люфт при сохранении хорошей производительности и ограничения жесткости на кручение ограничили их использование в промышленной робототехнике. Тем не менее, PGT чрезвычайно универсальны, что демонстрирует их широкое использование во множестве современных промышленных устройств.И они изначально эффективны, надежны и относительно просты — дешевы — в производстве. Это может объяснить недавний интерес робототехников к PGT и почему пять из шести изученных здесь принципиально инновационных редукторов основаны на конфигурации PGT с высоким передаточным числом: топологии Wolfrom. Лучшая топологическая эффективность в сочетании с улучшением эффективности зацепления за счет модификации профиля или даже еще одного шага вперед по замене зубьев контактами качения являются многообещающими характеристиками. В сочетании с возможностями, открываемыми их полой топологией, эти элементы потенциально могут привести к возвращению PGT в робототехнику.

Наше исследование показывает, что большая универсальность технологий редукторов, используемых в робототехнике, представляет собой серьезную проблему для прямого сравнения их характеристик. Как показывают примеры люфта и максимальной входной скорости, адекватные модификации конструкции могут надлежащим образом компенсировать большинство исходных слабых мест определенной технологии за счет компромиссов в других аспектах, обычно включая эффективность, размер, вес и стоимость. Точно так же большие скрытые коэффициенты мощности указывают на существенный топологический недостаток с точки зрения эффективности, но он также может быть — по крайней мере частично — компенсирован соответствующими модификациями.Таким образом, обучающий эффект заключается в том, что выбор подходящей технологии редуктора для определенного применения pHRI является чрезвычайно сложным процессом, требующим глубокого понимания фундаментальных недостатков, возможностей улучшения и производных компромиссов каждой технологии. Наша первоначальная цель исследования — внести свой вклад в простую таблицу выбора, способную помочь неопытным робототехникам в выборе подходящих технологий редукторов для своих роботизированных устройств, поэтому не могла быть достигнута.Вместо этого в этой статье собраны и объясняются основные параметры выбора и связанные с ними проблемы в каждой из доступных технологий, с целью помочь инженерам-роботам pHRI развить необходимые навыки, необходимые для осознанного выбора подходящей, индивидуально оптимизированной коробки передач.

Два важных аспекта роботизированных редукторов для pHRI, к сожалению, не могут быть адекватно оценены в нашем исследовании на данном этапе: шум и стоимость. По мере приближения роботизированных устройств к людям шум привлекает все больше внимания робототехников.Редукторы, безусловно, представляют собой важный источник шума (переносимого воздухом и конструкциями), но, к сожалению, на данном этапе рекомендуется исключить шум из нашего анализа по двум основным ограничениям. Во-первых, большинство производителей редукторов еще не предоставляют количественных оценок шумовых характеристик, и когда они это делают, они, как правило, следуют другим методам испытаний, которые также не особенно подходят для рабочих условий в pHRI. Во-вторых, современные технологии редукторов все еще нуждаются в незавершенном процессе оптимизации шума.

Стоимость также является важным параметром, делающим технологии pHRI более доступными, и поэтому становится важным при выборе подходящих редукторов для будущих робототехнических технологий. К сожалению, и здесь научному сообществу доступно недостаточное количество исходной информации, чтобы дать возможность систематической справедливой оценки крупномасштабного экономического потенциала определенной технологии редукторов. Прежде чем можно будет определить подходящую основу для оценки этого потенциала, требуется большой объем исследовательской работы, которая явно выходит за рамки нашего исследования.

Эти два ограничения очерчивают основные рекомендации авторов для интересных направлений будущих исследований. Определение стандартизованных условий испытаний воздушного и конструктивного шума в коробках передач, особенно адаптированных к типичным условиям эксплуатации и потребности в pHRI, могло бы позволить прямое сравнение различных технологий и способствовать их оптимизации шума. Кроме того, составление доступных моделей затрат для производственных процессов, связанных с изготовлением редукторов, и их адаптация к специфике конкретных технологий, используемых в робототехнике, позволит составить основу для оценки потенциала крупномасштабных затрат (и препятствий) разные технологии.

Авторские взносы

Все авторы принимали участие в предварительной работе, связанной с этой темой исследования, и внесли свой вклад в концептуализацию структуры, представленной в рукописи. PG работала над созданием подходящей системы оценки для выполнения анализа коробки передач и взяла на себя инициативу в написании рукописи и преобразовании ее в ее текущую форму. PG и ES в равной степени способствовали выявлению потенциально подходящих технологий и их анализу с помощью структуры.Все корректуры авторов прочитали и внесли свой вклад в окончательную версию статьи.

Финансирование

SC, ES (доктор философии) и TV (доктор наук) являются научными сотрудниками Исследовательского фонда Фландрии — Fonds voor Wetenschappelijk Onderzoek (FWO). Эта работа частично финансируется Программой исследований и инноваций Европейского Союза Horizon 2020 в рамках Соглашения о гранте № 687662 — проект SPEXOR.

Конфликт интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Благодарности

Авторы хотели бы поблагодарить профессора Ясутака Фудзимото из Йокогамского национального университета, а также компании Neugart GmbH, Harmonic Drive SE, Sumitomo Drive Germany GmbH, Genesis Robotics, Innovative Mechatronic Systems B.V., Stam s.r.l. и Wittenstein Galaxy GmbH за любезную поддержку и полученные объяснения, а также за разрешение использовать прилагаемые изображения их устройств.

Дополнительные материалы

Дополнительные материалы к этой статье можно найти в Интернете по адресу: https: // www.frontiersin.org/articles/10.3389/frobt.2020.00103/full#supplementary-material

Список литературы

Альбу-Шеффер, А., Эйбергер, О., Гребенштейн, М., Хаддадин, С., Отт, К., Вимбок, Т. и др. (2008). Мягкая робототехника. Робот IEEE. Автомат. Mag. 15, 20–30. DOI: 10.1109 / MRA.2008.927979

CrossRef Полный текст | Google Scholar

Arigoni, R., Cognigni, E., Musolesi, M., Gorla, C., and Concli, F. (2010). «Планетарные редукторы: эффективность, люфт, жесткость» в Международной конференции VDI по зубчатым колесам (Мюнхен).

Google Scholar

Арнаудов, К., Караиванов, Д. (2005). «Планетарные зубчатые передачи с высшим составом» в Международная конференция VDI по зубчатым колесам , Vol. 1904 (Мюнхен: VDI-Bericht), 327–344.

Барбагелата А. и Корсини Р. (2000). Riduttore Ingranaggi Conici Basculanti . Патент Италии № IT SV20000049A1. Рим: Ufficio Italiano Brevetti e Marchi.

Барбагелата А., Эллеро С. и Ландо Р. (2016). Планетарная коробка передач .Европейский патент № EP2975296A2. Мюнхен: Европейское патентное ведомство.

Брасситос, Э., Джалили Н. (2017). Разработка и разработка компактного высокомоментного роботизированного привода для космических механизмов. J. Mech. Робот. 9, 061002-1–061002-11. DOI: 10.1115 / 1.4037567

CrossRef Полный текст | Google Scholar

Брасситос, Э., Джалили Н. (2018). «Определение характеристик жесткости, трения и кинематической погрешности в трансмиссиях с зубчатыми подшипниками», в ASME 2018 International Design Engineering Technical Conference и Computers and Information in Engineering Conference (Квебек: цифровая коллекция Американского общества инженеров-механиков).DOI: 10.1115 / DETC2018-85647

CrossRef Полный текст | Google Scholar

Brassitos, E., Mavroidis, C., and Weinberg, B. (2013). «Зубчатый подшипниковый привод: новый компактный привод для роботизированных шарниров», в ASME 2013 Международная техническая конференция по проектированию и Компьютеры и информация в инженерной конференции (Портленд, Орегон: цифровая коллекция Американского общества инженеров-механиков). DOI: 10.1115 / DETC2013-13461

CrossRef Полный текст | Google Scholar

Брасситос, Э., Вайнберг, Б., Цинчао, К., и Мавроидис, К. (2019). Контактная система изогнутого подшипника . Патент США № US10174810B2. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

Google Scholar

Каланка, А., Мурадор, Р., Фиорини, П. (2015). Обзор алгоритмов совместимого управления жесткими и фиксированными роботами. IEEE / ASME Trans. Мех. 21, 613–624. DOI: 10.1109 / TMECH.2015.2465849

CrossRef Полный текст | Google Scholar

Карбоне, Г., Mangialardi, L., и Mantriota, G. (2004). Сравнение характеристик полнотороидальных и полутороидальных тяговых приводов. мех. Мах. Теория 39, 921–942. DOI: 10.1016 / j.mechmachtheory.2004.04.003

CrossRef Полный текст | Google Scholar

Cetinkunt, S. (1991). Проблемы оптимального проектирования в высокоскоростных высокоточных сервосистемах движения. Мехатроника 1, 187–201. DOI: 10.1016 / 0957-4158 (91)

-A

CrossRef Полный текст | Google Scholar

Чен, К.и Анхелес Дж. (2006). Потери виртуальной мощности и механические потери мощности в зубчатых зацеплениях планетарных зубчатых передач. ASME J. Mech. Des. 129, 107–113. DOI: 10.1115 / 1.2359473

CrossRef Полный текст | Google Scholar

Чен, Д. З., и Цай, Л. В. (1993). Кинематический и динамический синтез редукторных робототехнических механизмов. J. Mech. Des. 115, 241–246. DOI: 10.1115 / 1.23

CrossRef Полный текст | Google Scholar

Crispel, S., López-García, P., Verstraten, T., Convens, B., Saerens, E., Vanderborght, B., and Lefeber, D. (2018). «Представляем составные планетарные передачи (C-PGT): компактный способ достижения высоких передаточных чисел для носимых роботов», на Международном симпозиуме по носимой робототехнике (Пиза), 485–489. DOI: 10.1007 / 978-3-030-01887-0_94

CrossRef Полный текст | Google Scholar

Де Сантис А., Сицилиано Б., Де Лука А. и Бикки А. (2008). Атлас физического взаимодействия человека и робота. мех.Мах. Теория 43, 253–270. DOI: 10.1016 / j.mechmachtheory.2007.03.003

CrossRef Полный текст | Google Scholar

Дель Кастильо, Дж. М. (2002). Аналитическое выражение КПД планетарных зубчатых передач. мех. Мах. Теория 37, 197–214. DOI: 10.1016 / S0094-114X (01) 00077-5

CrossRef Полный текст | Google Scholar

Дрессчер, Д., де Врис, Т. Дж., И Страмиджоли, С. (2016). «Выбор мотор-редуктора для повышения энергоэффективности», в Международная конференция IEEE 2016 по усовершенствованной интеллектуальной мехатронике (AIM) (Банф, AB: IEEE), 669–675.DOI: 10.1109 / AIM.2016.7576845

CrossRef Полный текст | Google Scholar

Фудзимото Ю. (2015). Эпициклический зубчатый привод и метод его проектирования . Патент Японии № JP2015164100. Токио: Патентное ведомство Японии.

Fujimoto, Y., and Kobuse, D. (2017). «Роботизированные приводы с высокой степенью управляемости», на международном семинаре IEEJ по обнаружению, срабатыванию, управлению движением и оптимизации (SAMCON) (Нагаока), IS2–1.

GAM (2020 г.). GSL Трансмиссионный редуктор .Каталог.

ГЕНЕЗИС (2018). Усилитель крутящего момента Reflex — движущая сила будущего . Tech Update Общайтесь.

Гиберти Х., Чинквемани С. и Леньяни Г. (2010). Влияние механических характеристик трансмиссии на выбор мотор-редуктора. Мехатроника 20, 604–610. DOI: 10.1016 / j.mechatronics.2010.06.006

CrossRef Полный текст | Google Scholar

Жирар, А., Асада, Х. Х. (2017). Использование естественной динамики нагрузки с приводами с регулируемым передаточным числом. Робот IEEE. Автомат. Lett. 2, 741–748. DOI: 10.1109 / LRA.2017.2651946

CrossRef Полный текст | Google Scholar

Горла К., Даволи П., Роза Ф., Лонгони К., Чиоцци Ф. и Самарани А. (2008). Теоретический и экспериментальный анализ циклоидного редуктора скорости. J. Mech. Des. 130: 112604. DOI: 10.1115 / 1.2978342

CrossRef Полный текст | Google Scholar

Groothuis, S. S., Folkertsma, G.A., и Stramigioli, S. (2018). Общий подход к достижению стабильности и безопасного поведения в распределенных роботизированных архитектурах. Фронт. Робот. AI 5: 108. DOI: 10.3389 / frobt.2018.00108

CrossRef Полный текст | Google Scholar

Хаддадин, С., Альбу-Шеффер, А., и Хирцингер, Г. (2009). Требования к безопасным роботам: измерения, анализ и новые идеи. Внутр. J. Робот. Res , 28, 1507–1527. DOI: 10.1177 / 0278364

3970

CrossRef Полный текст | Google Scholar

Хаддадин, С., Крофт, Э. (2016). «Физическое взаимодействие человека и робота», в Springer Handbook of Robotics (Cham: Springer), 1835–1874.DOI: 10.1007 / 978-3-319-32552-1_69

CrossRef Полный текст | Google Scholar

HALODI Robotics (2018). ДВИГАТЕЛЬ с прямым приводом Revo1 ™ [Брошюра], Moss. Доступно в Интернете по адресу: https://www.halodi.com/revo1 (по состоянию на 30 апреля 2020 г.).

Хэм, Р. В., Шугар, Т. Г., Вандерборг, Б., Холландер, К. В., и Лефебер, Д. (2009). Соответствующие конструкции приводов. Робот IEEE. Автомат. Mag. 16, 81–94. DOI: 10.1109 / MRA.2009.933629

CrossRef Полный текст | Google Scholar

Гармонический привод A.G. (2014) Технические данные Наборы компонентов CSD-2A . Каталог.

Хлебаня Г., Куловец С. (2015). «Разработка плоскоцентрической коробки передач на основе S-образной шестерни», в 11. Kolloquium Getriebetechnik (Мюнхен), 205–216.

Google Scholar

Хоган, Н. (1984). «Контроль импеданса: подход к манипуляции», в , 1984, Американская конференция по контролю, (Сан-Диего, Калифорния: IEEE), 304–313. DOI: 10.23919 / ACC.1984.4788393

CrossRef Полный текст | Google Scholar

Хори, К., и Hayashi, I. (1994). Максимальный КПД обычных механических планетарных шестерен парадокса для редуктора. Пер. Jpn. Soc. Мех. Англ. 60, 3940–3947. DOI: 10.1299 / kikaic.60.3940

CrossRef Полный текст

Хантер И. В., Холлербах Дж. М. и Баллантайн Дж. (1991). Сравнительный анализ актуаторных технологий для робототехники. Робот. Ред. 2, 299–342.

Google Scholar

IMSystems (2019). проезд Архимеда.IMSystems — Drive Innovation [Брошюра], Делфт.

Икбал, Дж., Цагаракис, Н. Г., и Колдуэлл, Д. Г. (2011). «Дизайн носимого оптимизированного экзоскелета руки с прямым приводом», в Международной конференции по достижениям в компьютерно-человеческих взаимодействиях (ACHI) (Гозье).

PubMed Аннотация | Google Scholar

Канаи Ю., Фудзимото Ю. (2018). «Бессенсорное управление крутящим моментом для экзоскелета с приводом с использованием приводов с высокой степенью обратного привода», на IECON 2018–44-й ежегодной конференции Общества промышленной электроники IEEE (Вашингтон, округ Колумбия: IEEE), 5116–5121.DOI: 10.1109 / IECON.2018.85

CrossRef Полный текст | Google Scholar

Капелевич А. и ООО «AKGears» (2013). Анализ планетарных передач с высоким передаточным числом. Передаточное отношение 3, 10.

Google Scholar

Караяннидис Ю., Друкас Л., Папагеоргиу Д. и Доулжери З. (2015). Управление роботом для выполнения задач и повышения безопасности при ударах. Фронт. Робот. AI 2:34. DOI: 10.3389 / frobt.2015.00034

CrossRef Полный текст | Google Scholar

Кашири, Н., Abate, A., Abram, S.J., Albu-Schaffer, A., Clary, P.J., Daley, M., et al. (2018). Обзор принципов энергоэффективного передвижения роботов. Фронт. Робот. AI 5: 129. DOI: 10.3389 / frobt.2018.00129

CrossRef Полный текст | Google Scholar

Ким, Дж., Парк, Ф. К., Парк, Ю., и Шизуо, М. (2002). Конструкция и анализ сферической бесступенчатой ​​трансмиссии. J. Mech. Des . 124, 21–29. DOI: 10.1115 / 1.1436487

CrossRef Полный текст | Google Scholar

Классен, Дж.Б. (2019). Дифференциальная планетарная коробка передач . Международный патент № WO2019 / 051614A1. Женева: Всемирная организация интеллектуальной собственности, Международное бюро.

Google Scholar

Коряков-Савойский Б., Алексахин И., Власов И. П. (1996). Зубчатая передача . Патент США № US5505668A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

Google Scholar

Ли С. (2014). «Новейшие технологии проектирования зубчатых передач с большими передаточными числами», в материалах Proceedings of International Gear Conference (Lyon), 427–436.DOI: 10.1533 / 9781782421955.427

CrossRef Полный текст | Google Scholar

Луман, Дж. (1996). Zahnradgetriebe (зубчатые механизмы) . Берлин: Springer-Verlag. DOI: 10.1007 / 978-3-540-89460-5

CrossRef Полный текст

Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Конвенс, Б., Вандерборгт, Б., и Лефебер, Д. (2018). «Конструкция планетарного редуктора для активной носимой робототехники, основанная на анализе видов отказов и последствий (FMEA)», в International Symposium on Wearable Robotics (Pisa), 460–464.DOI: 10.1007 / 978-3-030-01887-0_89

CrossRef Полный текст | Google Scholar

Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Вандерборгт, Б., и Лефебер, Д. (2019a). «Редукторы Wolfrom для легкой робототехники, ориентированной на человека», в материалах Proceedings of the International Conference on Gears 2019 (Мюнхен: VDI), 753–764.

Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Вандерборгт, Б., и Лефебер, Д. (2019b). «Настройка планетарных зубчатых передач для поддержки и воспроизведения конечностей человека», в MATEC Web of Conferences (Варна: EDP Sciences), 01014.DOI: 10.1051 / matecconf / 201928701014

CrossRef Полный текст | Google Scholar

Лафлин, К., Альбу-Шеффер, А., Хаддадин, С., Отт, К., Стеммер, А., Вимбек, Т., и Хирцингер, Г. (2007). Легкий робот DLR: концепции проектирования и управления роботами в среде обитания человека. Ind. Робот. Int. J . 34, 376–385. DOI: 10.1108 / 01439

  • 0774386

    CrossRef Полный текст | Google Scholar

    Макмиллан Р. Х. и Дэвис П. Б. (1965). Аналитическое исследование систем раздвоенной передачи энергии. J. Mech. Англ. Sci . 7, 40–47. DOI: 10.1243 / JMES_JOUR_1965_007_009_02

    CrossRef Полный текст | Google Scholar

    Mayr, C. (1989). Präzisions-Getriebe für die Automation: Grundlagen und Anwendungsbeispiele . Ландсберг: Verlag Moderne Industrie.

    Мишель, С. (2015). Logarithmische spirale statt evolvente. Maschinenmarkt № . 18, 40–42.

    Михайлидис А., Афанасопулос Э. и Оккас Э. (2014). «Эффективность циклоидного редуктора», в International Gear Conference (Lyon Villeurbanne), 794–803.DOI: 10.1533 / 9781782421955.794

    CrossRef Полный текст | Google Scholar

    Морозуми, М. (1970). Эвольвентное внутреннее зацепление со смещением профиля . Патент США № US3546972A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Мюллер, Х. В. (1998). Die Umlaufgetriebe: Auslegung und vielseitige Anwendungen . Берлин; Гейдельберг: Springer-Verlag. DOI: 10.1007 / 978-3-642-58725-2

    CrossRef Полный текст | Google Scholar

    Мульцер, Ф.(2010). Systematik hoch übersetzender koaxialer getriebe (Докторская диссертация). Технический университет Мюнхена, Мюнхен, Германия.

    Google Scholar

    Musser, C. W. (1955). Деформационно-волновая передача . Патент США № US2

    3A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    НАБТЕКО (2018). Прецизионный редуктор серии RV — N . CAT.180410. Каталог.

    Нойгарт, А. Г. (2020). PLE Линия эконом-класса .Каталог.

    Ниманн Г., Винтер Х. и Хён Б. Р. (1975). Maschinenelemente, Vol. 1 . Берлин; Гейдельберг; Нью-Йорк, штат Нью-Йорк: Спрингер.

    Google Scholar

    Pasch, K. A., and Seering, W. P. (1983). «О приводных системах для высокопроизводительных машин», в Машиностроение (Нью-Йорк, Нью-Йорк: Машиностроение Общества ASME-AMER), 107–107.

    Pennestri, E., and Freudenstein, F. (1993). Механический КПД планетарных зубчатых передач. ASME J. Mech. Des . 115, 645–651. DOI: 10.1115 / 1.29

    CrossRef Полный текст | Google Scholar

    Петтерссон, М., и Олвандер, Дж. (2009). Оптимизация трансмиссии промышленных роботов. IEEE Trans. Робот. 25, 1419–1424. DOI: 10.1109 / TRO.2009.2028764

    CrossRef Полный текст | Google Scholar

    Фам, А. Д., и Ан, Х. Дж. (2018). Прецизионные редукторы для промышленных роботов, участвующих в четвертой промышленной революции: современное состояние, анализ, дизайн, оценка производительности и перспективы. Внутр. J. Precis. Англ. Manuf. Green Technol. 5, 519–533. DOI: 10.1007 / s40684-018-0058-x

    CrossRef Полный текст | Google Scholar

    Резазаде, С., Херст, Дж. У. (2014). «Об оптимальном выборе двигателей и трансмиссий для электромеханических и робототехнических систем», в Международная конференция IEEE / RSJ 2014 по интеллектуальным роботам и системам (Чикаго, Иллинойс: IEEE), 4605–4611. DOI: 10.1109 / IROS.2014.6943215

    CrossRef Полный текст | Google Scholar

    Роос, Ф., Йоханссон, Х., Викандер, Дж. (2006). Оптимальный выбор двигателя и редуктора для мехатронных приложений. Мехатроника 16, 63–72. DOI: 10.1016 / j.mechatronics.2005.08.001

    CrossRef Полный текст | Google Scholar

    Розенбауэр Т. (1995). Getriebe für Industrieroboter: Beurteilungskriterien . Kenndaten, Einsatzhinweise: шейкер.

    Россман, А. М. (1934). Механический механизм . Патент США № US 1970251. Вашингтон, округ Колумбия: У.S. Ведомство по патентам и товарным знакам.

    Google Scholar

    Saerens, E., Crispel, S., García, P.L., Verstraten, T., Ducastel, V., Vanderborght, B., and Lefeber, D. (2019). Законы масштабирования для роботизированных трансмиссий. мех. Мах. Теория 140, 601–621. DOI: 10.1016 / j.mechmachtheory.2019.06.027

    CrossRef Полный текст | Google Scholar

    Шафер, И., Бурлье, П., Хантшак, Ф., Робертс, Э. У., Льюис, С. Д., Форстер, Д. Дж., И Джон, К. (2005). «Космическая смазка и характеристики шестерен гармонического привода», , 11-й Европейский симпозиум по космическим механизмам и трибологии, ESMATS 2005 (Люцерн), 65–72.

    Google Scholar

    Шейнман, В., Маккарти, Дж. М., и Сонг, Дж. Б. (2016). «Механизм и приведение в действие», в Springer Handbook of Robotics (Cham: Springer), 67–90. DOI: 10.1007 / 978-3-319-32552-1_4

    CrossRef Полный текст | Google Scholar

    Шемпф, Х. (1990). Сравнительное проектирование, моделирование и анализ управления роботизированными трансмиссиями (кандидатская диссертация). № WHOI-90-43. Кафедра машиностроения и Океанографический институт Вудс-Холла, Массачусетский технологический институт, Кембридж, Массачусетс, США.DOI: 10.1575 / 1912/5431

    CrossRef Полный текст | Google Scholar

    Шемпф, Х. и Йоргер, Д. Р. (1993). Изучение доминирующих рабочих характеристик в трансмиссиях роботов. ASME J. Mech. Des. 115, 472–482. DOI: 10.1115 / 1.2
    4

    CrossRef Полный текст | Google Scholar

    Шорш, Дж. Ф. (2014). Составной планетарный привод трения . Патент Нидерландов № 2013496. Де Хааг: Octrooicentrum Nederland.

    Google Scholar

    Шрайбер, Х.(2015). «Revolutionäres getriebeprinzip durch neuinterpretation von maschinenelementen — Die WITTENSTEIN Galaxie®-Kinematik», в Dresdner Maschinenelemente Kolloquium, DMK (Дрезден), 2015. S.

    Шрайбер, Х., Рётлингсхёфер, Т. (2017). «Кинематическая классификация коробки передач, содержащей отдельные упорные зубья, и ее преимущества по сравнению с существующими подходами», в Международной конференции по зубчатым колесам , ICG (Мюнхен).

    Шрайбер, Х., и Шмидт, М.(2015). Getriebe. Патент Германии № DE 10 2015 105 525 A1. Мюнхен: Deutsches Patent- und Markenamt.

    Google Scholar

    Сенсинджер, Дж. У. (2010). «Выбор двигателей для роботов, использующих биомиметические траектории: оптимальные критерии, обмотки и другие соображения», в Международная конференция IEEE 2010 по робототехнике и автоматизации (Анкоридж, AK: IEEE), 4175–4181. DOI: 10.1109 / ROBOT.2010.5509620

    CrossRef Полный текст | Google Scholar

    Сенсингер, Дж.W. (2013). КПД высокочувствительных зубчатых передач, например, циклоидных передач. ASME J. Mech. Des. 135, 071006-1–071006-9. DOI: 10.1115 / 1.4024370

    CrossRef Полный текст | Google Scholar

    Сенсингер, Дж. У., Кларк, С. Д., Шорш, Дж. Ф. (2011). «Внешний и внутренний роторы в роботизированных бесщеточных двигателях», Международная конференция IEEE по робототехнике и автоматизации, 2011 г. (Монреаль, Квебек, IEEE), 2764–2770. DOI: 10.1109 / ICRA.2011.5979940

    CrossRef Полный текст | Google Scholar

    Сеок, С., Wang, A., Chuah, M. Y. M., Hyun, D. J., Lee, J., Otten, D. M., et al. (2014). Принципы разработки энергоэффективного передвижения на ногах и их реализация на роботе-гепарде Массачусетского технологического института. IEEE / ASME Trans. Мех. 20, 1117–1129. DOI: 10.1109 / TMECH.2014.2339013

    CrossRef Полный текст | Google Scholar

    Сицилиано Б., Шавикко Л., Виллани Л. и Ориоло Г. (2010). Робототехника: моделирование, планирование и управление . Лондон: Springer Science and Business Media. DOI: 10.1007 / 978-1-84628-642-1

    CrossRef Полный текст | Google Scholar

    Слэттер Р. (2000). Weiterentwicklung eines Präzisionsgetriebes für die Robotik . Санкт-Леонард: Antriebstechnik.

    Google Scholar

    SPINEA (2017). TwinSpin — высокоточные редукторы — Präzisionsgetriebe . Каталог.

    Страмиджоли, С., Ван Оорт, Г., и Дертьен, Э. (2008). «Концепция нового энергоэффективного привода», в Международная конференция IEEE / ASME 2008 по усовершенствованной интеллектуальной мехатронике (Сиань: IEEE), 671–675.DOI: 10.1109 / AIM.2008.4601740

    CrossRef Полный текст | Google Scholar

    СУМИТОМО (2017). Fine Cyclo® Spielfreie Präzisionsgetriebe . Каталог 9 DE 02/2017.

    СУМИТОМО (2020). Приводы управления движением E-Cyclo®. Каталог F10001E-1.

    Талбот Д., Кахраман А. (2014). «Методология прогнозирования потерь мощности планетарных передач», в International Gear Conference (Lyon-Villeurbanne), 26–28. DOI: 10.1533 / 9781782421955.625

    CrossRef Полный текст

    Томчик, Х. (2000). Регулирующее устройство с планетарной передачей . Европейский патент № EP1244880B1. Мюнхен: Европейское патентное ведомство.

    Google Scholar

    Toxiri, S., Näf, M. B., Lazzaroni, M., Fernández, J., Sposito, M., Poliero, T., et al. (2019). «Экзоскелеты с опорой на спину для профессионального использования: обзор технологических достижений и тенденций», в IISE Trans. Ок. Эргон. Гм. Факторы 7, 3–4, 237–249.DOI: 10.1080 / 24725838.2019.1626303

    CrossRef Полный текст | Google Scholar

    Ван де Стрете, Х. Дж., Дегезель П., Де Шуттер Дж. И Бельманс Р. Дж. (1998). Критерий выбора серводвигателя для мехатронных приложений. IEEE / ASME Trans. Мех. 3, 43–50. DOI: 10.1109 / 3516.662867

    CrossRef Полный текст | Google Scholar

    Вел, А. Дж., И Се, С. К. (2016). На пути к совместимым и пригодным для носки роботизированным ортезу: обзор текущих и новых актуаторных технологий. Med. Англ. Phys. 38, 317–325. DOI: 10.1016 / j.medengphy.2016.01.010

    PubMed Аннотация | CrossRef Полный текст | Google Scholar

    Verstraten, T., Furnémont, R., Mathijssen, G., Vanderborght, B., and Lefeber, D. (2016). «Энергопотребление мотор-редукторов постоянного тока в динамических приложениях: сравнение подходов к моделированию», в IEEE Robot. Автомат. Lett. 1, 524–530. DOI: 10.1109 / LRA.2016.2517820

    CrossRef Полный текст | Google Scholar

    Враниш, Дж.М. (1995). Планетарный привод без несущей и против люфта . Патент США № US5409431. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Враниш, Дж. М. (2006). Подшипники частичных зубчатых передач . Патент США № US2006 / 0219039A1. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Ван А. и Ким С. (2015). «Направленная эффективность в редукторных трансмиссиях: характеристика обратного движения в сторону улучшенного проприоцептивного контроля», в IEEE International Conference on Robotics and Automation (ICRA), 2015 г., (Сиэтл, Вашингтон: IEEE), 1055–1062.DOI: 10.1109 / ICRA.2015.7139307

    CrossRef Полный текст | Google Scholar

    Вайнберг, Б., Мавроидис, К., и Враниш, Дж. М. (2008). Привод подшипника шестерни . Патент США № US2008 / 0045374A1. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    WinterGreen Research (2018). Прецизионные редукторы деформационных волн и редукторы RV и RD: доли рынка, стратегия и прогнозы, во всем мире, с 2018 по 2024 годы . WIN0418002.

    WITTENSTEIN AG (2020 г.). Technische Broschüre SP + und TP + Getrieben. Каталог.

    Вольф, А. (1958). Die Grundgesetze der Umlaufgetriebe . Брауншвейг: Фридр. Vieweg и Sohn.

    Вольфром, У. (1912). Der Wirkungsgrad von Planetenrädergetrieben. Werkstattstechnik 6, 615–617.

    Ю. Д. и Бичли Н. (1985). О механическом КПД дифференциала. ASME J. Mech. Пер. Автомат. 107, 61–67.DOI: 10.1115 / 1.3258696

    CrossRef Полный текст | Google Scholar

    Зинн М., Рот Б., Хатиб О. и Солсбери Дж. К. (2004). Новый подход к срабатыванию для создания роботов, удобных для человека. Внутр. J. Робот. Res. 23, 379–398. DOI: 10.1177 / 0278364

    2193

    CrossRef Полный текст | Google Scholar

    Коробка передач | Урок | Академия роботов

    Практически все электродвигатели используются вместе с редукторами. Причина этого в том, что электродвигатели развивают относительно низкий крутящий момент.Они не особо сильные. Однако они способны очень быстро вращаться. Таким образом, мы можем использовать коробку передач, чтобы найти компромисс между скоростью и крутящим моментом. Конечно, бесплатного обеда не бывает, а коробка передач вносит некоторую неэффективность, есть некоторую потерю мощности. Эта потеря мощности связана с тепловым и акустическим шумом.

    Если вы используете велосипед, вы, вероятно, хорошо знакомы с концепцией передачи. Электродвигатели могут вращаться очень-очень быстро, но они не развивают большой крутящий момент, они слабые.

    Теперь это немного похоже на езда на велосипеде в гору. Вы хотите изменить большое количество оборотов педалей, чтобы уменьшить нагрузку, которую вы должны оказывать на эти педали. Вы жертвуете большой скоростью ради большого крутящего момента.

    Для электродвигателя это то же самое, что и для велосипеда, у вас есть маленькая звездочка спереди на педалях, а у вас есть звездочка большего размера на заднем колесе. Таким образом, на каждый оборот электродвигателя приходится только половина оборота выходного вала редуктора двигателя.Таким образом, двигатель вращается довольно быстро, выходной вал вращается довольно медленно, но крутящий момент двигателя увеличивается за счет передаточного числа.

    Вот двигатель с одноступенчатым редуктором. Мы называем это редуктором, потому что за каждый оборот двигателя выходной вал поворачивается меньше одного раза. Когда мы говорим о двух сторонах коробки передач, мы называем ее стороной двигателя, которая обозначена индексом M, а сторона нагрузки — индексом L. Передаточное число коробки передач — заглавная G, и это соотношение числа зубьев на зубчатом колесе. большое колесо к числу зубцов на маленьком колесе.А для понижающей коробки G больше единицы.

    Выходная скорость омега L равна 1 на G, умноженном на омега N. Таким образом, скорость выходного вала ниже скорости двигателя. Выходной крутящий момент tau L равен G, умноженному на крутящий момент двигателя tau M, поэтому выходной крутящий момент больше крутящего момента двигателя. Это фундаментальные уравнения, описывающие характеристики коробки передач. Он снижает скорость и увеличивает крутящий момент.

    Планетарный роботизированный редуктор с нулевым люфтом, серия GPL

    Роботизированная планетарная коробка передач

    GAM серии GPL сочетает в себе самый низкий люфт и высокую жесткость при опрокидывании с безвибрационным движением для плавного, контролируемого движения в робототехнике и управлении движением.

    Характеристики

    • Люфт ≤ 0,1 угл.мин (6 угл.сек) , в 10 раз лучше, чем у других прецизионных редукторов
    • Лучшая на рынке жесткость на кручение для ≤ 0,6 угл. Мин без холостого хода
    • Запатентованная конструкция гарантирует, что люфт не будет увеличиваться в течение срока службы коробки передач
    • Проверенная производительность, принятая в отрасли
    • Семь типоразмеров с номинальным крутящим моментом на выходе от 445 до 3505 Нм и передаточным числом от 50: 1 до 200: 1
    • Фланцевый выход со сплошным валом (GPL-F) или фланцевый выход с полым валом (GPL-H) (сквозное отверстие до 75 мм)
    • Встроенная пластина адаптера двигателя , готовая к установке двигателя
    • Доступен георадар с прямым углом
    • Заменяет двигатели с прямым приводом со значительной экономией

    Конструкция коробки передач

    Серия GPL состоит из трех этапов:

    1. Цилиндрическая шестерня и шестерня : высокие передаточные числа и тихая работа
    2. Планетарная шпора : фиксированное передаточное число
    3. Коническая шпора : за весь срок службы без люфта

    Особенности и преимущества

    Характеристики Преимущества
    Нулевой люфт ≤ 0.1 угл. Мин.
    Не увеличивается в течение срока действия GPL
    Высочайшая точность для вашего применения
    Наименьший потерянный ход ≤ 0,6 угл. Мин. Превосходная точность даже при низком крутящем моменте
    Расчетный срок службы 20000 часов эксплуатации Продлевает срок службы и снижает затраты на техническое обслуживание
    Высокая жесткость при опрокидывании и скручивании Лучшая двухточечная точность
    Самый низкий уровень вибрации Превосходное управление для приложений непрерывного движения
    Наименьший момент отрыва Лучшая управляемость, особенно на коротких дистанциях
    Максимальный КПД на всех скоростях> 90% Более короткое время цикла и более низкая температура
    Самый низкий уровень шума <65 дБ Может работать в непосредственной близости от операторов
    Самая низкая рабочая температура Компоненты с увеличенным сроком службы и возможен режим S1
    Выходная сторона полностью закрыта Более простой монтаж, дополнительное уплотнение не требуется

    Редукторы — поиск деталей робота

    Планетарное устройство на 180 градусов
    AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro 1 Двигатель Планетарный ввод Versa 1 Скорость Шкив 2: 1 VEXproWest Coast Products
    2 Шаровой рычаг переключения передач CIM
    CIM, Mini CIM 2 двигателя 1/2 «шестигранник 2 скорости Шпора 3.67: 1, 5,39: 1, 6,6: 1, 8,33: 1, 9,17: 1, 11,73: 1, 12,26: 1, 15: 1, 20,83: 1, 26,67: 1 Робот SpaceVEXproWest Coast Products
    3 Шаровой рычаг переключения передач CIM
    CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник 2 скорости Шпора 2,83: 1, 4,17: 1, 5: 1, 6,13: 1, 7,08: 1, 7,5: 1, 9,01: 1, 9,07: 1, 10,42: 1, 11,03: 1, 13,5: 1, 15,32: 1, 18,75 : 1, 19.61: 1, 24: 1, 26.04: 1, 33.33: 1 Робот SpaceVEXproWest Coast Products
    57 Спорт
    AM 9015, AM RedLine, NeveRest, RS-550, RS-775, RS-775pro 1 Двигатель 1/2 «шестигранник 1 Скорость Планетарный 4: 1, 12: 1, 16: 1, 20: 1, 36: 1, 48: 1, 64: 1, 80: 1, 100: 1 ЭндиМарк
    Armabelt Drive
    RS-775, RS-775pro 1 Двигатель Планетарный ввод Versa 1 Скорость Шкив 1.1: 1, 1.8: 1, 3: 1, 3.4: 1, 4.5: 1, 5.6: 1, 5.7: 1, 7.5: 1, 8: 1, 9: 1, 9.4: 1, 10.2: 1, 11.4: 1, 12: 1, 13.2: 1, 13.6: 1, 15: 1, 16.9: 1, 17: 1, 18.2: 1, 18.8: 1, 21: 1, 22.6: 1, 22.7: 1, 23.9: 1, 27: 1, 28.2: 1, 28.4: 1, 30: 1, 30.1: 1, 30.7: 1, 31.8: 1, 34.1: 1, 36: 1, 37.6: 1, 39.5: 1, 39.8: 1, 40.9: 1, 45: 1, 45.4: 1, 47.1: 1, 48: 1, 50.8: 1, 51.1: 1, 52.7: 1, 55.7: 1, 56.5: 1, 56.8: 1, 60: 1, 63: 1, 65.9: 1, 67.8: 1, 71.6: 1, 75: 1, 75.3: 1, 79.5: 1, 81: 1, 84: 1, 84.7: 1, 90: 1, 92: 1, 92.2: 1, 94.1: 1, 102,2: 1, 105: 1, 108: 1, 113,6: 1, 118,6: 1, 120: 1, 131.7: 1, 135: 1, 147: 1, 150: 1, 152.4: 1, 169.4: 1, 188.2: 1, 189: 1, 210: 1, 243: 1, 270: 1, 300: 1 Армабот
    Серия строительных блоков 150
    AM 9015, RS-550, RS-775, RS-775pro 1 двигатель, 2 двигателя 1/2 «Круглый 1 Скорость Планетарный 4: 1, 16: 1, 64: 1, 256: 1, 1024: 1 BaneBots
    Серия строительных блоков 220
    CIM, Mini CIM 1 Двигатель 1/2 «Круглый 1 Скорость Планетарный 4: 1, 16: 1, 64: 1, 256: 1, 1024: 1 BaneBots
    CIM Sport
    CIM, Mini CIM 1 Двигатель 1/2 «шестигранник 1 Скорость Планетарный 4: 1, 12: 1, 16: 1, 20: 1, 36: 1, 48: 1, 64: 1, 80: 1, 100: 1 ЭндиМарк
    CIM-ile
    AM 9015, RS-550, RS-775, RS-775pro 1 Двигатель 8 мм (стиль CIM) 1 Скорость Шпора 9.29: 1, 12.29: 1 Робот SpaceVEXproWest Coast Products
    CIMple Box
    CIM, Mini CIM 2 двигателя 1/2 «Круглый 1 Скорость Шпора 4.67: 1 ЭндиМарк
    DeCIMate
    AM RedLine 2 двигателя 1/2 «шестигранник 1 Скорость Шпора 3,75: 1 ЭндиМарк
    Двойной 775 Спорт
    AM Redline, RS-775, RS-775pro 2 двигателя 1/2 «шестигранник 1 Скорость Планетарный 13: 1, 39: 1, 52: 1, 65: 1, 117: 1, 156: 1, 208: 1, 260: 1, 325: 1 ЭндиМарк
    EVO
    CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник, 1/2» круглый 2 скорости Шпора 4.77: 1, 5,45: 1, 6: 1, 6,86: 1, 7,56: 1, 8,63: 1, 9,54: 1, 10,86: 1, 12: 1, 12,41: 1, 15,11: 1, 16,37: 1, 18,71: 1, 21,72: 1, 22,67: 1, 25,9: 1, 32,74: 1, 45,33: 1 ЭндиМарк
    EVO Shifter для RedLine
    AM RedLine 2 двигателя, 3 двигателя, 4 двигателя 1/2 «шестигранник 2 скорости Шпора 13,58: 1, 28,33: 1 ЭндиМарк
    EVO Slim для RedLine
    AM RedLine 2 двигателя, 3 двигателя, 4 двигателя 1/2 «шестигранник 1 Скорость Шпора 13.58: 1, 17.71: 1, 20.46: 1, 28.33: 1 ЭндиМарк
    Hex Серия PG
    AM 9015, RS-775, RS-775pro 1 Двигатель 1/2 «шестигранник, 3/8» шестигранник 1 Скорость Планетарный 27: 1, 71: 1, 188: 1 ЭндиМарк
    Коническая коробка LJ
    CIM, Mini CIM 1 Двигатель 1/2 «шестигранник, 3/8» шестигранник 1 Скорость Фаска 1: 1, 2: 1 ЭндиМарк
    NeveRest Orbital 20
    NeveRest 1 Двигатель 6мм D 1 Скорость Планетарный 19.2: 1 ЭндиМарк
    Планетарное устройство NeveRest
    NeveRest 1 Двигатель 6мм D 1 Скорость Планетарный 3,7: 1 ЭндиМарк
    NeveRest Sport
    NeveRest 1 Двигатель 5 мм шестигранник, 6 мм D 1 Скорость Планетарный 4: 1, 16: 1, 20: 1, 64: 1, 81: 1, 104: 1, 256: 1 ЭндиМарк
    NeveRest Spur
    NeveRest 1 Двигатель 6мм D 1 Скорость Шпора 20: 1, 40: 1, 60: 1 ЭндиМарк
    P60
    AM 9015, RS-550, RS-775, RS-775pro 1 Двигатель 1/2 «Круглый 1 Скорость Планетарный 3: 1, 4: 1, 11: 1, 13: 1, 16: 1, 38: 1, 45: 1, 54: 1, 64: 1, 129: 1, 153: 1, 182: 1 BaneBots
    P80
    CIM, Mini CIM 1 Двигатель 1/2 «Круглый 1 Скорость Планетарный 3: 1, 4: 1, 9: 1, 12: 1, 16: 1, 27: 1, 36: 1, 48: 1, 64: 1, 81: 1, 108: 1, 144: 1, 192 : 1, 256: 1 BaneBots
    PG188
    AM 9015, RS-775, RS-775pro 1 Двигатель 10 мм 1 Скорость Планетарный 188: 1 ЭндиМарк
    PG27
    AM 9015, RS-775, RS-775pro 1 Двигатель 10 мм 1 Скорость Планетарный 27: 1 ЭндиМарк
    PG71
    AM 9015, RS-775 1 Двигатель 10 мм 1 Скорость Планетарный 71: 1 ЭндиМарк
    PI SS CIM
    CIM, Mini CIM 2 двигателя 1/2 «шестигранник 1 Скорость Шпора 12.05: 1, 15.5: 1, 17.8: 1 Plummer Robotics
    PI SS Triple CIM
    AM Redline, RS-775, RS-775pro 2 двигателя, 3 двигателя 1/2 «шестигранник 1 Скорость Шпора 25,8: 1, 29,6: 1, 40,5: 1 Plummer Robotics
    PicoBox Duo
    NeveRest 2 двигателя 6мм D 1 Скорость Шпора 1: 1, 1: 1.28, 1.28: 1 ЭндиМарк
    PicoBox GEO
    Орбитальный мотор-редуктор NeveRest 2 двигателя 6мм D 1 Скорость Шпора 1: 1, 1: 1,28, 1,28: 1 ЭндиМарк
    PicoBox LEO
    Орбитальный мотор-редуктор NeveRest 1 Двигатель 6мм D 1 Скорость Шпора 1: 1, 1: 1,28, 1,28: 1 ЭндиМарк
    PicoBox MEO
    NeveRest 1 Двигатель 6мм D 1 Скорость Шпора 1: 1, 1: 1.28, 1.28: 1 ЭндиМарк
    Турбина PicoBox
    NeveRest 1 Двигатель 6мм D 1 Скорость Шпора 1: 1, 1: 1,28, 1,28: 1 ЭндиМарк
    PicoBox Twin Turbo
    NeveRest 2 двигателя 6мм D 1 Скорость Шпора 1: 1, 1: 1,28, 1,28: 1 ЭндиМарк
    PicoBox Uno
    NeveRest 1 Двигатель 6мм D 1 Скорость Шпора 1: 1, 1: 1.28, 1.28: 1 ЭндиМарк
    RAW Box
    CIM, Mini CIM 2 двигателя 1/2 «шестигранник 1 Скорость Червячная передача 7,1: 1, 14,2: 1 ЭндиМарк
    Угловая передача
    AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro 1 Двигатель 3/8 дюйма, шестигранник 1 Скорость Фаска 1: 1 Армабот
    МОМ Rocketbox
    CIM, Mini CIM 2 двигателя 1/2 «шестигранник 1 скорость, 2 скорости Шпора 5.95: 1, 7.31: 1, 8.45: 1, 10.71: 1, 12.71: 1 ЭндиМарк
    Редуктор с одинарным редуктором
    CIM, Mini CIM 1 Двигатель 1/2 «шестигранник, 1/2» круглый, 3/8 «шестигранник 1 Скорость Шпора 5: 1, 5,38: 1, 6: 1, 6,55: 1 Робот SpaceVEXproWest Coast Products
    Односкоростной, с двойным редуктором
    CIM, Mini CIM 2 двигателя 1/2 «шестигранник 1 Скорость Шпора 4.17: 1, 5,67: 1, 9,52: 1 Робот SpaceVEXproWest Coast Products
    Односкоростной, одинарный редуктор
    CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник 1 Скорость Шпора 5,33: 1, 6: 1, 7: 1 Робот SpaceVEXproWest Coast Products
    Звуковой переключатель
    CIM, Mini CIM 2 двигателя 1/2 «шестигранник, 1/2» круглый 2 скорости Шпора 3.7: 1, 4,7: 1, 5,8: 1, 6: 1, 7,3: 1, 7,5: 1, 9,4: 1, 11,8: 1, 14,8: 1, 18,6: 1, 24: 1, 30: 1 ЭндиМарк
    SpinBox
    CIM, Mini CIM 1 Двигатель 1/2 «Круглый 1 Скорость Шпора 1: 1,21, 1: 1,67 ЭндиМарк
    SR Тонкий
    CIM, Mini CIM 2 двигателя 1/2 «Круглый 1 Скорость Шпора 5: 1, 5: 45: 1 221 Робототехнические системы
    SR Тонкий тройной
    CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «Круглый 1 Скорость Шпора 5: 1, 5: 45: 1 221 Робототехнические системы
    Супер рычаг переключения передач
    CIM, Mini CIM 2 двигателя 1/2 « 2 скорости Шпора 6: 1, 9.4: 1, 24: 1 ЭндиМарк
    Super Sonic Shifter
    CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник 2 скорости Шпора 4,5: 1, 11,4: 1 ЭндиМарк
    Односкоростная трансмиссия SuperLight
    CIM, Mini CIM 2 двигателя 1/2 «Круглый 1 Скорость Шпора 5,95: 1, 6.94: 1, 7,14: 1, 8,45: 1, 9,87: 1, 10,71: 1, 12,5: 1, 12,75: 1, 14,88: 1 221 Робототехнические системы
    Трансмиссия SuperLight SuperShifter
    CIM, Mini CIM 2 двигателя 1/2 «Круглый 2 скорости Шпора 3,7: 1, 4,7: 1, 5,8: 1, 6: 1, 7,3: 1, 7,5: 1, 9,4: 1, 11,8: 1, 14,8: 1, 18,6: 1, 24: 1, 30: 1 221 Робототехнические системы
    TB3, 3-ступенчатый Toughbox
    CIM, Mini CIM, RS-550 2 двигателя 1/2 «Круглый 1 Скорость Шпора 33.8: 1, 42,8: 1, 51: 1 ЭндиМарк
    Toughbox
    CIM, Mini CIM 2 двигателя 1/2 «Круглый 1 Скорость Шпора 5,95: 1, 6,94: 1, 8,45: 1, 9,87: 1, 10,71: 1, 12,5: 1, 12,75: 1, 14,88: 1 ЭндиМарк
    Toughbox Micro
    CIM, Mini CIM 1 Двигатель 1/2 «шестигранник 1 Скорость Шпора 5.95: 1, 8,45: 1, 10,71: 1, 12,75: 1 ЭндиМарк
    Toughbox Mini
    CIM, Mini CIM 2 двигателя 1/2 «шестигранник, 1/2» круглый 1 Скорость Шпора 5,95: 1, 8,45: 1, 10,71: 1, 12,75: 1 AndyMarkStudica
    VersaDM
    AM Redline, BAG, RS-550, RS-775, RS-775pro 2 двигателя Планетарный вход Versa, 1/2 дюйма, шестигранник, 3/8 дюйма, шестигранник, 8 мм (стиль CIM) 1 Скорость Фаска 1: 1, 3.75: 1, 5,33: 1 VEXWest Coast Products
    VersaPlanetary
    AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro 1 двигатель, 2 двигателя 1/2 «шестигранник, 1/2» круглый, 3/8 «шестигранник, 8 мм (стиль CIM) 1 Скорость Планетарный 3: 1, 4: 1, 5: 1, 7: 1, 9: 1, 10: 1, 12: 1, 15: 1, 16: 1, 20: 1, 21: 1, 25: 1, 27 : 1, 28: 1, 30: 1, 35: 1, 36: 1, 40: 1, 45: 1, 49: 1, 50: 1, 63: 1, 70: 1, 81: 1, 90: 1 , 100: 1 Робот SpaceVEXproWest Coast Products
    Планетарный привод Versa, 90 градусов
    VersaPlanetary 1 Двигатель 1/2 «шестигранник, 3/8» шестигранник 1 Скорость Фаска 1: 1 VEXWest Coast Products
    VersaPlanetary Lite
    AM 9015, AM RedLine, BAG, CIM, Mini CIM, RS-550, RS-775, RS-775pro 1 двигатель, 2 двигателя 1/2 «шестигранник, 1/2» круглый, 3/8 «шестигранник, 8 мм (стиль CIM) 1 Скорость Планетарный 3: 1, 4: 1, 5: 1, 7: 1, 9: 1, 10: 1, 12: 1, 15: 1, 16: 1, 20: 1, 21: 1, 25: 1, 27 : 1, 28: 1, 30: 1, 35: 1, 36: 1, 40: 1, 45: 1, 49: 1, 50: 1, 63: 1, 70: 1, 81: 1, 90: 1 , 100: 1 Робот SpaceVEXWest Coast Products
    WCP 2 CIM Перевернутая DS
    CIM, Mini CIM 2 двигателя 1/2 «шестигранник 2 скорости Шпора 1.03: 1, 1.11: 1, 1.20: 1, 1.31: 1, 1.32: 1, 1.33: 1, 1.42: 1, 1.43: 1, 1.54: 1, 1.55: 1, 1.68: 1, 1.69: 1, 1.71: 1, 1.84: 1, 1.89: 1, 1.94: 1, 1.99: 1, 2.04: 1, 2.09: 1, 2.18: 1, 2.21: 1, 2.26: 1, 2.36: 1, 2.41: 1, 2.43: 1, 2,47: 1, 2,51: 1, 2,54: 1, 2,56: 1, 2,62: 1, 2,71: 1, 2,75: 1, 2,76: 1, 2,83: 1, 2,93: 1, 2,99: 1, 3,00: 1, 3,03: 1, 3,09: 1, 3,20: 1, 3,26: 1, 3,26: 1, 3,26: 1, 3,32: 1, 3,51: 1, 3,53: 1, 3,57: 1, 3,57: 1, 3,81: 1, 3,85: 1, 3.85: 1, 3.87: 1, 4.07: 1, 4.15: 1, 4.16: 1, 4.17: 1, 4.19: 1, 4.22: 1, 4.38: 1, 4.45: 1, 4.48: 1, 4.51: 1, 4.55: 1, 4.71: 1, 4,75: 1, 4,79: 1, 4,85: 1, 4,89: 1, 5,08: 1, 5,18: 1, 5,19: 1, 5,22: 1, 5,29: 1, 5,33: 1, 5,39: 1, 5,50: 1, 5,63: 1, 5,67: 1, 5,78: 1, 5,80: 1, 5,88: 1, 6,00: 1, 6,09: 1, 6,16: 1, 6,22: 1, 6,29: 1, 6,33: 1, 6,64: 1, 6,65: 1, 6,74: 1, 6,86: 1, 6,86: 1, 7,19: 1, 7,35: 1, 7,42: 1, 7,48: 1, 7,49: 1, 7,65: 1, 7,68: 1, 7,84: 1, 7,99: 1, 8.06: 1, 8.13: 1, 8.24: 1, 8.27: 1, 8.66: 1, 8.74: 1, 8.76: 1, 8.93: 1, 8.96: 1, 9.44: 1, 9.49: 1, 9.53: 1, 9,54: 1, 9,62: 1, 9,74: 1, 9,78: 1, 10,14: 1, 10,27: 1, 10,35: 1, 10,36: 1, 10,91: 1, 10,92: 1, 11,13: 1, 11,22: 1, 11.75: 1, 11.83: 1, 12.14: 1, 12.24: 1, 12.73: 1, 12.91: 1, 13.21: 1, 13.89: 1, 14.14: 1, 14.22: 1, 14.40: 1, 15.23: 1, 15.41: 1, 15.51: 1, 16.46: 1, 16.50: 1, 16.81: 1, 16.81: 1, 17.73: 1, 18.00: 1, 18.33: 1, 18.67: 1, 19.21: 1, 20.10: 1, 20.95: 1, 21,78: 1, 23,38: 1, 23,76: 1, 25,18: 1, 27,28: 1, 29,76: 1, 30,31: 1, 32,64: 1, 35,36: 1 Продукты Западного побережья
    WCP DS
    CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник 2 скорости Шпора 3.53: 1, 3,8: 1, 4,12: 1, 4,4: 1, 4,49: 1, 4,74: 1, 5,13: 1, 5,6: 1, 6,25: 1, 6,73: 1, 7,29: 1, 7,95: 1, 12,85: 1, 13,85: 1, 15: 1, 16,36: 1 Робот SpaceVEXproWest Coast Products
    WCP SS
    CIM, Mini CIM 2 двигателя, 3 двигателя 1/2 «шестигранник 1 Скорость Шпора 4,2: 1, 4,29: 1, 4,52: 1, 4,9: 1, 5,23: 1, 5,35: 1, 5,64: 1, 6,11: 1, 6,67: 1, 7,44: 1, 8,01: 1, 8,68: 1, 9,45 : 1, 9,64: 1, 10,38: 1, 11,25: 1, 12.27: 1, 15.31: 1, 16.48: 1, 17.86: 1, 19.48: 1 Робот SpaceVEXproWest Coast Products
    Червячный редуктор
    VersaPlanetary 1 Двигатель 3/8 дюйма, шестигранник 1 Скорость Червячная передача 25: 1 Практические части
    Червячный ящик
    CIM, Mini CIM 1 Двигатель 1/2 «Круглый 1 Скорость Червячная передача 16: 1 ЭндиМарк

    Высокоточный редуктор для робототехники Melior Motion

    Прецизионные редукторы с низким люфтом:


    Узлы PSC-V / H-E серии meliormotion®

    Melior Motion предлагает высокоточные редукторы с люфтом ≤ 0.1 угл. Мин. Считается беззазорным. Благодаря нашему запатентованному решению для регулирования износа мы гарантируем, что он не изменится в течение всего срока службы.

    Прецизионные редукторы с низким люфтом — эффективные и надежные

    Большую безопасность для вашего применения обеспечивают редукторы с низким люфтом благодаря высокой мощности, ускорению и моментам аварийной остановки. Наша серия коробок передач отличается исключительно высокой жесткостью на опрокидывание и скручивание. Это обеспечивает точное позиционирование прямо к точке.

    Редукторы и элементы привода

    Наши прецизионные редукторы с низким люфтом достигают особенно высокого уровня производительности благодаря одновременному включению нескольких зубьев (солнечная шестерня, планетарная шестерня и коронная шестерня). КПД> 90% и чрезвычайно низкий момент отрыва обеспечивают выдающуюся энергоэффективность. Благодаря высокому КПД температура трансмиссии остается постоянно низкой, что продлевает срок службы сальников, компонентов трансмиссии и смазки.

    Результат — впечатляющий срок службы — 20 000 часов. Это намного больше, чем возможно с другими конструкциями прецизионных редукторов, и это было подтверждено многочисленными испытаниями.

    В то же время уникальная конструкция нашего прецизионного редуктора с низким люфтом обеспечивает чрезвычайно тихую работу. Таким образом снижается уровень шума в рабочей среде.

    Не только тихие, но и точные, узлы эффективно работают даже при низком крутящем моменте, что позволяет точно контролировать небольшие движения.

    Редукторы с полым валом для прокладки кабеля

    Полые валы диаметром до 75 мм позволяют, например, прокладывать линии передачи данных или питания.

    Конструкция зубчатой ​​передачи наших продуктов позволяет использовать стандартные трансмиссионные масла, а также подходит для использования со смазкой, совместимой с пищевыми продуктами.
    Подузлы PSC-V / H-E также подходят в качестве высокоточных редукторов с выходным фланцем для ваших узкоспециализированных приложений.

    • Диапазон крутящего момента 400 — 4500 Нм
    • Наружный диаметр 180-329 мм
    • Диапазон соотношений: 35: 1 — 200: 1

    Подузлы PSC-V / H-E


    Комплексная конструкция

    Применение подузлов PSC обычно используется в робототехнике, где соединение с двигателем может быть включено в конструкцию манипулятора робота для оптимизации пространства и затрат.
    Другие области применения этого варианта конструкции можно найти в автоматизации, станках, полиграфической промышленности, упаковочных машинах, поворотных столах, медицинской технике и т. Д.

    Робот-манипулятор с пятью шестью степенями свободы

    Я начал проект манипулятора-робота, и мои первые шаги, потому что я очень хочу начать, — это разработка совместных приводов. Мой план — рука 5R, что означает, что он будет состоять из 5 поворотных шарниров, каждый из которых добавит руке одну степень свободы.

    Я должен начать с теории | либо параметров DH, либо экспоненциальных произведений для решения прямой кинематики проблема, но я хочу начать с дизайна, поэтому естественное место для начала — это исполнительный механизм. Я хотел создать единый стык.

    Приводы манипулятора робота медленнее и требуют большего крутящего момента по сравнению с размером машины, чем другие приложения, такие как двигатели электромобилей. Я смотрел много видео на Youtube и проводил исследования по различным конструкциям коробок передач.Есть несколько различных подходов к понижению передачи двигателя, но поскольку я хочу использовать шаговые двигатели, мне нужно более высокое передаточное число, чтобы увеличить эффективный удерживающий момент и разрешение. Типичное передаточное число с прямой передачей не дает мне необходимого уменьшения. Я изначально думал про дифференциальный привод, очень хотелось Skyentific , который представляет собой два шарнирных соединения, расположенных друг над другом: шарнирное соединение. Преимущества этого в том, что я могу переместите двигатели ближе к основанию, уменьшив крутящий момент, необходимый для перемещения рычага, но сложность, связанная с созданием дифференциала привод, особенно с 3D-печатной передачей, по-видимому, не нужен.Я обратился к другим методам.

    Следующим очевидным выбором будет планетарный редуктор. Обычно они предлагают множество вариаций и позволяют использовать несколько различных входных и выходных данных. баллы для высоких передач. Некоторое время я серьезно обдумывал это, но попытался распечатать коробку передач из thingiverse , но величина трения шестерен, обеспечивающая жесткие допуски и низкий люфт, к сожалению, неприемлема, поэтому я оставил поиск.

    Большинство современных роботов используют редуктор, известный как редуктор с волновым напряжением, который основан на гибком шлице. внутри кругового шлица для создания высокого передаточного отношения. Они тихие, компактные и предлагают невероятно большие редукции с очень небольшим люфтом, но они трудно изготовить на 3D-принтере, а именно гибкую шлицевую шпонку. Есть реализует напечатанные на 3D-принтере приводы волн деформации , но существуют другие аналогичные методы, основанные на аналогичном принципе, которые предлагают меньшую сложность.

    Эпициклоидные или циклоидные приводы — это еще одна форма коробки передач, в которой используется различие зубьев между внутренней и внешней секциями. Внутренняя шестерня — эпиоциклоида, это форма, которую вы получите, когда начнете рисовать точку на круге, которая катится по внешней стороне другого круга. Это действительно сбивающее с толку описание, но хорошее анимацию этого можно найти на сайте Wolfram.com .

    На фото моя первая попытка создать циклоидальную коробку передач.Обычно циклоидальная шестерня (желтая) — это вращающаяся часть коробки передач, но в этом случае проницательный может заметить винты, которые проходят сквозь отверстия в шестерне. Они должны удерживать его на месте. Зачем мне это делать? Хороший вопрос! Меня вдохновил Пол Гулд на Hackaday. Основной принцип следующий (простите, если что-то не так, я всего лишь инженер-электрик :)). Кликлоидальная передача приводится в движение эксцентриковой осью, приводимой в движение двигателем. Это толкает циклоидальную шестерню на один шаг на внешних штифтах за каждый оборот внутренней оси, что Вот как циклоидальная коробка передач достигает такого высокого передаточного числа в таком небольшом форм-факторе.Теперь представьте, что вы ограничиваете это движение ровно настолько, чтобы он мог завершить свой полный ход, но вместо вращения шестерня вместо этого отводится назад, что, в свою очередь, натягивает штифты. Это движение оказывает давление на внешнюю оболочку коробки передач. Что это обозначает? Дело в том, что вокруг центра вращается внешняя оболочка, а не циклоидальная шестерня.

    Почему это важно? Это означает, что я могу установить что-то на внешнюю часть коробки передач, а не на ее конец, что важно для сохранения ширины привода. до минимума.Минимизация размера привода важна, потому что он находится на плече, который, по сути, представляет собой гигантский рычаг момента на нижних суставах. Итак, имея это в виду, что я узнал в этой первой реализации?


    90 мм — действительно большой диаметр для настольного манипулятора робота. Я искал размеры примерно размер моего кулака чуть меньше, чем обычная кофейная кружка. Эта штука размером с идеальную кружку для любителей кофеина рано утром.Вы знаете, кто вы (я полностью уверен).


    Отверстия для шурупов не должны быть точно такого же размера, как шурупы, для которых они предназначены. Я потратил около пяти минут, пытаясь создать нить винт M3 x 50 мм через пластиковое отверстие, достаточное для этого. Я закончил тем, что выбил дыру (победа?).


    Мне нужно измерить, прежде чем покупать слишком короткие винты. Опять же, я должен также измерить для печати достаточно большого пластика, чтобы винты не выходили на дно. до того, как голова доберется до пластика.Я все еще не совсем уверен, как это сделать, когда еще не знаю длину ниток в шаговом двигателе.

    В чем разница между приводом с редуктором и приводом с прямым приводом?

    Кратко:

    • Производство полупроводников, станки для лазерной резки, сборка электроники и системы автоматизации лабораторий требуют точных линейных модулей, которые должны работать с высокой точностью конечной точки и плавным перемещением с минимальной вибрацией.
    • Конструкция корпуса модуля и материалы конструкции являются критическими факторами, которые могут обеспечить долгосрочную точность и воспроизводимость.
    • Независимо от того, насколько хорошо спроектированы и спроектированы, линейные модули нуждаются в надлежащей смазке на протяжении всего срока службы для обеспечения точного и стабильного движения.

    Готовые к установке линейные модули используются во многих отраслях промышленности для перемещения материалов, продуктов и производственной оснастки на самых разных станках.

    У проектировщиков машин есть несколько вариантов выбора при выборе линейных модулей в зависимости от конкретных требований к производству и производительности.Но есть некоторые отрасли и системные приложения, где точное и точное движение является наиболее важным требованием.

    В частности, такие приложения, как производство полупроводников, станки для лазерной резки, сборка электроники и системы автоматизации лабораторий, требуют прецизионных линейных модулей, которые должны работать с чрезвычайно высокой точностью конечной точки и плавным перемещением с минимальной вибрацией на протяжении всего цикла движения.

    Понимание нескольких ключевых характеристик конструкции и рабочих характеристик, отличающих прецизионные линейные модули, может помочь разработчикам машин и систем выбрать лучшие продукты, удовлетворяющие требованиям машин, которые они создают.


    Необходимость точного движения

    Сверхточное и деликатное движение для лазерной резки, автоматизированных систем отбора проб в медицинском испытательном оборудовании или перемещения полупроводниковых пластин через производственный инструмент требует чрезвычайно стабильного, почти безвибрационного движения во время перемещения. Достижение целевой конечной точки с максимальной точностью — основная цель.

    Стабильное движение часто имеет решающее значение для защиты чрезвычайно хрупких материалов от повреждений или деградации, вызванных линейным перемещением.Прекрасным примером являются полупроводниковые пластины: они чрезвычайно хрупкие, а готовая пластина может содержать микросхемы, потенциально стоящие миллионы долларов, в зависимости от размера.

    Каждую пластину необходимо транспортировать через сотни этапов процесса, и каждый раз, когда она перемещается с одного этапа на другой, вибрация в линейном модуле рискует повредить пластину в процессе, уменьшая ее конечное значение. Чем меньше вибрация, тем меньше риск.

    Точность конечной точки не менее важна для повышения производительности.Если лоток с электронными деталями перемещается через высокоскоростной автоматизированный процесс сборки, максимальная производительность достигается, когда линейный модуль подает лоток в сборочный инструмент с точностью до микрона.

    Также важно отметить, что это стабильное движение и точность конечной точки должны воспроизводиться через тысячи циклов движения каждый день. Если для точной настройки расположения деталей требуется несколько миллисекунд, эти миллисекунды добавляют к часам дополнительного производственного времени, уменьшая пропускную способность и потенциально увеличивая затраты и влияя на графики поставок.

    Для достижения этих целей обязательно учитывайте ключевой дизайн, материалы, конструкцию и функциональность, присущие высокопроизводительным прецизионным линейным модулям.


    Материалы конструкции

    Конструкция корпуса модуля и материалы конструкции являются критическими факторами, которые могут определять долгосрочную точность и воспроизводимость.

    В мире линейных модулей алюминий или сталь чаще всего используются для создания корпусов или «профилей». Алюминиевые кожухи обычно используются в более стандартных линейных модулях, поскольку их можно экономично экструдировать, чтобы удовлетворить более широкий диапазон размеров и длины модулей.

    Однако важно учитывать прецизионные линейные модули, изготовленные со стальными механически обработанными корпусами. Эти корпуса обычно демонстрируют гораздо меньшую модульную эластичность и отклонение от желаемой траектории движения по сравнению с модулями на основе алюминия (которые также очень стабильны, но попросту не на том уровне, который могут выдержать стальные корпуса).

    Модульная эластичность заставляет модуль принимать форму рамы машины, на которой он установлен. В случае экструдированного алюминиевого корпуса, если есть какое-либо отклонение — например, скручивание или изгиб в месте крепления модуля — оно может отражать это отклонение.

    Поскольку прецизионные линейные модули имеют корпус из обработанной стали, такого рода отклонения предотвращаются, обеспечивая очень высокую плоскостность или прямолинейность хода. Это способствует снижению вибрации, точности конечных точек и повторяемости местоположения. Кроме того, ищите модули с обработанной базовой кромкой со встроенными направляющими на корпусе. Некоторые компании, такие как Bosch Rexroth, даже позволяют пользователю указывать, на какой стороне находится опорный край машины, для более быстрого монтажа и легкого выравнивания.

    Правильный выбор размера для правильного применения

    Если требуется очень точная работа, убедитесь, что выбрали компоненты правильного размера, чтобы выдержать нагрузку. Например, осевая или крутильная нагрузка может потребовать более широких или более тяжелых компонентов, чем простая радиальная нагрузка. Кроме того, для многих передовых приложений в станках, производстве полупроводников и электроники производственные системы относительно невелики, требуя компактных прецизионных модулей, которые легко помещаются в ограниченное машинное пространство.Многие поставщики предлагают разные размеры.

    Кроме того, важно учитывать другие основные критерии проектирования линейного движения, такие как среда, в которой работает система, угол, под которым установлена ​​нагрузка, требуемая скорость, расстояние перемещения и требуемый рабочий цикл. В отрасли это известно как ПРОТЯЖЕННЫЕ (нагрузка, ориентация, скорость, перемещение, точность, окружающая среда и рабочий цикл).

    Прецизионные модули Bosch Rexroth идеально подходят для приложений, требующих высокой точности конечных точек и минимальной вибрации на протяжении всего цикла движения.

    Компоненты движения

    Точное и стабильное движение также является продуктом компонентов движения, которые приводят в действие линейный модуль. Для прецизионных линейных модулей оптимальным решением являются шарико-винтовые передачи.

    Шарико-винтовые передачи чрезвычайно эффективны при преобразовании вращательного движения в поступательное. В качестве механических приводных элементов они могут устанавливаться в положениях X-Y-Z и выполнять движения с необходимой точностью и повторяемостью.

    Шарико-винтовые пары с полноконтактными уплотнениями предлагают уникальное сочетание высокой жесткости, высокой точности и респектабельной скорости, что делает их полезными в самых разных приложениях, связанных с точным перемещением.В частности, их способность выдерживать значительную осевую нагрузку часто делает их лучшим выбором, чем линейные двигатели, особенно для резки металла, дерева и камня.

    Не менее важна конструкция линейных направляющих в прецизионных модулях. Точность линейных направляющих зависит от многих факторов: от правильности рельса, по которому движется каретка или подшипник, дорожек качения внутри подшипника, по которым перемещаются шарики или ролики, и от плоскостности монтажной поверхности рельса.

    Одной из наиболее важных областей, которую необходимо оценить, является плавность рециркуляции шарика внутри каретки во время его движения по рельсу. На приложения с очень высоким диапазоном точности может отрицательно повлиять даже незначительное движение шариков в рециркуляционной камере или просто небольшой поворот рельсовой системы вокруг своей оси.

    Любой прогиб или зазор вообще снижают точность, а любая неровность рециркуляции шариков может привести к неточности.Чтобы решить эту проблему, ведущие поставщики линейных модулей включают направляющие, которые оптимизируют рециркуляцию в ключевых точках перехода, обеспечивая чрезвычайно плавное и стабильное движение при циркуляции шариков в дорожках качения подшипников.

    Прецизионные линейные модули, включающие как шариковинтовые пары, так и оптимизированные линейные направляющие в сочетании со стальным корпусом, обеспечивают многие ключевые характеристики, необходимые для высокоточных, высокоскоростных автоматизированных систем.

    Смазка и уплотнение

    Независимо от того, насколько хорошо спроектированы и спроектированы, линейные модули нуждаются в надлежащей смазке на протяжении всего жизненного цикла для обеспечения точного и стабильного движения.Один из способов обеспечить эффективную интеграцию смазки в общую практику обслуживания системы — это выбрать прецизионные модули, которые упрощают и упрощают смазку модулей на постоянной основе.

    Большинство прецизионных модулей доступны с обычной промышленной смазкой для начальной смазки. У других модулей есть выбор для более продвинутых предложений по смазке, например, для удовлетворения требований чистой комнаты или электронной промышленности.

    Компания Bosch Rexroth недавно модернизировала свою линейку прецизионных модулей, включив в нее более продвинутый стандарт LSS и смазочные материалы LSC для чистых помещений.Также существует возможность подключения к централизованным системам смазки с использованием жидкой смазки. Автоматическая повторная смазка повышает эксплуатационную надежность, исключая человеческий фактор при ручном смазывании.

    Линейные модули требуют смазки, потому что они имеют движущиеся части, но движущиеся части могут генерировать крошечные частицы в воздухе, если модуль не герметизирован должным образом (сами смазочные материалы также могут рассеиваться в воздухе). Важно заранее оценить варианты герметизации, предоставляемые поставщиками прецизионных линейных модулей, особенно для чистых помещений или систем автоматизации лабораторий с чувствительными биологическими образцами.

    Ищите прецизионную гайку шарико-винтовой передачи и узел линейной каретки, герметизированный с обеих сторон уплотнениями узла шарико-винтовой передачи. Такая конструкция значительно снижает риск утечки смазочного материала наружу.

    Конфигурация и техническая поддержка

    Последний элемент, который следует учитывать при выборе прецизионных линейных модулей, — это уровень технической поддержки, предоставляемой поставщиком, чтобы помочь машиностроителям выбрать, указать, настроить и заказать необходимые им модули.

    Выбор поставщика линейных модулей с помощью простых в использовании, пошаговых онлайн-инструментов для определения размеров и конфигурации может помочь проектировщикам оборудования быстро настроить и заказать нужные модули при необходимости.Некоторые компании также предоставляют возможность выбора и определения размеров для комбинации механики, двигателя и привода с помощью одного инструмента.

    Когда требуется прямая помощь, также имеет смысл работать с поставщиками линейных модулей, имеющими большой опыт в технологиях линейного перемещения. Эти компании предоставляют техническую поддержку экспертов по линейному перемещению по телефону, электронной почте или в онлайн-чатах в режиме реального времени. Во многих случаях, когда машиностроители не уверены в конкретных требованиях к размеру и производительности для своих приложений, эти эксперты уже решали подобные проблемы в прошлом.

    Для самых современных систем автоматизации для достижения высокого уровня производительности не нужно жертвовать качеством ради скорости.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *