Кпд водородного двигателя: что мешает продвижению автомобилей на легком газе :: Свое дело :: РБК

Содержание

что мешает продвижению автомобилей на легком газе :: Свое дело :: РБК

Прощание с бензином

У водородных двигателей долгая и непростая история: еще в 1979 году BMW выпустила первый автомобиль, работающий на этом газе. Однако нефтяные кризисы 1970-х, заставившие задуматься о разработке такого автомобиля, миновали, и вплоть до 2000-х автогиганты положили идею под сукно. Все изменилось в новом веке, когда нефть снова стала дорожать, а правительства задумались о снижении выбросов в атмосферу углекислого газа. Экологичность — один из главных плюсов водородных двигателей, ведь единственный побочный продукт их работы — обычная вода. Ни углекислого газа, ни соединений свинца.

Читайте на РБК Pro

В 2007 году BMW выпустила партию из ста автомобилей Hydrogen 7, способных работать как на бензине, так и на водороде, сопроводив это событие масштабной рекламной кампанией: за рулем таких авто появлялись голливудские звезды Брэд Питт, Анджелина Джоли, Ричард Гир, Шарон Стоун. Однако сотней машин дело и ограничилось: их технические характеристики оставляли желать лучшего. Компания выбрала тупиковый путь: гибридная модель сжигала водород в камере сгорания, и газового баллона в 8 кг хватало всего на 200–250 км. А стоил автомобиль на уровне топовых моделей концерна.

Фото: Paul Sancya / AP

Другие компании извлекли из эксперимента BMW урок. Сейчас уже три фирмы серийно выпускают легковые автомобили на водородных топливных ячейках, использующих топливо более эффективно: в результате электрохимической реакции они вырабатывают энергию, которая подается на электрический двигатель. Первой работающей по такой схеме была машина Hyundai ix35 Fuel Cell, поступившая в автосалоны в начале 2013 года. Годом позже в Японии стартовали продажи Toyota Mirai, а в 2015–2016 годах на японский и американский рынки вышла Honda Clarity. Еще полтора десятка компаний в последние годы объявили о скором выпуске или по крайней мере о начале разработки таких автомобилей. Совершенствование технологий позволило существенно удешевить производство: цена Hyundai ix35 Fuel Cell составляет около $53 тыс., Toyota Mirai — $57 тыс., Honda Clarity — $59 тыс.

Тем не менее цены кажутся высокими по сравнению с обычными машинами: так, Hyundai ix35 с обычным двигателем стоит от $10 тыс. до 35 тыс. Да и сам водород пока обходится дороже бензина. Но инновационные автомобили не только чище, но и потенциально выгоднее. Согласно подсчетам бывшего главного исследователя по вопросам альтернативной энергии Лос-Аламосской национальной лаборатории (США) Стива Хенча использовать водород в качестве энергоносителя намного выгоднее, чем обычный бензин. Энергоемкость одного галлона (4,54 л) бензина и 1 кг водорода, эквивалентного ему по объему, почти одинакова: 130 против 130–140 мДж. Галлон бензина в США стоит около $2,90, 1 кг водорода обойдется дороже — в $8,6. Однако если учесть, что термодинамическая эффективность бензина составляет 20–25%, а водорода — 60% и более, получится, что топливные ячейки в 2,5–3 раза эффективнее двигателя внутреннего сгорания. А значит, на том же объеме топлива водородные автомобили смогут проехать в 2,5–3 раза дольше.

Высокая энергия

В России компании также проявляют интерес к водородным технологиям. В 2006 году «Норильский никель» приобрел контрольный пакет акций американского пионера водородной энергетики Plug Power. Однако кризис 2008–2009 годов вынудил «Норникель» продать бумаги.

В 2014 году в России появился производитель водородных топливных ячеек — AT Energy. Компании удалось найти свою нишу: она поставляет аккумуляторные системы для дронов, в том числе военных. Топливными элементами AT Energy были, например, оснащены дроны компании «АФМ-Серверс», снимавшие с воздуха Олимпиаду-2014 в Сочи. «Оснащение дронов водородными элементами дает большой выигрыш по длительности полета, кроме того, они перестают зависеть от температуры воздуха», — говорит основатель компании Данила Шапошников.

В июне 2017 года AT Energy подписала стратегическое соглашение с АО «Линде Газ Рус», дочерней компанией производителя промышленных газов Linde Group. Партнеры будут поставлять владельцам беспилотных аппаратов баллоны с водородом производства Linde. Это поможет решить важнейшую проблему водородной энергетики для беспилотников — заправочной инфраструктуры.

Легок на помине

Ажиотаж по поводу самого легкого в природе газа, стартовавший в начале 2000-х, был подхвачен политиками. В 2004 году губернатор Калифорнии Арнольд Шварценеггер рисовал картины «водородных шоссе», которыми будет опоясан его штат всего через шесть лет. Ничего такого, конечно, не произошло. «Автомобильная отрасль консервативна: все новые технологии дорогие, требуют оптимизации моделей по массе и габаритам, испытаний на ресурс», — говорит гендиректор AT Energy Данила Шапошников.

Сказалась и экономическая ситуация. «В глобальном контексте замедление развития водородной энергетики связано с тем, что выбор технологий снижения выбросов в энергетике, транспорте, горнодобывающей промышленности и ЖКХ определяется экономической выгодой, — говорит советник по возобновляемой энергии в MoJo Energy Говард Рамсден, в 2000-х принимавший участие в разработке законодательства Европейского союза в области электроэнергетики. — Если финансовые механизмы стимулирования выбора низкоуглеродных технологий не являются существенными для стимулирования потребителя, то он либо не будет менять своих привычек, либо будет делать это очень вяло. Водородные технологии оказались слишком дороги для производителей в условиях двух глобальных экономических кризисов, где война за покупателя была жесткой».

Проблемы вызваны не только экономической конъюнктурой. Первому элементу таблицы Менделеева то и дело достается от глав технологических компаний. Так, владелец Tesla Илон Маск неоднократно называл топливные ячейки «ошеломляюще тупой технологией», противопоставляя их электрическим аккумуляторам, на которые сделала ставку его компания. Основная претензия заключается в том, что в качестве средства хранения энергии ячейки уступают аккумуляторам, поскольку преобразование химической энергии в электрическую внутри топливного элемента ведет к неизбежным потерям.

Илон Маск (Фото: Marcio Jose Sanchez / AP)

Другие критики отмечают, что водородные автомобили по умолчанию небезопасны. Водород невидим, легко воспламеняется и не имеет запаха, а значит о его утечке водитель не догадается вплоть до взрыва. Правда, и Toyota и Honda специально отмечают, что в их моделях водород хранится в герметичных и ударопрочных контейнерах из углеволокна. И все-таки никакое углеволокно не выдержит сильного удара при ДТП.

И даже подсчеты экономических выгод водорода могут быть обманчивы. «Главная проблема — высокая стоимость производства самих топливных элементов, так как водородные батареи содержат платину, один из самых дорогих металлов в мире, — напоминает Кристиан Цбинден. — Многие заблуждаются, считая водородную энергетику спасением от глобального изменения климата. На самом деле энергия из водорода — это плацебо, поскольку при производстве подобных батарей используется непропорционально большое количество электроэнергии. Поэтому «зелеными» данные технологии назвать нельзя». Самый распространенный в наши дни процесс получения водорода — паровой риформинг метана. Он требует использования углеводородов. Правда, теоретически его можно заменить электролизом воды, энергию для которого будут давать, например, солнечные батареи.

Кроме того, под водородные двигатели нужно строить специальные сети заправок. «Вопрос не столько в разработках производителей двигателей, сколько в подготовке и развитии необходимой инфраструктуры, — считает Никита Игумнов, финансовый эксперт, ранее работавший в инвестпроектах Газпромбанка, в органах управления и контроля МОЭСК и «Мосэнергосбыта». — При реализации данного направления возникнет ряд проблем, требующих решения. Среди них — высокая стоимость производства, хранения и транспортировки топлива, а также необходимость масштабного развития необходимой инфраструктуры: заправки, терминалы хранения, производственные мощности. Все эти вопросы требуют масштабных инвестиций».

Нишевой элемент

И все-таки будет ошибочным считать водородную энергетику тупиковым направлением. «Например, она давно применяется в ракетостроении, но СМИ редко об этом пишут», — отмечает Шапошников. Пока автомобили на топливных элементах делают первые шаги, их меньшие братья — автопогрузчики уже вовсю переходят на самый легкий газ. В июле Walmart приобрела 55 млн акций одного из пионеров водородной энергетики — компании Plug Power, объявив о планах оснастить 30 своих центров дистрибуции водородными автозаправками, где смогут заряжаться погрузчики компании (сейчас такими заправками оснащены 22 американских магазина Walmart). В апреле этого года Amazon.com купила более 50 млн акций Plug Power, параллельно начав оснащать водородными заправками свои склады.

Компании-конкуренты считают, что водород поможет их центрам быть более эффективными. «Складская техника — это ниша, в которой водородные топливные ячейки уже прочно закрепились, — говорит Данила Шапошников. — Электрические аккумуляторы погрузчиков быстро садятся и подолгу заряжаются. Возникают большие паузы в работе. Кроме того, батареи имеют короткий срок службы. А техника на водороде надежна, неприхотлива и, кроме того, экологична — такие погрузчики могут работать в закрытых помещениях».

То, что силовые установки, работающие на водороде, практически бесшумны, делает их привлекательными для производства военной техники. Уже сейчас такими установками оснащают, например, подводные лодки. Водород служит и для нужд домохозяйств: энергетические станции мощностью от 1 до 5 кВт могут вырабатывать электроэнергию в режиме когенерации, попутно давая тепло для системы отопления и нагрева воды.

В Японии такие автономные системы получили широкое признание после аварии на «Фукусиме», когда ядерная энергетика стала восприниматься как нечто страшное. Агентство по природным ресурсам и энергетике Японии рассматривает развитие водородной промышленности как один из приоритетов, рассчитывая за три года довести число используемых домохозяйствами водородных электрогенераторов до 1,4 млн. Кроме того, правительство мотивирует промышленные компании использовать водород в качестве источника электроэнергии на заводах и фабриках. А организаторы летних Олимпийских игр 2020 года в Токио собираются превратить их в демонстрацию возможностей водородных двигателей.

Среди ниш, где водород находит себе применение уже сегодня, — стационарное резервное питание. «Топливные ячейки требуют мало обслуживания: поставил — забыл, — говорит Шапошников. — Когда напряжение в сети падает до нуля, они включаются. Небольшой баллон с газом, установленный, например, на сотовой вышке, даст ей энергии на сутки, пока ремонтная бригада устраняет проблему. Другая ниша — автономное энергоснабжение удаленных пунктов: можно раз в год наполнять газгольдер, обеспечивая электричеством и теплом небольшой поселок полярников где-нибудь в Арктике». Это решение подойдет для многих труднодоступных уголков страны.

Водородная энергетика будет развиваться даже при отсутствии прорыва в автомобильной отрасли, говорят эксперты. Согласно прогнозу Markets&Markets объем мирового производства водорода, который сейчас составляет $115 млрд, к 2022 году вырастет до $154 млрд. Но и в автомобильной промышленности этот элемент рано списывать со счетов. Да, водород высокого давления требует строительства сотен заправочных станций. Но есть более дешевая альтернатива, которую сейчас разрабатывает сразу несколько компаний, в частности один из лидеров по производству топливных ячеек — канадская Ballard Power, делающая пилотный проект для китайского Министерства транспорта. Жидкий химический состав можно будет заливать в обычные бензохранилища, которыми оснащены АЗС, и заправлять им машину как бензином. В специальном реакторе из жидкости будет выделяться газообразный водород, поступающий в топливную ячейку. Голубая мечта Шварценеггера не столь уж и несбыточна.

Как работает водородный двигатель и какие у него перспективы :: РБК Тренды

Автомобили с водородными двигателями называют главными конкурентами электрокаров. Но у технологии пока что немало минусов, и, например, основатель Tesla Илон Маск называет ее «тупой и бесполезной». Прав он или нет?

С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.

Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.

История развития рынка водородных двигателей

Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.

Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.

В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.

В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.

Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].

Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.

В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.

В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.

Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.

Toyota Mirai 2016 года выпуска

Как работает водородный двигатель?

На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.

Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.

Схема работы водородного двигателя

По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.

Как работает водородный двигатель внутри Toyota Mirai

Где применяют водородное топливо?

  • В автомобилях с водородными и гибридными двигателями. Такие уже выпускают Toyota, Honda, Hyundai, Audi, BMW, Ford, Nissan, Daimler;
  • В поездах. Первый такой был выпущен в Германии компанией Alstom и ходит по маршруту Букстехуде — Куксхафен;
  • В автобусах: например, в городских низкопольных автобусах марки MAN.
  • В самолетах. Первый беспилотник на водороде выпустила компания Boeing, внутри — водородный двигатель Ford;
  • На водном транспорте. Siemens выпускает подводные лодки на водороде, а в Исландии планируют перевести на водородное топливо все рыболовецкие суда;
  • Во вспомогательном транспорте. Водород используют в электрокарах для гольфа, складских погрузчиках, сервисных автомобилях логистических компаний и аэропортов;
  • В энергетике. Электростанции мощностью от 1 до 5 кВт, работающие на водороде, могут обеспечивать теплом и энергией небольшие города и отдельные здания. Например, после аварии на Фукусиме в 2018 году Япония активнее начала переходить на водородную энергетику [9], планируя перевести на водород 1,4 млн электрогенераторов;
  • В смесях с обычным топливом. Например, с дизельным или газовым — чтобы удешевить производство.

Плюсы водородного двигателя

  • Экологичность при использовании. Водородный транспорт не выбрасывает в атмосферу диоксид углерода;
  • Высокий КПД. У двигателя внутреннего сгорания (ДВС) он составляет около 35%, а у водородного — от 45%. Водородный автомобиль сможет проехать на 1 кг водорода в 2,5-3 раза больше, чем на эквивалентном ему по энергоемкости и объему галлоне (3,8 л) бензина;
  • Бесшумная работа двигателя;
  • Более быстрая заправка — особенно в сравнении с электрокарами;
  • Сокращение зависимости от углеводородов. Водородным двигателям не нужна нефть, запасы которой не бесконечны и к тому же сосредоточены в нескольких странах. Это позволяет нефтяным государствам диктовать цены на рынке, что невыгодно для развитых экономик.

Минусы водородного двигателя

  • Высокая стоимость. Галлон бензина в США стоит около $3,1 [10], а эквивалентный ему 1 кг водорода — $8,6. Водородные батареи содержат платину — один из самых дорогих металлов в мире. Дополнительные меры безопасности также делают двигатель дорогим: в частности, специальные системы хранения и баки из углепластика, чтобы избежать взрыва.
  • Проблемы с инфраструктурой. Для заправки водородом нужны специальные станции, которые стоят дороже, чем обычные.
  • Не самое экологичное производство. До 95% сырья для водородного топлива получают из ископаемых [11]. Кроме того, при создании топлива используют паровой риформинг метана, для которого нужны углеводороды. Так что и здесь возникает зависимость от природных ресурсов.
  • Высокий риск. Для использования в двигателях водород сжимают в 850 раз [12], из-за чего давление газа достигает 700 атмосфер. В сочетании с высокой температурой это повышает риск самовоспламенения.

Водород обладает высокой летучестью, проникает даже в небольшие щели и легко воспламеняется. Если он заполнит собой весь капот и салон автомобиля, малейшая искра вызовет пожар или взрыв. Так, в июне 2019 года утечка водорода привела к взрыву на заправке в Норвегии. Сила ударной волны была сопоставима с землетрясением в радиусе 28 км. После этого случая водородные АЗС в Норвегии запретили

Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.

Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.

Водородный транспорт в России

В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.

В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.

Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.

Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».

В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.

Перспективы технологии

Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.

Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.

С одной стороны, в Европе Toyota Mirai II стоит несколько дешевле, чем Tesla Model S (€64 тыс. против €77 тыс.) [18]. Полная зарядка водородного автомобиля занимает около 3 минут — против 30-75 минут для электрокара. Однако вся разница — в обслуживании: Toyota Mirai вмещает 5 кг водородного топлива [19] по цене $8-9 за кг. Таким образом, полный бак обойдется в $45, и его хватит на 500 км — получаем около $9 за 100 км пробега. Для Tesla Model S те же 100 км обойдутся всего в $3.

Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.

Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.

Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].

Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:

  1. Лобби со стороны развитых государств: в США [22], ЕС [23], Японии [24], России [25] и других странах приняты законы в поддержку экологичного транспорта.
  2. Удешевление аккумуляторов: согласно исследованию Bloomberg New Energy Finance, за последние десять лет цены на литий-ионные аккумуляторы упали с $1200 до $137 за кВт·ч.
  3. Развитие инфраструктуры: специальные электрозарядные станции и зарядки в крупных бизнес-центрах, на парковках ТЦ и аэропортов.

Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.

Согласно прогнозу Markets&Markets [28], к 2022 году объем мирового производства водорода вырастет со $115 до $154 млрд. Остается главный вопрос: как быть с инфраструктурой? Чтобы водородные двигатели стали массовыми, нужны сети заправок, трубопроводы для топлива, отлаженные логистические цепочки. Все это пока только зарождается. Но и тут есть позитивные сдвиги: например, канадская Ballard Power по заказу китайского Министерства транспорта запустила пилотный проект, в рамках которого водородное топливо можно будет заливать в обычные АЗС.

Водородный двигатель автомобиля — как работает и основные недостатки

Авто компании разрабатывают новые виды двигателей для автомобилей будущего. Кто-то ставит ставку на электромоторы, а кто-то разрабатывает водородные двигатели. Рассмотрим водородный двигатель и его преимущества.

Как работает

Автомобиль на водородном топливе имеет так называемый топливный элемент или по-научному — электрохимический генератор. Это своего рода «вечная» батарейка, внутри которой идет реакция окисления водорода и на выходе получается чистый водяной пар, азот и электричество. Т.е. выхлоп такого водородного автомобиля экологический чистый, в нем содержание углекислого газа CO2 равняется нулю.

Автомобиль с топливными элементами, по сути электромобиль. Только с более компактной батареей: ёмкость литий-ионного аккумулятора в 10 раз меньше, чем обычного электромобиля. Батарея нужна только в качестве буфера для хранения энергии, получаемой при рекуперативном торможении и для быстрого холодного старта.

Потому что главный источник энергии — блок топливных элементов — выходит на рабочий режим не сразу. На первых прототипах водородных машин для этого требовалось около полутора часов. На современных — не более 2 минут, чтобы начать превращение водорода и воздуха в водяной пар, азот и электроэнергию. Но на прогрев до рабочей температуры, когда КПД установки достигает 90%, уходит от 15 минут до часа в зависимости от окружающей температуры.

В баллонах хранится 5 кг водорода, обеспечивающие запас хода до 500 км. Полная заправка баллонов займет три минуты.

Главные недостатки

Главный недостаток — высокая себестоимость. Помимо электрохимического генератора, который при массовом производстве может стоить дешевле батарей для электромобилей, нужны еще прочные и легкие баки. Для этого используют дорогой углепластик.

Серьезный недостаток — энергетическая эффективность. Если использовать водород только как промежуточное звено в цепочке доставки энергии от электростанции к колесам автомобиля, то КПД составит не более 30% с учетом потерь на перекачку и охлаждение водорода перед заправкой. В отличие от 70-80% у электромобилей.

Если получать водород из попутного нефтяного газа, то КПД становится несравнимо выше — до 70%. Правда, ценой выбросов углекислого газа.

Если производить автомобили с водородными двигатели, то где взять заправки? В Европе количество водородных заправок можно пересчитать по пальцам, у нас их вовсе нет. Инженеры для таких случаев изобрели бивалентный двигатель, который может одновременно работать на водородном топливе и бензине. Владелец данного автомобиля не будет зависеть от наличия на заправке водородного топлива.

Лет через десять, когда количество водородных заправок в Европе возрастет, тогда водородомобили получат жизнь. Пока реалии не радуют. Взять хотя бы стоимость машины на чисто водородных элементах — она превышает стоимость обычного автомобиля почти в два раза. И на 20 процентов дороге гибридных версий.

есть ли у них будущее

Загрязнение атмосферы вызывает серьезную озабоченность общественности, организаций по защите окружающей среды. Реальной альтернативой ДВС являются водородные транспортные средства и автомобили на электротяге.

Электричество или водород

В настоящее время существует актуальная проблема, которая заключается в том, что 60% электроэнергии, потребляемой во всем мире, производится на тепловых электростанциях. Для того чтобы обеспечить возросший спрос на электричество, придется сжигать углеводороды в еще больших количествах. Даже при полной замене ДВС электродвигателями произойдет перераспределение вредных выбросов, уменьшение будет не столь значительным. Концентрация CO2 в воздухе снизится в мегаполисах, но возрастет в местах расположения ТЭС. Кроме того, автомобиль не единственный источник загрязнения окружающей среды: об электрических кораблях, самолетах пока не идет даже речи.

Водородная энергетика в этом смысле предпочтительнее. Добыча водорода сопровождается микроскопическими, по сравнению со сжиганием углеводородов, выбросами токсичных веществ. Выхлоп автомобиля на водороде на 99,99% состоит из чистого водяного пара, безвредного для окружающей среды. Но тут возникают другие проблемы, которые носят экономический, технологический, инфраструктурный характер.

Как устроен водородный двигатель

Разработаны два вида двигателей работающих на водороде:

  • обычный ДВС, где вместо бензина используется водород;
  • с применением топливных элементов.

В первом случае используется все тот же двигатель внутреннего сгорания. Инженерные решения направлены на оптимизацию горения смеси водорода с воздухом, разработку системы питания и снижение взрывоопасности. Данная концепция распространения не получила. Водород, который отличается высокой чистотой, в камере сгорания контактирует с маслом. Поэтому отработанные газы, пусть в значительно меньшем количестве, но содержат токсичные компоненты. Помимо этого, эксплуатация таких автомобилей небезопасна, требует значительных затрат.

При использовании топливных элементов транспортное средство, которое приводится в движение водородным двигателем, принципиально является тем же электромобилем. Разница в том, что на чистой электротяге батарея заряжается от внешних источников, а в водородном автомобиле электроэнергия непрерывно черпается из топливных элементов.

Они состоят из двух камер, одна из которых является анодом, а другая катодом. Между ними находится мембрана. Все компоненты покрыты дорогостоящими редкоземельными металлами, играющими роль катализатора. В результате реакции гидролиза водород, находящийся в анодной камере, соединяясь с кислородом из атмосферного воздуха в катоде, превращается в водяной пар. Процесс сопровождается выделением свободных электронов, которые поступают в электрическую сеть автомобиля.

Такая схема значительно эффективнее, практически отсутствуют вредные выхлопы. Львиная доля усилий конструкторов направлена на развитие двигателей на топливных элементах.

Преимущества и недостатки водородных двигателей

Достоинства и недостатки силовых агрегатов с топливными элементами вытекают из особенностей водорода как топлива, технического уровня двигателей. Факторы, считающиеся безоговорочным достоинствами:

  • простота конструкции, соответственно, надежность;
  • КПД, превышающий таковой у бензинового двигателя, но уступающий электрическому;
  • отсутствие каких-либо шумов;
  • почти полное отсутствие вредных выбросов;
  • высокая мощность двигателей;
приемлемая автономность: современные водородные автомобили способны преодолевать на одной заправке до 500 километров.

Среди недостатков можно выделить следующие:

  • увеличенная масса автомобиля;
  • взрывоопасность водорода, которая резко повышается при наличии неисправностей в двигателе;
  • высокая стоимость эксплуатации автомобиля.

Реальная эксплуатация показывает, что километр пути на автомобиле с водородным двигателем обходится минимум на 50% дороже, по сравнению с бензиновым ДВС. Расход водорода в несколько раз меньше, чем бензина, но все перекрывает его цена.

В этом кроется главная проблема водородной энергетики. В виде соединений с другими веществами запасы h3 на Земле безграничны, но в чистом виде его почти нет. Для его получения используется сложная технология. К этому добавляются проблемы хранения, транспортировки, создания инфраструктуры.

Перспективы водородных автомобилей

Для того чтобы полноценно осветить на этот вопрос, необходимо точно знать цель, с которой бензиновый двигатель пытаются заменить водородным. Если речь идет о внедрении технически более совершенного двигателя, то в этом ракурсе перспективы водородоавтомобилей почти такие же, как и у бензиновых агрегатов, немного выше. ДВС, как бы он не совершенствовался, имеет принципиальное ограничение: низкий коэффициент полезного действия.

Водородный двигатель в этом смысле предпочтительнее, но уступает электромобилям. С другой стороны, обогреть салон чистым электричеством, без снижения автономности, невозможно: запас на автомобиле ограничен. Водородные двигатели таких проблем не знают: при гидролизе выделяется тепло.

Если приоритетом является экология, здесь водородный двигатель имеет приоритет перед остальными. Но не все так однозначно. Современные технологии добычи водорода находятся на таком уровне развития, что дешевле всего получать h3 путем сжигания газа или угля. При этом выделяется углекислый газ, для борьбы с которым и внедряют водородный автомобиль. Экологически чистые способы добычи водорода не обладают достаточной производительностью, значительно повышают его стоимость, которая и так немаленькая.

Если удастся разработать экономичную, производительную, экологически чистую технологию добычи водорода, автомобиль на таком топливе, без сомнения, получит широкое распространение. По эксплуатационным характеристикам он уже сейчас превосходит ДВС.

По сравнению с электрическим у водородного двигателя существует ключевое преимущество: на заправку водородом потребуется около 5 минут, тогда как зарядка батареи на специальных станциях занимает несколько часов.

Водородный двигатель для автомобиля, как избавиться от нефтяной зависимости

Запасы нефти подходят к концу, что вынуждает человечество искать альтернативные источники энергии, способные заменить «черное золото». Одним из решений является применение водородного двигателя, отличающегося меньшей токсичностью и большим КПД. Главное то, что запас сырья для производства горючего почти неограничен.

Когда появился водородный двигатель? В чем особенности его устройства, и каков принцип действия? Где применяется такая технология? Реально ли сделать такой мотор своими руками? Эти и другие вопросы рассмотрим ниже.

Когда появился водородный двигатель, основные компании, ведущие его разработку

Интерес к применению водорода появился еще в 70-х годах в период острого дефицита топлива. Первым современным разработчиком, который представил двигатель для автомобиля работающий на водороде, стал концерн Toyota. Именно он в 1997 году выставил на всеобщее обозрение внедорожник FCHV, который так и не пошел в серийное производство.

Несмотря на первую неудачу, многие компании продолжают исследования и даже производство таких автомобилей. Наибольших успехов добились концерны Тойота, Хендай и Хонда. Разработки ведут и другие компании — Фольксваген, Дженерал Моторз, БМВ, Ниссан, Форд.

В 2016 году появился первый поезд на водородном топливе, являющийся детищем немецкой компании Alstom. Планируется, что новый состав Coranda iLint начнет движение в конце 2017 года по маршруту из Букстехуде в Куксхавен (Нижняя Саксония).

В будущем планируется заменить такими поездами 4000 дизельных составов Германии, перемещающихся по участкам дорог без электрификации.

Интерес к покупке Coranda iLint уже проявила Норвегия, Дания и другие страны.

Особенности водорода как топлива для двигателя

В ДВС бензин смешивается с воздухом, после чего подается в цилиндры и сгорает, в результате чего происходит перемещение поршней и движение транспортного средства.

Применение водорода в виде топлива имеет ряд нюансов:

  • После сжигания топливной смеси на выходе образуется только пар.
  • Реакция воспламенения происходит быстрее, чем в случае с дизельным топливом или бензином.
  • Благодаря детонационной устойчивости, удается поднять степень сжатия.
  • Теплоотдача водорода на 250% выше, чем у топливно-воздушной смеси.
  • Водород — летучий газ, поэтому он попадает в мельчайшие зазоры и полости. По этой причине немногие металлы способны перенести его разрушительное влияние.
  • Хранение такого топлива происходит в жидкой или сжатой форме. В случае пробоя бака водород испаряется.
  • Нижний уровень пропорции газа для вхождения в реакцию с кислородом составляет 4%. Благодаря этой особенности, удается настроить режимы работы мотора путем дозирования консистенции.

С учетом перечисленных нюансов применять H2 в чистом виде для двигателя внутреннего сгорания нельзя. Требуется внесение конструктивных изменений в ДВС и установка дополнительного оборудования.

Устройство водородного двигателя

Автомобили с двигателем работающем на водороде делятся на несколько групп:

  • Машины с 2-мя энергоносителями. Они обладают экономичным мотором, способным работать на чистом водороде или бензиновой смеси. КПД двигателя такого типа достигает 90-95 процентов. Для сравнения дизельный мотор имеет коэффициент полезного действия на уровне 50%, а обычный ДВС — 35%. Такие транспортные средства соответствуют стандарту Евро-4.
  • Автомобиль со встроенным электродвигателем, питающим водородный элемент на борту транспортного средства. Сегодня удалось создать моторы, имеющие КПД от 75% и более.
  • Обычные транспортные средства, работающие на чистом водороде или топливно-воздушной смеси. Особенность таких двигателей заключается в чистом выхлопе и увеличении КПД еще на 20%.

Как отмечалось выше, конструкция мотора, работающего на H2, почти не отличается от ДВС за исключением некоторых аспектов.

Главной особенностью является способ подачи горючего в камеру сгорания и его воспламенения. Что касается преобразования полученной энергии в движение КШМ, процесс аналогичен.

Принцип работы

Принцип работы водородных двигателей стоит рассмотреть применительно к двум видам таких установок:

  1. Моторы внутреннего сгорания;
  2. Двигатели на водородных элементах.

Водородные моторы внутреннего сгорания

В ДВС из-за того, что горение бензиновой смеси осуществляется медленнее, топливо попадает в камеру сгорания раньше достижения поршнем своей верхней точки.

В водородном двигателе, благодаря мгновенному воспламенению газа, удается сместить время впрыска до момента, пока поршень начнет возвратное движение. При этом для нормальной работы мотора достаточно небольшого давления в топливной системе (до 4-х атмосфер).

В оптимальных условиях водородный мотор способен работать с питающей системой закрытого вида. Это значит, что в процессе образования смеси атмосферный воздух не применяется.

После завершения такта сжатия в цилиндре остается пар, который направляется в радиатор, конденсируется и становится водой.

Реализация варианта возможна в случае, если на машине смонтирован электролизер — устройство, обеспечивающее отделение водорода от H2O для последующей реакции с O2.

Воплотить в реальность описанную систему пока не удается, ведь для нормальной работы двигателя и снижения силы трения применяется масло.

Последнее испаряется и является частью отработавших газов. Так что применение атмосферного воздуха при работе водородного двигателя пока необходимо.

Двигатели на водородных элементах

Принцип действия таких устройств построен на протекании химических реакций. Кожух элемента имеет мембрану (проводит только протоны) и электродную камеру (в ней находится катод и анод).

В анодную секцию подается H2, а в катодную камеру — O2. На электроды наносится специальное напыление, выполняющее функцию катализатора (как правило, платина).

Под действием каталитического вещества происходит потеря водородом электронов. Далее протоны подводятся через мембрану к катоду, и под влиянием катализатора формируется вода.

Из анодной камеры электроны выходят в электрическую цепь, подключенную к мотору. Так формируется ток для питания двигателя.

Где использовались водородные топливные элементы?

Особенность топливных элементов водородного типа —способность производить энергию для электрического мотора. Как результат, система заменяет ДВС или становится источником бортового питания на транспортном средстве.

Впервые топливные элементы были использованы в 1959 году компанией из США.

Если говорить в целом, топливные элементы применяются:

  • НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ. В отличие от КПД стандартного двигателя, они показывают лучшие результаты. На испытании первого автобуса топливные элементы показали КПД в 57%. Сегодня такие устройства тестируются многими производителями автомобилей — Хонда, Форд, Ниссан, Фольксваген и другими.
  • НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ. На современном этапе больше 60% транспорта на ж/д — тепловозы. Сегодня водородные поезда разрабатываются во многих странах — Японии, Дании, США и Германии.
  • НА МОРСКОМ ТРАНСПОРТЕ. Водородные топливные элементы наиболее востребованы на подводных лодках. Активные работы в этом направлении ведутся в Германии и Испании, а в роли заказчиков выступают другие страны, среди которых Италия, Греция, Израиль.
  • В АВИАЦИИ. Первые самолеты на водородном двигателе появились еще в 80-х годах прошлого века. На современном этапе новый вид топлива применяется для создания беспилотных летательных аппаратов (в том числе вертолетов).

Также водородные топливные элементы нашли применение на вилочных погрузчиках, велосипедах, скутерах, мотоциклах, тракторах, автомобилях для гольфа и другой технике.

Преимущества и недостатки

Чтобы понять особенности и перспективы водородного двигателя в автомобиле, стоит знать его плюсы и минусы. Рассмотрим их подробнее.

Плюсы:

  • ЭКОЛОГИЧНОСТЬ. Внедрение водородного двигателя — возможность забыть о проблеме загрязнения окружающей среды. При глобальном переходе на этот вид топлива удастся снизить парниковый эффект и, возможно, спасти планету. Экологичность новых разработок подтверждена компанией Тойота. Работники концерна доказали, что выхлоп из машины безопасен для здоровья. Более того, выходящую воду можно пить, ведь она дистиллирована и очищена от примесей.
  • ОПЫТ РАЗРАБОТОК. Известно, что водородный двигатель создан давно, поэтому с его применением на автомобилях проблем быть не должно. Если углубится в историю, первое подобие мотора на водороде в начале XIX века удалось создать Франсуа Исаак де Ривазу — конструктору из Франции. Кроме того, в период блокады Ленинграда на новый вид топлива было переведено почти 500 машин.
  • ДОСТУПНОСТЬ. Не менее важный фактор в пользу H2 — отсутствие дефицита. При желании этот вид топлива можно получать даже из сточных вод.
  • ВОЗМОЖНОСТЬ ПРИМЕНЕНИЯ В РАЗНЫХ СИЛОВЫХ УСТАНОВКАХ. Существует мнение, что водород используется только в ДВС. Это не так. Новая технология задействована при создании топливного элемента, с помощью которого удается получить электрический ток и запитать электромотор транспортного средства. Преимущества заключаются в безопасности и отсутствии ископаемых элементов, что исключает загрязнение окружающей среды. На современном этапе такая схема считается наиболее безопасной и пользуется наибольшим спросом у разработчиков.

Также к плюсам стоит отнести:

  • Минимальный уровень шума;
  • Улучшение мощности, приемистости и других параметров двигателя;
  • Большой запас хода;
  • Низкий расход горючего;
  • Простота обслуживания;
  • Высокий потенциал применения в виде альтернативного топлива.

Недостатки водородного двигателя:

  • СЛОЖНОСТЬ ИЗВЛЕЧЕНИЯ H2 ИЗ ВОДЫ. Как отмечалось, данный газ считается наиболее распространенным элементом на планете, но в чистом виде его почти нет. Этот газ имеет минимальный вес, поэтому он поднимается и удерживается в верхних слоях атмосферы. Атомы H2 быстро связываются с другими элементами, в результате чего образуется вода, метан и другие вещества. Вот почему для применения водорода его необходимо извлечь, а для этого требуются большие объемы энергии. На текущий момент такое производство нерентабельно, что тормозит процесс внедрения водородных двигателей. По приблизительным расчетам цена литра, сжиженного H2 равна от 2 до 8 евро. Итоговые расходы во многом зависят от способа добычи топлива.
  • ОТСУТСТВИЕ НЕОБХОДИМОГО ЧИСЛА ЗАПРАВОК. Не меньшая проблема — дефицит АЗС, готовых заправлять машины водородным топливом. Проблема заключается в высокой стоимости оборудования для таких автозаправочных станций (если сравнивать с обычной АЗС). Сегодня разработано множество проектов станций для заправок водородом — от крупных до небольших заправок, но из-за дороговизны и отсутствия массового применения водородных двигателей на автомобилях процесс внедрения идеи может растянуться на десятилетия.
  • НЕОБХОДИМА ДОРОГОСТОЯЩАЯ МОДЕРНИЗАЦИЯ ДВС. Как отмечалось, водородное топливо теоретически может использоваться для заправки ДВС. Но для применения H2 в качестве основного топлива требуются конструктивные изменения. Если ничего не менять, мощность мотора падает на 20-35%, а ресурс силового узла значительно снижается. Но и это не главный недостаток. Опасность в том, что такой механизм проработает недолго и быстро выйдет из строя. Сгорая, водородная смесь выделяет большее тепло, что приводит к перегреву поршневой и клапанной системы, а мотор работает в режиме повышенных нагрузок. Кроме того, высокие температуры негативно влияют на материалы, из которых сделан силовой узел, и смазывающие вещества. В результате рабочие элементы двигателя быстро износятся. Это значит, что без модернизации ДВС применение H2 невозможно.
  • ДОРОГОВИЗНА МАТЕРИАЛОВ. Главным «камнем преткновения» в вопросе развития водородных технологий является высокая стоимость материалов. В качестве катализатора используется платина, цена которой для рядового автовладельца очень высока. Проще потратить деньги и подарить дорогое кольцо жене, чем отдавать их для установки новой детали. Надежда остается на ученых, которые ищут альтернативы для дорогостоящего катализатора. Проводятся тестирования элементов, способных заменить драгоценный металл.

Кроме уже рассмотренных выше, стоит выделить еще ряд недостатков:

  • Опасность пожара или взрыва.
  • Риски для планеты, ведь увеличение объема водорода может привести к непоправимым последствиям для озонового слоя.
  • Увеличение веса машины из-за применения мощных АКБ и преобразователей.
  • Наличие проблем с хранением водородного топлива — под высоким давлением или в сжиженном виде. Исследователи еще не пришли к единому выводу, какой из вариантов лучше.

Опасность водородного топлива

В рассмотренных выше недостатках упоминалось об опасности применения водородного топлива для двигателя. Это главный минус новой технологии.

В сочетании с окислителем (кислородом) возрастает риск воспламенения водорода или даже взрыва. Проведенные исследования показали, что для воспламенения H2 достаточно 1/10 части энергии, необходимой для зажигания бензиновой смеси. Другими словами, для вспыхивания водорода хватит и статической искры.

Еще одна опасность заключается в невидимости водородного пламени. При горении вещества огонь почти незаметен, что усложняет процесс борьбы с ним. Кроме того, чрезмерное количество H2 приводит к появлению удушья.

Опасность в том, что распознать данный газ крайне сложно, ведь у него нет запаха и он полностью невидим для человеческого глаза.

Кроме того, сжиженный H2 имеет низкую температуру, поэтому в случае утечки с открытыми частями тела высок риск серьезного обморожения. Находится данный газ должен в специальных хранилищах.

Из рассмотренного выше напрашивается вывод, то водородный двигатель опасен, и использовать его крайне рискованно.

На самом деле, газообразный водород имеет небольшой вес и в случае утечки он рассеивается в воздухе. Это значит, что риск его воспламенения минимален.

В случае с удушьем такая ситуация возможна, но только при нахождении в замкнутом помещении. В ином случае утечка водородного топлива опасности для жизни не несет. В оправдание стоит отметить, что выхлопные газы ДВС (а именно угарный газ) также несут смертельный риск.

Современные автомобили с водородными двигателями

Возможность применения двигателей на водородном топливе заинтересовала многих производителей. В результате в автомобильной индустрии появляется все больше машин, работающих на данном газе.

К наиболее востребованным моделям стоит отнести:

  • Компания Тойота выпустила автомобиль Fuel Cell Sedan. Для устранения проблем с дефицитом пространства в салоне и багажном отсеке емкости с водородным топливом размещены на полу транспортного средства. Fuel Cell Sedan предназначен для перевозки людей, а его стоимость составляет 67.5 тысяч долларов.
  • Концерн БМВ представил свой вариант автомобиля Hydrogen Новая модель протестирована известными деятелями культуры, бизнесменами, политиками и другими популярными личностями. Испытания показали, что переход на новое топливо не влияет на комфортабельность, безопасность и динамику транспортного средства. При необходимости виды горючего можно переключать с одного на другой. Скорость Hydrogen7 — до 229 км/час.
  • Honda Clarity — автомобиль от концерна Хонда, который поражает запасом хода. Он составляет 589 км, чем не может похвастаться ни одно транспортное средство с низким уровнем выбросов. На дозаправку уходит от трех до пяти минут.
  • «Монстр» от Дженерал Моторс показан в октябре 2016 года. Особенность автомобиля заключается в невероятной надежности, что подтверждено проведенными исследованиями армией США. Во время испытаний транспортное средство прошло больше 3 миллионов километров.
  • Концерн Тойота выпустил на рынок водородную модель Mirai. Продажи начались еще в 2014 году на территории Японии, а в США — с октября 2015 года. Время на заправку Mirai составляет пять минут, а запас хода на одной заправке 502 км. ФОТО 21 22 Недавно представители концерна заявили, что планируют внедрять данную технологию не только в легковой транспорт, но и в вилочные погрузчики и даже грузовики. 18 колесный грузовик уже тестируется в Лос-Анжелесе.
  • Производитель Лексус планирует свой вариант автомобиля с водородным двигателем в 2020 году, поэтому о транспортном средстве известно мало подробностей.
  • Компания Ауди представила концепт H-tron Quattro в Детройте. По заверению производителя машина может проехать на одном баке около 600 км, а набрать скорость до 100 км/час удается за 7,1 секунду. Машина имеет «виртуальную» кабину, заменяющую стандартную приборную панель.
  • БМВ в сотрудничестве с Тойотой планирует выпуск своего водородного транспортного средства к 2020 году. Производитель заверяет, что запас хода новой модели составляет больше 480 км, а дозаправка будет занимать до 5 минут.
  • В 2013 году в компании Форд заявили, что активное производство водородных двигателей начнется уже к концу 2017 года при сотрудничестве с Ниссан и Мерседес-Бенц. Но реализовать задуманное на практике пока не удается — работники концерна находятся на этапе разработки.
  • Мерседес-Бенц на Франкфуртском автосалоне представил внедорожник GLC, который появится на рынке в конце 2019 года. Авто комплектуется аккумулятором на 9,3 кВт*ч, а запас хода составляет 436 км. Максимальная скорость ограничивается электроникой на уровне 159 км/час.
  • Nikola Motor представила грузовой автомобиль с водородным двигателем, имеющий запас хода от 1287 до 1931 км. Стоимость нового автомобиля составит 5-7 тысяч долларов за аренду в месяц. Выпуск планируется начать с 2020 года.
  • Производитель Хендай создал новую линейку Tucson. На сегодняшний день произведено и реализовано 140 машин. Бренд Hyundai Genesis представил свой автомобиль с водородным двигателем GV Впервые транспортное средство было представлено в Нью-Йорке, но его производство пока не планируется.
  • Великобритания тоже не отстает в плане новых технологий. В стране уже можно арендовать водородный автомобиль Riversimple Rasa на три или шесть месяцев. Машина весит чуть больше 500 кг и способна проехать на одной заправке около 500 км.
  • Дизайнерский дом Pininfarina создал машину на водородном топливе h3 Speed. Особенность авто заключается в способности ускорятся до сотни всего за 3,4 секунды, а максимальная скорость — 300 км/час. Время на заправку составляет всего три минуты. Стоимость новой модели достигает 2,5 млн. долларов.

Трудности в эксплуатации водородных ДВС

Главным препятствием для внедрения новой технологии является чрезмерные расходы на получение водородного топлива, а также на приобретение комплектующих материалов.

Возникают проблемы и с хранением H2. Так, для удерживания газа в требуемом состоянии требуется температура на уровне -253 градусов Цельсия.

Простейший способ получения водорода — электролиз воды. Если производство H2 требуется в промышленных масштабах, не обойтись без высоких энергетических затрат.

Чтобы повысить рентабельность производства, требуется применение возможностей ядерной энергетики. Чтобы избежать рисков, ученые пытаются найти альтернативы такому варианту.

Перемещение и хранение требует применения дорогих материалов и механизмов высокого качества.

Нельзя забывать и о других сложностях, с которыми приходится сталкиваться в процессе эксплуатации:

  • Взрывоопасность. При утечке газа в закрытом помещении и наличии небольшой энергии для протекания реакции возможен взрыв. Если воздух чрезмерно нагрет, это только усугубляет ситуацию. Высокая проникаемость H2 приводит к тому, что газ попадает в выхлопной коллектор. Вот почему применение роторного мотора считается более предпочтительным.
  • При хранении водорода применяются емкости, имеющей большой объем, а также системы, исключающие улетучивание газа. Кроме того, используются устройства, исключающие механическое повреждение емкостей. Если для грузовых машин, водного или пассажирского транспорта эта особенность не имеет большого значения, легковая машина теряет ценные кубометры.
  • При больших нагрузках и высокой температуре H2 провоцирует разрушение элементов ЦПГ (цилиндропоршневой группы) и смазки в двигателе. Использование специальных сплавов и смазочных материалов приводит к повышению стоимости производства водородных двигателей.

Будущее водородных двигателей

Применение H2 открывает большие перспективы и не только в автомобильной сфере. Водородные двигатели активно применяются на ж/д транспорте, на самолетах и вертолетах. Также они устанавливаются на вспомогательной технике.

Интерес к разработке таких моторов проявляют многие концерны, о которых уже упоминалось выше — Тойота, БМВ, Фольксваген, Дженерал Моторс и другие.

Уже сегодня на дорогах встречаются реальные автомобили, которые работают на водороде. Многие из них рассмотрены выше — БМВ 750i Hydrogen, Хонда FSX, Тойота Mirai и другие.

К работе подключились почти все крупные концерны, которые пытаются найти свою нишу на рынке.

Главным недостатком остается высокая цена H2, нехватка АЗС, а также дефицит квалифицированных работников, способных обслуживать такую технику. Если имеющиеся проблемы удастся решить, машины с водородными двигателями обязательно появятся на наших дорогах.

Конкурирующие технологии

Внимание к моторам на водороде развеивается по той причине, что у технологии имеются конкуренты.

Вот только некоторые из них:

  • ГИБРИДНЫЕ ТРАНСПОРТНЫЕ СРЕДСТВА — автомобили, способные работать от нескольких источников энергии. Многие концерны объединяют обычный двигатель внутреннего сгорания и электрический мотор. Еще один вариант гибридной машины — совмещение ДВС, а также силового узла, использующего в качестве топлива сжатый воздух.
  • ЭЛЕКТРИЧЕСКИЕ АВТОМОБИЛИ (ЭЛЕКТРОМОБИЛИ) — транспортные средства, которые приводятся в движение с помощью одного или группы электрических моторов, питающихся от АКБ или топливных элементов. В таких машинах ДВС не применяется. Электромобили не стоит путать с авто, имеющими электрическую подачу, а также с электрическим общественным транспортом (троллейбусами и трамваями).
  • АВТОМОБИЛИ НА ЖИДКОМ АЗОТЕ. Источником энергии, как уже понятно по названию, является жидкий азот (находится в специальных емкостях). Мотор работает следующим образом. Топливо нагревается в специальном механизме, после чего испаряется и преобразуется в газ высокого давления. Далее оно направляется в мотор, где действует на ротор или поршень, передавая таким способом имеющуюся энергию. Машины на жидком азоте были представлены публике, но на современном этапе они не получили широкого применения. Один из таких автомобилей «сыграл» в фильме «Жидкий воздух» в 1902 году. Разработчики уверяют, что такое транспортное средство способно проехать больше 100 км на одном баке.
  • АВТОМОБИЛЬ НА СЖАТОМ ВОЗДУХЕ. Особенность транспортного средства заключается в применении пневмодвигателя, благодаря которому и перемещается транспортное средство. Специальный привод называется пневматическим. Вместо топливовоздушной смеси источником энергии является сжатый воздух. Как отмечалось выше, такая технология входит в состав гибридных машин.

Можно ли сделать своими руками?

Технология работы двигателя на газ известна давно, и многие концерны достигли успехов в вопросе внедрения водородных двигателей. Над совершенствованием классического ДВС задумались и народные умельцы.

Суть заключается в подаче в камеру сгорания специального газа. Такое устройство носит название системы Брауна. При этом бензин также подается в двигатель, но смешивается с газом, что обеспечивает лучшее горение.

В результате появляется водяной пар, очищающий клапана и поршни двигателя от нагара, улучшающий характеристики мотора и повышающий его ресурс.

Чтобы своими руками разложить воду на газ, требуется катализатор, дистиллят, электроды и электричество.

Конструкция собирается из подручных материалов. Допускается применение одной банки, но лучше использовать шесть.

После вырезаются пластинки и объединяются по принципу крест-накрест. Далее они обматываются проволокой и крепятся на крышке. Важно, чтобы электроды не замыкались между собой.

На последнем этапе банки заполняются электролитом и катализатором. Такая схема может работать на любом автомобиле.

Если же говорить о полноценном водородном двигателе, то в гаражных условиях сделать его конечно же не получится из-за сложности технологии.

Будущее водородных двигателей | Новости автомобилестроения в Германии | DW

Наши опыты мы проводим вот за этими стальными дверями. Там стоят приборы, при помощи которых мы можем проводить эксперименты, можно сказать, в любых условиях – при самой различной температуре и давлении,

Лаборатория, у входа в которую стоит Михаэль Фельдерхофф, сотрудник Научно-исследовательского института имени Макса Планка, напоминает бункер. Внутри — площадка около пяти квадратных метров, окруженная высокими и массивными железобетонными стенами. На фоне белых, почти светящихся плоскостей в глаза бросается баллон яркокрасного цвета. В нем водород – энергоноситель будущего. По мнению ученых, именно он станет тем самым чудодейственным средством, которое поможет человечеству избавиться от нефтяной «энергозависимости». Ведь теплота сгорания единицы массы водорода почти в два с лишним раза превосходит бензин, а параметры горения позволяют в полтора раза повысить КПД двигателя внутреннего сгорания. Топливо это абсолютно экологичное.

Оно может использоваться не только как основное топливо, но и в качестве добавки к традиционным углеводородам, повышающей экономичность и снижающей токсичность выбросов. Но, по мнению экспертов, самое эффективное применение водорода — это создание электродвигателя с водородным топливным элементом и электроприводом. Попытки использования водорода как топлива начались ещё полтора столетия назад. Первый патент на двигатель, работающий на смеси водорода и кислорода, был выдан в Англии в 1841году. В 20-е годы прошлого столетия началось использование водородных двигателей на дирижаблях фирмы «Цеппелин». Для них в качестве топлива использовался водород, наполнявший дирижабль. Первые энергетические кризисы 70-х годов, а также резкое ухудшение экологической ситуации резко повысили интерес к этому альтернативному виду топлива. К началу 80-х почти во всех ведущих индустриальных странах были созданы экспериментальные водородные автомобили с двигателями внутреннего сгорания, работающие на водороде, бензоводородных смесях и смесях водорода с природным газом. Но до победного шествия водородной энергетики по-прежнему далеко. Учеными предстоит ещё преодолеть немало трудностей. К примеру, дать ответ на вопрос: Как хранить водород? В свободном состоянии — это бесцветный газ с очень малой плотностью, составляющей около 7 процентов плотности воздуха. Поэтому для его хранения и перевозки необходимо поддерживать очень высокое давление или же иметь в распоряжении резервуары гигантского размера. И то и другое неприемлемо для автомобильных двигателей. В настоящий момент исследователи работают над созданием водородного автомобиля, пробег которого без дозаправки достиг бы 500 километров. К сожалению, и жидкий водород для этих целей не подходит, несмотря на то, что занимает в 700 раз меньше места. Для того, что бы довести газ до жидкого состояния необходимо поддерживать температуру минус 253 градуса по Цельсию. Поэтому ученые института имени Макса Планка в немецком городе Мюльгейм-на-Руре сосредоточили внимание на ещё одном — третьем и наиболее перспективном способе хранения водорода — при помощи металлогидридов:

Металлогидриды – это соединения из металла и водорода. На единицу объёма некоторых металлогидридов приходится больше связанного водорода, чем в низкотемпературном контейнере для жидкого водорода той же емкости.

Принцип этот известен уже давно. Несколько лет назад в германские военно-морские силы поступила на вооружение подводная лодка U-31, основной особенностью которой является её уникальная силовая установка. Помимо дизельного двигателя и аккумуляторов, в ее состав входят модули топливных батарей. Горючим для них служит водород, который хранится не в газообразной или сжиженной форме, а в виде металлогидридов. Однако гидриды хранят водород с небольшой плотностью энергии на единицу веса, поэтому топливные модули очень тяжелые:

На субмарине вес блоков, хранящих водород, особого значения не имеет. И, наоборот, вес играет решающую роль, когда речь идет о применении сплавов в других, так сказать, мобильных сферах – автомобилях, а также ноутбуках, бытовой и развлекательной электронике.

В связи с этим Михаэль Фельдерхофф и его коллеги делают ставку на легкие металлы, такие как натрий или алюминий. Смесь водорода с ними – специальный водородный порошок под названием натриумаланат — может хранить до пяти процентов водорода. Это означает, что в 100 килограммовом автомобильном баке можно перевозить до пяти килограммов водорода. На 500 киломеров пробега этого должно хватить. Но не только вес беспокоит мюльгеймских ученых. На то, чтобы зарядить водородом хотя бы 80 процентов такого бака с натриумаланатом, потребуется целый час. Для ускорения процесса в порошок добавляют катализаторы — мельчайшие частицы титана, церия или скандия. Тогда заправка длится не более восьми минут. И всё же до практического применения этой технологии ещё далеко:

Взаимодействие металла с водородом порождает химическую реакцию. В результате при получении металлогидрида выделяется много тепловой энергии. А это в свою очередь означает, что здесь нам нужен хороший теплообменный аппарат, который мог бы отводить тепло за кратчайшие сроки. Это основная проблема, над которой сейчас работают инженеры. Её решение потребует больших усилий.

Итак, заправка позади. Осталось только тронуться с места. Теперь из порошка необходимо выделить водород. Для этого нужно разогреть его до ста градусов. Тепловая энергия при этом должна поступать извне. В идеале можно было бы использовать то самое тепло, которое выделилось во время реакции при образовании металлогидрида.

Михаэль Фельдерхофф уверен, что первые серийные водородные автомобили всё ещё будут оснащены газовыми баллонами. Но когда гидриды легких металлов пройдут боевое крещение в ноутбуках и переносной электронике, настанет черед и автомобиля. В случае же если проблемы с теплообменом, давлением и скоростью позарядки решить так и не удастся, вполне возможно будут применяться съемные топливные баки-контейнеры. На заправке можно будет экономить время, попросту меняя пустые баки на уже заполненные.

В нашей исторической рубрике сегодня мы поговорим о покрышках, камерах и протекторах. Думаю, большинству наших слушателей не нужно объяснять, что всё это – составляющие элементы пневматической шины, изобретенной по сравнению с историей колеса не так уж и давно – всего 160 лет назад. Колесо же в виде деревянного диска появилось более пяти тысяч лет назад. На протяженнии целых тысячелетий оно почти не менялось, разве что в нем появились спицы и само колесо стало металлическим. Поэтому по сравнению с эволюцией колеса развитие шины было процессом бурным и скоротечным. Многие века роль шины для колеса выполнял металлический обруч, который насаживался на обод. Ударяясь о камни и попадая в колдобины, он издавал страшный грохот, но тем не менее со своей задачей справлялся: повышал живучесть или, как принято говорить, «ходимость» колеса. Только в XVIII веке на смену обручам пришли резиновые монолиты из каучука. Появлению пневматической шины способствовало и изобретение Чарльза Макинтоша, который в 1823 году пропитал жидким каучуком льняную ткань, придав ей тем самым водо- и воздухонепроницаемые свойства. Первым же, кто запатентовал пневматическую шину был Роберт Томпсон шотландский инженер железнодорожного транспорта. Жил он в Лондоне, и оживленное столичное движение по булыжным мостовым производило такой невыносимый шум, что выросший в деревенской тиши Томпсон решил всерьез заняться созданием «умягчителя» для колеса. В результате 10 декабря 1845 года Томпсон официально зарегистрировал свое изобретение, а затем и запатентовал пневматическую шину. В приложении была подробно изложена конструкция, а также названы материалы для изготовления шин. Вот что написал сам Томпсон:

Суть моего изобретения состоит в изменении эластичных опорных поверхностей вокруг ободьев колес экипажей с целью облегчения движения и уменьшения шума, который они создают при движении.

Затем изобретение Томпсона было благополучно забыто, и о нем не вспоминали на протяжении 42 лет. В 1887 году ветеринар Джон Бойд Данлоп, поливал растения на своей ферме в Шотландии. Его 10-летний сын катался по участку на трехколесном велосипеде. Особенно ему нравилось переезжать через поливочный шланг. Отец обратил внимание на плавную амортизацию шланга, напряженного под давлением воды. Данлоп отрезал кусок шланга по размеру окружности велосипедного колеса, приспособил к нему ниппель, использовав при этом детскую соску, и заварил его с обоих концов в кольцо. Уже в следущем году…

Королева Виктория выдала ему патент на его изобретение. По сути, это и было рождение фирмы Данлоп,

— рассказывает пресс-секретарь немецкого филиала концерна Данлоп Петер Шмидт. Преимущества пневматической шины современники Данлопа оценили достаточно быстро, ведь именно в то время в Европе разразился настоящий велосипедный бум. Уже в 1889 году на стадионе в Белфасте один из гонщиков выступил на велосипеде с «воздушными шинами» и… неожиданно для зрителей и соперников выиграл во всех заездах.

Я не утверждаю, что мне удалось первому открыть принцип «воздушной шины». Какое-то время я действительно в это верил. По одной простой причине: ведь до недавних пор этого простого приспособления в обиходе не было. Я претендую лишь на звание первого успешного изобретателя шин. На счастье всего мобильного мира я как бы вновь изобрел идею Томпсона.

— писал позднее Данлоп. Первые проданные шины он сделал своими руками. Да и позднее на созданной им впоследствии фабрике практически все операции производились вручную:

Условия труда в те времена были просто несравнимо тяжелее, чем сегодня. Но, несмотря на то, что многое подверглось автоматизации, до сих пор в шинном производстве задействовано немало ручного труда.

— говорит Петер Шмидт. Как и все выдающиеся изобретения шина была воспринята с недоверием. К примеру, французам Андре и Эдуарду Мишлену пришлось выложить немало денег на рекламные цели. В 1894 году они бесплатно роздали шины нескольким сотням парижских извозчиков для того, чтобы те удостоверились в преимуществах этого технического новшества. Эта акция обошлась братьям Мишленам в 800 тысяч франков при том, что средняя зарплата французского рабочего тех времен составляла около 200 франков. Кстати, братья Мишлены первыми изобрели съемную шину, а также первыми установили пневматическую шину на автомобильные колеса.

За 160 лет существования пневматическая шина претерпела массу изменений. Конструкция шин постоянно совершенствовалась: камеру отделили от покрышки, стали вставлять в края покрышки проволочные кольца и сажать её на обод. Во время первой мировой войны начались разработки конструкций шин для грузовых автомобилей и автобусов. Пионерами в этой области были США. В первой половине ХХ века возникли крупные фирмы по производству шин, большинство из которых существуют и по сей день, а именно «Данлоп» вАнглии, «Мишлен» во Франции, «Гудьир» и «Файрстоун» в США, «Континенталь» и «Метцелер» в Германии, «Пирелли» в Италии. В середине 50-х годов появилась новая конструкция шин, разработанная фирмой «Мишлен». У неё был жесткий пояс, состоящий из слоев металлокорда. Нити корда располагались радиально от борта до борта. Такие шины получили название радиальных. Результатом испытания новой шины фирмы «Мишлен» явилось увеличение ходимости почти вдвое. В 70-е годы производители шин сосредоточились на повышении безопасности езды и снижении расхода топлива.

За последние годы конструкция шин изменилась мало. Зато химический состав материалов постоянно усовершенствуется. Например, ещё совсем недавно неразрешимой казалась задача улучшить характеристики зимних шин одновременно на мокром дорожном покрытии и на снегу. Применение полимеров и силикагеля помогло решить эту проблему.

Дальнейшее усовершенствование шин направлено также на увеличение срока службы, допускаемых нагрузок, упрощения технологии производства и увеличения безопасности движения транспортных средств. Однако, несмотря на многочисленные изменения и модернизации, которым подверглась пневматическая шина за 160 лет своего существования, основной принцип её устройства остался прежним. Петер Шмидт:

Это была настоящая революция. Иначе и по сей день мы бы тряслись и подпрыгивали на железных ободах.

Как работает водородный двигатель в автомобиле?

Традиционный двигатель внутреннего сгорания (ДВС) имеет ряд существенных недостатков, что заставляет ученных искать ему достойную замену. Самым популярным вариантом подобной альтернативы является электродвигатель, однако он не единственный, кто может составить конкуренцию ДВС. В данной статье речь пойдет о водородном моторе, который по праву считается будущим автомобилестроения и может решить проблему с вредными выбросами и дороговизной топлива.

Краткая история

Несмотря на то, что сохранность окружающей среды только сейчас стала массовой проблемой, об изменении стандартного двигателя внутреннего сгорания ученые задумывались и раньше. Так, мотор, работающий на водороде, «увидел мир» еще в 1806 году, чему поспособствовал французский изобретатель Франсуа Исаак де Риваз (он производил водород при помощи электролиза воды).

Прошло несколько десятков лет, и в Англии выдали первый патент на водородный двигатель (1841 год), а в 1852 году немецкие ученые сконструировали ДВС, который мог работать на воздушно-водородной смеси.

Чуть позже, во времена блокады Ленинграда, когда бензин был дефицитным продуктом, а водород имелся в достаточно большом количестве, техник Борис Шелищ предложил использовать для работы заградительных аэростатов воздушно-водородную смесь. После этого на водородное питание перевели все ДВС лебедок аэростатов, а общее число работающих на водороде машин достигало 600 единиц.

В первой половине ХХ века интерес общественности к водородным двигателям был невелик, но с приходом топливно-энергетического кризиса 70-х годов ситуация резко изменилась. В частности, в 1879 году компания BMW выпустила первый автомобиль, который вполне успешно ездил на водороде (без взрывов и водяного пара, вырывающегося из выхлопной трубы).

Следом за BMW, в этом направлении начали работать другие крупные автопроизводители, и к концу прошлого столетия практически каждая уважающая себя автокомпания уже имела концепцию разработки машины на водородном топливе. Тем не менее, с окончанием нефтяного кризиса исчез и интерес общественности к альтернативным источникам топлива, хотя в наше время он снова начинает пробуждаться, подогреваемый защитниками экологии, борющимися за снижение токсичности выхлопных газов автомобилей.

Более того, цены на энергоносители и желание обрести топливную независимость только способствуют проведению теоретических и практических исследований ученными многих стран мира. Самыми активными являются компании BMW, General Motors, Honda Motor, Ford Motor.

Интересный факт! Водород – самый распространенный элемент во Вселенной, но найти его в чистом виде на нашей планете будет очень непросто.

Принцип работы и типы водородного двигателя

Основным отличием водородной установки от традиционных двигателей является способ подачи топливной жидкости и последующее воспламенением рабочей смеси. При этом принцип трансформации возвратно-поступательных движений кривошипно-шатунного механизма в полезную работу остается неизменным. Учитывая, что горение нефтяного топлива происходит достаточно медленно, топливно-воздушная смесь наполняет камеру сгорания раньше, чем поршень займет свое крайнее верхнее положение (так называемую верхнюю мертвую точку).

Стремительная реакция водорода дает возможность сдвинуть время впрыска ближе к тому моменту, когда поршень начинает возвращаться к нижней мертвой точке. Нужно отметить, что давление в топливной системе не обязательно будет высоким.

Если водородному двигателю создать идеальные рабочие условия, то он может иметь топливную систему питания закрытого типа, когда процесс смесеобразования будет проходить без участия атмосферных воздушных потоков. В таком случае после такта сжатия в камере сгорания остается водяной пар, который, проходя через радиатор, конденсируется и снова превращается в обычную воду.

Однако применение такого вида устройства возможно только тогда, когда на транспортном средстве имеется электролизер, отделяющий водород от воды для его повторной реакции с кислородом. На данный момент добиться таких результатов крайне сложно. Для стабильной работы двигателей применяется моторное масло, а его испарения являются частью выхлопных газов.

Поэтому беспроблемный запуск силовой установки и ее устойчивая работа на гремучем газе без использования атмосферного воздуха – пока что неосуществимая задача. Различают два варианта автомобильных водородных установок: агрегаты, функционирующие на основе водородных топливных элементов, и водородные двигатели внутреннего сгорания.

Силовые установки на основе водородных топливных элементов

В основе принципа работы топливных элементов лежат физико-химические реакции. По сути, это те же свинцовые аккумуляторные батареи, вот только коэффициент полезного действия топливного элемента несколько выше, чем АКБ, и составляет около 45% (иногда больше).

В корпус водородно-кислородного топливного элемента помещена мембрана (проводит только протоны), разделяющая камеру с анодом и камеру с катодом. В камеру с анодом поступает водород, а в камеру катода – кислород. Каждый электрод заранее покрывают слоем катализатора, в роли которого нередко выступает платина. При его воздействии молекулярный водород начинает терять электроны.

В это же время протоны проходят через мембрану к катоду и под влиянием того же катализатора соединяются с электронами, поступающими снаружи. В результате реакции образуется вода, а электроны из камеры анода перемещаются в электроцепь, подсоединенную к мотору. Проще говоря, мы получаем электрический ток, который и питает двигатель.

Водородные двигатели на основе топливных элементов сегодня используются на автомобилях «Нива», оснащенных энергоустановкой «Антэл-1», и машинах «Лада 111» с агрегатом «Антел-2», которые были разработаны уральскими инженерами. В первом случае одного заряда хватает на 200 км, а во втором – на 350 км.

Следует отметить, что из-за дороговизны металлов (палладия и платины), входящих в конструкцию таких водородных двигателей, подобные установки имеют очень большую стоимость, что существенно увеличивает и цену транспортного средства, на котором они установлены.

А знаете ли вы? Специалисты компании Toyota начали работать с технологией топливных элементов еще 20 лет назад. Примерно тогда стартовал и проект гибридного автомобиля Prius.

Водородные двигатели внутреннего сгорания

Данный тип силовых установок очень похож на распространенные сегодня моторы на пропане, поэтому, чтобы перейти с пропана на водородное топливо, достаточно просто перенастроить двигатель. Уже существует немало примеров подобного перехода, но нужно сказать, что в этом случае КПД будет несколько ниже, чем при использовании топливных элементов. В то же время, для получения 1 кВт энергии водорода потребуется меньше, что вполне компенсирует данный недостаток.

Использование этого вещества в обычном моторе внутреннего сгорания вызовет целый ряд проблем. Во-первых, высокая температура сжатия «заставит» водород вступить в реакцию с металлическими элементами двигателя или даже моторным маслом. Во-вторых, даже небольшая утечка при контакте с раскаленным выпускным коллектором точно приведет к возгоранию.

По этой причине для создания водородных конструкций используются только силовые агрегаты роторного типа, так как их конструкция позволяет уменьшить риск возгорания за счет расстояния между впускным и выпускным коллектором. В любом случае, все проблемы пока удается обходить, что позволяет считать водород достаточно перспективным топливом.

Хорошим примером транспортного средства с водородной установкой может послужить экспериментальный седан BMW 750hL, концепт которого был представлен еще в начале 2000-х годов. Автомобиль оснащен двенадцатицилиндровым мотором, работающим на основе ракетного топлива и позволяющим разогнать машину до 140 км/час. Водород в жидкой форме хранится в специальном баке, и одного его запаса хватает на 300 километров пробега. Если же он полностью расходуется, система автоматически переключается на бензиновое питание.

Водородный двигатель на современном рынке

Последние исследования ученых в области эксплуатации водородных двигателей показали, что они не только очень экологичны (как электродвигатели), но могут быть очень эффективными в плане производительности. Более того, по техническим показателям водородные силовые установки обходят своих электрических собратьев, что уже было доказано (к примеру, Honda Clarity).

Также следует отметить, что, в отличие от систем Tesla Powerwall, водородные аналоги имеют один существенный недостаток: зарядить аккумулятор при помощи солнечной энергии уже не получится, а вместо этого придется искать специальную заправочную станцию, которых на сегодняшний день даже в мировом масштабе насчитывается не так уж и много.

Сейчас Honda Clarity выпущен достаточно ограниченной партией, и приобрести автомобиль можно только в Стране восходящего солнца, так как в Европе и Америке транспортное средство появится только в конце 2016 года.

Интересно знать! Генератор Power Exporter 9000 (может входить в комплектацию Honda Clarity) способен питать всю домашнюю технику почти целую неделю.

Также в наше время выпускаются и другие транспортные средства, использующие водородное топливо. К ним относятся Mazda RX-8 hydrogen и BMW Hydrogen 7 (гибриды, работающие на жидком водороде и бензине), а также автобусы Ford E-450 и MAN Lion City Bus.

Среди легковых автомобилей самыми заметными представителями водородных транспортных средств на сегодня являются автомобили Mercedes-Benz GLC F-Cell (есть возможность подзарядки от обычной бытовой сети, а суммарный запас хода составляет около 500 км), Toyota Mirai (работает только на водороде, и одной заправки должно хватать на 650 км пути) и Honda FCX Clarity (заявленный запас хода достигает 700 км). Но и это еще не все, ведь автотранспорт на водородном топливе выпускается и другими компаниями, например, Hyundai (Tucson FCEV).

Плюсы и основные недостатки водородных двигателей

При всех своих преимуществах, нельзя сказать, что водородный транспорт лишен определенных недостатков. В частности, необходимо понимать, что горючая форма водорода при комнатной температуре и нормальном давлении представлена в виде газа, что вызывает определенные трудности в хранении и транспортировке такого топлива. То есть существует серьезная проблема конструирования безопасных резервуаров для водорода, применяющегося в качестве топлива для автомобилей.

Кроме того, баллоны с этим веществом требуют периодической проверки и сертификации, которые могут выполняться только квалифицированными специалистами, имеющими соответствующую лицензию. Также к этим проблемам стоит добавить и дороговизну обслуживания водородного мотора, не говоря уже об очень ограниченном количестве заправочных станций (по крайней мере, в нашей стране).

Не стоит забывать и о том, что водородная установка увеличивает вес автомобиля, из-за чего он может оказаться не столь маневренным, как вам бы того хотелось. Поэтому, учитывая все вышесказанное, хорошенько подумайте: стоит ли приобретать водородное транспортное средство, или пока с этим лучше повременить.

Однако нужно сказать, что и преимуществ в подобном решении немало. Во-первых, ваш автомобиль не будет загрязнять окружающую среду токсичными выхлопными газами, во-вторых, массовое производство водорода может помочь решить проблему резко меняющихся цен на топливо и перебоев в поставках обычных видов топливных жидкостей.

К тому же, во многих странах уже построены сети трубопроводов для метана, и их несложно адаптировать для прокачки водорода с последующей доставкой к заправкам. Производить водород можно как в малых масштабах, то есть на местном уровне, так и массово – на крупных, централизованных предприятиях. Рост производства водорода послужит дополнительным стимулом для роста поставок этого вещества в бытовых целях (например, для отопления домов и офисов).

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Что эффективнее? Водород или аккумулятор?

Но есть и эмоциональные проблемы: боязнь дальнего боя и быстрая зарядка. Авторы исследования убеждены, что обе эти проблемы будут решены и больше не будут препятствовать распространению электромобилей в фазе тяги с 2023/2025. Дальность действия увеличится, больше точек зарядки, в том числе точек быстрой зарядки, сведут к минимуму страх оказаться в затруднительном положении. Наконец, обсуждается фактическая экономия CO 2 : поскольку электричество, используемое для производства электронных автомобилей, все еще «грязное», по крайней мере, не везде зеленое, у электронного автомобиля сегодня есть сравнительно большой «рюкзак», когда он производится.Исследования показывают, что он экономит больше CO 2 , чем двигатель внутреннего сгорания, после более 100 000 километров пробега (производство и эксплуатация). Согласно исследованию, это тоже изменится в пользу электромобилей в ближайшие несколько лет: больше зеленой электроэнергии при производстве электромобилей и аккумуляторов постепенно уменьшит размер этого «первоначального рюкзака», а электромобиль позволит сэкономить больше. CO 2 , быстрее. Компания Horváth & Partners также столкнулась с критикой многих сторонников водорода за то, что следует принимать во внимание так называемое темное затишье при работе от батарей.Темное затишье означает время, когда электричество не может вырабатываться из-за темноты и / или спокойствия. Для этого к соответствующему дополнительному требованию была добавлена ​​первичная потребность батареи в энергии.

Остается самая интересная часть исследования: какая энергия имеет лучшую эффективность и является наиболее рентабельной для вождения электронных автомобилей? Аккумуляторная или водородная работа?
В электронных автомобилях с батарейным питанием только восемь процентов энергии теряется во время транспортировки, прежде чем электричество будет сохранено в батареях транспортных средств.Когда электрическая энергия, используемая для привода электродвигателя, преобразуется, теряется еще 18 процентов. Это дает электромобилю с батарейным питанием уровень эффективности от 70 до 80 процентов, в зависимости от модели.

В случае электромобиля, работающего на водороде, потери значительно больше: 45 процентов энергии уже теряется при производстве водорода путем электролиза. Из оставшихся 55 процентов первоначальной энергии еще 55 процентов теряется при преобразовании водорода в электричество в автомобиле.Это означает, что водородный электромобиль достигает КПД только от 25 до 35 процентов, в зависимости от модели. Для полноты: при сжигании альтернативных видов топлива КПД еще хуже: всего 10-20% от общего КПД.

«Помимо очень реального потенциала зеленого водорода, в настоящее время существует опасная шумиха», — предупреждают эксперты консалтинговой компании Boston Consulting Group (BCG) в новом исследовании, цитируемом Handelsblatt. Исследование Horváth & / Partners также пришло к таким же выводам.

Авторы исследования пришли к выводу, что вместо того, чтобы тратить миллиарды на создание водородного общества, инвестиции в эту многообещающую технологию должны быть сосредоточены на приложениях, в которых они также имеют экономический смысл. «Мы считаем, что есть большой потенциал, если зеленый водород будет продвигаться в приложениях, в которых он действительно может стать популярным в долгосрочной перспективе. Прежде всего, в промышленности, но также в сфере тяжелых грузов, воздушных и морских перевозок », — говорит Фрэнк Клозе, соавтор исследования.

Вывод очевиден: электромобили на топливных элементах имеют много преимуществ (запас хода, быстрая заправка, отсутствие тяжелой батареи на борту), но один решающий недостаток: они сравнительно неэффективны — как с точки зрения эффективности, так и с точки зрения стоимости.«Ни одна устойчивая экономика не может позволить себе использовать вдвое больше возобновляемой энергии для управления автомобилями на топливных элементах вместо автомобилей с батарейным питанием», — говорит Дитмар Фоггенрайтер, руководитель исследования. Водород можно было использовать только в нишах, в грузовиках и автобусах и на большие расстояния. Вес аккумулятора, запас хода и время заправки играют здесь решающую роль. Она резко возрастает с увеличением емкости, что делает аккумуляторы неинтересными даже для грузовиков. Кроме того, существующие автозаправочные станции могут быть преобразованы в сеть водородных заправочных станций с управляемыми усилиями из-за их меньшего количества.

И что от этого получает потребитель? Совершенно очевидно, что водородные электромобили будут становиться все более дорогими в управлении, чем автомобили с батарейным питанием, не только с точки зрения покупки, но и, прежде всего, с точки зрения эксплуатации. Двойная потребность транспортных средств с водородным двигателем в первичной энергии по сравнению с автомобилями с батарейным питанием будет отражена в потребительских ценах. Водители уже платят от девяти до двенадцати евро за 100 километров за автомобили с водородным двигателем, но только от двух до семи евро за 100 километров (в зависимости от цен на электроэнергию в отдельных странах) за электромобили с батарейным питанием, в зависимости от индивидуальных особенностей. привычки к мобильности.

Это должно прояснить, что большинство потребителей будут покупать в будущем ….

Horváth & Partners даже приняли во внимание критику многих сторонников водорода за то, что следует учитывать так называемый период темного затишья. Темное затишье означает время, когда электричество не может вырабатываться из-за темноты и / или спокойствия. Для этого к соответствующему дополнительному требованию была добавлена ​​первичная потребность батареи в энергии.

Центр данных по альтернативным видам топлива: основы водорода

Водород (H 2 ) — альтернативное топливо, которое можно производить из различных внутренних источников.Хотя рынок водорода в качестве транспортного топлива находится в зачаточном состоянии, правительство и промышленность работают над чистым, экономичным и безопасным производством и распределением водорода для широкого использования в электромобилях на топливных элементах (FCEV). Легковые автомобили FCEV теперь доступны в ограниченных количествах для потребительского рынка в локализованных регионах внутри страны и по всему миру. Рынок также развивается в отношении автобусов, погрузочно-разгрузочного оборудования (такого как вилочные погрузчики), наземного вспомогательного оборудования, грузовиков средней и большой грузоподъемности, морских судов и стационарного оборудования.Для получения дополнительной информации см. Свойства топлива и Центр ресурсов по анализу водорода.

В нашей окружающей среде много водорода. Он хранится в воде (H 2 O), углеводородах (таких как метан, CH 4 ) и других органических веществах. Одна из проблем использования водорода в качестве топлива заключается в возможности его эффективного извлечения из этих соединений.

В настоящее время паровой риформинг, сочетающий высокотемпературный пар с природным газом для извлечения водорода, составляет большую часть водорода, производимого в Соединенных Штатах.Водород также можно получить из воды путем электролиза. Это более энергоемко, но может быть выполнено с использованием возобновляемых источников энергии, таких как ветер или солнце, и избегая вредных выбросов, связанных с другими видами производства энергии.

Почти весь водород, ежегодно производимый в Соединенных Штатах, используется для очистки нефти, обработки металлов, производства удобрений и обработки пищевых продуктов.

Хотя производство водорода может приводить к выбросам, влияющим на качество воздуха, в зависимости от источника, FCEV, работающий на водороде, выделяет только водяной пар и теплый воздух в качестве выхлопных газов и считается автомобилем с нулевым уровнем выбросов.Основные усилия в области исследований и разработок направлены на то, чтобы сделать эти автомобили и их инфраструктуру практичными для широкого использования. Это привело к первоначальному выпуску легких серийных автомобилей для розничных потребителей в северной и южной Калифорнии и доступности автопарка в северо-восточных штатах.

Узнайте больше о водороде и топливных элементах из отдела технологий водородных и топливных элементов.

Водород в качестве альтернативного топлива

Водород считается альтернативным топливом в соответствии с Законом об энергетической политике 1992 года.Интерес к водороду как альтернативному транспортному топливу обусловлен его способностью приводить в действие топливные элементы в FCEV с нулевым уровнем выбросов, его потенциалом для внутреннего производства, быстрым временем заполнения и высокой эффективностью топливных элементов. Фактически топливный элемент, соединенный с электродвигателем, в два-три раза эффективнее двигателя внутреннего сгорания, работающего на бензине. Водород также может служить топливом для двигателей внутреннего сгорания. Однако, в отличие от FCEV, они производят выбросы из выхлопной трубы и менее эффективны.Узнайте больше о топливных элементах.

Энергия 2,2 фунта (1 кг) газообразного водорода примерно такая же, как энергия 1 галлона (6,2 фунта, 2,8 кг) бензина. Поскольку водород имеет низкую объемную плотность энергии, он хранится на борту транспортного средства в виде сжатого газа для достижения дальности движения обычных транспортных средств. В большинстве современных приложений используются резервуары высокого давления, способные хранить водород при плотности 5 000 или 10 000 фунтов на квадратный дюйм (psi). Например, FCEV, производимые производителями автомобилей и доступные в дилерских центрах, имеют резервуары на 10 000 фунтов на квадратный дюйм.Розничные диспенсеры, которые в основном расположены рядом с автозаправочными станциями, могут заполнить эти резервуары примерно за 5 минут. Другие технологии хранения находятся в стадии разработки, включая химическое связывание водорода с таким материалом, как гидрид металла или низкотемпературные сорбирующие материалы. Узнайте больше о хранении водорода.

Данные с розничных заправок водородом, собранные и проанализированные Национальной лабораторией возобновляемых источников энергии, показывают, что среднее время, затрачиваемое на заправку топливом FCEV, составляет менее 4 минут.

Калифорния является лидером в строительстве водородных заправочных станций для автомобилей FCEV. По состоянию на середину 2020 года в Калифорнии для посетителей были открыты 43 розничные водородные станции, а еще 19 находились на различных стадиях строительства или планирования. Эти станции обслуживают более 8000 автомобилей FCEV. Калифорния продолжает предоставлять финансирование для строительства водородной инфраструктуры в рамках своей Программы чистого транспорта. Энергетическая комиссия Калифорнии имеет разрешение выделять до 20 миллионов долларов в год до 2023 года и инвестирует в первые 100 общественных станций для поддержки и поощрения этих транспортных средств с нулевым уровнем выбросов.Кроме того, в северо-восточных штатах планируется построить 12 станций розничной торговли, некоторые из которых уже обслуживают клиентов автопарка.

Производители автомобилей предлагают FCEV только потребителям, живущим в регионах, где есть водородные станции. Неразничные станции в Калифорнии и по всей стране также продолжают обслуживать автопарк FCEV, включая автобусы. Многие распределительные центры используют водород в качестве топлива для погрузочно-разгрузочных машин в своей нормальной работе. Кроме того, было сделано несколько заявлений о производстве большегрузных автомобилей, таких как линейные грузовики, для которых потребуются заправочные станции с гораздо большей мощностью, чем существующие заправочные станции для легких грузовых автомобилей.Найдите заправочные станции водородом в Соединенных Штатах.

Водородные двигатели — обзор

2.5.3 Использование для сжигания в транспортных средствах

Водород может использоваться в качестве топлива в обычных двигателях с искровым зажиганием, таких как двигатели Отто и дизельные двигатели, используемые в легковых автомобилях, и газовые турбины, используемые на обычных электростанциях. Первый водородный двигатель был продемонстрирован в 1808 году Франсуа де Риваз (Википедия, 2017). Время от времени появлялись усовершенствованные конструкции, не вызывающие коммерческого интереса.КПД двигателя такой же высокий, как у бензина или дизельного топлива, а водородное пламя быстро распространяется от ядра воспламенения (см. Таблицу 2.5). Однако из-за более низкой плотности энергии при давлениях, подходящих для поршневых цилиндров, объем смещения должен быть в два-три раза больше, чем для бензиновых двигателей, что вызывает проблемы с пространством в моторных отсеках пассажирских транспортных средств. Один производитель автомобилей, занимающийся разработкой легковых автомобилей на водородном топливе, использовал огромные 8- или 12-цилиндровые двигатели с рабочим объемом более 4 литров, чтобы приблизиться к приемлемым характеристикам (BMW, 2004).Эффективные обычные бензиновые или дизельные автомобили имеют общий рабочий объем около 1,2 литра, распределенный на трех-четырех цилиндрах (VW, 2003).

Таблица 2.5. Свойства водорода и других видов топлива, связанные с безопасностью (с использованием Dell и Bridger, 1975; Zittel and Wurster, 1996)

Свойство Водород Метанол Метан Пропан Бензин Установка
Минимальная энергия зажигания 0.02 0,29 0,25 0,24 10 — 3 J
Температура пламени 2045 1875 2 200 ° C
Авто -температура возгорания на воздухе585 385540 510 230–500 ° C
Максимальная скорость пламени 3,46 0.43 0,47 м с — 1
Диапазон воспламеняемости в воздухе 4–75 7–36 5–15 2,5–9,3 1,0–7,6 объем %
Диапазон взрывоопасности в воздухе 13–65 6,3–13,5 1,1–3,3 об.%
Коэффициент диффузии в воздухе 0,61 0,16 0,20 0.10 0,05 10 — 4 м 2 с — 1

На рисунке 2.49 показаны результаты компьютерного моделирования процесса горения водорода в воздухе (в камере сгорания, которая может представлять собой цилиндр двигателя или, скорее, газовая турбина), обосновывая замечание о быстром расходе впрыскиваемого водорода. H 2 входит с левой стороны. Распределение кислорода показывает «неиспользованный» кислород вдоль камеры, в которую воздух втягивается через многочисленные отверстия на внешней поверхности.Внизу рис. 2.49 показано распределение образовавшихся оксидов азота. Это похоже на только что показанное распределение высоких температур, поскольку образование оксидов азота резко возрастает при температурах выше 1700 К. Образование высоких уровней NO x представляет собой проблему для сжигания водорода, что в данном случае больше не является экологически чистым. Однако добавление каталитического нейтрализатора может существенно уменьшить проблему (Verhelst, 2014).

Поведение водорода в термодинамических двигателях было установлено с помощью моделирования, такого как показанное на рис.2.49, а также измерениями — например, чтобы установить влияние степени сжатия (Verhelst and Sierens, 2003; Karim and Wierzba, 2004). Высокая степень сжатия важна из-за низкой объемной плотности энергии водорода. У широкого диапазона воспламеняемости и легкости возгорания есть две стороны. Один из них — плавная работа при низких нагрузках. Однако при высоких нагрузках возникает ряд проблем с преждевременным зажиганием, обратным зажиганием или детонацией, которые необходимо решать (Shoiji et al., 2001). Существуют важные аспекты безопасности из-за широкого диапазона воспламеняемости водорода (см. Таблицу 2.2). Их необходимо контролировать, например, с помощью двухклапанных систем на каждом цилиндре или с помощью лазерного зажигания (NFC, 2000; Pal and Agarwal, 2015).

Были проведены работы по двигателям, работающим на смесях водорода с бензином или природным газом (Fontana et al., 2004; Akansu et al., 2004), а также по использованию сжигания водорода только для выработки электроэнергии для двигателя (van Blarigan and Келлер, 1998; Юань и др., 2016).

Из-за большого количества водорода по объему, необходимого для использования в двигателях внутреннего сгорания, приличный рабочий диапазон для легкового автомобиля обычных размеров требует гораздо более высокой плотности хранения H 2 , чем это возможно в газовой форме.Поэтому используется жидкий водород, подразумевающий охлаждение до температуры 20 К (с использованием энергии, которая еще больше снижает эффективность) и использование очень специальных заправочных станций. Эти технологии были разработаны и использованы для прототипов автомобилей, работающих на водороде (Fischer et al., 2003). Были сконструированы специальные резервуары для хранения жидкого водорода с использованием множества слоев металлических цилиндров с высококачественной изоляцией между ними (Michel et al., 1998). Но даже в этом случае существует утечка тепла и проблема утечки водорода.

Сжигание водорода несколько легче внедрить в автобусы, потому что больший размер моторного отсека составляет меньшую часть от общего размера и — из-за более низких рабочих скоростей (при городском использовании) автобусы могут размещать водород, хранящийся на крыше, как это сделано в прототипах водородных автобусов, выпускаемых MAN (Knorr et al., 1998). Кроме того, корабли могли использовать водородное топливо вместо дизельного топлива в обычных двигателях.

Предложение об использовании водорода для прямого сгорания в турбинах привлекло большое внимание в случае самолетов.Запасы жидкого водорода могут быть встроены в крылья или фюзеляж, и могут использоваться почти обычные газотурбинные двигатели. Ранние испытания самолетов на жидком водороде включают бомбардировщик Boeing B57 1957 года и в 1988 году Туполев Ту-154, а недавно был начат аналогичный проект под названием Криоплан на базе самолета Airbus A310 (Pohl, Malychev, 1997; Klug and Faass, 2001 ). Более громоздкие запасы топлива привели к предположению, что эти самолеты должны работать на более низких высотах, что окажет положительное влияние на выбросы NO x (Svensson et al., 2004). Это также снижает значимость выбросов в воду, поскольку поглощение солнечной радиации водой (приводящее к потеплению парниковых газов) более выражено на высоте более 10 км. Разработан проект самолета, способного работать от нуля до 5 Маха (в пять раз больше скорости звука, что составляет 1,22 × 10 6 м с — 1 на уровне моря), при этом в транспортном средстве используется жидкий водород. обычный режим газотурбинного двигателя с ТРДД до 3 Маха и режим прямоточного воздушно-реактивного двигателя выше этой скорости (Qing and Chengzhong, 2001).

Liquid H 2 уже несколько лет используется в космических аппаратах. Здесь общая масса при отталкивании является существенным ограничивающим параметром. Таким образом, высокое содержание энергии по массе делает водород более предпочтительным по сравнению с любой другой системой на основе топлива, и считается целесообразным дополнительное усложнение криогенного хранения. Двигатель может быть газовой турбиной или ракетным двигателем, в зависимости от режима работы космического корабля (полет в атмосфере Земли или уход от гравитации Земли).И водород, и кислород должны переноситься в жидкой форме, поскольку космическая среда за пределами атмосферы Земли не содержит воздуха или кислорода. Основной особенностью ракетного двигателя является сопло, через которое отводятся пороховые газы для обеспечения прямой тяги. Новые разработки в области высокоэффективной конструкции с несколькими соплами все еще продолжаются (Yu et al., 2001), как и эксперименты с несколькими видами топлива (обычно жидким водородом и твердыми углеводородами) для удовлетворения требований на различных этапах полета в околоземном пространстве. с многоразовыми космическими кораблями типа «шаттл» (Chibing et al., 2001). Оптимальное относительное расположение мест нагнетания жидкого водорода и жидкого кислорода было изучено путем экспериментов и моделирования (Kendrich et al., 1999).

FEV способствует развитию водородных двигателей внутреннего сгорания

С тех пор, как в июле 2020 года Европейский союз инициировал «Европейский альянс по чистому водороду», водородный ДВС (двигатель внутреннего сгорания) все чаще находится в центре внимания в дебатах индустрии мобильности о решениях для приводов с нулевым уровнем выбросов.Компания FEV из Аахена, ведущий международный разработчик транспортных средств и трансмиссий, приветствует эту открытость к технологиям, касающимся будущих мобильных решений, и имеет почти четыре десятилетия опыта в разработке водородных двигателей.

Расширение электронной мобильности рассматривается как важный шаг на пути к достижению поставленных климатических целей. «Однако мы всегда должны учитывать соответствующий сценарий применения при выборе технологии», — сказал профессор Стефан Пишингер, президент и генеральный директор FEV Group.«Это вызвало значительную активизацию дебатов вокруг водородного двигателя как еще одной устойчивой формы привода с огромным потенциалом для многих областей».

В качестве возобновляемого источника энергии с нулевым выбросом CO2 водород может транспортироваться на большие расстояния и использоваться для хранения большого количества энергии. Использование водорода может обезуглероживать те части транспортного сектора, где электрификация за счет использования тяжелых аккумуляторов неэффективна, в том числе для коммерческих автомобилей, автобусов, больших легковых автомобилей и даже поездов и кораблей.

Инфраструктура, которая, как ожидается, будет создана к 2030 году, возрождает дебаты о наиболее подходящем способе использования водорода. Одним из преимуществ топливных элементов является их высокий КПД при низких нагрузках. Но при более высоких удельных нагрузках их уровень эффективности ухудшается по сравнению с водородным двигателем внутреннего сгорания, эффективность которого может быть хуже при низких нагрузках, но тем выше, чем выше нагрузка. Другими словами, выигрыш в эффективности зависит от нагрузки.

Несмотря на известные преимущества, разработка топливных элементов все еще находится на начальной стадии, и очень немногие методы разработки и тестирования пока внедрились. С другой стороны, водородный двигатель внутреннего сгорания — это надежный и экономичный вариант для транспортировки с нулевым выбросом CO2, который можно быстро реализовать в рамках существующей производственной инфраструктуры, а также предлагает потенциал для существующих транспортных средств.

Ключевыми направлениями развития водородного двигателя внутреннего сгорания являются

  • топливопроводящие компоненты
  • Система зажигания
  • Вентиляция картера
  • Система подачи топливной смеси с непосредственным впрыском газа
  • зарядка
  • Управление двигателем
  • Выхлопной газ после очистки

Поскольку водород является углеродно-нейтральным топливом, из сгоревшей смазки образуется лишь минимальное количество компонентов выбросов: углеводородов (HC), монооксида углерода (CO), диоксида углерода (CO2) и сажи.Таким образом, сокращение потребления масла является еще одним направлением развития. Основным компонентом выхлопных газов является оксид азота (NOx). Благодаря очень высокой ламинарной скорости горения и широким пределам воспламенения водород позволяет сжигать обедненную смесь с большим количеством избыточного воздуха. Низкие температуры выхлопных газов означают, что даже без дополнительной обработки выхлопных газов уровень оксида азота уже ниже текущих пределов. Последующая обработка является эффективным средством дальнейшего снижения выбросов NOx.Эффективное сжигание обедненной смеси также дает преимущество в расходе по сравнению с обычными двигателями внутреннего сгорания.

FEV имеет почти сорокалетний опыт работы в этой области и послужной список успешно реализованных проектов — от разработки водородных двигателей внутреннего сгорания для легковых и коммерческих автомобилей до стационарных и внедорожных двигателей. Обширный спектр услуг компании также включает разработку отдельных компонентов, таких как форсунки для прямого впрыска и многоступенчатые системы зарядки.FEV также применяет свой обширный опыт от разработки обычных трансмиссий до водородных двигателей.

«Наши клиенты ценят тот факт, что FEV — это универсальный магазин, который может предоставить все услуги по разработке от начала до конца», — сказал профессор Пишингер. «Это включает в себя разработку и проектирование, строительство, интеграцию транспортных средств, ввод в эксплуатацию, калибровку и тестирование компонентов и полных водородных двигателей». FEV имеет специальные испытательные стенды в Ахене, на которых можно проводить испытания водородных двигателей внутреннего сгорания мощностью до 640 кВт.

ИСТОЧНИК: FEV

Почему водородные двигатели внутреннего сгорания — не лучшая идея

Водородная энергия для транспортных средств звучит заманчиво: вода — единственный выброс, а водород, кажется, доступен везде, верно?

Неправильно.

Водород может приводить в действие транспортные средства, но то, как он приводит их в действие, имеет решающее значение. Двигатели водородного внутреннего сгорания сильно отличаются от автомобилей на водородных топливных элементах, и Джейсон Фенске из Engineering Explained разбирает оба этих момента в видео.

Самая главная причина, по которой водородные двигатели внутреннего сгорания не годятся? Они создают оксид азота, который вреден для людей и окружающей среды. Несмотря на то, что углерод не является частью процесса сгорания водорода, NOx не является компромиссом, поскольку автопроизводители стремятся к автомобилям с нулевым уровнем выбросов.

Во-вторых, водородные двигатели внутреннего сгорания во многих отношениях не так эффективны, как водородные топливные элементы. К тому времени, когда водород попадает в двигатель, через трансмиссию и в дифференциал, приводящий в движение колеса автомобиля, передается только 25 процентов потенциальной энергии водорода.В водородном топливном элементе водород попадает в топливный элемент, где электроны отправляются в преобразователь, затем в блок управления мощностью и в электродвигатель. Затем двигатель приводит в действие редуктор, приводящий в движение колеса автомобиля. Несмотря на многочисленные передачи, топливная энергия водорода более эффективно передается на колеса, до 50 процентов по данным Фенске.

В основном автомобили на топливных элементах — это электромобили, работающие на водороде.

Эффективность также имеет каскадный эффект.Поскольку водород занимает много места при хранении, автомобили с водородными топливными элементами могут иметь меньшие топливные баки по сравнению с автомобилями, работающими на водороде. А поскольку водород не совсем дешев, топливный элемент намного эффективнее в эксплуатации и потребляет на 25 процентов меньше энергии, чтобы выполнять ту же работу, что и двигатель водородного внутреннего сгорания.

Если вам не терпится получить дополнительную информацию о водороде и о том, как он питает топливные элементы и двигатели, нажмите кнопку воспроизведения выше.

HyTech Power, возможно, решил водород, одну из самых сложных проблем в чистой энергии

Это странный химический поворот в том, что в самом обычном веществе на Земле есть топливо, заключенное в воде.

Водород — символ славы h3O — оказался чем-то вроде универсального элемента, швейцарского армейского ножа для получения энергии. Его можно производить без парниковых газов. Он легко воспламеняется, поэтому может использоваться в качестве топлива для сжигания. Его можно подавать в топливный элемент для производства электричества напрямую, без сжигания, с помощью электрохимического процесса.

Может храниться и распространяться в виде газа или жидкости. Его можно комбинировать с CO2 (и / или азотом и другими газами) для создания других полезных видов топлива, таких как метан или аммиак.Его можно использовать в качестве химического сырья в различных промышленных процессах, помогая производить удобрения, пластмассы или фармацевтические препараты.

Довольно удобно.

И это самый распространенный химический элемент во Вселенной, так что можно подумать, что у нас есть все, что нам нужно. К сожалению, это не так просто.

Выделять водород из других элементов, хранить его и преобразовывать обратно в полезную энергию — это дорого как с точки зрения денег, так и энергии. Ценность, которую мы получаем от этого, никогда полностью не оправдывала того, что мы вкладываем в его производство.Это одна из тех технологий, которая, кажется, постоянно находится на грани прорыва, но никогда не достигает цели.

Уроженец Сиэтла Эван Джонсон считает, что он может это изменить. Он думает, что наконец-то понял, как разблокировать водородную экономику.

Джонсон — далеко не первый и не единственный человек, ставший этой целью. Но после 10 лет работы, испытаний и подготовки он разработал ряд технологий и практический бизнес-план, который проложил путь к реальному коммерческому масштабу использования водорода.

И хотя HyTech Power, где Джонсон является техническим директором, очевидно, стремится к финансовому успеху, Джонсон рассматривает свои продукты как нечто большее: способ использовать водород для немедленного уменьшения загрязнения при одновременном увеличении масштабов и снижении затрат, достаточных для внесения более фундаментальных изменений в энергетику. система.

Стационарный дизель-генератор с водородными форсунками HyTech. HyTech Power

HyTech нацелена на большой рынок, чтобы выйти на еще больший

HyTech Power, базирующаяся в Редмонде, штат Вашингтон, намеревается представить три продукта в течение ближайшего года или двух.

Первый будет использовать водород для очистки существующих дизельных двигателей, повышая их топливную эффективность на треть и устраняя более половины их загрязнения воздуха, со средней окупаемостью за девять месяцев, сообщает компания. Это потенциально огромный рынок с большим существующим спросом, который, как надеется HyTech, позволит капитализировать свой второй продукт — модернизацию, которая превратит любой автомобиль внутреннего сгорания в автомобиль с нулевым уровнем выбросов (ZEV), позволив ему работать на чистом водороде. В первую очередь это будет нацелено на крупные флоты.

И это станет третьим продуктом — тот, на который Джонсон положил глаз с самого начала, тот, который может революционизировать и децентрализовать энергетическую систему — стационарный продукт для хранения энергии, предназначенный для конкуренции и, в конечном итоге, вытеснения с такими большими батареями, как Powerwall Теслы.

По крайней мере, таков план.

Мир энергетики, конечно, полон громких стартапов, и путь от прототипа к рыночному успеху долог и опасен. Для успеха HyTech потребуется нечто большее, чем просто умные технологии.Потребуется хорошее исполнение.

С этой целью компания недавно привлекла поддержку нескольких опытных руководителей Boeing, в том числе Джерри Аллина, который проработал 30 лет в Boeing и в декабре вышел на пенсию, чтобы возглавить расширение HyTech в качестве главного операционного директора.

Мягкая и неторопливая, с аккуратно подстриженной бородой, Аллин занимает небольшой офис на втором этаже бежевого здания HyTech, которое в основном занято огромным гаражом / мастерской. «Я очень скептически относился к технологии, как и в целом», — говорит он, но «как только я смог увидеть ее собственными глазами и понять физику, я подумал:« О, черт возьми ».Это действительно интересно! »

Его привлекло то, что исходные продукты не требуют новых рынков или инфраструктуры. «Теперь они действительно могут изменить мир», — говорит он. Ключевым моментом является в первую очередь дизельные двигатели. Их миллионы, они грязные и дорогие, и политики стараются их очистить. Это большой спрос. Компания «ожидает совершить много ошибок», — говорит Аллайн, но потенциальный рынок почти непостижимо велик.

Работа в гараже HyTech, переоборудование больших дизельных грузовиков. HyTech Power

И ставки выше быть не могут. В последние годы стало ясно, что какое-то топливо с нулевым выбросом углерода, пригодное для хранения, горючее, если не необходимо, для полной декарбонизации энергетической системы, по крайней мере, чрезвычайно полезно.

Перед тем, как углубиться в продукты HyTech, стоит объяснить, почему доступный водород является такой заманчивой перспективой для тех, кто озабочен устойчивой энергетикой.

Проблема с водородом: его дорого собирать, хранить и преобразовывать.

Около 95 процентов мирового производства водорода осуществляется за счет парового риформинга метана (SMR), продувки природного газа высокотемпературным паром под высоким давлением.Это энергоемкий процесс, который требует использования ископаемого топлива и оставляет после себя поток углекислого газа, поэтому его использование для обезуглероживания энергетической системы ограничено.

Но также можно извлечь водород непосредственно из воды с помощью электролиза — это процесс поглощения воды (содержащей различные «электрокатализаторы») электричеством, стимулируя химическую реакцию, которая расщепляет водород и кислород. Если электролиз проводится с использованием возобновляемой электроэнергии с нулевым выбросом углерода, полученный водород является топливом с нулевым выбросом углерода.

Это решает проблему углерода, но есть и другие. Водород в воде на самом деле не хочет выпускать кислород (они «прочно связаны»), поэтому их расщепление требует довольно много энергии. Полученный водород необходимо хранить, либо сжимая его в виде газа с помощью больших насосов, либо (слабо) связывая его с чем-то еще и храня в виде жидкости. Для этого газа или жидкости потребуется распределительная инфраструктура. Наконец, водород должен быть извлечен из хранилища и преобразован обратно в энергию путем его сжигания или пропуска через топливный элемент.

К тому времени количество энергии, вложенной в процесс, значительно превышает то, что может быть возвращено обратно.

Это был барьер. Если сложить все затраты на преобразование энергии, «добыча» водорода для использования в энергетической системе с нулевым выбросом углерода, как правило, была убыточным бизнесом. Полезные услуги, предоставляемые водородом, не могут компенсировать энергию (и деньги), необходимые для ее производства и использования. По крайней мере, на сегодняшний день.

Вот почему, хотя люди добывают и сжигают водород с 17-го века, двигатели и топливные элементы, работающие на водороде, существуют примерно с 19-го, а водород прошел через многочисленные циклы ажиотажа, вплоть до 21-го века. — разрекламированная «водородная экономика» так и не получила широкого распространения.

Таких не так уж и много. Shutterstock

Еще в конце 2000-х годов большинство экспертов в области энергетики списали водород со счетов. С тех пор изменились две вещи.

Доступный водород может устранить основные препятствия на пути к устойчивой энергетике

Главное, что изменилось, — это глобальный переход на чистую энергию. Чтобы решить проблему изменения климата, мир фактически согласился полностью декарбонизировать энергетическую систему в течение столетия.Это вызвало интенсивное исследование инструментов, необходимых для создания системы с нулевым выбросом углерода.

Мы знаем, как производить электричество с нулевым выбросом углерода (возобновляемые источники, гидроэнергетика, атомная энергия), поэтому одним из ключевых шагов в декарбонизации является «электрификация всего» или, по крайней мере, как можно большего количества видов энергии.

Но широкомасштабная электрификация — непростая задача. Существует множество существующих приложений, работающих на горючем жидком топливе. Помимо практически всего транспорта, подумайте о миллионах и миллионах зданий по всему миру, отапливаемых нефтью или природным газом.

Значительная часть транспорта может быть электрифицирована, и все эти печи теоретически можно заменить электрическими альтернативами, такими как тепловые насосы, но сделать все это за оставшееся время для обезуглероживания — поистине монументальная задача.

Конечно, было бы неплохо выиграть время, если бы у нас было жидкое топливо с нулевым выбросом углерода, которое мы могли бы просто использовать в этих существующих системах, чтобы сократить выбросы от транспортных средств и приборов, которые мы уже используем. (Великобритания экспериментирует с отоплением домов водородом; Норвегия запретит любое использование мазута для отопления домов к 2020 году.)

Кроме того, если переменная возобновляемая энергия (солнце и ветер) должна обеспечивать большую часть или всю нашу энергию, нам понадобится какой-то способ хранить эту энергию, когда солнце и ветер не хватает. Нам потребуется не просто посекундное или почасовое хранение (которое вполне может обеспечить батареи), но и ежедневное, ежемесячное или ежегодное хранение (для которого батареи не подходят), чтобы гарантировать защиту от долговременных колебаний солнца и ветра. . Было бы неплохо, если бы мы могли хранить много резервной энергии в виде стабильного жидкого топлива.

Короче говоря, в наших планах по устойчивой энергетике есть дыра в форме водорода.

Второе, что изменилось, это то, что исследования, разработки и ранние рыночные испытания неуклонно снижали стоимость и повышали долговечность основных компонентов водородной технологии.

В общем, потребность в сочетании с инновациями может, наконец, означать, что под рукой есть рентабельные продукты. Вот почему наблюдается «возрождение водородной активности во всем мире», — говорит Адам Вебер, руководитель группы преобразования энергии в Национальной лаборатории Лоуренса Беркли.

Или, как недавно сказал Пьер-Этьен Франк, секретарь торговой группы Hydrogen Council, «2020-2030 годы будут для водорода такими же, как 1990-е годы для солнца и ветра».

Несмотря на все недавние инновации, Джонсон снова и снова обнаруживал, что каждый раз, когда он отказывался от стандартных компонентов и создавал свои собственные — практически каждый элемент в продуктах HyTech спроектирован и изготовлен по индивидуальному заказу, сырье заказывается через Интернет — « цена пошла вниз. Не знаю почему.”

Джонсон — высокий, стройный и светловолосый, заядлый мастер и строитель, глаза которого загораются, когда он говорит о технике. После учебы в Тихоокеанском университете Сиэтла он провел первые 10 лет своей 20-летней карьеры в области сжатия видео. Но работа в Норвегии с Innovation Norway над хранением водородной энергии привела к тому, что у него возникла проблема с водородом. С тех пор он стал истинным верующим. «Ставка на водород в будущем — лучшее, что вы можете сделать», — говорит он.

«Если электролиз действительно настолько дешевле, это меняет правила игры»

Начинается с электролизера, который вытягивает водород из воды.Джонсон не смог найти такой дешевый, простой и эффективный, как он хотел, поэтому он построил свой собственный.

Электролизер HyTech (в данном случае присоединенный к стационарному дизель-генератору). HyTech Power

Ничего особенного, просто трубка, наполненная дистиллированной водой. Примерно в центре подвешена небольшая титановая пластина, покрытая специальной смесью электрокатализаторов, оптимизированных для разделения водорода и кислорода.Газы поднимаются с пластины непрерывным потоком пузырьков. Он полностью закрыт металлом, в нем нет движущихся частей, поэтому он чрезвычайно прочен и не требует значительного обслуживания.

В целом, по словам Джонсона, система «очень проста и бессмысленна». (Это тема, к которой он часто возвращается — предпочтение замкнутых, простых, полностью перерабатываемых систем.) Но благодаря эффективности электрокатализаторов, добавляет он, «очень точно, сколько энергии необходимо для производства необходимый водород.”

Джонсон может похвастаться тем, что его электролизер может производить водород примерно в три или четыре раза быстрее, чем электролизеры с аналогичной площадью основания, используя примерно треть электрического тока. Это представляет собой постепенное снижение затрат.

«Очевидно, я не могу проверить их экономику издалека, — сказал мне Джеймс Бреннер из Национального центра исследований водорода при Технологическом институте Флориды, — но если электролиз действительно намного дешевле, это меняет правила игры».

Теперь давайте посмотрим, что HyTech планирует с этим делать.

Модернизация. HyTech Power

Способ очистки дизельных двигателей для рынка, который остро нуждается в одном

Первый продукт, дебют которого запланирован на апрель, — ключ ко всему остальному.

Это называется «Система внутреннего сгорания» (ICA), модификация двигателей внутреннего сгорания, которая позволяет им существенно повысить эффективность использования топлива и уменьшить загрязнение воздуха. Это достигается путем добавления к топливу крошечных количеств газообразного водорода и кислорода непосредственно перед его сгоранием в цилиндрах двигателя.Смесь HHO придает интенсивность сгоранию, позволяя топливу сгорать более полно, производя больше энергии и меньше загрязнений.

Система ICA технически может работать на любом двигателе внутреннего сгорания, но для начала HyTech нацелена на самые грязные двигатели с самой быстрой окупаемостью инвестиций, а именно на дизельные двигатели — в транспортных средствах, таких как грузовики, грузовые автофургоны, автобусы и вилочные погрузчики, а также большие стационарные дизельные генераторы, которые по-прежнему обеспечивают резервное (и даже основное) питание для миллионов людей во всем мире.

Все эти дизельные двигатели выделяют канцерогенный дым, содержащий твердые частицы (сажа) и оксиды азота (NOx), которые наносят вред здоровью человека. Штаты и города по всему миру борются с загрязнением воздуха дизельным топливом.

Но дизельные сажевые фильтры (DPF), которые задерживают частицы, дороги, требуют технического обслуживания и требуют частой замены. Жидкости для селективного каталитического восстановления (SCR), добавляемые в выхлопные газы для удаления NOx, сами по себе являются загрязнителями, и их необходимо часто менять.

Короче говоря, есть много дизельных двигателей, они очень грязные (ответственны за до 50 процентов загрязнения городского воздуха зимой), и многие люди тратят много денег, пытаясь их очистить. Это большой рынок.

Предложение

HyTech на этом рынке весьма примечательно: оно утверждает, что его ICA может повысить топливную экономичность дизельного двигателя на 20–30 процентов, уменьшить содержание твердых частиц на 85 процентов и сократить выбросы NOx на 50–90 процентов.Вместе с сажевым фильтром DPF и некоторым количеством SCR он может дать дизельный двигатель, который соответствует официальным калифорнийским стандартам для автомобилей со «сверхнизким уровнем выбросов».

Стоимость преобразования грязного дизельного двигателя в относительно чистый: около 10 000 долларов на установку, которые, по оценке HyTech, окупятся за девять месяцев за счет сокращения расходов на топливо и техническое обслуживание.

Устройство помощи внутреннего сгорания (ICA) HyTech, установленное на большом дизельном двигателе.(Видите маленький ряд форсунок?) HyTech Power

HyTech — не первая и не единственная компания, разработавшая систему присадок HHO, но ничто на рынке не может сравниться с такими цифрами.

ICA достигает этой эффективности благодаря компьютеризированному контроллеру времени, который определяет и анализирует вращение коленчатого и распределительного валов, чтобы определить точное время и размер впрыска HHO. Предыдущие системы HHO более или менее заполняли двигатель HHO через воздухозаборник, но HyTech использует «впрыск через порт» с отдельным инжектором на впускном клапане каждого цилиндра, управляемым таймером.Каждый инжектор (размером примерно с человеческий волос) впрыскивает крошечные, точно отмеренные струи HHO в цилиндр именно тогда, когда это необходимо.

Такой уровень точности позволяет ICA использовать гораздо меньше водорода, чем его конкуренты, гораздо более эффективно. Небольшой бортовой электролизер производит более чем достаточно.

Это смелые заявления, но пока они остаются верными. ICA был включен в список EPA как кандидат на технологию сокращения выбросов; Уважаемая испытательная фирма SGS обнаружила, что ICA повысила топливную экономичность грузовика FedEx на 27.4 процента; FedEx в настоящее время проводит дорожные испытания ICA на автопарке грузовиков и обнаруживает, что экономия топлива на 20–30 процентов выше, а затраты на техническое обслуживание сажевого фильтра значительно снизились. При стороннем тестировании и при ограниченных местных продажах в районе Редмонда ICA выполнила свои обещания.

Если он сможет сделать это в масштабе HyTech — надежно повысить экономию топлива на треть и снизить загрязнение почти до нуля с окупаемостью за девять месяцев — возможностей не будет конца. Компания оценивает рынок очистных работ в 100 миллиардов долларов, включая портовые грузовики, грузовые суда, рефрижераторы, грузовики дальнего следования, автобусы, генераторы и все другие грязные дизельные двигатели.

ICA не полагается на новую инфраструктуру или субсидии. Это способ выйти на большой рынок, немедленно сократить выбросы и накопить финансирование для долгосрочных усилий по полной замене дизельного топлива.

HyTech также хочет очистить существующие автомобили

Позже в этом году HyTech представит свою вторую линейку продуктов: модифицированные водородом автомобили с ДВС. Проще говоря, потребуется любой двигатель, работающий на дизельном топливе, бензине, пропане или СПГ, и переключить его на работу на 100-процентном водороде.(В настоящее время компания находится в процессе сертификации своего модифицированного продукта Калифорнийским советом по воздушным ресурсам как имеющий нулевой уровень выбросов.) Это позволит любому водителю получить автомобиль с нулевым уровнем выбросов по значительно меньшей цене, чем стоимость покупки нового электрического или электрического автомобиля. автомобиль на водородных топливных элементах.

Джонсон признает, что, если бы он проектировал автомобиль с нуля, он бы спроектировал его на основе водородного топливного элемента без сгорания, но «мы не заинтересованы в том, чтобы становиться автомобильной компанией», — говорит он.Вместо этого HyTech хочет очистить существующие автомобили.

Не каждый может позволить себе автомобиль Toyota Mirai на водородных топливных элементах (от 58 365 долларов). Shutterstock

Для такого применения с чистым водородом (в отличие от смешанного HHO) электролизер немного отличается. Водород проходит через мембрану, которая лишает его остатков кислорода или азота, оставляя чистый водород для сгорания транспортного средства.(Это делает электролизер протонообменной мембраной, или PEM, электролизером, вариант, знакомый любителям водорода.)

По своему обыкновению, Джонсон разработал свою собственную мембрану, смешав сырье, чтобы создать что-то более эффективное и дешевое, чем другие продукты PEM на рынке.

Есть еще одно отличие, которое представляет собой еще одну из основных технологических разработок Джонсона.

Потребляемая мощность двигателя транспортного средства варьируется и может быстро увеличиваться и уменьшаться, поэтому системе необходимо хранить немного водорода в качестве буфера на случай, если он потребляет больше, чем может произвести электролизер.

Обычные автомобили на водородных топливных элементах (например, Toyota Mirai) хранят водород в виде сильно сжатого газа при давлении около 8000 фунтов на квадратный дюйм. Но со сжатым газом возникают самые разные проблемы. Для сжатия газа требуется много энергии, для этого требуется собственная специализированная инфраструктура, заправочные станции для сжатого газа чрезвычайно дороги в строительстве, а сжатый водород, ну, взрывоопасен, поэтому каждый полный бак, заполненный им, является потенциальной бомбой.

Джонсон не хочет иметь с этим ничего общего. Итак, он пошел другим путем.Его система хранит водород, слабо связанный с металлами в виде «гидридов», в инертном жидком растворе без давления (~ 200 фунтов на квадратный дюйм).

Проблема с гидридами была двоякой: а) создание связи, достаточно слабой, чтобы ее можно было разорвать без излишней энергии, когда необходимо высвободить водород, и б) увеличение плотности энергии образующейся жидкости. (На сегодняшний день большинство гидридных жидкостей имеют меньшую энергетическую плотность, чем сжатый водород, и намного меньше ископаемого топлива. Они весят слишком много для той энергии, которую они производят.)

Джонсон думает, что решил обе проблемы. Он не раскрывает подробностей используемых гидридов, но у него достаточно высокое соотношение мощности к весу, чтобы побить литий-ионные батареи (которые очень тяжелые), и достаточно слабую гидридную связь, чтобы ее можно было разорвать, используя только перенаправляем отходящее тепло от двигателя (не требуется дополнительного тепла или давления).

Более того, он работает с командой над наноматериалами для гидридов и ожидает «огромного скачка» в соотношении мощности к весу в ближайшие годы; в конечном итоге, по его словам, он хочет, чтобы плотность энергии была конкурентоспособной с ископаемым топливом.

Эффективный электролиз плюс эффективное накопление гидридов означает, что в результате модернизации Hy-Tech будет создан автомобиль с нулевым уровнем выбросов (ZEV) со средней дальностью полета 300 миль, сравнимый с электромобилями высокого класса, но способный работать с любым существующим транспортным средством. Когда я посетил завод HyTech в Редмонде, Джонсон отвез меня на обед в гигантском пикапе Ford Raptor, работающем на водороде.

Ford Raptor, работающий на чистом водороде. HyTech Power

Есть два способа «заправить» автомобиль.Медленный способ — включить его на ночь, чтобы электролизер мог заполнить бак. Самый быстрый способ — заполнить его раствором гидрида, который можно получить на месте, дома или на заправочной станции, не имея ничего, кроме электролизера, немного дистиллированной воды и резервуара.

Пока не существует инфраструктуры, поддерживающей такую ​​быструю заправку, но это не похоже на сжатый водород под высоким давлением, подчеркивает Джонсон. Это не опасно; не производит токсичных побочных продуктов; он не требует множества государственных правил безопасности и правоприменения; Теоретически, на заправочных станциях «мама и папа» можно было бы довольно дешево запустить заправку.

Несколько утопическое видение Джонсона состоит в том, что в конечном итоге в каждом доме и на предприятии будет электролизер и полный бак связанного водорода, который можно будет использовать либо для выработки электроэнергии для здания (подробнее об этом в третьем этапе), либо для топлива водородных транспортных средств.

По словам Джонсона, цель — оставить двигатели внутреннего сгорания, но «это все равно, что бросить курить — каждый хочет остыть индейки». Этого просто не произойдет «. Модернизация существующих транспортных средств за небольшую часть стоимости нового транспортного средства с нулевым уровнем выбросов позволит компании быстро начать сокращение транспортных выбросов.

Святой Грааль HyTech: долгосрочное и доступное хранилище энергии

Наконец, получив финансирование и капитализацию за счет продуктов для модернизации, HyTech приступит к производству аккумуляторов энергии. Его масштабируемое хранилище энергии (SES) предназначено для конкуренции с большими батареями, такими как Powerwall от Tesla, либо в качестве локального хранилища для домов и предприятий, либо в качестве хранилища в масштабе сети, подключенного к крупным солнечным и ветряным электростанциям.

Идея хранения водородной энергии заключается в том, что когда-нибудь скоро будут регулярные периоды, когда ветер и солнце вырабатывают электроэнергию, значительно превышающую спрос.Эти излишки энергии будут стоить очень дешево — на самом деле, мы будем искать способы не тратить их зря.

Одна из все более популярных идей — «энергия в газ», то есть преобразование этой избыточной энергии в водород и его хранение. «Водород — это, наверное, самое простое, что вы можете сделать при низких ценах на электроэнергию», — говорит Вебер.

Часть этого водорода можно закачать в существующие газопроводы, что снизит углеродоемкость газа. Некоторые из них могут быть объединены с диоксидом углерода для создания другого жидкого топлива.И некоторые из них можно было бы напрямую преобразовать обратно в энергию с помощью топливных элементов. «Стационарное хранилище — это прекрасная потенциальная возможность для водородных топливных элементов», — говорит Леви Томпсон, директор Лаборатории технологий водородной энергетики Мичиганского университета.

Проблема, опять же, заключалась в том, что сквозная эффективность накопления водородной энергии на основе электролиза обычно была меньше половины, чем достигается литий-ионной батареей.

Плохой рисунок, иллюстрирующий накопление водородной энергии. Shutterstock

И снова Джонсон думает, что сломал его.

Вот как работает система SES от HyTech: энергия поступает (в идеале от солнечных панелей или ветряных турбин) для запуска электролизера. Произведенный водород либо поступает в топливный элемент (да, Джонсон построил свой собственный), либо связывается в виде гидридов и хранится в резервуаре. Когда требуется энергия, гидридные связи разрываются с использованием отработанного тепла системы, высвобождая больше водорода для топливного элемента.

Избегая сжатия и обнаружив достаточно слабую гидридную связь, чтобы ее можно было разорвать отходящим теплом, Джонсон заметно повысил эффективность.Он еще больше повысил эффективность с помощью другой умной техники. В большинстве хранилищ водорода используются огромные электролизеры и топливные элементы, которые не могут точно масштабировать производство энергии в соответствии с потребностями. Джонсон разбил свою систему на модули: она содержит стопки электролизеров и топливных элементов меньшего размера, которые можно запускать по одному по мере роста спроса. «Глупо просто», — говорит он с улыбкой.

Внешне SES работает как большая батарея, но есть отличия и компромиссы.

С другой стороны, несмотря на то, что он значительно увеличил сквозную эффективность по сравнению с водородными конкурентами, Джонсон все еще не совсем соответствовал эффективности батарей.Он говорит, что на данный момент эффективность SES составляет около 80 процентов. По крайней мере, когда они новые, традиционные свинцово-кислотные батареи составляют около 90 процентов, а литий-ионные батареи — около 98 процентов или выше, хотя все батареи со временем изнашиваются. (Джонсон ожидает, что эффективность SES будет продолжать расти по мере разработки новых материалов для своих электролизеров и топливных элементов — он думает, что 85 или 90 процентов находятся в пределах досягаемости.)

С другой стороны, SES прослужит намного дольше, чем батарея, пройдя более 10 000 циклов зарядки и разрядки, по сравнению с примерно 1000 для литий-ионной батареи.Это приблизит срок ее службы к сроку службы типичной солнечной панели, что позволит более удобно соединять эти две батареи.

В отличие от аккумуляторов, которые нельзя полностью зарядить или разрядить из-за опасения ухудшения характеристик, SES может перейти от 100-процентной емкости до 0 и обратно без повреждений.

И когда он действительно изнашивается, в отличие от батарей, SES полностью подлежит переработке. Металлы плавятся, перетираются и используются повторно; вода перегоняется.

Лучше всего то, что раствор гидрида может храниться неограниченное время без обслуживания или потери потенциала.Его не нужно сжимать или охлаждать, как сжатый водород. Он не разлагается, как электрохимический заряд аккумуляторов. Гидриды можно хранить столько, сколько необходимо.

Это делает SES фантастическим кандидатом на долгосрочное хранение энергии, святым Граалем по-настоящему устойчивой энергетической системы. Если бы электричество было дешевым и достаточно обильным, в принципе не было бы ограничений на количество резервной энергии, которую можно было бы накапливать.

Это также делает SES идеально подходящим для распределенной энергетической системы.Без движущихся частей, надежных компонентов, устойчивых к экстремальным температурам и погодным условиям, и возможности вторичной переработки на 98 процентов, это был бы чрезвычайно простой способ для любого, у кого есть несколько солнечных панелей, получить степень энергетической независимости. Это может быть особенным благом для удаленных, автономных сообществ.

Жутко горящий электролизер. HyTech Power

Какой бы ни была судьба HyTech, потребность в водороде вызовет инновации.

Распределенная безуглеродная водородная экономика — это то, о чем размышляет Джонсон, когда дает себе время подумать.Но в наши дни перед нами стоит более неотложная задача: запустить HyTech.

Ни один из экспертов по водороду, с которыми я разговаривал, не обнаружил каких-либо особых красных флажков в технических заявлениях HyTech, но все они проявили с трудом завоеванный скептицизм «шоу-не-говори». В водородном мире произошло много новых событий. История усеяна трупами многообещающих стартапов, которые не смогли воплотить свои инновации в жизнеспособные рыночные продукты.

Тем не менее, Hytech, похоже, занимает хорошие позиции, имея надежную команду руководителей, некоторое раннее финансирование, положительные результаты испытаний, партнерские отношения с такими крупными игроками, как FedEx и Caterpillar, а также целевой рынок с продемонстрированным спросом на ее продукцию.Скорее всего, через год или два мы узнаем, справились ли они с этим.

В любом случае, по мере того, как стремление к созданию устойчивой энергетической системы всерьез набирает обороты, потребность в водороде будет только возрастать. Нам нужно топливо с нулевым выбросом углерода и нам нужно долгосрочное хранение энергии. Водород подходит обоим счетам.

Когда есть большая социальная потребность и деньги, люди становятся умными. Если Джонсон сможет добиться нескольких поэтапных достижений в водородной технологии, совершая покупки в Интернете и возясь в своей лаборатории, скоро другие сделают то же самое.А по мере выхода продуктов на рынок масштабирование приведет к снижению затрат, как это произошло с ветряной и солнечной энергией.

Во многих смыслах доступный водород — это последняя часть головоломки устойчивой энергетики, энергоноситель, который может заполнить трещины в системе, работающей в основном на ветровой и солнечной энергии. За прошедшие годы его несколько раз оставляли умирать, но, поскольку мир серьезно относится к декарбонизации, водород может, наконец, выиграть свой день на солнце.

Водородные автомобили не обгонят электромобили, потому что им препятствуют законы науки

Водород уже давно рекламируется как будущее легковых автомобилей.Электромобиль на водородных топливных элементах (FCEV), который просто работает на водороде под давлением от заправочной станции, производит нулевые выбросы углерода из своих выхлопных газов. Его можно заправить так же быстро, как эквивалент ископаемого топлива, и он обеспечивает такое же расстояние езды, как и бензин. У него есть некоторая поддержка со стороны тяжеловесов, например, Toyota выпустит Mirai второго поколения в конце 2020 года.

Канадская ассоциация водорода и топливных элементов недавно выпустила отчет, в котором восхваляются водородные автомобили. Среди прочего, в нем говорится, что углеродный след на порядок лучше, чем у электромобилей: 2.7 г углекислого газа на километр по сравнению с 20,9 г.

Тем не менее, я считаю, что водородные топливные элементы — это ошибочная концепция. Я действительно думаю, что водород сыграет значительную роль в достижении нулевых чистых выбросов углерода за счет замены природного газа в промышленном и домашнем отоплении. Но мне сложно понять, как водород может конкурировать с электромобилями, и эта точка зрения была подтверждена двумя недавними заявлениями

.

В отчете BloombergNEF заключил:

Большая часть рынка легковых автомобилей, автобусов и легких грузовиков, похоже, будет использовать [аккумуляторные электрические технологии], которые являются более дешевым решением, чем топливные элементы.

Volkswagen тем временем сделал заявление, сравнив энергоэффективность технологий. «Вывод очевиден», — заявили в компании. «В случае с легковой машиной все говорит в пользу аккумулятора и практически ничто не говорит в пользу водорода».

Проблема эффективности использования водорода

Причина, по которой водород неэффективен, заключается в том, что энергия должна переходить от провода к газу, чтобы привести автомобиль в действие. Иногда это называют переходом вектора энергии.

Возьмем 100 ватт электроэнергии, производимой возобновляемым источником, например ветряной турбиной. Чтобы привести в действие FCEV, эта энергия должна быть преобразована в водород, возможно, пропуская ее через воду (процесс электролиза). Это около 75% энергоэффективности, поэтому около четверти электроэнергии теряется автоматически.

Произведенный водород необходимо сжимать, охлаждать и транспортировать на водородную станцию, а эффективность этого процесса составляет около 90%. Оказавшись внутри автомобиля, водород необходимо преобразовать в электричество, эффективность которого составляет 60%.Наконец, эффективность электричества, используемого в двигателе для движения автомобиля, составляет около 95%. В совокупности используется только 38% первоначальной электроэнергии — 38 ватт из 100.

В электромобилях энергия проходит по проводам от источника до автомобиля. Те же 100 ватт мощности от той же турбины теряют около 5% эффективности при прохождении через сеть (в случае с водородом, я предполагаю, что преобразование происходит на месте, на ветряной электростанции).

Энергоэффективность электромобилей.

Вы теряете еще 10% энергии из-за зарядки и разрядки литий-ионного аккумулятора, плюс еще 5% из-за использования электричества для движения автомобиля. Таким образом, вы снизились до 80 Вт, как показано на рисунке напротив.

Другими словами, водородный топливный элемент требует вдвое больше энергии. Процитируем BMW: «Таким образом, общий КПД в энергетической цепочке от двигателя к автомобилю составляет лишь половину от уровня [электромобиля].”

Своп магазины

На дорогах ездят около 5 миллионов электромобилей, и их продажи стремительно растут. Это в лучшем случае всего около 0,5% от общемирового показателя, хотя по-прежнему находится в другой лиге, чем водород, который к концу 2019 года достиг примерно 7500 продаж автомобилей по всему миру.

Hydrogen по-прежнему имеет очень мало заправочных станций, и их строительство вряд ли станет приоритетом во время пандемии коронавируса, но энтузиасты в долгосрочной перспективе указывают на несколько преимуществ перед электромобилями: водители могут заправляться намного быстрее и ездить гораздо дальше на каждый бак ».Как и я, многие люди по этим причинам не хотят покупать электромобиль.

Китай, где продажи электромобилей превышают один миллион в год, демонстрирует, как можно решить эти проблемы. Инфраструктура строится для того, чтобы владельцы могли быстро заехать на АЗС и поменять батареи. NIO, производитель автомобилей из Шанхая, заявляет, что замена на этих станциях составляет три минуты.

Китай планирует построить большое количество из них.BJEV, дочерняя компания производителя электромобилей BAIC, инвестирует 1,3 миллиарда евро (1,2 миллиарда фунтов стерлингов) в строительство 3000 станций зарядки аккумуляторов по всей стране в ближайшие пару лет.

Это не только ответ на «опасения по поводу дальности» потенциальных владельцев электромобилей, но и их высокая стоимость. Аккумуляторы составляют около 25% средней продажной цены электромобилей, что все еще несколько выше, чем у бензиновых или дизельных эквивалентов.

Используя концепцию подкачки, аккумулятор можно было сдавать в аренду, причем часть стоимости свопа приходилась на плату за аренду.Это снизило бы стоимость покупки и стимулировало бы общественный интерес. Сменные батареи также можно заряжать, используя излишки возобновляемой электроэнергии, что является огромным положительным фактором для окружающей среды.

По общему признанию, эта концепция потребует определенной степени стандартизации в технологии аккумуляторов, которая может не понравиться европейским производителям автомобилей. Тот факт, что аккумуляторные технологии вскоре позволят приводить автомобили в движение на расстояние в миллион миль, может сделать бизнес-модель более привлекательной.

Может не работать с более тяжелыми транспортными средствами, такими как фургоны или грузовики, поскольку для них требуются очень большие батареи.Здесь водород действительно может оказаться на первом месте — как и предсказывает BloombergNEF в своем недавнем отчете.

Наконец, несколько слов о заявлениях о выбросах углерода из отчета Канадской ассоциации водорода и топливных элементов, о котором я упоминал ранее. Я проверил источник статистики, который показал, что они сравнивали водород, полученный из возобновляемой электроэнергии, с электромобилями, работающими на электричестве из ископаемого топлива.

Если бы оба были заряжены с использованием возобновляемой электроэнергии, углеродный след был бы одинаковым.Первоначальный отчет финансировался отраслевым консорциумом h3 Mobility, так что это хороший пример того, что нужно быть осторожным с информацией в этой области.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *