Как работает гидрокомпенсатор клапанов: как работает и признаки полмки

Содержание

как работает и признаки полмки

Гидрокомпенсатор: как работает и признаки полмки

Гидрокомпенсатор (ГК), также автовладельцы часто называют «гидрик» — располагается в приводном механизме клапанов и предназначается для недопущения образования зазоров между клапанами и кулачками распредвала. Так сказать компенсирует зазоры клапанов.

Работа гидрокомпенсатора

Принцип работы строится на изменяемом давлении моторного масла. При включенном ДВС масло заполняет внутреннюю часть и за счет переменного давления его плунжер циклически передвигается, не допуская образованиезазоров в клапанном приводе и удерживая постоянный контакт коромысла и кулачка распредвала.

Таким образом, гидрокомпенсаторы клапанов существенно упрощают обслуживание двигателя и делают неактуальной проблему точного регулирования клапанов во время проведения ТО, но с ними надо более внимательно подходить к выбору масла и масляного фильтра.

Виды и расположение компенсаторов

Условно можно выделить компенсаторы для двигателей типов SOHC и DOHC. В целом, они не слишком различаются по конструкции. Любой гидрик — это небольшая система, помещенная в неразборный герметичный корпус. В двигателе типа SOHC он размещается в гнездах клапанных коромысел. У двигателей типа DOHC — устанавливаются в гнездах, размещенных в головке блока цилиндров.

Устройство и принцип работы компенсаторов
Устройство гидрокомпенсатора сложностью не отличается. Он состоит из корпуса, плунжера, клапана, пружины, поршня и стопорного кольца.

Принцип действия также довольно прост. Когда кулачок распредвала находится в верхней точке движения, относительно компенсатора он располагается тыльной частью. Из-за этого усилие на компенсатор не передается, что позволяет пружине распрямиться и выдвинуть плунжер, благодаря чему и пропадает зазор. В появившееся под плунжером свободное пространство через клапан затекает моторное масло. После заполнения компенсатора давление масла внутри него и снаружи сравнивается и клапан закрывается.

Когда кулачок поворачивается к компенсатору выпуклой стороной, он своим усилием начинает смещать его вниз. Заполненный маслом гидрокомпенсатор имеет достаточно жесткости, чтобы без потерь передавать движущее усилие распредвала на клапаны ГРМ. В процессе движения некоторая часть масла вытекает из компенсатора, в результате чего образуется зазор, имевший место в начале цикла. Далее цикл проходит еще раз, и так все время работы двигателя.

Следует отметить, что работа гидротолкателя позволяет устранить не только рабочие зазоры двигателя, образуемые в результате циклического движения его частей, но также и зазоры из-за нагрева мотора (нагретый металл расширяется) и увеличенные зазоры, связанные с износом деталей ГРМ. Любое увеличение пространства для перемещения компенсатора приводит к тому, что он принимает больше масла, все равно занимая весь свободный объем.

Признаки и причины поломки

Основные причины выхода из строя гидрокомпенсатора (ГК) — загрязнение масляных каналов двигателя и износ рабочих поверхностей обратного клапана и плунжерной пары.

Основным признаком того, что гидрокомпенсаторы клапанов вышли из строя является характерный стук клапанов при запущенном ДВС, в том числе на холостом ходу. Статья из сообщества сам себе автомеханик. Эта проблема может быть вызвана рядом причин, среди которых:

— присутствие воздуха в надплунжерной полости компенсатора, что бывает при неправильном уровне масла в картере или в случае продолжительной стоянки машины под большим уклоном;
— засорение компенсатора шламом из некачественного или не замененного вовремя моторного масла;
— износ механизмов компенсатора.

7 Причин стука гидрокомпенсаторов на горячем двигателе
1.Не менялось давно масло или заливалось некачественное.
2.Забиты каналы, по которым масло подается в гидрокомпенсатор.
3. Засоренный масляный фильтр и масло не доходит до гидриков под нужным давлением.

4.Проблемы в работе масляного насоса.
5.Неправильный уровень масла (пониженный или повышенный).
6.Увеличение места посадки гидрокомпенсатора.
7.Проблема с механикой и гидравликой гидрокомпенсатора клапанов.

Устранение неисправностей

В некоторых случаях устранять неисправности гидрокомпенсаторов можно в домашних условиях.

Промывка, как правило, помогает избавиться от стуков. Но также требуется и чистка масляных каналов.

Для начала необходимо проверить уровень моторного масла в двигателе и при необходимости довести его до нормы. Чтобы избавиться от воздуха в компенсаторе, нужно завести двигатель и десять раз медленно его разогнать. Проблему можно считать решенной, если неправильный звук работы мотора пропадает.

Если звук не исчезает, нужно проверить состояние гидрокомпенсаторов. Характерные повреждения: коррозия поверхности плунжера, износ корпуса толкателя, тугой ход. Лучше всего делать это на СТО, так как очевидно что причин много и разобраться самостоятельно, без надлежащего опыта, какая из них основная — крайне сложно. Нужно знать происхождения стуков, определить происхождения, механическая неисправность или какие то другие технические проблемы с механизмами и деталей ДВС. Многие автовледельцы пробуют разобрать и почистить, дабы восстановить работоспособность, но такой манипуляции, как правило, хватает ненадолго, по этому лучшим решением будет только замена.

Список СТО, где вы можете починить свой двигатель

Гидрокомпенсатор. Принцип его работы. — Автомастер

Гидрокомпенсатор. Принцип его работы.

Подробности

По мере прогрева двигателя, детали ГРМ также нагреваются, что ведет к их тепловому расширению, а следовательно изменению зазоров между ними. Не правильная регулировка зазоров, а именно выставление очень маленького зазора может привести к не плотному закрытию клапана, что вызовет его прогорание или стуки в системе ГРМ при выставлении слишком большого зазора. К тому же этот зазор изменяется в процессе эксплуатации двигателя вследствие износа.

Так как регулировка зазора клапанов является довольно сложным и ответственным мероприятием, на смену рычагам и шайбам, которые требуют регулировки, пришли

гидрокомпенсаторы которые автоматически выбирают зазор и при этом, не требуется никаких дополнительных настроек.

Устройство гидрокомпенсатора приведено на (Рис 1).

Рис 1 – Схематическое изображение гидрокомпенсатора.

1 – кулачек распределительного вала. 2 – выемка в теле гидрокомпенсатора. 3 – втулка плунжера. 4 – плунжер. 5 – пружина клапана плунжера. 6 – пружина клапана газораспределительного механизма. 7 – зазор между кулачком распределительного вала и рабочей поверхности гидрокомпенсатора. 8 — шарик (клапан плунжера). 9 – масляный канал в теле гидрокомпенсатора. 10 – масляный канал в головке блока цилиндров. 11 – пружина плунжирной пары. 12 – клапан газораспределительного механизма.

    Работает гидрокомпенсатор следующим образом:
  1. Положение, когда кулачек распределительного вала находится противоположно рабочей поверхности гидрокомпенсатора (Рис 2). Клапан ГРМ 12 под действием пружины 6 находится в закрытом положении, усилие со стороны гидрокомпенсатора на него отсутствует.

    Рис 2 — Кулачек не давит на гидрокомпенсатор.

    За счет действия пружины 11 и плунжерной пары 3 и 4 происходит перемещение плунжера вместе с телом гидрокомпенсатора, пока вся конструкция не упрется в кулачек распредвала, тем самым убирая зазор. Когда масляный канал гидрокомпенсатора 9 и головки 10 станут на одном уровни, то масло под давлением подается во внутрь компенсатора. Далее через выемку 2 и клапан 8 попадает во внутрь плунжерной пары.
  2. Следующим этапом является надавливание кулачка распредвала на компенсатор.

    Рис 3 – Кулачек давит на гидрокомпенсатор.

    Внутри плунжерной пары создается давление, которым запирается шариковый клапан 8. Так как у масла маленький коэффициент сжатия, получается, что гидрокомпенсатор выступает как жесткий элемент между распредвалом и клапаном. Получается, что кулачек распредвала давит на компенсатор, а он в свою очередь открывает клапан.

В процессе сдавливания гидрокомпенсатора из плунжерной пары через клапан выдавливается небольшое количество масла, прежде чем шарик полностью преградит дорогу маслу. Таким образом, вновь образуется зазор, который при следующем проворачивании распредвала на 180 градусов исчезнет за счет пружины плунжерной пары и новой закачанной в него порции масла. В этом заключается работа гидрокомпенсатора, что, не смотря на температуру двигателя (присутствует или нет тепловое расширение деталей), гидрокомпенсатор всегда подбирает необходимый зазор. На протяжении всего срока службы не требует дополнительных вмешательств и проведения, каких-либо настроек.

Стучат гидрокомпенсаторы.

Стук гидрокомпенсаторов говорит об их не правильной работе. Стук происходит из-за того, что компенсатор не успевает выбирать зазор, то есть он не справляется со своей работой.

Стучать гидрокомпенсаторы могут по следующим причинам:

  1. В системе смазки создается не достаточное давление масла, что приводит к тому, что компенсаторы не заполняются необходимым количеством масла. Устранение неисправности: В этом случае гидрокомпенсаторы исправны, причину нужно искать в системе смазки.
  2. Износ в плунжерной паре. Масло вытекает между втулкой плунжера 3 и самим плунжером 4 из полости под плунжером. Вследствие чего гидрокомпенсатор не успевает выбирать зазор. Устранение неисправности: Замена гидрокомпенсаторов.
  3. Износ или засорение шарикового клапана в плунжерной паре, что приводит к дополнительным утечкам масла из плунжерной пары. Так же как и в предыдущем случае гидрокомпенсатор не успевает выбирать зазор.
    Устранение неисправности
    : Засорение шарикового клапана обычно происходит вследствие использования низкокачественного масла. Поэтому промывка гидрокомпенсатора может отсрочить их замену, но все же если на них проехали уже приличное расстояние, то их лучше заменить.
  4. Заклинивание плунжерной пары. В этом случае работа гидрокомпенсатора полностью парализована.

Для продления срока службы как гидрокомпенсаторов, так и всех трущихся частей двигателя, нужно не экономить на качестве масла. Покупать масло следует только в проверенных магазинах, где вы уверены, что приобретете не подделку, а настоящее качественное масло. Помните, что буквально один раз стоит залить подделку, и вы в разы сократите ресурс вашего двигателя, а то и вообще можно испортить его. Так же помните о своевременной замене масла и масляного фильтра.

как устроены, как работают, как выбрать

Если ещё пару десятков лет назад каждому водителю приходилось регулировать тепловые зазоры клапанов вручную, то сегодня гидрокомпенсаторы выполняют эту рутинную, но точную работу. Вообще, такое понятие, как тепловой зазор, потихоньку уходит в историю, поскольку гидрокомпенсаторы в головке блока просто их не допускают.

Принцип работы гидрокопенсатора

Расположение гидрокомпенсатора

Для чего нужен гидрокомпенсатор, мы уже разобрались — он компенсирует неизменные тепловые зазоры между клапаном (или его приводом) и распредвалом. Причём компенсирует по умному: независимо от того, прогретый двигатель или холодный, никакого стука из-под клапанной крышки мы слышать не должны, зазор будет выбираться автоматически и без нашего участия.

Гидроклмпенсатор Ауди, установленный в рокере

Это большой плюс устройства. Однако, есть и некоторые минусы, точнее, требования, которые нельзя игнорировать. Так, все виды гидрокомпенсаторов чрезвычайно чувствительны к качеству моторных масел и фильтров. Дело в том, что принцип работы гидрокомпенсатора основан на перепадах давления масла и устройство должно реагировать на работу системы смазки корректно и мгновенно. Используя старое изношенное или некачественное масло, мы не позволяем гидрокомпенсатору выполнять его работу правильно. Отсюда и стуки, шумы и некорректная работа всего газораспределительного механизма.

Виды и устройство гидрокомпенсаторов

Виды гидрокомпенсаторов

В зависимости от типа газораспределительного механизма (SOHC или DOHC), гидрокомпенсатор может иметь разное расположение и отличаться по форме и конструкции. Но по большому счёту, любой гидрик — это гидравлическая плунжерная система, закрытая в неразборном корпусе. В двигателях типа SOHC гидрики устанавливают в гнезде клапанного коромысла.

Где устанавливают гидрокомпенсаторы

В головках DOHC их устанавливают прямо в колодцы головки. Вот как выглядят разные типы гидриков:

  1. Гидротолкатель.
  2. Гидроопора.
  3. Гидроопора рычага и коромысла.
  4. Гидротолкатель роликовый.

Устройство гидрокомпенсатора не особо сложное, как и любой плунжерной гидросистемы. Каждый из них состоит из корпуса, плунжера, системы пружин, клапана, поршня и стопорных колец разной конструкции.

Схема простейшего гидрокомпенсатора

Как работает гидрокомпенсатор

Схема перепускного клапана и плунжера

Работа гидрокомпенсатора включает в себя две фазы, когда впускной или выпускной клапан ГРМ открыт или закрыт:

  1. Клапан ГРМ закрыт. В этом случае кулачок распредвала не воздействует на гидрик и развернут к нему задней частью. Пружина внутри компенсатора распрямляется и поднимает плунжер на максимальную высоту, прижимая его к кулачку. Зазора нет. Подплунжерное пространство полностью заполняется маслом и как только давление внутри гидрика выравнивается с давлением в системе смазки, перепускной клапан закрывается.
  2. Клапан ГРМ открыт. Сейчас кулачок распредвала повернут отливом в сторону компенсатора и воздействует на него с максимальной силой. Сила сжатия пружины рассчитана так, чтобы усилия хватило ровно настолько, чтобы открыть клапан ГРМ полностью. При этом лишнее масло из-под плунжера выдавливается наружу.
Конструкция и схема работы гидрокомпенсатора

Циклы работы гидрика повторяются бесконечно и что приятно — зазор не возникает ни в начале цикла, ни в переходных моментах, когда клапан ГРМ только начинает открываться или закрываться. Давление масла и настройка пружины полностью ликвидируют любой намёк на зазор. При нагреве детали газораспределительного механизма расширяются, требуя откорректировать зазор, кроме того, при износе кулачков распредвала зазор тоже должен бы измениться. Но этого не происходит, поскольку гидрокомпенсатор выбирает зазоры любого, термического или механического характера, принимая внутрь корпуса большую порцию масла.

Гидрокомпенсаторы Swag

Какие гидрокомпенсаторы лучше

Поскольку ремонт гидриков проводится в крайних случаях, то чаще всего выгоднее купить новый гидрокомпенсатор и избавиться от проблем с ним ещё тысяч на сто наперёд. Существуют компании, которые специализируются на автомобильных гидросистемах и гидриках в частности.

Штатовские роликовые гидрики Delphi

Тем не менее многие стремятся купить оригинальный гидрокомпенсатор от производителя.

Тут есть одна маленькая хитрость. Ни Фольксваген, ни ВАЗ, ни Мерседес своими силами не производят гидрики, они в любом случае покупают их у сторонних производителей, хотя цена гидрокомпенсатора, как бы оригинального, может крепко отличаться от цены на рынке запасных частей, так называемые запчасти aftermarket.

Поэтому особого смысла переплачивать за оригинальную деталь нет. Вот только несколько компаний, продающих вполне приличные гидрокомпенсаторы:
  1. INA, немецкая компания, заслуженно пользующаяся репутацией производителя первоклассных гидроустройств. Заводы расположены в городе Хиршайд, качество великолепное, выносливые гидрики, способные переваривать даже наше масло. Дороговаты, но мы же любим свою машину?Гидрокомпенсаторы INA
  2. Febi. Тоже немцы, но качество несколько хуже, что сказывается на гарантийном сроке, он меньше, чем у INA. Покупая их продукцию, обязательно смотрим на страну изготовления, поскольку Феби имеют несколько заводов в Китае и в Азии. Эти брать не стоит однозначно.Febi, стоит брать однозначно, если не подделка
  3. Swag. Если не подделка, то вполне сносные немецкие компенсаторы. Если подделка, то зря выброшенные деньги.Swag в упаковке
  4. Бюджетные гидрики АЕ и Ajusa (Испания). Стоят недорого, но хватает их максимум на 10-12 тысяч. Хотя, кому как повезёт. Капризные и требуют хорошего масла, со старым маслом лучше их не ставить вообще. Качество прихрамывает, но если другого выхода нет, тысяч пять можно протянуть и на них, потом застучат обязательно.Испанские Ajusa

Делаем выбор гидрокомпенсаторов правильно и взвешенно, тогда стук в головке блока нам не придётся слышать до 50-70 тысяч пробега. Тихой работы двигателя и ровных дорог!

Как работает гидрокомпенсатор


Гидрокомпенсаторы клапанов ГРМ: устройство и принцип работы

Детали газораспределительного механизма двигателя в процессе работы испытывают большие нагрузки и высокую температуру. От нагрева они расширяются неравномерно, так как сделаны из разных сплавов. Для обеспечения нормальной работы клапанов в конструкции должен быть предусмотрен специальный тепловой зазор между ними и кулачками распредвала, который закрывается в процессе работы мотора.

Зазор должен всегда оставаться в предусмотренных пределах, поэтому клапана нуждаются в периодической регулировке, то есть в подборе толкателей или шайб нужного размера. Избавиться от необходимости регулировки теплового зазора, и уменьшить шум на непрогретом двигателе позволяют гидрокомпенсаторы, иногда их называют просто «гидрики» или гидротолкатели.

Устройство гидрокомпенсатора

Гидрокомпенсаторы автоматически регулируют меняющийся тепловой зазор. Приставка «гидро» подразумевает действие какой-то жидкости в работе детали. Этой жидкостью выступает масло, которое подается в гидрокомпенсаторы под давлением. Сложная и точная система пружин внутри регулирует зазор.

Различные виды гидрокомпенсаторов

Применение гидрокомпенсаторов предполагает наличие следующих преимуществ:

  • отсутствие необходимости периодической регулировки клапанов;
  • правильная работа ГРМ;
  • уменьшения шума при работе мотора;
  • увеличение ресурса деталей газораспределительного механизма.

Основными компонентами гидрокомпенсатора являются:

Принцип работы

Работу детали можно описать несколькими этапами:

  1. Кулачок распредвала не оказывает давления на компенсатор и повернут к нему тыльной стороной, при этом между ними присутствует небольшой зазор. Плунжерная пружина внутри гидрокомпенсатора толкает плунжер из втулки. В это время под плунжером образовывается полость, которая заполняется маслом под давлением через совмещенный канал и отверстие в корпусе. Объем масла набирается до нужного уровня и шариковый клапан закрывается под действием пружины. Толкатель упирается в кулачок, движение плунжера прекращается, и масляный канал перекрывается. При этом зазор исчезает.
  2. Когда кулачок начинает поворачиваться, он нажимает на гидрокомпенсатор, перемещая его вниз. За счет набранного объема масла плунжерная пара становится жесткой и передает усилие далее на клапан. Клапан под давлением открывается и в камеру сгорания поступает топливовоздушная смесь.
  3. Во время движения вниз немного масла вытекает из полости под плунжером. После того как кулачок пройдет активную фазу воздействия цикл работы повторяется вновь.
Работа гидрокомпенсатора

Гидрокомпенсатор также регулирует зазор, возникающий вследствие естественного износа деталей ГРМ. Это простой, но в то же время сложный по исполнению механизм с точной подгонкой деталей.

Правильная работа гидравлических компенсаторов во многом зависит от давления масла в системе и от степени его вязкости. Слишком вязкое и холодное масло не сможет в нужном количестве поступить через каналы в тело толкателя. Слабое давление и протечки также снижают работоспособность механизма.

Виды гидрокомпенсаторов

В зависимости от компоновки ГРМ и места установки различают четыре основных вида гидрокомпенсаторов:

  • гидротолкатели;
  • роликовые гидротолкатели;
  • гидроопоры;
  • гидроопоры, которые устанавливаются под коромысла или рычаги.
Виды гидрокомпенсаторов

Все виды несколько отличаются по конструкции, но имеют один и тот же принцип действия. Наибольшее распространение в современных автомобилях получили обычные гидротолкатели с плоской опорой под кулачок распредвала. Данные механизмы устанавливаются непосредственно на стержне клапана. Кулачок распредвала воздействует на гидротолкатель напрямую.

При нижнем расположении распредвала устанавливаются гидроопоры под рычаги и коромысла. В таком положении кулачок толкает механизм уже снизу, а усилие на клапан передается через рычаг или коромысло.

Варианты расположения

По такому же принципу работают и роликовые гидроопоры. Для меньшего воздействия трения применяются ролики, которые контактируют с кулачками. Роликовые гидроопоры применяются в основном на двигателях японского производства.

Преимущества и недостатки

Гидравлические компенсаторы позволяют избежать множества технических проблем при эксплуатации двигателя. Отпадает необходимость регулировки теплового зазора, например, с помощью шайб. Также гидротолкатели уменьшают уровень шума и ударные нагрузки. Плавная и правильная работа снижает износ деталей ГРМ.

Среди преимуществ есть и свои недостатки. Двигатели, в которых используются гидрокомпенсаторы, имеют свои особенности эксплуатации. Самый явный из них – неровная работа холодного двигателя на момент запуска. Появляются характерные стуки, которые при достижении температуры и давления исчезают. Это происходит из-за того, что при запуске давление масла недостаточное. Оно не поступает в компенсаторы, поэтому появляется стук.

Еще одним недостатком можно назвать стоимость деталей и обслуживание. Если потребуется замена, то это стоит доверить мастеру. Также гидрокомпенсаторы требовательны к качеству масла и работе всей системы смазки. Если залить некачественное масло, то это может напрямую сказаться на их работе.

Основные неисправности, возможные причины и замена

Появившийся стук говорит о неисправностях в газораспределительном механизме. Если стоят гидрокомпенсаторы, то причина может быть в них:

  • Неисправность самих гидротолкателей: выход из строя плунжерной пары или заклинивание плунжеров, заклинивание шарикового клапана, естественный износ.
  • Низкое давление масла в системе.
  • Засорение масляных каналов в головке блока цилиндров;
  • Попадание воздуха в систему смазки.

Определить неисправный компенсатор зазора обычному автолюбителю бывает достаточно трудно. Для этого, например, можно воспользоваться автомобильным стетоскопом. Достаточно прослушать каждый гидрокомпенсатор, чтобы определить неисправный по характерному стуку.

Также работоспособность гидрокомпенсаторов можно проверить, если удастся снять их с двигателя. В заполненном состоянии они не должны сжиматься. Некоторые виды можно разобрать и определить степень износа внутренних деталей.

Некачественное масло приводит к засорению масляных каналов. Исправить это можно путем замены самого масла, масляного фильтра и промывки гидрокомпенсаторов. Промыть можно специальными жидкостями, ацетоном или высокооктановым бензином. Если дело в масле, то это должно помочь устранить стук.

Специалисты рекомендуют менять не отдельные компенсаторы, а сразу все. Делать это нужно после 150-200 тысяч километров пробега. На такой дистанции они подвергаются естественному износу.

При замене гидравлических компенсаторов зазора нужно соблюдать некоторые нюансы:

  • Новые гидротолкатели уже заполнены масляным составом. Удалять это масло не нужно. Масло смешивается в системе смазки, и воздух не попадет в систему.
  • Нельзя ставить “пустые” компенсаторы (без масла) после промывки или разборки. Так в систему попадает воздух.
  • После установки новых гидрокомпенсаторов рекомендуется несколько раз провернуть коленчатый вал. Это делается для того, чтобы плунжерные пары пришли в рабочее состояние, и повысилось давление.
  • После замены гидротолкателей рекомендуется поменять масло и фильтр.

Чтобы гидрокомпенсаторы доставляли как можно меньше проблем при эксплуатации, нужно использовать качественное моторное масло, которое рекомендуется в руководстве по эксплуатации автомобиля. Также необходимо соблюдать регламент замены масла и фильтра. Соблюдая эти правила, гидравлические компенсаторы прослужат долго.

как работает и признаки полмки

Гидрокомпенсатор: как работает и признаки полмки

Гидрокомпенсатор (ГК), также автовладельцы часто называют «гидрик» — располагается в приводном механизме клапанов и предназначается для недопущения образования зазоров между клапанами и кулачками распредвала. Так сказать компенсирует зазоры клапанов.

Работа гидрокомпенсатора

Принцип работы строится на изменяемом давлении моторного масла. При включенном ДВС масло заполняет внутреннюю часть и за счет переменного давления его плунжер циклически передвигается, не допуская образованиезазоров в клапанном приводе и удерживая постоянный контакт коромысла и кулачка распредвала.

Таким образом, гидрокомпенсаторы клапанов существенно упрощают обслуживание двигателя и делают неактуальной проблему точного регулирования клапанов во время проведения ТО, но с ними надо более внимательно подходить к выбору масла и масляного фильтра.

Виды и расположение компенсаторов

Условно можно выделить компенсаторы для двигателей типов SOHC и DOHC. В целом, они не слишком различаются по конструкции. Любой гидрик — это небольшая система, помещенная в неразборный герметичный корпус. В двигателе типа SOHC он размещается в гнездах клапанных коромысел. У двигателей типа DOHC — устанавливаются в гнездах, размещенных в головке блока цилиндров.

Устройство и принцип работы компенсаторов
Устройство гидрокомпенсатора сложностью не отличается. Он состоит из корпуса, плунжера, клапана, пружины, поршня и стопорного кольца.

Принцип действия также довольно прост. Когда кулачок распредвала находится в верхней точке движения, относительно компенсатора он располагается тыльной частью. Из-за этого усилие на компенсатор не передается, что позволяет пружине распрямиться и выдвинуть плунжер, благодаря чему и пропадает зазор. В появившееся под плунжером свободное пространство через клапан затекает моторное масло. После заполнения компенсатора давление масла внутри него и снаружи сравнивается и клапан закрывается.

Когда кулачок поворачивается к компенсатору выпуклой стороной, он своим усилием начинает смещать его вниз. Заполненный маслом гидрокомпенсатор имеет достаточно жесткости, чтобы без потерь передавать движущее усилие распредвала на клапаны ГРМ. В процессе движения некоторая часть масла вытекает из компенсатора, в результате чего образуется зазор, имевший место в начале цикла. Далее цикл проходит еще раз, и так все время работы двигателя.

Следует отметить, что работа гидротолкателя позволяет устранить не только рабочие зазоры двигателя, образуемые в результате циклического движения его частей, но также и зазоры из-за нагрева мотора (нагретый металл расширяется) и увеличенные зазоры, связанные с износом деталей ГРМ. Любое увеличение пространства для перемещения компенсатора приводит к тому, что он принимает больше масла, все равно занимая весь свободный объем.

Признаки и причины поломки

Основные причины выхода из строя гидрокомпенсатора (ГК) — загрязнение масляных каналов двигателя и износ рабочих поверхностей обратного клапана и плунжерной пары.

Основным признаком того, что гидрокомпенсаторы клапанов вышли из строя является характерный стук клапанов при запущенном ДВС, в том числе на холостом ходу. Статья из сообщества сам себе автомеханик. Эта проблема может быть вызвана рядом причин, среди которых:

— присутствие воздуха в надплунжерной полости компенсатора, что бывает при неправильном уровне масла в картере или в случае продолжительной стоянки машины под большим уклоном;
— засорение компенсатора шламом из некачественного или не замененного вовремя моторного масла;
— износ механизмов компенсатора.

7 Причин стука гидрокомпенсаторов на горячем двигателе
1.Не менялось давно масло или заливалось некачественное.
2.Забиты каналы, по которым масло подается в гидрокомпенсатор.
3. Засоренный масляный фильтр и масло не доходит до гидриков под нужным давлением.
4.Проблемы в работе масляного насоса.
5.Неправильный уровень масла (пониженный или повышенный).
6.Увеличение места посадки гидрокомпенсатора.
7.Проблема с механикой и гидравликой гидрокомпенсатора клапанов.

Устранение неисправностей

В некоторых случаях устранять неисправности гидрокомпенсаторов можно в домашних условиях.

Промывка, как правило, помогает избавиться от стуков. Но также требуется и чистка масляных каналов.

Для начала необходимо проверить уровень моторного масла в двигателе и при необходимости довести его до нормы. Чтобы избавиться от воздуха в компенсаторе, нужно завести двигатель и десять раз медленно его разогнать. Проблему можно считать решенной, если неправильный звук работы мотора пропадает.

Если звук не исчезает, нужно проверить состояние гидрокомпенсаторов. Характерные повреждения: коррозия поверхности плунжера, износ корпуса толкателя, тугой ход. Лучше всего делать это на СТО, так как очевидно что причин много и разобраться самостоятельно, без надлежащего опыта, какая из них основная — крайне сложно. Нужно знать происхождения стуков, определить происхождения, механическая неисправность или какие то другие технические проблемы с механизмами и деталей ДВС. Многие автовледельцы пробуют разобрать и почистить, дабы восстановить работоспособность, но такой манипуляции, как правило, хватает ненадолго, по этому лучшим решением будет только замена.

Список СТО, где вы можете починить свой двигатель

Как работают гидрокомпенсаторы, и как избежать прогара клапана

Газораспределительный механизм моторов с течением времени существенно модернизировался. Развитие не обошло стороной и клапанное устройство ДВС. Поначалу возникающие зазоры между клапанами и распределительным валом корректировались вручную, затем появились механические регуляторы, однако вершиной настройки стали гидравлические компенсаторы. Мало знаете о подобных деталях? Тогда обязательно ознакомьтесь с приведённой ниже статьёй, которая поможет всем желающим понять, почему стучат гидрокомпенсаторы, что они собой представляют и поддаются ли ремонту.

Устройство и принцип работы гидрокомпенсаторов

Любой более-менее опытный автомобилист знает, что клапанный механизм двигателя регулирует впуск топливной смеси в цилиндры и выпуск из них отработанных газов. В процессе своей работы клапаны мотора попарно открываются и, естественно, работают в условиях колоссальной нагрузки, что связано с высокой температурой горения топлива. Для минимизации отрицательных свойств температурного расширения между узлами всего ГРМ предусмотрены тепловые зазоры, регуляцией которых и занимается стандартный гидрокомпенсатор.

Отличие гидравлических компенсаторов от иных регуляторов зазора клапанов заключается в том, что первые работают полностью автоматически, в то время как другие механизмы требуют того или иного участия автомобилиста в своей жизни. Что это значит? А значит это то, что при отсутствии гидрокомпенсаторов владелец автомобиля с некоторой периодичностью должен собственноручно выставлять тепловой зазор клапанов и внимательно следить за ними в процессе эксплуатации агрегата.

Говоря простыми словами, устройство гидрокомпенсатора – это механизм-связка, установленный между распредвалом мотора и каждым клапаном. Работает деталь по принципу плунжерной пары и циркуляции масла, выступая при этом «прокладкой» между ранее отмеченными элементами ГРМ. В итоге, получается так, что в зависимости от температурного режима работы двигателя между распределительным валом и рабочим клапаном всегда имеется взаимодействие, а самое главное – правильно настроенный тепловой зазор.

Почему появляется стук гидрокомпенсаторов

От многих автомобилистов нередко можно услышать фразы по типу:

  • «Почему стучат гидрокомпенсаторы на холодную? Что делать?»;
  • «Из-за чего стучат гидрокомпенсаторы на горячую? Где регулировать?»;
  • «Застучали гидрокомпенсаторы. Как их теперь починить?».

Сразу отметим: формулировка проблемы подобным образом изначально неправильна. Важно понимать одну простую вещь – гидрокомпенсаторы клапанов стучать не могут, стучит сам клапанный механизм из-за неправильного функционирования. А вот последнее уже нередко провоцируют именно неисправности гидрокомпенсаторов. Но обо всём по порядку.

Выше было отмечено, что любой тип гидравлического компенсатора – это гидромеханизм, работающий за счёт плунжерной пары и масла, поступающего в него из мотора. То есть, причина стука гидрокомпенсаторов или клапанов, как будет правильней, кроется либо в неправильной работе плунжеров, либо в проблемах с маслообеспечением данного механизма. Если быть точнее, то неприятный звук может появиться по нескольким причинам:

  • Масла, доходящего до гидрокомпенсаторов, недостаточно или оно имеет очень низкое качество. В итоге, плунжерная пара не получает должной смазки, давление в системе не появляется и регуляция зазора не происходит. Естественно, начинается стук клапанов, спровоцированный неправильным тепловым зазором;
  • Каналы ГБЦ или самого гидравлического механизма забились выработкой. Подобное явление случается по причине неправильного использования масла. То есть, отсутствие своевременной замены масла или его чрезмерное выгорание способно забить масляные каналы и сделать из рабочего узла совершенно неисправный гидрокомпенсатор;
  • Вышел из строя сам гидравлический механизм. Тут возможны две основные поломки: клин плунжерной пары или неправильная работа шарикового клапана, воздействующего непосредственно на тепловой клапан мотора. Случиться подобное может либо из-за нагара, появляющегося по причине использования плохого масла, либо же из-за брака, допущенного при сборке механизма. Физический износ узла практически исключён, ибо он в действительности вечен. В любом случае, определить точную причину неисправности поможет только тщательная проверка гидрокомпенсаторов и профессиональный взгляд на их состояние.

Сетовать на неправильную работу гидромеханизмов в конструкции ГРМ есть смысл лишь в том случае, когда наличие иных поломок в системе исключено (особенно – поломок клапанов). При иных же обстоятельствах ремонт гидрокомпенсаторов будет выглядеть чем-то ненужным и бессмысленным.

Ремонт гидрокомпенсаторов

Замена гидрокомпенсаторов или ремонт данных элементов ГРМ своими руками требуется, прямо скажем, очень редко. Связано это с тем, что конструкция механизмов продумана до мелочей и их реальную поломку зачастую вызывают не условия работы, а беспечность владельца машины. Последняя, конечно, есть не у всех автомобилистов, поэтому и ремонт гидрокомпенсаторов требуется не многим.

В любом случае, знание – это сила, поэтому информация о симптоматике и общих принципах починки гидравлических регуляторов зазоров будет нелишней. Сначала обратим внимание на признаки поломки гидрокомпенсаторов. Зачастую они более чем прозрачны и представлены следующим перечнем:

  • мотор стал работать нестабильно;
  • нарушилась динамика движения;
  • появились «стучащие» шумы в работе ДВС;
  • прогорели клапана;
  • повысился расход топлива.

Естественно, чем большее количество симптомов появляется – тем большие основания имеются для того, чтобы задуматься о ремонте гидрокомпенсаторов своими руками. Почему именно собственноручно, а не на СТО? Всё просто. Особых сложностей в ремонте деталей нет, поэтому отдавать немалую сумму денег другим людям, наверное, бессмысленно.

Возвращаясь к вопросу о том, как проверить гидрокомпенсаторы на правильность работы, придётся констатировать неприятную для многих автомобилистов вещь – без снятия элементов с двигателя диагностику осуществить не получится. Учитывая эту особенность ремонта, замену и проверку гидромеханизмов рассмотрим совместно. В общем виде, процесс починки гидрокомпенсаторов выглядит так:

  1. В первую очередь, полностью меняем масло в двигателе и масляный фильтр. Если после этого, стук или иные симптомы поломки не прошли, приступаем к следующему шагу. При этом не забудьте, что после смены масла требуется прокачка гидрокомпенсаторов. Как прокачать гидрокомпенсаторы? Никак, система сделает всё сама после запуска мотора. Если говорить точнее, то новая смазка масляным насосом накачается в каждый гидравлический механизм и лишь после этого они перестанут стучать, что позволит оценить их новую работу. Зачастую на это уходит 5-15 минут, не более;
  2. Итак, судя по всему – эффекта нет? Тогда частично разбираем мотор для доступа к клапанному механизму. На многих моделях авто достаточно снять ГБЦ и демонтировать иные узлы мотора, мешающие доступу к клапанам;
  3. После этого есть два варианта действий:
    • Первый — поиск неисправного гидрокомпенсатора. Процедура не сложная и проводится следующим образом: отводим коромысло и штангу толкателя каждого клапана максимально в сторону от гидромеханизма и пытаемся выколоткой надавить на последний. Если компенсатор уходит вниз под значительным давлением, то он исправен, в ином случае следует снять деталь для более качественной проверки;
    • Второй – снятие всех гидрокомпенсаторов для проверки каждого. При выборе этого варианта проводится стандартная разборка клапанного механизма и интересующих нас элементов соответственно.
  4. Осуществив описанные выше операции, остаётся лишь заменить неисправный элемент ГРМ и вернуть автомобиль в первоначальное состояние. Если же проводилась разборка механизмов, то требуется проверить их внутреннее состояние и очистить от нагара. В случае, когда с регулятором всё в норме, то установить гидрокомпенсатор следует обратно в конструкцию мотора и уже потом проверять его на работоспособность. При иных обстоятельствах узел требуется полностью заменить. Более подробно говорить о том, как разобрать гидрокомпенсатор не будем, так как данная процедура не столь сложна и под силу любому автомобилисту. Главное – действовать аккуратно и не спеша.

Пожалуй, больше информации относительно того, как заменить гидрокомпенсаторы, излагать бессмысленно. Тут большее значение имеет практика, поэтому запасайтесь базовым набором авторемонтника и направляйтесь в гараж, конечно, если необходимость подобного у вас имеется.

Профилактика поломок

Как стало ясно, проверка, ремонт и установка гидрокомпенсаторов – процедуры простые, а регулировка узла и вовсе не требуется. Несмотря на это, поломок машины не хочет допускать совершенно любой автомобилист, поэтому было бы целесообразно поговорить о предотвращении неисправностей и компенсаторов.

Главное в профилактике — убрать из «рациона» мотора авто дешёвую и некачественную смазку. Спросите, как же определить хорошего производителя масла? Ответ очень прост – по отзывам автомобилистов. Согласно исследованиями нашего ресурса, лучшие масла у следующих компаний:

  • Liqui Moly (Ликви Моли) – немецкая организация, знаменитая огромным количеством смазочных товаров для автомобилей. Сразу отметим, что присадки для гидрокомпенсаторов от Liqui Moly покупать не нужно (такие средства совершенно от любого производителя лишь засоряют полости мотора), а вот моторное масло – обязательно;
  • Motul (Мотуль) – британский производитель тех же смазочных средств для машин. Пожалуй, самый главный конкурент в своей сферы деятельности для Liqui Moly, что лучше именно для вас – решайте сами. Однозначно можно сказать, что оба производителя достойны внимания и уважения;
  • Castrol (Кастрол) – также как и Motul, производитель с Туманного Альбиона. По статусности и отзывам данная компания, конечно, уступает рассмотренным выше. Однако по сравнению с остальными представителями рынка, именно Castrol имеет лучшие отзывы о своей продукции, поэтому наш ресурс может лишь рекомендовать её масла для покупки.

Помимо подборки смазки, желательно снимать гидрокомпенсаторы хотя бы раз в 80-100 000 километров для прочистки и качественной проверки. В остальном же данные элементы ГРМ обслуживания не требуют и при правильной эксплуатации отъездят полный эксплуатационный срок двигателя любого автомобиля.

В целом, по сегодняшней теме больше сказать нечего. Надеемся, представленный выше материал был для вас полезен и дал ответы на интересующие ответы. Удачи на дорогах и в обслуживании авто!

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

как устроены, как работают, как выбрать

Если ещё пару десятков лет назад каждому водителю приходилось регулировать тепловые зазоры клапанов вручную, то сегодня гидрокомпенсаторы выполняют эту рутинную, но точную работу. Вообще, такое понятие, как тепловой зазор, потихоньку уходит в историю, поскольку гидрокомпенсаторы в головке блока просто их не допускают.

Принцип работы гидрокопенсатора

Расположение гидрокомпенсатора

Для чего нужен гидрокомпенсатор, мы уже разобрались — он компенсирует неизменные тепловые зазоры между клапаном (или его приводом) и распредвалом. Причём компенсирует по умному: независимо от того, прогретый двигатель или холодный, никакого стука из-под клапанной крышки мы слышать не должны, зазор будет выбираться автоматически и без нашего участия.

Гидроклмпенсатор Ауди, установленный в рокере

Это большой плюс устройства. Однако, есть и некоторые минусы, точнее, требования, которые нельзя игнорировать. Так, все виды гидрокомпенсаторов чрезвычайно чувствительны к качеству моторных масел и фильтров. Дело в том, что принцип работы гидрокомпенсатора основан на перепадах давления масла и устройство должно реагировать на работу системы смазки корректно и мгновенно. Используя старое изношенное или некачественное масло, мы не позволяем гидрокомпенсатору выполнять его работу правильно. Отсюда и стуки, шумы и некорректная работа всего газораспределительного механизма.

Виды и устройство гидрокомпенсаторов

Виды гидрокомпенсаторов

В зависимости от типа газораспределительного механизма (SOHC или DOHC), гидрокомпенсатор может иметь разное расположение и отличаться по форме и конструкции. Но по большому счёту, любой гидрик — это гидравлическая плунжерная система, закрытая в неразборном корпусе. В двигателях типа SOHC гидрики устанавливают в гнезде клапанного коромысла.

Где устанавливают гидрокомпенсаторы

В головках DOHC их устанавливают прямо в колодцы головки. Вот как выглядят разные типы гидриков:

  1. Гидротолкатель.
  2. Гидроопора.
  3. Гидроопора рычага и коромысла.
  4. Гидротолкатель роликовый.

Устройство гидрокомпенсатора не особо сложное, как и любой плунжерной гидросистемы. Каждый из них состоит из корпуса, плунжера, системы пружин, клапана, поршня и стопорных колец разной конструкции.

Схема простейшего гидрокомпенсатора

Как работает гидрокомпенсатор

Схема перепускного клапана и плунжера

Работа гидрокомпенсатора включает в себя две фазы, когда впускной или выпускной клапан ГРМ открыт или закрыт:

  1. Клапан ГРМ закрыт. В этом случае кулачок распредвала не воздействует на гидрик и развернут к нему задней частью. Пружина внутри компенсатора распрямляется и поднимает плунжер на максимальную высоту, прижимая его к кулачку. Зазора нет. Подплунжерное пространство полностью заполняется маслом и как только давление внутри гидрика выравнивается с давлением в системе смазки, перепускной клапан закрывается.
  2. Клапан ГРМ открыт. Сейчас кулачок распредвала повернут отливом в сторону компенсатора и воздействует на него с максимальной силой. Сила сжатия пружины рассчитана так, чтобы усилия хватило ровно настолько, чтобы открыть клапан ГРМ полностью. При этом лишнее масло из-под плунжера выдавливается наружу.
Конструкция и схема работы гидрокомпенсатора

Циклы работы гидрика повторяются бесконечно и что приятно — зазор не возникает ни в начале цикла, ни в переходных моментах, когда клапан ГРМ только начинает открываться или закрываться. Давление масла и настройка пружины полностью ликвидируют любой намёк на зазор. При нагреве детали газораспределительного механизма расширяются, требуя откорректировать зазор, кроме того, при износе кулачков распредвала зазор тоже должен бы измениться. Но этого не происходит, поскольку гидрокомпенсатор выбирает зазоры любого, термического или механического характера, принимая внутрь корпуса большую порцию масла.

Гидрокомпенсаторы Swag

Какие гидрокомпенсаторы лучше

Поскольку ремонт гидриков проводится в крайних случаях, то чаще всего выгоднее купить новый гидрокомпенсатор и избавиться от проблем с ним ещё тысяч на сто наперёд. Существуют компании, которые специализируются на автомобильных гидросистемах и гидриках в частности.

Штатовские роликовые гидрики Delphi

Тем не менее многие стремятся купить оригинальный гидрокомпенсатор от производителя.

Тут есть одна маленькая хитрость. Ни Фольксваген, ни ВАЗ, ни Мерседес своими силами не производят гидрики, они в любом случае покупают их у сторонних производителей, хотя цена гидрокомпенсатора, как бы оригинального, может крепко отличаться от цены на рынке запасных частей, так называемые запчасти aftermarket.

Поэтому особого смысла переплачивать за оригинальную деталь нет. Вот только несколько компаний, продающих вполне приличные гидрокомпенсаторы:
  1. INA, немецкая компания, заслуженно пользующаяся репутацией производителя первоклассных гидроустройств. Заводы расположены в городе Хиршайд, качество великолепное, выносливые гидрики, способные переваривать даже наше масло. Дороговаты, но мы же любим свою машину?Гидрокомпенсаторы INA
  2. Febi. Тоже немцы, но качество несколько хуже, что сказывается на гарантийном сроке, он меньше, чем у INA. Покупая их продукцию, обязательно смотрим на страну изготовления, поскольку Феби имеют несколько заводов в Китае и в Азии. Эти брать не стоит однозначно.Febi, стоит брать однозначно, если не подделка
  3. Swag. Если не подделка, то вполне сносные немецкие компенсаторы. Если подделка, то зря выброшенные деньги.Swag в упаковке
  4. Бюджетные гидрики АЕ и Ajusa (Испания). Стоят недорого, но хватает их максимум на 10-12 тысяч. Хотя, кому как повезёт. Капризные и требуют хорошего масла, со старым маслом лучше их не ставить вообще. Качество прихрамывает, но если другого выхода нет, тысяч пять можно протянуть и на них, потом застучат обязательно.Испанские Ajusa

Делаем выбор гидрокомпенсаторов правильно и взвешенно, тогда стук в головке блока нам не придётся слышать до 50-70 тысяч пробега. Тихой работы двигателя и ровных дорог!

какие бывают и как работают?

Ни для кого не секрет, что в процессе работы детали газораспределительного механизма испытывают колоссальные нагрузки и подвергаются воздействию высокой температуры. Это не может не отразится на их состоянии и от нагрева они начинают расширяться. Причем, происходит это неравномерно из-за того, что выполнены они из разных материалов. Поэтому для обеспечения нормальной работы клапанов в конструкции предусмотрен специальный тепловой зазор между ними и кулачками распределительного вала. Данный зазор всегда должен оставаться в предусмотренных пределах, по сему периодически клапана необходимо регулировать. Избавиться от необходимости проведения регулировки помогают гидрокомпенсаторы. О том, какими они бывают и как работают подробнее в этом посте.

Принцип работы гидрокомпенсаторов

Работа данной детали происходит в несколько этапов. На начальном этапе кулачок распределительного вала повернут к компенсатору тыльной стороной и не оказывает на него никакого воздействия. Между ними есть небольшой зазор. После плунжерная пружина, которая расположена внутри элемента начинает толкать плунжер из втулки, образуя при этом под плунжером полость.  Она заполняется под давлением маслом до нужного уровня и тогда шариковый клапан начинает закрываться под действием пружины.  Движение плунжера прекращается, когда толкатель упирается в кулачок. Масляный канал закрывается и исчезает зазор. При повороте кулачка  происходит нажатие на гидрокомпенсатор. За счет чего он перемещается вниз. Плунжерная пара становится жесткой и дает усилие на клапан, который впоследствии под давлением открывается и в камеру начинает поступать топливовоздушная смесь. После прохождения кулачком активной фазы цикл работы снова повторяется.

Виды гидрокомпенсаторов

Виды гидрокомпенсаторов могут отличаться в зависимости от их места установки и от компоновки ГРМ. В связи с этими параметрами устройства могут быть:

  • Гидротолкателями;
  • Гидроопорами;
  • Роликовыми гидротолкателями;
  • Гидроопоры, устанавливаемые под коромысла и рычаги.

Несмотря на то, что все виды гидрокомпенсаторов имеют отличия в конструкциях, они все же в основе имеют одинаковый принцип работы. Самыми распространенными считаются гидротолкатели с плоской опорой под кулачок распредвала. Устанавливаются такие механизмы на стержне клапана и тогда кулачок распределительного вала воздействует на гидротолкатель напрямую.

Подробнее об устройстве гидрокомпенсатора в этом видеоматериале:

Опубликовано: 13 ноября 2019

Что такое гидрокомпенсаторы? Устройство, 4 вида и устранение стука

Содержание статьи

Элементы ГРМ нагреваются при прогреве двигателя, и их размер увеличивается. Плотное закрытие клапанов при высокой температуре обеспечивает наличие термических зазоров между элементами данной системы. При неправильной регулировке теплового зазора возникают технические неисправности, поэтому для их предотвращения используются гидрокомпенсаторы теплового зазора клапанов.

Что такое гидрокомпенсатор и зачем он нужен

Гидрокомпенсаторы представлены в виде устройств, позволяющих регулировать зазоры между валом и клапанам в автоматическом порядке за счет давления масла. Среди положительных аспектов использования подобных механизмов стоит выделить следующие:

  • уменьшение расхода топлива;
  • улучшение динамических характеристик;
  • повышение акустического комфорта за счет снижения шума при работе двигателя;
  • минимизация ударных нагрузок и смягчение работы двигателя;
  • износ деталей ГРМ снижается;
  • повышается точность фаз газораспределения;
  • увеличение крутящего момента двигателя, его мощности и ресурса.

Устройство и принцип работы гидрокомпенсаторов

Устройство стандартного гидравлического компенсатора представлено корпусом с подвижной плунжерной парой внутри, в состав которой входит подпружиненный плунжер с шариковым клапаном и втулка. В качестве корпуса может использоваться часть головки блока цилиндров, цилиндрический толкатель или элементы рычагов привода клапанов.

Работа гидрокомпенсатора во многом зависит от плунжерной пары. Благодаря зазору в 5 — 8 микрон между плунжером и втулкой с одной стороны соединение полностью герметично, а с другой стороны детали свободно перемещаются друг относительно друга.

Обратный шариковый клапан закрывает отверстие в нижней части плунжера, а пружина необходимой жесткости установлена между плунжером и втулкой.

Принцип работы гидрокомпенсаторов клапанов далее рассмотрен более подробно:

  1. Тепловой зазор остается между распределительным валом и корпусом в момент, когда кулачок распределительного вала тыльной стороной располагается к толкателю.
  2. Посредством масляного канала из системы смазки в плунжер поступает масло, одновременно пружина действует на плунжер и поднимает его, компенсируя зазор. Масло попадает также и в полость под плунжером.
  3. По мере поворачивания вала возникает давление на толкатель со стороны кулачка, из-за чего тот перемещается вниз.
  4. Происходит закрытие обратного шарикового клапана, а плунжерная пара берет на себя роль жесткого элемента, передавая усилие клапану.
  5. Из-под плунжера выдавливается немного масла, поскольку между ним и втулкой есть зазор, но поскольку масло поступает из смазочной системы, происходит компенсация утечки.
  6. Длина гидрокомпенсатора несколько изменяется, поскольку при запущенном двигателе детали нагреваются, но зазор компенсируется в автоматическом порядке за счет изменения объема порции масла.

Виды гидрокомпенсаторов

Учитывая конструктивные особенности, гидрокомпенсаторы принято классифицировать следующим образом:

  • гидравлическая опора коромысла;
  • гидроопора;
  • роликовый гидротолкатель;
  • гидротолкатель.

Схема реализации в каждом из указанных случаев разная, но предназначение остается единым, как и принцип действия.

Причины стука гидрокомпенсаторов

Существует две проблемные ситуации, которые объясняют, почему стучат гидрокомпенсаторы – неполадки в системе двигателя, которая подает масло или проблемы в механике гидрокомпенсатора.

Проблемы с механикой могут быть следующими:

  1. Детали гидрокомпенсатора загрязнены из-за постепенного нагара масла и попадания чужеродных примесей.
  2. В гидравлический компенсатор попал воздух, поскольку масло в механизм подавалось в недостаточном количестве.
  3. Залипание клапана подачи масла из-за его засорения.
  4. Заводкой брак отдельных элементов гидравлического компенсатора.
  5. Ударная поверхность плунжерной пары со временем изнашивается, поскольку на рабочей поверхности плунжера появляются вмятины от кулачков распределительного вала.

Что касается неполадок в системе двигателя, они могут быть следующими:

  • попадание в масло воздуха, если его уровень в двигателе ниже или выше необходимого;
  • выход масляного фильтра из строя;
  • засорение масляных каналов грязью и нагаром;
  • изменение характеристик моторного масла ввиду перегрева двигателя;
  • неподходящие характеристики масла (климатические условия, качество, вязкость).

Стучат гидрокомпенсаторы на холодную и на горячую. Если двигатель уже прогрет, а стук не прекращается, проблема может быть в масле. Его нужно заменить на более качественное или просто залить новое. Проблема также может заключаться в грязном масляном фильтре. Проверьте его и замените новым при необходимости. Если проблема не исчезла, первопричину стука нужно искать в других узлах.

Стук на холодную может возникать из-за вязкости масла, поскольку при непрогретом двигателе оно не может попасть внутрь компенсатора. После прогрева вязкость меняется и стук пропадает.

Устранение неисправности

Поскольку гидрокомпенсаторов в автомобиле несколько, стоит применить акустическую диагностику для определения неисправного. Опытный мастер знает, как проверить гидрокомпенсаторы на работоспособность с помощью акустической диагностики, то есть на звук.

Для опытного мастера такие манипуляции не сложны. После определения проблемного гидравлического компенсатора, для устранения стука, необходимо его промыть, вернуть на место и повторно запустить двигатель. Если данная мера не помогла, придется заменять его. Рассмотрим поэтапные действия в случае обеих процедур.

Как промыть гидрокомпенсатор?

Промывать рассматриваемый механизм необходимо в условиях защищенного от пыли и сквозняков помещения. Не разбирать двигатель совсем не получится, но избавлять его от каждого винтика тоже нет никакой необходимости.

На подготовительном этапе приготовьте три глубоких емкости под размер компенсатора, а также промывочную жидкость, в роли которой может выступить керосин или хороший 92-й бензин.

Также перед промыванием оставьте автомобиль на сутки в гараже, чтобы в поддон стекло как можно больше масла. Дальнейшие действия следующие:

  1. Отключите аккумуляторную батарею, чтобы обесточить авто.
  2. Избавьтесь от воздушного фильтра.
  3. Открутите болты, чтобы снять крышку ГБЦ.
  4. Извлеките гидравлический компенсатор из гнезд после снятия осей коромысел.
  5. Используйте щетку с синтетической щетиной для очищения наружных сторон деталей.
  6. Промойте гидрокомпенсаторы в первой емкости. Для этого погрузите в жидкость каждый из них и надавите на шариковый клапан через отверстие в плунжере с помощью проволоки. Будьте аккуратны и не сломайте пружину. Далее нажимайте на сам плунжер. Как только вы заметите, что ход стал более легким, тщательно отожмите шарик клапана и слейте жидкость из компенсатора. Используйте шприц для дополнительного промывания каналов в корпусе и переходите к аналогичному промыванию во второй емкости.
  7. На завершающем этапе вас ожидает проверка, для этого понадобится третья емкость с промывочной жидкостью. Как проверить гидрокомпенсаторы перед установкой на место? Достаточно окунуть их в третью емкость, набрать жидкость в ГК и опустить клапан, после чего плунжером вверх вынимайте деталь. Если надавить на плунжер пальцем, он не должен двигаться.
  8. При отсутствии движения возвращайте детали на место путем установки коромысел, крышки головки блока цилиндров и остальных элементов. Помните о необходимости зажимать болты от середины к краям.

После того как сборка будет завершена, запустите двигатель и подождите пару минут, пока он поработает на холостых оборотах, на которых стука не должно быть после промывки. Очистка также помогает избавиться от стука после прогревания двигателя и его выхода на рабочий температурный режим.

Замена гидрокомпенсатора

Если очистка не помогла, замена гидравлических компенсаторов станет единственным разумным решением. Порядок замены гидрокомпенсаторов следующий:

  1. Демонтируйте неисправный механизм с помощью съемника или магнита. Последний способ целесообразен только при свободном движении гидрокомпенсатора. Если же он прикипел к наружной поверхности, поможет только съемник.
  2. Промойте всю систему подачи масла, замените масляный фильтр и залейте новое масло, проверьте его подачу в посадочное место компенсаторов путем прокручивания коленчатого вала. Гидравлический компенсатор уже должен быть снят.
  3. Категорически запрещена установка компенсаторов без масла, в противном случае возникают критические ударные нагрузки.
  4. После установки на посадочное место нового механизма не заводите силовой агрегат сразу. Используйте ключ для проворачивания коленвала на несколько оборотов и подождите полчаса. За это время детали найдут свои рабочие места, а внутреннее давление нормализуется.

Поскольку из строя может выйти как один, так и несколько гидрокомпенсаторов, вам придется самостоятельно решить, сколько из них подвергнуть замене. В данном случае решающим фактором является финансовое положение. При наличии разборных механизмов возможен ремонт и профилактика каждого по отдельности.

Если же вы отдали предпочтение комплексной замене, данное решение будет оптимальным и даст вам гарантию на отсутствие проблем в ближайшем будущем. Никогда не экономьте на качестве масла, что позволит вам существенно продлить не только эксплуатационный срок компенсатора, но также трущихся элементов мотора.

Пожалуйста, оцените этот материал!

Загрузка…

Если Вам понравилась статья, поделитесь ею с друзьями!

Engineering Essentials: основы гидравлических насосов

  • Войти
  • Регистр
  • Поиск
  • Fluid Power Basics
  • Гидравлические клапаны
  • Гидравлические насосы и двигатели
  • Цилиндры и приводы
  • H&P Connect
    • Ресурсы
    • Digital Arch5
    • Каталог дистрибьюторов
    • Блоги
    • Каталог оборудования
    • Основы дизайна
    • Часто задаваемые вопросы по дизайну
    • Вебинары
    • Официальные документы
    • Настенные диаграммы
    • Электронная рассылка Подписка
    • 000
    • 000 Подписка на
    • 000
    • 000 Контакты Рекламировать
    • Внести вклад
    • Политика конфиденциальности и использования файлов cookie
    • Условия использования
    Facebook iconTwitter iconLinkedIn icon

    Последние

    Пневматические клапаны Хирургический инструмент для управления катарактой

    21 декабря 2020 г.

    Пневматические клапаны .

    Что такое гидроагрегаты и как они работают?

    Что такое гидроагрегаты?

    Гидравлические силовые агрегаты (иногда называемые гидравлическими силовыми агрегатами) — это автономная система, которая обычно включает в себя двигатель, резервуар для жидкости и насос. Он работает для приложения гидравлического давления, необходимого для привода двигателей, цилиндров и других дополнительных частей данной гидравлической системы.

    Как работает гидравлический силовой агрегат?

    Гидравлическая система использует замкнутую жидкость для передачи энергии от одного источника к другому с последующим созданием вращательного движения, линейного движения или силы.Блок питания / блок обеспечивает мощность, необходимую для этой передачи жидкости.

    В отличие от стандартных насосов, в гидроагрегатах используются многоступенчатые системы наддува для перемещения жидкости, и они часто включают устройства контроля температуры. Механические характеристики и технические характеристики гидроагрегата определяют тип проекта, для которого он может быть эффективным.

    Некоторые из важных факторов, влияющих на работу гидроагрегата, — это пределы давления, мощность и объем резервуара.Кроме того, важны его физические характеристики, включая размер, источник питания и мощность накачки. Чтобы лучше понять принципы работы и конструктивные особенности гидравлической силовой установки, может быть полезно взглянуть на основные компоненты стандартной модели, используемой в промышленных гидравлических системах.

    Компоненты конструкции гидравлического силового агрегата / агрегата

    Большой и прочный гидравлический силовой агрегат, рассчитанный на работу в различных условиях окружающей среды, будет иметь множество конструктивных характеристик, отличных от типичной насосной системы.Некоторые из стандартных конструктивных особенностей включают:

    • Аккумуляторы: Это емкости, которые могут быть прикреплены к гидравлическим приводам. Они собирают воду из насосного механизма и предназначены для создания и поддержания давления жидкости в дополнение к насосной системе двигателя.
    • Мотор-насосы: Гидравлический силовой агрегат может быть оборудован одним мотор-насосом или несколькими устройствами, каждое из которых имеет собственный гидроаккумулирующий клапан. В системе с несколькими насосами обычно работает только один.
    • Емкости: Емкость представляет собой резервуар, рассчитанный на достаточный объем, чтобы жидкость из труб могла стекать в него. Аналогичным образом, иногда может потребоваться слить исполнительную жидкость в резервуар.
    • Фильтры: Фильтр обычно устанавливается в верхней части резервуара. Это автономный байпасный агрегат с собственным двигателем, насосом и фильтрующим устройством. Его можно использовать для наполнения или опорожнения бака путем активации многоходового клапана. Поскольку они автономны, фильтры часто можно заменять во время работы блока питания.
    • Охладители и нагреватели: Как часть процесса регулирования температуры, охладитель воздуха может быть установлен рядом с фильтрующим блоком или за ним, чтобы предотвратить повышение температуры выше рабочих параметров. Аналогичным образом, система отопления, такая как нагреватель на масляной основе, может использоваться для повышения температуры, когда это необходимо.
    • Контроллеры силовых агрегатов: Гидравлический контроллер — это интерфейс оператора, содержащий переключатели питания, дисплеи и функции мониторинга.Он необходим для установки и интеграции силового агрегата в гидравлические системы, и обычно его можно найти подключенным к силовому агрегату.

    Как выбрать гидравлические силовые двигатели

    Источником энергии или первичным двигателем, связанным с большинством гидравлических силовых агрегатов, является двигатель, который обычно выбирается на основе его скорости, уровня крутящего момента и мощности. Двигатель, размер и возможности которого дополняют возможности гидравлической силовой установки, может минимизировать потери энергии и повысить экономическую эффективность в долгосрочной перспективе.

    Критерии выбора двигателя зависят от типа используемого источника питания. Например, электродвигатель имеет начальный крутящий момент, намного превышающий его рабочий крутящий момент, но дизельные и бензиновые двигатели имеют более равномерную кривую зависимости крутящего момента от скорости, обеспечивая относительно стабильное количество крутящего момента как на высоких, так и на низких скоростях вращения. Следовательно, двигатель внутреннего сгорания может приводить в действие нагруженный насос, но не обеспечивать достаточную мощность, чтобы довести его до рабочей скорости, если он не согласован надлежащим образом с гидравлической силовой установкой.

    Размер двигателя

    Как показывает опыт, номинальная мощность дизельного или бензинового двигателя, используемого с гидравлической силовой установкой, должна быть как минимум вдвое выше, чем у электродвигателя, подходящего для той же системы. Однако стоимость электроэнергии, потребляемой электродвигателем в течение срока его службы, обычно превышает стоимость самого двигателя, поэтому важно найти устройство подходящего размера, которое не будет тратить впустую потребление энергии. Если давление нагнетания и расход жидкости установлены на постоянное значение, размер двигателя можно измерить по следующим параметрам:

    л.с.

    • Галлонов в минуту

    • Давление, измеряемое в фунтах на квадратный дюйм (psi)

    • КПД механической откачки

    В некоторых случаях гидравлическая система может требовать различных уровней давления на разных этапах процесса откачки, а это означает, что мощность в лошадиных силах может быть рассчитана как среднеквадратичное значение (среднеквадратичное значение), и для проекта может быть достаточно двигателя меньшего размера.Однако двигатель по-прежнему должен соответствовать требованиям крутящего момента для самого высокого уровня давления в цикле. После расчета среднеквадратичного и максимального крутящего момента (включая начальный и рабочий уровни) их можно сопоставить с диаграммами характеристик производителя двигателя, чтобы определить, является ли двигатель необходимым размером.

    Мощность электродвигателя

    Электродвигатели и двигатели внутреннего сгорания, такие как дизельные или бензиновые двигатели, демонстрируют различные характеристики крутящего момента, которые определяют их разную мощность.Типичный трехфазный электродвигатель начинает свою рабочую последовательность с вращения ротора. Когда ротор ускоряется, уровень крутящего момента немного падает, а затем снова увеличивается, когда вращение достигает определенной скорости вращения. Это временное падение называется «тяговым моментом», а максимальное значение — «крутящим моментом пробоя». Когда частота вращения ротора превышает допустимый уровень, крутящий момент резко уменьшается. Кривая зависимости крутящего момента от скорости электродвигателя остается примерно одинаковой независимо от мощности, и он обычно работает с полной нагрузкой, но ниже точки отказа, чтобы снизить риск остановки.

    Мощность бензиновых и дизельных двигателей

    Двигатели внутреннего сгорания имеют существенно другую кривую зависимости крутящего момента от скорости с меньшими колебаниями крутящего момента. Как правило, дизельные и бензиновые двигатели должны работать на более высоких скоростях, чтобы достичь необходимого крутящего момента для привода насоса. Номинальная мощность в лошадиных силах примерно в два с половиной раза выше, чем у аналога электродвигателя, обычно требуется, чтобы двигатель внутреннего сгорания достиг уровней крутящего момента, необходимых для гидравлической силовой установки.Производители обычно рекомендуют, чтобы бензиновые или дизельные двигатели работали непрерывно только на части их максимальной номинальной мощности, чтобы продлить срок службы двигателя, а поддержание крутящего момента ниже максимального уровня часто может улучшить топливную экономичность.

    Процесс эксплуатации гидроагрегатов

    Когда гидравлический силовой агрегат начинает работать, шестеренчатый насос вытягивает гидравлическую жидкость из бака и перемещает ее в аккумулятор. Этот процесс продолжается до тех пор, пока давление в гидроаккумуляторе не достигнет заданного уровня, после чего зарядный клапан переключает насосное действие, чтобы начать циркуляцию жидкости.Это заставляет насос выпускать жидкость через заправочный клапан обратно в резервуар при минимальном давлении. Специальный односторонний клапан предотвращает вытекание жидкости из аккумулятора, но если давление падает на значительную величину, заправочный клапан снова активируется, и аккумулятор заполняется жидкостью. Далее по линии клапан пониженного давления регулирует поток масла, поступающего к исполнительным механизмам.

    Если аккумулятор оборудован устройством быстрого хода, его можно подключить к другим аккумуляторам, чтобы они также могли заряжать давление.Часто в комплект входит автоматический термостат или вентилятор, чтобы помочь снизить повышение температуры. Если жидкость в системе начинает перегреваться, переключатель температуры может отключить мотопомпу, что также может помочь наполнить бак, если уровень жидкости в нем слишком низкий. Если гидравлический силовой агрегат имеет несколько насосов с электродвигателем, реле потока может переключать их в случае уменьшения подачи жидкости. Реле давления могут использоваться для регулирования давления в гидроаккумуляторе, а система мониторинга может предупреждать операторов, когда давление упало слишком низко, что повышает риск отказа силового агрегата.

    Прочие гидравлические изделия

    Больше от компании Electric & Power Generation

    .

    3-ходовой клапан с компенсацией гидравлического давления

    Описание

    Блок 3-ходового регулирующего клапана с компенсацией давления представляет 3-ходовой регулирующий клапан с компенсацией давления в виде модель. Модель клапана включает регулируемое отверстие и нормально закрытый клапан регулирования давления, соединенный параллельно с отверстием. Клапан регулировки давления предназначен для поддержания заданного перепад давления через отверстие за счет отклонения потока от порт A к резервуару (порт R), если перепад давления превышает заданное значение.Порт C управляет отверстием отверстия, как показано на следующий рисунок.

    В зависимости от данных, указанных в каталогах производителя или данных листов для вашего конкретного клапана, вы можете выбрать один из следующих Варианты параметризации модели:

    • По максимальной площади и раскрытию — Используйте эту опцию, если в техническом паспорте указано только максимальное отверстие. площадь и максимальный ход органа управления.

    • По площади относительно стола открытия — Используйте этот вариант, если в каталоге или техническом описании есть таблица площадь прохода отверстия в зависимости от смещения управляющего элемента A = A (h) .

    В первом случае площадь прохода предполагается линейной. в зависимости от смещения регулирующего элемента, то есть отверстия считается закрытым, если начальное отверстие отверстия установлено на ноль и положение элемента управления также равно нулю. Максимальное отверстие открытие происходит при максимальном смещении. Во втором случае площадь прохода определяется одномерной интерполяцией из таблица A = A (h) .

    В представлении клапана регулирования давления не учитывается инерция, трение или гидравлические силы.Клапан имеет следующие Отношение перепада давления площади:

    Apc = {Aleakfor p (pset + preg)

    , где

    A шт. Зона прохода клапана регулирования давления
    p Перепад давления на отверстии
    p set Предустановленный перепад давления
    p reg Диапазон регулирования
    A max_pc Максимальная площадь клапана регулирования давления
    A утечка Закрытая зона утечки отверстия для компенсатора давления

    Оба для регулируемой диафрагмы и компенсатора давления, предполагается, что небольшая площадь утечки существует даже после того, как отверстие полностью закрыта.Физически он представляет собой возможный зазор. в закрытом клапане, но основное назначение параметра — поддерживать числовая целостность схемы за счет предотвращения части система от изоляции после полного закрытия клапана. Изолированная или «висящая» часть системы может повлиять на вычислительная эффективность и даже вызвать сбои в вычислениях.

    После определения площади блок вычисляет поток скорость для диафрагмы и компенсатора давления в соответствии с следующие уравнения:

    q = CD⋅A2ρ⋅p (p2 + pcr2) 1/4

    A = {Apcдля компенсатора давления Aorfor с переменным отверстием

    Apc = {h · Amax / hmax + Aleakfor h> 0Aleakfor h

    p = {pA − pR для компенсатора давления pA − pB для регулируемого отверстия

    pcr = ρ2 (Recr⋅νCD⋅DH) 2

    где

    q Расход
    p Перепад давления
    p A , p B , p R Манометрическое давление на клеммах блока
    C D Коэффициент расхода
    A Мгновенная площадь прохода диафрагмы
    A макс. Максимальная площадь диафрагмы
    A утечка Закрытая зона утечки отверстия
    h max Максимальное смещение управляющего элемента
    x 0 Начальное открытие
    x Смещение управляющего элемента из исходного положения
    h Отверстие диафрагмы
    ρ Плотность жидкости
    ν Кинематическая вязкость жидкости
    p cr Минимум давление для турбулентного потока
    Re cr Критическое число Рейнольдса
    D H Гидравлический диаметр мгновенного сопла

    Соединения A, B и R служат для сохранения ассоциация гидравлических портов ред с впускным, выпускным и обратным клапанами соответственно.Подключение C — это физический сигнальный порт, через который регулируется открытие отверстия. Положительное направление блока — от порта A к порту B. Положительный сигнал в канале C открывается клапан.

    .

    Руководство для новичков о том, как работает гидравлический двигатель

    Гидравлический двигатель работает, направляя энергию, генерируемую жидкостями, и преобразуя ее в движение. Давайте разберемся, как работает гидравлический двигатель, из этой статьи.

    Гидравлический двигатель использует жидкости в своей работе и науку гидравлики. Он позволяет преобразовывать давление, создаваемое жидкостями (жидкостями и газами), в такие силы, как угловое смещение и крутящий момент. В основном это вращающаяся часть гидравлических машин, гидромотор работает вместе с гидроцилиндром.Есть много разных типов гидравлических двигателей. Гидравлика является передовой наукой, поэтому было разработано множество применений этих двигателей. Полезные сведения, касающиеся работы этого двигателя, типов и применения, можно найти ниже.

    Рабочий гидравлический двигатель

    Хотели бы вы написать нам? Что ж, мы ищем хороших писателей, которые хотят распространять информацию. Свяжитесь с нами, и мы поговорим …

    Давайте работать вместе!

    Гидравлический двигатель принимает жидкость, которая направляется в трубы под давлением гидравлическим насосом.Жидкость изначально хранится в резервуаре. Процесс внутреннего сгорания помогает гидравлическому насосу направлять эту жидкость в трубы, которые затем переносятся к гидравлическому двигателю. Жидкость, которая течет под давлением, вращает двигатель, протекая через него. Эта жидкость после протекания через двигатель возвращается в резервуар. Цикл повторяется, чтобы двигатель продолжал работать.

    Гидравлический насос

    Гидравлический насос, который используется для подачи жидкости, имеет множество различных форм.Шестеренчатый насос — это простейшая форма гидравлического насоса. В шестеренчатых насосах корпус действует как кожух для двух зацепленных шестерен. Вращательное действие этих шестерен проталкивает масло от входа к выходу. Пластинчато-роторный насос — это еще один тип гидравлического насоса. В этой форме гидравлического насоса масло подается с помощью вращающейся балки, которая затем проходит через винтовой насос.

    Гидравлический цилиндр

    В некоторых гидравлических машинах для создания движения используется гидроцилиндр. Давление создается в цилиндре, когда в него попадает масло.Это давление действует на поршень, и он выдвигается. Такие поршни соединены с набором различных устройств, включая различные типы рычагов. В различных типах строительных машин такие поршни используются для создания движения.

    Работа различных гидравлических двигателей

    Двигатели осевые плунжерные

    Это двигатель, который использует гидравлический цилиндр для создания движения. Поскольку поршень этого двигателя прикреплен к вращающейся оси, двигатель также называют двигателем с вращающимся поршнем.Гидравлическое давление толкает поршень и помогает вращать ротор. Когда поршень полностью выпущен или вытолкнут, масло сливается; этот слив масла позволяет двигателю развернуться.

    Радиально-поршневые двигатели

    Эти двигатели доступны в двух типах, а именно с коленчатым валом и с многопозиционным кулачковым кольцом. Двигатель с коленчатым валом имеет единственный кулачковый поршень, который толкается внутрь. Двигатель отличается высокими характеристиками пускового момента. Мотор с несколькими кулачками и кольцевым кольцом имеет несколько кулачков и поршень, который движется наружу в направлении, противоположном кулачковым кольцам.Этот двигатель способен генерировать большую мощность. Он работает без сбоев при установке в низкоскоростные приложения. Двигатель отличается высоким пусковым моментом; он способен производить плавный вывод.

    Лопастной мотор

    Лопастной двигатель может вращать как по часовой, так и против часовой стрелки. Части лопастного двигателя включают приводной вал, ротор с прорезями, прямоугольные лопатки, вставленные в прорези на роторах, и другие детали, которые удерживают вместе этот узел.Лопатки свободно входят и выходят из ротора, в то время как последний совершает круговое движение. Сжатый воздух нагнетается в узел через впускное отверстие. Этот сжатый воздух перемещает ротор против часовой стрелки. После перемещения ротора давление воздуха уменьшается. Затем этот воздух выпускается в атмосферу через выпускное отверстие.

    Гидравлический мотор-редуктор

    Этот тип двигателя используется в шестеренчатых насосах с внешним зацеплением и также известен как двигатель с внешним зацеплением. Двигатель оснащен двумя шестернями, вращающимися друг относительно друга.Одна из шестерен приводится в движение потоком жидкости, которая поступает через входное отверстие; мощность от первой передачи передается на вторую, и обе шестерни приводятся в движение. Жидкость движется внутри корпуса, движется по периферии шестерен и, наконец, достигает другой стороны (шестерен). Жидкость удаляется из корпуса через выпускной патрубок. Этот тип двигателя известен своим низким КПД.

    Применения гидравлического двигателя

    Гидравлические двигатели используются в различных приложениях, включая приводы кранов и лебедки.Мотор также используется в военной технике, экскаваторах и самоходных кранах. Его применение включает в себя приводы питателей и конвейеров, валковые мельницы, приводы мешалок и смесителей, приводы барабанов для варочных котлов, измельчители для автомобилей, печи и троммеры, траншейные фрезы, буровые установки и т. Д.

    Хотели бы вы написать нам? Что ж, мы ищем хороших писателей, которые хотят распространять информацию. Свяжитесь с нами, и мы поговорим …

    Давайте работать вместе!

    Гидравлические двигатели

    имеют широкий спектр применения и играют важную роль в повседневной жизни.Приведенные выше факты должны помочь нам лучше понять работу гидравлических двигателей и их различных типов.

    .

    Как работают гидравлические насосы?

    Как работают гидравлические насосы?

    Гидравлический насос — это механическое устройство, преобразующее механическую энергию в гидравлическую энергию. Он создает поток с достаточной мощностью, чтобы преодолеть давление, вызванное нагрузкой.

    Гидравлический насос во время работы выполняет две функции. Во-первых, его механическое действие создает вакуум на входе насоса, впоследствии позволяя атмосферному давлению вытеснять жидкость из резервуара, а затем прокачивать ее во входную линию насоса.Во-вторых, его механическое действие подает эту жидкость к выпускному отверстию насоса и заставляет ее попасть в гидравлическую систему.

    Каковы наиболее распространенные типы гидравлических насосов

    Три наиболее распространенных конструкции гидравлических насосов: лопастной насос, шестеренчатый насос и радиально-поршневой насос. Все они хорошо подходят для обычных гидравлических применений, однако поршневая конструкция рекомендуется для более высоких давлений.

    Большинство насосов, используемых в гидравлических системах, представляют собой поршневые насосы прямого вытеснения. Это означает, что они вытесняют (доставляют) одинаковое количество жидкости за каждый цикл вращения насосного элемента.Подача за цикл остается почти постоянной, независимо от изменений давления.

    Насосы прямого вытеснения подразделяются на постоянные и переменные. Производительность насоса с постоянным рабочим объемом остается постоянной во время каждого цикла откачки и при заданной скорости насоса. Изменение геометрии камеры смещения приводит к изменению производительности насоса переменной производительности.

    Насосы с постоянным рабочим объемом (или винтовые насосы) мало шумят, поэтому они идеально подходят для использования, например, в театрах и оперных театрах.С другой стороны, насосы с регулируемым рабочим объемом особенно хорошо подходят для контуров, в которых используются гидравлические двигатели, и там, где требуется регулируемая скорость или возможность реверсирования.

    Подробнее о поршневых насосах

    Поршневой насос безупречно работает с большими потоками при высоком давлении в гидравлической системе.

    Области применения, обычно использующие поршневой насос, включают: вспомогательные судовые источники энергии, станки, мобильное и строительное оборудование, металлообрабатывающее и нефтяное оборудование.

    Как следует из названия, поршневой насос работает с помощью поршней, которые перемещаются вперед и назад в цилиндрах, соединенных с гидравлическим насосом. Поршневой насос также имеет отличные герметизирующие свойства.

    Гидравлический поршневой насос может работать на больших объемных уровнях благодаря малой утечке масла. Для одних поршней требуются клапаны на всасывающем и нагнетательном портах, а для других — на входных и выходных каналах. Клапаны (и их уплотняющие свойства) на конце поршневых насосов еще больше улучшат производительность при более высоких давлениях.

    Какие особенности аксиально-поршневого насоса?

    Аксиально-поршневой насос, возможно, является наиболее широко используемым насосом с регулируемым рабочим объемом. Он используется во всем: от тяжелой промышленности до мобильных приложений. Различные методы компенсации будут постоянно изменять расход жидкости насоса за оборот. И, кроме того, также изменяйте давление в системе в зависимости от требований к нагрузке, настроек отсечки максимального давления и регулирования соотношения. Это означает значительную экономию электроэнергии.

    Аксиально-поршневой насос характеризует два принципа.Во-первых, конструкция наклонной шайбы или изогнутой оси и, во-вторых, параметры системы. Системные параметры включают решение о том, используется ли насос в открытом или закрытом контуре.

    Обратная линия замкнутого контура находится под постоянным давлением. Это необходимо учитывать при проектировании аксиально-поршневого насоса, который используется в замкнутом контуре. Также очень важно, чтобы насос переменного объема был установлен и работал вместе с аксиально-поршневым насосом в системе.Аксиально-поршневые насосы могут переключаться между насосом и двигателем в некоторых конфигурациях с фиксированным рабочим объемом.

    Как работает аксиально-поршневой насос с изогнутой осью?

    Насосы с гнутой осью — самые эффективные из всех насосов.

    Угол поворота определяет рабочий объем насоса с наклонной осью. Поршни в расточке цилиндра перемещаются при вращении вала. Качающаяся шайба в конструкции качающейся шайбы поддерживает вращающиеся поршни. Кроме того, угол наклонной шайбы определяет ход поршня.

    Принцип изогнутой оси, фиксированное или регулируемое перемещение, существует в двух различных исполнениях. Первая конструкция — это принцип Тома с максимальным углом 25 градусов, разработанный немецким инженером Хансом Тома и запатентованный в 1935 году. Вторая конструкция носит название принципа Уолмарка, названного в честь Гуннара Акселя Вальмарка (патент 1960 года). Последний имеет поршни сферической формы, объединенные со штоком и поршневыми кольцами. И, кроме того, максимум 40 градусов между осью карданного вала и поршнями.

    Как правило, наибольший рабочий объем составляет приблизительно один литр за оборот. Однако при необходимости может быть построен двухлитровый насос рабочего объема. Часто используются насосы с регулируемым рабочим объемом, чтобы можно было тщательно регулировать поток масла. Эти насосы обычно работают при рабочем давлении до 350–420 бар в непрерывном режиме.

    О радиально-поршневых насосах

    Радиально-поршневые насосы используются, в частности, при высоком давлении и относительно небольших расходах. Давление до 650 бар является нормальным.Плунжеры соединены с плавающим кольцом. Рычаг управления перемещает плавающее кольцо в горизонтальном направлении с помощью рычага управления и, таким образом, вызывает эксцентриситет в центре вращения плунжеров. Величина эксцентриситета регулируется для изменения расхода. Более того, смещение эксцентриситета на противоположную сторону плавно меняет направление всасывания и нагнетания.

    Радиально-поршневые насосы — единственные насосы, которые непрерывно работают под высоким давлением в течение длительных периодов времени. Примеры применения: прессы, станки для обработки пластика и станки.

    Возможен переменный рабочий объем.

    Подробнее о гидравлических лопастных насосах

    В лопастном насосе для перемещения жидкостей используются возвратно-поступательные движения лопаток прямоугольной формы внутри пазов. Иногда их также называют шиберными насосами.

    Простейший пластинчатый насос состоит из круглого ротора, вращающегося внутри большой круглой полости. Центры двух окружностей смещены, что вызывает эксцентриситет. Лопатки входят в ротор и выходят из него и уплотняются со всех сторон.Это создает лопастные камеры, которые выполняют перекачку.

    Вакуум создается, когда лопатки перемещаются дальше всасывающего отверстия насоса. Так масло всасывается в насосную камеру. Масло проходит через порты и затем вытесняется из выпускного отверстия насоса. Направление потока масла может изменяться в зависимости от вращения насоса. Так обстоит дело со многими ротационными насосами.

    Пластинчатые насосы наиболее эффективно работают с маслами с низкой вязкостью, такими как вода и бензин.С другой стороны, жидкости с более высокой вязкостью могут вызвать проблемы с вращением лопасти, препятствуя их легкому перемещению в пазах.

    Где используются пластинчато-гидравлические насосы? Обычно лопастные насосы применяются в терминалах загрузки топлива и транспортных средствах для перевозки топлива.

    Как работают гидравлические шестеренчатые насосы?

    Шестеренчатые насосы — один из наиболее распространенных типов насосов для гидравлических систем. Здесь, в Hydraulics Online, мы предлагаем широкий ассортимент мощных шестеренчатых гидравлических насосов, подходящих для промышленного, коммерческого и бытового использования.Мы предлагаем надежную модель насоса, независимо от характеристик вашей гидравлической системы. Кроме того, мы гарантируем, что он работает максимально эффективно.

    Иоганнес Кеплер изобрел шестеренчатый насос около 1600 года. Жидкость, проходящая между зубьями двух зацепляющихся шестерен, создает поток. Корпус насоса и боковые пластины, также называемые износостойкими или нажимными пластинами, охватывают камеры, которые образуются между соседними зубьями шестерни. Всасывающий насос создает частичный вакуум. После этого жидкость втекает, заполняя пространство, и разносится вокруг выпускного отверстия шестерен.Затем жидкость вытесняется наружу по мере зацепления зубьев (на выпускном конце).

    Некоторые шестеренчатые насосы довольно шумные. Однако современные конструкции, включающие разрезные шестерни, зубья косозубой шестерни и профили зубьев с более высокой точностью / качеством, намного тише. Вдобавок к этому они могут более плавно сцепляться и расцепляться. Впоследствии это уменьшает колебания давления и связанные с ними вредные проблемы.

    Катастрофические поломки легче предотвратить с помощью гидравлических шестеренчатых насосов. Это происходит потому, что шестерни постепенно изнашивают корпус и / или основные втулки.Поэтому постепенно снижайте объемный КПД насоса, пока он не станет бесполезным. Это часто происходит задолго до того, как износ приведет к заклиниванию или поломке устройства.

    Можно ли реверсировать гидравлические шестеренчатые насосы? Да, большинство насосов можно реверсировать, разобрав насос и перевернув центральную часть. Вот почему большинство шестеренчатых насосов симметричны.

    Два основных типа

    В насосах с внешним зацеплением используются две прямозубые шестерни с внешним зацеплением. В насосах с внутренним зацеплением используется прямозубая шестерня с внешним и внутренним зацеплением.Кроме того, зубья цилиндрической шестерни обращены внутрь для шестеренных насосов с внутренним зацеплением. Шестеренные насосы бывают объемного типа (или фиксированного рабочего объема). Другими словами, они перекачивают постоянное количество жидкости за каждый оборот. Некоторые шестеренчатые насосы взаимозаменяемы и работают как двигатель, так и насос.

    Для чего используются гидравлические шестеренчатые насосы?

    В нефтехимической промышленности шестеренчатые насосы используются для перемещения дизельного топлива, пека, смазочного масла, сырой нефти и других жидкостей. Химическая промышленность также использует их для таких материалов, как пластмассы, кислоты, силикат натрия, смешанные химические вещества и другие среды.Наконец, эти насосы также используются для транспортировки чернил, красок, смол и клея, а также в пищевой промышленности.

    О героторных гидравлических насосах

    Геротор — это поршневой насос прямого вытеснения. Название геротор происходит от «сгенерированного ротора». Героторный блок состоит из внутреннего и внешнего ротора.

    Математические расчеты являются ключом к конструкции любого типа гидравлического двигателя или насоса, но особенно интересны в конструкции геротора. Внутренний ротор имеет N зубьев, где N> 2.Внешний ротор должен иметь N + 1 зубьев (= на один зуб больше, чем внутренний ротор), чтобы конструкция работала.

    .

    Гидравлические силовые агрегаты | Гидравлика и пневматика

    • Войти
    • Регистр
    • Поиск
    • Основы Fluid Power
    • Гидравлические клапаны
    • Гидравлические насосы и двигатели
    • Цилиндры и приводы
    • H&P Connect
      • Ресурсы
      • Digital Arch5
      • Каталог дистрибьюторов
      • Блоги
      • Каталог продукции оборудования
      • Основы дизайна
      • Часто задаваемые вопросы по дизайну
      • Вебинары
      • Официальные документы
      • Настенные диаграммы
      • Электронная рассылка Подписка
      • 000
      • 000 Подписка на
      • 000
      • 000 Рекламировать
      • Внести вклад
      • Политика конфиденциальности и использования файлов cookie
      • Условия использования
      Значок Facebook Значок Twitter LinkedIn значок

      Последние

      Пневматические клапаны Хирургический инструмент для управления катарактой

      21 декабря 2020 г.

      Пневматические клапаны
      Trade Show O utlook Практически то же самое

      17 декабря, 2020

      Новости
      Размеры аккумуляторов и ГВД для синусоидального движения цилиндра

      15 декабря 2020 г.

      Цилиндры и приводы.

Как работают гидрокомпенсаторы, и как избежать прогара клапана

Газораспределительный механизм моторов с течением времени существенно модернизировался. Развитие не обошло стороной и клапанное устройство ДВС. Поначалу возникающие зазоры между клапанами и распределительным валом корректировались вручную, затем появились механические регуляторы, однако вершиной настройки стали гидравлические компенсаторы. Мало знаете о подобных деталях? Тогда обязательно ознакомьтесь с приведённой ниже статьёй, которая поможет всем желающим понять, почему стучат гидрокомпенсаторы, что они собой представляют и поддаются ли ремонту.

Устройство и принцип работы гидрокомпенсаторов

Любой более-менее опытный автомобилист знает, что клапанный механизм двигателя регулирует впуск топливной смеси в цилиндры и выпуск из них отработанных газов. В процессе своей работы клапаны мотора попарно открываются и, естественно, работают в условиях колоссальной нагрузки, что связано с высокой температурой горения топлива. Для минимизации отрицательных свойств температурного расширения между узлами всего ГРМ предусмотрены тепловые зазоры, регуляцией которых и занимается стандартный гидрокомпенсатор.

Отличие гидравлических компенсаторов от иных регуляторов зазора клапанов заключается в том, что первые работают полностью автоматически, в то время как другие механизмы требуют того или иного участия автомобилиста в своей жизни. Что это значит? А значит это то, что при отсутствии гидрокомпенсаторов владелец автомобиля с некоторой периодичностью должен собственноручно выставлять тепловой зазор клапанов и внимательно следить за ними в процессе эксплуатации агрегата.

Говоря простыми словами, устройство гидрокомпенсатора – это механизм-связка, установленный между распредвалом мотора и каждым клапаном. Работает деталь по принципу плунжерной пары и циркуляции масла, выступая при этом «прокладкой» между ранее отмеченными элементами ГРМ. В итоге, получается так, что в зависимости от температурного режима работы двигателя между распределительным валом и рабочим клапаном всегда имеется взаимодействие, а самое главное – правильно настроенный тепловой зазор.

Почему появляется стук гидрокомпенсаторов

От многих автомобилистов нередко можно услышать фразы по типу:

  • «Почему стучат гидрокомпенсаторы на холодную? Что делать?»;
  • «Из-за чего стучат гидрокомпенсаторы на горячую? Где регулировать?»;
  • «Застучали гидрокомпенсаторы. Как их теперь починить?».

Сразу отметим: формулировка проблемы подобным образом изначально неправильна. Важно понимать одну простую вещь – гидрокомпенсаторы клапанов стучать не могут, стучит сам клапанный механизм из-за неправильного функционирования. А вот последнее уже нередко провоцируют именно неисправности гидрокомпенсаторов. Но обо всём по порядку.

Выше было отмечено, что любой тип гидравлического компенсатора – это гидромеханизм, работающий за счёт плунжерной пары и масла, поступающего в него из мотора. То есть, причина стука гидрокомпенсаторов или клапанов, как будет правильней, кроется либо в неправильной работе плунжеров, либо в проблемах с маслообеспечением данного механизма. Если быть точнее, то неприятный звук может появиться по нескольким причинам:

  • Масла, доходящего до гидрокомпенсаторов, недостаточно или оно имеет очень низкое качество. В итоге, плунжерная пара не получает должной смазки, давление в системе не появляется и регуляция зазора не происходит. Естественно, начинается стук клапанов, спровоцированный неправильным тепловым зазором;
  • Каналы ГБЦ или самого гидравлического механизма забились выработкой. Подобное явление случается по причине неправильного использования масла. То есть, отсутствие своевременной замены масла или его чрезмерное выгорание способно забить масляные каналы и сделать из рабочего узла совершенно неисправный гидрокомпенсатор;
  • Вышел из строя сам гидравлический механизм. Тут возможны две основные поломки: клин плунжерной пары или неправильная работа шарикового клапана, воздействующего непосредственно на тепловой клапан мотора. Случиться подобное может либо из-за нагара, появляющегося по причине использования плохого масла, либо же из-за брака, допущенного при сборке механизма. Физический износ узла практически исключён, ибо он в действительности вечен. В любом случае, определить точную причину неисправности поможет только тщательная проверка гидрокомпенсаторов и профессиональный взгляд на их состояние.

Сетовать на неправильную работу гидромеханизмов в конструкции ГРМ есть смысл лишь в том случае, когда наличие иных поломок в системе исключено (особенно – поломок клапанов). При иных же обстоятельствах ремонт гидрокомпенсаторов будет выглядеть чем-то ненужным и бессмысленным.

Ремонт гидрокомпенсаторов

Замена гидрокомпенсаторов или ремонт данных элементов ГРМ своими руками требуется, прямо скажем, очень редко. Связано это с тем, что конструкция механизмов продумана до мелочей и их реальную поломку зачастую вызывают не условия работы, а беспечность владельца машины. Последняя, конечно, есть не у всех автомобилистов, поэтому и ремонт гидрокомпенсаторов требуется не многим.

В любом случае, знание – это сила, поэтому информация о симптоматике и общих принципах починки гидравлических регуляторов зазоров будет нелишней. Сначала обратим внимание на признаки поломки гидрокомпенсаторов. Зачастую они более чем прозрачны и представлены следующим перечнем:

  • мотор стал работать нестабильно;
  • нарушилась динамика движения;
  • появились «стучащие» шумы в работе ДВС;
  • прогорели клапана;
  • повысился расход топлива.

Естественно, чем большее количество симптомов появляется – тем большие основания имеются для того, чтобы задуматься о ремонте гидрокомпенсаторов своими руками. Почему именно собственноручно, а не на СТО? Всё просто. Особых сложностей в ремонте деталей нет, поэтому отдавать немалую сумму денег другим людям, наверное, бессмысленно.

Возвращаясь к вопросу о том, как проверить гидрокомпенсаторы на правильность работы, придётся констатировать неприятную для многих автомобилистов вещь – без снятия элементов с двигателя диагностику осуществить не получится. Учитывая эту особенность ремонта, замену и проверку гидромеханизмов рассмотрим совместно. В общем виде, процесс починки гидрокомпенсаторов выглядит так:

  1. В первую очередь, полностью меняем масло в двигателе и масляный фильтр. Если после этого, стук или иные симптомы поломки не прошли, приступаем к следующему шагу. При этом не забудьте, что после смены масла требуется прокачка гидрокомпенсаторов. Как прокачать гидрокомпенсаторы? Никак, система сделает всё сама после запуска мотора. Если говорить точнее, то новая смазка масляным насосом накачается в каждый гидравлический механизм и лишь после этого они перестанут стучать, что позволит оценить их новую работу. Зачастую на это уходит 5-15 минут, не более;
  2. Итак, судя по всему – эффекта нет? Тогда частично разбираем мотор для доступа к клапанному механизму. На многих моделях авто достаточно снять ГБЦ и демонтировать иные узлы мотора, мешающие доступу к клапанам;
  3. После этого есть два варианта действий:
    • Первый — поиск неисправного гидрокомпенсатора. Процедура не сложная и проводится следующим образом: отводим коромысло и штангу толкателя каждого клапана максимально в сторону от гидромеханизма и пытаемся выколоткой надавить на последний. Если компенсатор уходит вниз под значительным давлением, то он исправен, в ином случае следует снять деталь для более качественной проверки;
    • Второй – снятие всех гидрокомпенсаторов для проверки каждого. При выборе этого варианта проводится стандартная разборка клапанного механизма и интересующих нас элементов соответственно.
  4. Осуществив описанные выше операции, остаётся лишь заменить неисправный элемент ГРМ и вернуть автомобиль в первоначальное состояние. Если же проводилась разборка механизмов, то требуется проверить их внутреннее состояние и очистить от нагара. В случае, когда с регулятором всё в норме, то установить гидрокомпенсатор следует обратно в конструкцию мотора и уже потом проверять его на работоспособность. При иных обстоятельствах узел требуется полностью заменить. Более подробно говорить о том, как разобрать гидрокомпенсатор не будем, так как данная процедура не столь сложна и под силу любому автомобилисту. Главное – действовать аккуратно и не спеша.

Пожалуй, больше информации относительно того, как заменить гидрокомпенсаторы, излагать бессмысленно. Тут большее значение имеет практика, поэтому запасайтесь базовым набором авторемонтника и направляйтесь в гараж, конечно, если необходимость подобного у вас имеется.

Профилактика поломок

Как стало ясно, проверка, ремонт и установка гидрокомпенсаторов – процедуры простые, а регулировка узла и вовсе не требуется. Несмотря на это, поломок машины не хочет допускать совершенно любой автомобилист, поэтому было бы целесообразно поговорить о предотвращении неисправностей и компенсаторов.

Главное в профилактике — убрать из «рациона» мотора авто дешёвую и некачественную смазку. Спросите, как же определить хорошего производителя масла? Ответ очень прост – по отзывам автомобилистов. Согласно исследованиями нашего ресурса, лучшие масла у следующих компаний:

  • Liqui Moly (Ликви Моли) – немецкая организация, знаменитая огромным количеством смазочных товаров для автомобилей. Сразу отметим, что присадки для гидрокомпенсаторов от Liqui Moly покупать не нужно (такие средства совершенно от любого производителя лишь засоряют полости мотора), а вот моторное масло – обязательно;
  • Motul (Мотуль) – британский производитель тех же смазочных средств для машин. Пожалуй, самый главный конкурент в своей сферы деятельности для Liqui Moly, что лучше именно для вас – решайте сами. Однозначно можно сказать, что оба производителя достойны внимания и уважения;
  • Castrol (Кастрол) – также как и Motul, производитель с Туманного Альбиона. По статусности и отзывам данная компания, конечно, уступает рассмотренным выше. Однако по сравнению с остальными представителями рынка, именно Castrol имеет лучшие отзывы о своей продукции, поэтому наш ресурс может лишь рекомендовать её масла для покупки.

Помимо подборки смазки, желательно снимать гидрокомпенсаторы хотя бы раз в 80-100 000 километров для прочистки и качественной проверки. В остальном же данные элементы ГРМ обслуживания не требуют и при правильной эксплуатации отъездят полный эксплуатационный срок двигателя любого автомобиля.

В целом, по сегодняшней теме больше сказать нечего. Надеемся, представленный выше материал был для вас полезен и дал ответы на интересующие ответы. Удачи на дорогах и в обслуживании авто!

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

что это такое, принцип работы и как их проверить

Тот, кто имеет опыт вождения автомобилей, наверняка помнит «магическое число» 10 000 как напоминание о том, что настало время регулировки ГРМ. Именно такой километраж необходимо было «откатать», чтобы проверить зазор между кулачками распределительного вала и клапанами.

Для несведущих следует пояснить, что операция эта весьма важна для того, чтобы мотор проработал долгое время, не теряя компрессии и мощности.

Гидрокомпенсатор клапанов — что это такое и его принцип работы

В процессе работы повышается температура, и в этом случае металлические части имеют свойство расширяться. Так вот из-за этого нагрева увеличиваются штоки клапанов, в результате чего они упираются в кулаки распредвала и не закрывают полностью впускные и выпускные отверстия, через которые в цилиндры поступает горючая смесь и выводятся отработанные газы.

Видео — принцип работы гидрокомпенсатора клапанов:

Чтобы такое не происходило, между клапанами и кулачками распределительного вала устанавливаются зазоры ровно на ту величину, на которую увеличиваются при сильном нагреве стержни клапанов.

Со временем эти зазоры увеличиваются, что приводит к несвоевременному поступлению горючей смеси к поршням и неполному выводу газов из камер сгорания. Это не только снижает эффективность двигателя, но и приводит к его постепенному выводу из строя.

Видео — замена гидрокомпенсаторов на Hyundai Getz:

Именно поэтому приходилось проводить корректировку зазоров через каждые 10 000 км пробега, снимая крышку клапанной коробки. А надо заметить, что дело это было не из легких, так как существуют определенные правила процедуры, которые нарушать нельзя ни в коем случае.

По мере того, как автомобиль стал входить в жизнь каждого второго жителя нашей страны, и знание его внутреннего устройства уже потеряло свою актуальность, необходимо было как-то решать вопрос о том, чтобы регулировка зазоров решалась автоматически, без необходимости вмешательства водителя. И решение пришло в виде установки гидрокомпенсаторов.

Если говорить о самом устройстве, то надо отметить, что настройка его на заводе производится с ювелирной точностью. И это немудрено, так как даже доли миллиметра играют значительную роль. Механизм достаточно сложный, и принцип его работы состоит в том, чтобы производить действия, направленные на регулировку зазора.

Гидрокомпенсатор ни что иное, как копия ручного насоса в сильно уменьшенном виде. Внутри устройства имеется шариковый клапан, через который из системы смазки поступает масло внутрь. Своим давлением оно начинает выталкивать поршень вверх, уменьшая зазор между кулачком и клапаном. Надо сказать, что это масло поступает строго дозировано, чтобы исключить подъем поршня на величину, большую чем зазор.

Спустя некоторый период, происходит выработка, за счет которой вновь увеличивается зазор. Давление внутри гидрокомпенсатора начинает падать, и шариковый клапан, приоткрываясь, впускает необходимое количество масла, а зазор вновь приходит в норму. То есть, происходит его автоматическая регулировка, без какого-то вмешательства извне.

Видео — принцип работы гидрокомпенсаторов:

Вот, в принципе, и все. Можно, конечно, перечислить все параметры и размеры, но зачем? Для большинства автолюбителей ведь важен сам процесс, а не тактико-технические показатели. А вот поговорить о «плюсах» и «минусах» упомянутых устройств, наверное, стоит.

Плюсы

Гидрокомпенсаторы продляют срок работы двигателя, звук работы агрегатов газораспределительного механизма заметно снижается. За счет того, что зазор фактически постоянен, нет потерь компрессии, и двигатель не теряет мощности.

Помимо всего, нет необходимости лишний раз прикасаться к агрегатам двигателя и вносить коррективы в работу деталей газораспределительного механизма, который настроен весьма тонко.

Минусы

Самый существенный недостаток (который, впрочем, вполне распространен среди наших автолюбителей) – использование моторного масла только высокого качества, а также обязательная его замена точно в срок.

Гидрокомпенсаторы настолько капризны, что к их неполадке может привести любая, даже очень мелкая соринка. К тому же, если заклинит одно устройство, неисправности станут нарастать как снежный ком, постепенно выводя из строя всю систему.

Примите во внимание, что ремонт гидрокомпенсаторов само по себе занятие недешевое, а если еще нужно менять и части ГРМ, то невнимательность может весьма дорого стоить.

Как проверить гидрокомпенсаторы

Как и любой другой механизм, гидрокомпенсатор может ломаться, вырабатывать срок, проявлять скрытый заводской брак. Что тут поделать? Вечный двигатель – увы – пока еще не изобретен.

Признаки приближающейся неприятности такие же, как и у клапанов: из недр двигателя начинается своеобразный стук. Если вы знаете свою машину, то сразу определите характерное «цок-цок-цок».

Видео — признаки износа гидрокомпенсаторов на двигателях Volkswagen TDi PD:

Немедленно паниковать и сразу же «включать калькулятор» в голове, подсчитывая, во сколько сможет обойтись ремонт, вряд ли стоит. Проверьте уровень масла. Вдруг он недостаточен, и потому в гидрокомпенсаторе не создается нужного давления. Просто долейте масло до указателя уровня, а минут через 15 попробуйте завести двигатель. В большинстве случаев стук пропадает.

Видео — как проверить гидрокомпенсаторы:

Второй случай возможен после долгой эксплуатации, если к тому же использовались некачественные смазочные материалы. Нагар оседает на частях устройства, закоксовывая его. Можно, конечно, найти работу для своих рук и попробовать сделать прочистку самостоятельно (как советуют некоторые умельцы со страниц различных сайтов), но это может привести к серьезным поломкам. Лучше потратиться на замену, как это рекомендуют все производители.

И наконец, вариант, когда компенсаторы просто износились. Несмотря на то, что прочность их рассчитана на эксплуатацию в течение довольно длительного срока, в нашей стране бывают случаи, когда машины катаются до тех пор, пока не начинают саморазбираться.

Если автомобиль дорог как память о значимых событиях жизни, то ваш путь также лежит в автосервис для замены гидрокомпенсаторов. Если же приступами ностальгии вы не страдаете, то сдайте «железного коня» в утиль, чтобы ремонт отдельных мелких устройств не превысил его стоимость.

А вы знаете как обслужить аккумулятор автомобиля, чтобы он прослужил долго?

Как произвести полировку стеклянных фар можете прочитать в этой статье.

Как правильно подготовить машину https://voditeliauto.ru/poleznaya-informaciya/to-i-remont/pokraska-avto-svoimi-rukami.html к покраске.

Видео — замена гидрокомпенсаторов Hyundai Accent:


Гидрокомпенсатор. Принцип работы

Пожалуй, не имеет смысла даже задаваться вопросом: какая из частей автомобиля самая важная. Автомобиль является сложной, целостной системой, работоспособность которой зависит от множества переменных. В итоге мы приходим к выводу, что полноценное функционирование автомобиля возможно лишь при исправности каждой его детали.

Одной из таких частей является гидрокомпенсатор. Размеры этой детали невелики, однако функция его от этого не становится менее важной и состоит она в сокращении зазоров между рабочими поверхностями двигателя внутреннего сгорания.

Зачем конструкторам собственно понадобилось устранить эти зазоры в двигателе? Зазоры существенно влияют на уровень вибрации, а потому и на эффективность работы двигателя в целом. В связи с этим, регулируя зазор, можно снизить уровень ударных нагрузок, а также уменьшить износ рабочей части газораспределительной системы двигателя. Кроме того, регулировка зазоров делает работу двигателя более мягкой.

На этапе конструирования проблема зазоров решается при расчете теплового расширения элементов двигателя. В процессе работы двигатель нагревается, что вызывает тепловое расширение его компонентов и уменьшение зазоров. Однако такой подход не решает в полной мере проблемы зазоров. Поэтому для решения данной задачи в прошлом столетии был предложен гидрокомпенсатор зазоров клапанов. Данное новшество было успешно внедрено в автопромышленности и используется по сей день.

Главными компонентами гидрокомпенсатора зазоров клапанов является плунжерная пара, снабженная шариковым клапаном и каналами для подачи масла. При работе двигателя плунжерная пара наполняется несжимаемым маслом, поступающим из системы смазки. Применяемое в системе смазки автомобиля масло является несжимаемым, а потому при работе гидрокомпенсатор выступает в роли жесткой опоры, которая, взаимодействуя с элементами системы газораспределения, полностью устраняет зазоры.

Подробности работы гидрокомпенсатора довольно сложны, поэтому мы не будем углубляться в их рассмотрение. Однако следует отметить, что применение гидрокомпенсатора полностью устраняет зазоры, что снижает уровень вибраций при работе двигателя и его износ, а также уменьшает уровень шума.

Перед поступлением в продажу гидрокомпенсаторы проходят проверку на соответствие требованиям износоустойчивости и механической прочности, а также на соответствие другим нормам современных стандартов.

Колодийчук Андрей, специально для ByCars.ru

% PDF-1.4 % 12 0 obj> эндобдж xref 12 802 0000000016 00000 н. 0000017723 00000 п. 0000016336 00000 п. 0000017801 00000 п. 0000017979 00000 п. 0000028853 00000 п. 0000029250 00000 п. 0000029667 00000 п. 0000029710 00000 п. 0000029753 00000 п. 0000029982 00000 п. 0000030205 00000 п. 0000030281 00000 п. 0000031938 00000 п. 0000033250 00000 п. 0000034631 00000 п. 0000035933 00000 п. 0000037372 00000 п. 0000038593 00000 п. 0000038751 00000 п. 0000038785 00000 п. 0000039024 00000 н. 0000040189 00000 п. 0000042531 00000 п. 0000045200 00000 п. 0000045392 00000 п. 0000045606 00000 п. 0000045780 00000 п. 0000045979 00000 п. 0000046115 00000 п. 0000046251 00000 п. 0000046387 00000 п. 0000046601 00000 п. 0000046737 00000 п. 0000046917 00000 п. 0000047057 00000 п. 0000047351 00000 п. 0000047487 00000 п. 0000047674 00000 п. 0000047817 00000 п. 0000048102 00000 п. 0000048245 00000 п. 0000048438 00000 п. 0000048719 00000 п. 0000048862 00000 н. 0000049052 00000 н. 0000049343 00000 п. 0000049476 00000 п. 0000049677 00000 п. 0000049810 00000 п. 0000049946 00000 н. 0000050257 00000 п. 0000050390 00000 н. 0000050619 00000 п. 0000050755 00000 п. 0000051064 00000 п. 0000051311 00000 п. 0000051444 00000 п. 0000051748 00000 п. 0000051997 00000 п. 0000052133 00000 п. 0000052439 00000 п. 0000052703 00000 п. 0000052992 00000 п. 0000053292 00000 п. 0000053560 00000 п. 0000053853 00000 п. 0000054122 00000 п. 0000054258 00000 п. 0000054495 00000 п. 0000054786 00000 п. 0000055088 00000 п. 0000055320 00000 п. 0000055453 00000 п. 0000055685 00000 п. 0000055821 00000 п. 0000056124 00000 п. 0000056361 00000 п. 0000056501 00000 п. 0000056797 00000 п. 0000057025 00000 п. 0000057161 00000 п. 0000057464 00000 п. 0000057703 00000 п. 0000057939 00000 п. 0000058254 00000 п. 0000058390 00000 п. 0000058526 00000 п. 0000058821 00000 п. 0000058958 00000 п. 0000059207 00000 п. 0000059344 00000 п. 0000059646 00000 п. 0000059890 00000 н. 0000060024 00000 п. 0000060340 00000 п. 0000060588 00000 п. 0000060886 00000 п. 0000061186 00000 п. 0000061428 00000 п. 0000061562 00000 п. 0000061830 00000 п. 0000061986 00000 п. 0000062278 00000 п. 0000062522 00000 н. 0000062656 00000 п. 0000062837 00000 п. 0000063153 00000 п. 0000063362 00000 п. 0000063518 00000 п. 0000063858 00000 п. 0000064039 00000 п. 0000064241 00000 п. 0000064397 00000 п. 0000064531 00000 п. 0000064712 00000 п. 0000065044 00000 п. 0000065231 00000 п. 0000065387 00000 п. 0000065524 00000 п. 0000065708 00000 п. 0000066050 00000 п. 0000066216 00000 п. 0000066400 00000 п. 0000066537 00000 п. 0000066878 00000 п. 0000067034 00000 п. 0000067190 00000 п. 0000067534 00000 п. 0000067718 00000 п. 0000067874 00000 п. 0000068030 00000 п. 0000068364 00000 п. 0000068548 00000 п. 0000068704 00000 п. 0000068860 00000 п. 0000069165 00000 п. 0000069355 00000 п. 0000069492 00000 п. 0000069676 00000 п. 0000069832 00000 п. 0000070155 00000 п. 0000070339 00000 п. 0000070553 00000 п. 0000070709 00000 п. 0000070846 00000 п. 0000071030 00000 п. 0000071348 00000 п. 0000071577 00000 п. 0000071733 00000 п. 0000072054 00000 п. 0000072238 00000 п. 0000072480 00000 п. 0000072639 00000 п. 0000072776 00000 п. 0000072966 00000 п. 0000073289 00000 п. 0000073518 00000 п. 0000073677 00000 п. 0000074006 00000 п. 0000074196 00000 п. 0000074415 00000 п. 0000074574 00000 п. 0000074899 00000 н. 0000075089 00000 п. 0000075311 00000 п. 0000075467 00000 п. 0000075604 00000 п. 0000075794 00000 п. 0000076107 00000 п. 0000076336 00000 п. 0000076492 00000 п. 0000076796 00000 п. 0000076986 00000 п. 0000077222 00000 п. 0000077378 00000 п. 0000077687 00000 п. 0000077877 00000 п. 0000078112 00000 п. 0000078268 00000 п. 0000078588 00000 п. 0000078830 00000 п. 0000079020 00000 н. 0000079176 00000 п. 0000079313 00000 п. 0000079503 00000 п. 0000079803 00000 п. 0000080039 00000 п. 0000080195 00000 п. 0000080332 00000 п. 0000080525 00000 п. 0000080848 00000 п. 0000081077 00000 п. 0000081233 00000 п. 0000081546 00000 п. 0000081742 00000 п. 0000081944 00000 п. 0000082100 00000 п. 0000082241 00000 п. 0000082437 00000 п. 0000082753 00000 п. 0000082952 00000 п. 0000083108 00000 п. 0000083417 00000 п. 0000083613 00000 п. 0000083818 00000 п. 0000083962 00000 п. 0000084099 00000 п. 0000084416 00000 п. 0000084627 00000 н. 0000084823 00000 п. 0000084979 00000 п. 0000085116 00000 п. 0000085257 00000 п. 0000085569 00000 п. 0000085765 00000 п. 0000085915 00000 п. 0000086111 00000 п. 0000086270 00000 п. 0000086407 00000 п. 0000086736 00000 п. 0000086941 00000 п. 0000087137 00000 п. 0000087293 00000 п. 0000087430 00000 п. 0000087626 00000 п. 0000087952 00000 п. 0000088194 00000 п. 0000088350 00000 п. 0000088487 00000 п. 0000088686 00000 п. 0000089018 00000 п. 0000089260 00000 п. 0000089416 00000 п. 0000089744 00000 п. 0000089943 00000 н. 00000 00000 п. 00000

00000 н. 0000090668 00000 н. 0000090882 00000 н. 0000091029 00000 п. 0000091228 00000 п. 0000091384 00000 п. 0000091521 00000 п. 0000091718 00000 п. 0000092047 00000 п. 0000092258 00000 п. 0000092458 00000 п. 0000092777 00000 п. 0000092973 00000 п. 0000093129 00000 п. 0000093443 00000 п. 0000093639 00000 п. 0000093829 00000 п. 0000093985 00000 п. 0000094296 00000 п. 0000094494 00000 п. 0000094696 00000 п. 0000094852 00000 п. 0000095162 00000 п. 0000095309 00000 п. 0000095523 00000 п. 0000095722 00000 п. 0000095878 00000 п. 0000096197 00000 п. 0000096402 00000 п. 0000096644 00000 п. 0000096849 00000 п. 0000096986 00000 п. 0000097300 00000 п. 0000097542 00000 п. 0000097746 00000 п. 0000097883 00000 п. 0000098182 00000 п. 0000098424 00000 п. 0000098629 00000 п. 0000098766 00000 п. 0000099076 00000 н. 0000099318 00000 п. 0000099523 00000 п. 0000099660 00000 н. 0000099968 00000 н. 0000100204 00000 н. 0000100409 00000 н. 0000100546 00000 н. 0000100856 00000 н. 0000101000 00000 н. 0000101134 00000 п. 0000101339 00000 п. 0000101535 00000 н. 0000101838 00000 п. 0000102043 00000 н. 0000102246 00000 п. 0000102383 00000 п. 0000102705 00000 н. 0000102901 00000 п. 0000103103 00000 п. 0000103405 00000 п. 0000103546 00000 н. 0000103754 00000 н. 0000103965 00000 н. 0000104102 00000 п. 0000104406 00000 п. 0000104642 00000 п. 0000104853 00000 н. 0000105160 00000 н. 0000105402 00000 н. 0000105613 00000 п. 0000105750 00000 н. 0000106077 00000 н. 0000106348 00000 п. 0000106557 00000 н. 0000106694 00000 н. 0000107008 00000 н. 0000107274 00000 н. 0000107488 00000 н. 0000107802 00000 н. 0000108072 00000 н. 0000108282 00000 н. 0000108419 00000 п. 0000108733 00000 н. 0000109038 00000 н. 0000109362 00000 п. 0000109672 00000 н. 0000109993 00000 н. 0000110311 00000 п. 0000110676 00000 н. 0000110829 00000 н. 0000111131 00000 н. 0000111346 00000 н. 0000111671 00000 н. 0000111906 00000 н. 0000112211 00000 н. 0000112530 00000 н. 0000112769 00000 н. 0000113071 00000 н. 0000113404 00000 н. 0000113557 00000 н. 0000113864 00000 н. 0000114082 00000 н. 0000114401 00000 н. 0000114633 00000 н. 0000114943 00000 н. 0000115271 00000 н. 0000115424 00000 н. 0000115723 00000 н. 0000115943 00000 н. 0000116271 00000 н. 0000116592 00000 н. 0000116920 00000 н. 0000117146 00000 н. 0000117435 00000 н. 0000117757 00000 н. 0000117986 00000 п. 0000118292 00000 н. 0000118607 00000 н. 0000118843 00000 н. 0000119151 00000 п. 0000119465 00000 н. 0000119700 00000 н. 0000120028 00000 н. 0000120349 00000 н. 0000120678 00000 н. 0000121057 00000 н. 0000121303 00000 н. 0000121626 00000 н. 0000121944 00000 н. 0000122185 00000 н. 0000122521 00000 н. 0000122843 00000 н. 0000123085 00000 н. 0000123421 00000 н. 0000123745 00000 н. 0000123981 00000 н. 0000124314 00000 н. 0000124633 00000 н. 0000124865 00000 н. 0000125205 00000 н. 0000125533 00000 н. 0000125775 00000 н. 0000126095 00000 н. 0000126408 00000 н. 0000126649 00000 н. 0000126994 00000 н. 0000127315 00000 н. 0000127640 00000 н. 0000128015 00000 н. 0000128258 00000 н. 0000128594 00000 н. 0000128925 00000 н. 0000129163 00000 н. 0000129510 00000 н. 0000129831 00000 н. 0000130073 00000 н. 0000130411 00000 н. 0000130729 00000 н. 0000131058 00000 н. 0000131192 00000 н. 0000131436 00000 н. 0000131758 00000 н. 0000132081 00000 н. 0000132310 00000 н. 0000132639 00000 н. 0000132773 00000 н. 0000132923 00000 н. 0000133247 00000 н. 0000133482 00000 п. 0000133801 00000 н. 0000133945 00000 н. 0000134086 00000 н. 0000134236 00000 п. 0000134542 00000 н. 0000134772 00000 н. 0000135095 00000 н. 0000135232 00000 н. 0000135366 00000 н. 0000135500 00000 н. 0000135644 00000 н. 0000135984 00000 н. 0000136334 00000 н. 0000136471 00000 н. 0000136784 00000 н. 0000136959 00000 н. 0000137193 00000 н. 0000137543 00000 н. 0000137910 00000 п. 0000138051 00000 н. 0000138192 00000 н. 0000138544 00000 н. 0000138685 00000 н. 0000138826 00000 н. 0000139001 00000 н. 0000139342 00000 п. 0000139696 00000 н. 0000139862 00000 н. 0000139999 00000 н. 0000140332 00000 н. 0000140671 00000 н. 0000140808 00000 н. 0000140942 00000 н. 0000141101 00000 п. 0000141251 00000 н. 0000141388 00000 н. 0000141727 00000 н. 0000142081 00000 н. 0000142218 00000 н. 0000142355 00000 н. 0000142698 00000 н. 0000142835 00000 н. 0000143181 00000 п. 0000143325 00000 н. 0000143475 00000 н. 0000143612 00000 н. 0000143930 00000 н. 0000144264 00000 н. 0000144408 00000 н. 0000144564 00000 н. 0000144889 00000 н. 0000145220 00000 н. 0000145546 00000 н. 0000145733 00000 н. 0000145886 00000 н. 0000146231 00000 п. 0000146564 00000 н. 0000146757 00000 н. 0000146904 00000 н. 0000147229 00000 н. 0000147574 00000 н. 0000147776 00000 н. 0000148105 00000 н. 0000148447 00000 н. 0000148658 00000 н. 0000149003 00000 п. 0000149140 00000 н. 0000149348 00000 п. 0000149692 00000 н. 0000150033 00000 н. 0000150183 00000 н. 0000150397 00000 н. 0000150538 00000 н. 0000150863 00000 н. 0000151203 00000 н. 0000151520 00000 н. 0000151729 00000 н. 0000152069 00000 н. 0000152366 00000 н. 0000152585 00000 н. 0000152911 00000 н. 0000153244 00000 н. 0000153456 00000 н. 0000153754 00000 н. 0000153898 00000 н. 0000154115 00000 н. 0000154424 00000 н. 0000154754 00000 н. 0000155093 00000 н. 0000155317 00000 н. 0000155464 00000 н. 0000155771 00000 н. 0000155908 00000 н. 0000156132 00000 н. 0000156468 00000 н. 0000156771 00000 н. 0000157100 00000 н. 0000157317 00000 н. 0000157454 00000 н. 0000157755 00000 н. 0000158087 00000 н. 0000158305 00000 н. 0000158609 00000 н. 0000158921 00000 н. 0000159273 00000 н. 0000159580 00000 н. 0000159928 00000 н. 0000160211 00000 н. 0000160550 00000 н. 0000160835 00000 н. 0000161189 00000 н. 0000161494 00000 н. 0000161848 00000 н. 0000162159 00000 н. 0000162536 00000 н. 0000162841 00000 н. 0000163219 00000 н. 0000163521 00000 н. 0000163864 00000 н. 0000164150 00000 н. 0000164466 00000 н. 0000164708 00000 н. 0000165038 00000 н. 0000165274 00000 н. 0000165583 00000 н. 0000165869 00000 н. 0000166106 00000 н. 0000166353 00000 п. 0000166625 00000 н. 0000166865 00000 н. 0000167140 00000 н. 0000167390 00000 н. 0000167667 00000 н. 0000167897 00000 н. 0000168162 00000 н. 0000168400 00000 н. 0000168671 00000 н. 0000168908 00000 н. 0000169154 00000 н. 0000169415 00000 н. 0000169635 00000 н. 0000169899 00000 н. 0000170107 00000 п. 0000170360 00000 н. 0000170630 00000 н. 0000170887 00000 н. 0000171161 00000 н. 0000171421 00000 н. 0000171694 00000 н. 0000171973 00000 н. 0000172250 00000 н. 0000172530 00000 н. 0000172817 00000 н. 0000173109 00000 н. 0000173390 00000 н. 0000173678 00000 н. 0000173971 00000 н. 0000174259 00000 н. 0000174453 00000 н. 0000174631 00000 н. 0000174806 00000 н. 0000175030 00000 н. 0000175324 00000 н. 0000175505 00000 н. 0000175702 00000 н. 0000175975 00000 н. 0000176264 00000 н. 0000176566 00000 н. 0000176747 00000 н. 0000177013 00000 н. 0000177296 00000 н. 0000177594 00000 н. 0000177883 00000 н. 0000178173 00000 н. 0000178470 00000 н. 0000178772 00000 н. 0000179072 00000 н. 0000179368 00000 н. 0000179677 00000 н. 0000179993 00000 н. 0000180287 00000 н. 0000180608 00000 н. 0000180892 00000 н. 0000181073 00000 н. 0000181323 00000 н. 0000181629 00000 н. 0000181932 00000 н. 0000182219 00000 н. 0000182529 00000 н. 0000182812 00000 н. 0000183118 00000 п. 0000183416 00000 н. 0000183726 00000 н. 0000184031 00000 н. 0000184308 00000 н. 0000184597 00000 н. 0000184902 00000 н. 0000185199 00000 н. 0000185380 00000 н. 0000185644 00000 н. 0000185940 00000 н. 0000186239 00000 н. 0000186600 00000 н. 0000186955 00000 н. 0000187092 00000 н. 0000187233 00000 н. 0000187509 00000 н. 0000187803 00000 н. 0000188174 00000 н. 0000188315 00000 н. 0000188465 00000 н. 0000188844 00000 н. 0000189142 00000 н. 0000189439 00000 н. 0000189827 00000 н. 00001 00000 н. 00001

00000 н. 0000190660 00000 н. 0000190841 00000 н. 0000191200 00000 н. 0000191493 00000 н. 0000191674 00000 н. 0000192045 00000 н. 0000192343 00000 п. 0000192480 00000 н. 0000192617 00000 н. 0000192758 00000 н. 0000193132 00000 н. 0000193431 00000 н. 0000193726 00000 н. 0000194104 00000 н. 0000194398 00000 н. 0000194769 00000 н. 0000195068 00000 н. 0000195426 00000 н. 0000195725 00000 н. 0000196102 00000 н. 0000196435 00000 н. 0000196616 00000 н. 0000196919 00000 н. 0000197100 00000 н. 0000197394 00000 н. 0000197691 00000 н. 0000197970 00000 п. 0000198305 00000 н. 0000198578 00000 н. 0000198915 00000 н. 0000199194 00000 н. 0000199495 00000 н. 0000199775 00000 н. 0000200131 00000 п. 0000200411 00000 н. 0000200758 00000 н. 0000201035 00000 н. 0000201397 00000 н. 0000201578 00000 н. 0000201915 00000 н. 0000202194 00000 н. 0000202477 00000 н. 0000202832 00000 н. 0000203110 00000 н. 0000203418 00000 н. 0000203695 00000 н. 0000204027 00000 н. 0000204308 00000 н. 0000204636 00000 н. 0000204917 00000 н. 0000205230 00000 н. 0000205505 00000 н. 0000205859 00000 н. 0000206040 00000 н. 0000206375 00000 н. 0000206653 00000 н. 0000206928 00000 н. 0000207295 00000 н. 0000207579 00000 н. 0000207956 00000 н. 0000208224 00000 н. 0000208586 00000 н. 0000208868 00000 н. 0000209232 00000 н. 0000209506 00000 н. 0000209892 00000 н. 0000210175 00000 н. 0000210581 00000 п. 0000210859 00000 п. 0000211255 00000 н. 0000211538 00000 п. 0000211890 00000 н. 0000212031 00000 н. 0000212168 00000 н. 0000212543 00000 н. 0000212808 00000 н. 0000213099 00000 н. 0000213474 00000 н. 0000213615 00000 н. 0000213765 00000 н. 0000214147 00000 н. 0000214440 00000 н. 0000214728 00000 н. 0000215120 00000 н. 0000215505 00000 н. 0000215664 00000 н. 0000215952 00000 н. 0000216245 00000 н. 0000216644 00000 н. 0000216932 00000 н. 0000217332 00000 н. 0000217469 00000 н. 0000217740 00000 н. 0000218130 00000 н. 0000218388 00000 н. 0000218776 00000 п. 0000218917 00000 н. 0000219067 00000 н. 0000219442 00000 н. 0000219701 00000 н. 0000219958 00000 п. 0000220345 00000 н. 0000220482 00000 н. 0000220619 00000 н. 0000220760 00000 н. 0000221158 00000 н. 0000221421 00000 н. 0000221686 00000 н. 0000222095 00000 н. 0000222490 00000 н. 0000222640 00000 н. 0000222917 00000 н. 0000223192 00000 н. 0000223589 00000 н. 0000223859 00000 н. 0000224279 00000 н. 0000224420 00000 н. 0000224570 00000 н. 0000224974 00000 п. 0000225237 00000 н. 0000225495 00000 н. 0000225868 00000 н. 0000226005 00000 н. 0000226142 00000 н. 0000226283 00000 н. 0000226667 00000 н. 0000226909 00000 н. 0000227152 00000 н. 0000227543 00000 н. 0000227684 00000 н. 0000227834 00000 н. 0000228222 00000 н. 0000228446 00000 н. 0000228659 00000 н. 0000229067 00000 н. 0000229282 00000 н. 0000229681 00000 п. 0000229887 00000 н. 0000230289 00000 н. 0000230683 00000 п. 0000230910 00000 п. 0000231060 00000 н. 0000231197 00000 н. 0000231594 00000 н. 0000231803 00000 н. 0000231944 00000 н. 0000232332 00000 н. 0000232482 00000 н. 0000232859 00000 н. 0000232996 00000 н. 0000233375 00000 н. 0000233531 00000 н. 0000233694 00000 п. 0000234124 00000 н. 0000234261 00000 п. 0000234575 00000 п. 0000234762 00000 н. 0000235194 00000 п. 0000235378 00000 п. 0000235813 00000 н. 0000236000 00000 н. 0000236435 00000 н. 0000236633 00000 н. 0000237059 00000 н. 0000237200 00000 н. 0000237598 00000 н. 0000237764 00000 н. 0000238003 00000 н. 0000238311 00000 н. 0000238640 00000 н. 0000238865 00000 н. 0000239015 00000 н. 0000239156 00000 н. 0000239466 00000 н. 0000239705 00000 н. 0000240256 00000 н. 0000240623 00000 п. 0000240997 00000 н. трейлер ] >> startxref 0 %% EOF 14 0 obj> поток x ڼ SkSW> romUo ۨ sVZ! ns \ I ع A? Ԑ! Mf: psc * R! c2I + sϹ9

Как работает подъемник с гидравлическим клапаном?

Гидравлические подъемники устраняют стук и необходимость периодической регулировки, поддерживая нулевой зазор при работающем двигателе.Они делают это , используя давление масла на подпружиненный плунжер внутри корпуса подъемника . Масло заполняет полость под поршнем, когда клапан закрыт.

Нажмите, чтобы увидеть полный ответ


Также вопрос, как вы ремонтируете гидравлические подъемники?

Гидравлические подъемники недороги и могут быть легко заменены с помощью подходящего инструмента.

  1. Шаг 1 — Подготовьте верхнюю часть двигателя.
  2. Шаг 2 — Снимите крышки клапанов.
  3. Шаг 3 — Переместите цилиндр в верхний центр.
  4. Шаг 4 — Очистите прокладки коллектора.
  5. Шаг 5 — Снимите гидравлические подъемники.
  6. Шаг 6 — Замена гидравлических подъемников.

Также знайте, как выходит из строя гидравлический подъемник? Гидравлические подъемники могут разрушиться без масляной подушки для гашения ударов толкателя или толкателя. Твердые подъемники могут изнашиваться на стороне распредвала вместе с выступами распределительного вала. Слишком много масла в картере может вызвать аэрацию масла или образование пузырьков воздуха — состояние, когда коленчатый вал взбивает масло при прямом контакте.

Во-вторых, как узнать, что мой гидравлический подъемник неисправен?

Самый очевидный признак неисправности гидравлического подъемника — это шум , который он создает в двигателе вашего автомобиля. Обычно можно отличить , , неисправный подъемник , , , , отчетливый звук. Вместо стука или звона неисправный гидравлический подъемник обычно издает звук, более напоминающий звук постукивания.

Нужна ли регулировка гидравлических подъемников?

Одним из преимуществ гидравлических подъемников является то, что обычно не требует регулировки , кроме первоначальной установки.Однако могут возникать ситуации, когда клапанный механизм частично разобран, например, во время установки роликовых коромысел, что для потребует регулировки подъемников .

Является ли накачка гидравлического подъемника реальной проблемой сегодня?

Есть старое решение, которое должны принять производители высокопроизводительных двигателей: гидравлические подъемники или твердые подъемники? Обычно (или, точнее, традиционно) школа мысли заключалась в том, что гидравлические подъемники были лучшим выбором для уличных двигателей, которые накапливали много миль при различных оборотах, а твердые частицы лучше подходили для гоночных двигателей, которые проводят больше времени на высоких оборотах. -Об / мин и регулярно перестраивались.

Эти мнения были созданы еще в эпоху плоских толкателей и последовали за соответствующими конструкциями в современное поколение роликов. Поскольку гидравлические подъемники не требовали регулировки после установки, они были предметом с меньшими затратами в обслуживании, что были бы оценены уличными энтузиастами. Нанесение ударов плетью было искусством, предназначенным только для более хардкорных гонщиков. Безусловно, стабильность солидного подъемника обеспечивала стабильность и прочность, чтобы выдерживать длительные периоды использования на высоких оборотах, и, установив минимальный зазор, каждая тысячная доля дюйма драгоценного подъема и каждый градус продолжительности передавались каждому клапану. .

На холостом ходу снижение давления масла позволило бы немного более цивилизованно работать на холостом ходу в гидравлических конструкциях, в то время как твердые частицы потребовали бы идеальной регулировки, чтобы обеспечить характерный «четкий» резкий звук холостого хода и необходимое улучшение механических характеристик.

Что ж, фанаты гонок, сейчас уже исполнилось двадцать лет, и большинство этих древних мифов развенчаны. Современные технологии и передовые технологии стирают грань между гидравликой и твердыми телами. Несмотря на то, что долговечность обеих конструкций с годами увеличилась (в основном благодаря улучшенным материалам, более жестким допускам и более широким поверхностям подшипников качения), реальные успехи были достигнуты на гидравлической стороне ограждения.

Это изображение было разработано, чтобы показать различные фазы выступа кулачка, но мы также можем увидеть, как гидравлический подъемник с плоским толкателем на иллюстрации полагается на свою внутреннюю пружину и проходящее через нее масло, чтобы работать как амортизатор, когда кулачок вращается против Это.

Современные разработки привели к созданию более точных систем плунжера, пружины и фиксатора. Это привело к более последовательному контролю жидкости как в лифтах, так и вне их. В сочетании с остальными вышеупомянутыми достижениями и десятилетиями исследований каждой части конструкции подъемника современный гидравлический роликовый подъемник почти не уступает своему надежному аналогу.Преимущества гидравлической конструкции, особенно отсутствие необходимости устанавливать люфт или регулировать что-либо после того, как она установлена ​​должным образом и заблокирована, приносит много пользы энтузиастам, чьи клапанные крышки труднодоступны.

Современная тенденция к турбонаддуву привносит приверженность к относительно экзотической сантехнике. Глубокий отказ двигателя современных автомобилей с высокими рабочими характеристиками делает установку крышек клапанов реальной проблемой. Отсутствие необходимости делать это между гонками (или, в крайнем случае, между раундами) — настоящий подарок.Несомненно, улучшенная конструкция замков из полиамида действительно помогла свести к минимуму потребность в регулировке зазора клапана на регулярной основе. По сравнению с ранними частями гонщиков десять или двадцать лет назад ситуация значительно улучшилась.

Высококачественные гидравлические роликовые подъемники высшего качества, подобные этим агрегатам от Howards Cams, обладают широким спектром преимуществ. Более высокие корпуса обеспечивают повышенную поддержку, сокращая при этом требования к толкателям (более короткие толкатели имеют меньший потенциал изгиба). Стяжка удерживает подъемники идеально выровненными по выступам кулачка.

Накачка

Вопрос в том, можно ли поднять гидравлический подъемник выше точки регулировки, преодолеть всю его предварительную нагрузку и впоследствии удерживать клапан в открытом состоянии? Это явление называется «накачкой», и люди утверждают, что именно это видели или испытали, но у очень немногих есть подлинные доказательства.

Многие из нас испытали хорошо задокументированный феномен смещения клапана, когда пружины клапана слишком слабы, чтобы успевать за действиями клапана, и клапан не может полностью закрываться.Могут ли люди путать поплавок клапана с подкачкой подъемника?

Мы напрямую поговорили с парой самых опытных экспертов по спортивным гонкам и получили их мнения. Мы многому научились, и мы думаем, что вы тоже научитесь.

Мы спросили Бена Херхайма из Howards Cams, знакомого с концепцией накачки гидравлического подъемника, не мог бы он объяснить, как может происходить накачка, и что мы можем сделать, чтобы предотвратить ее. «Накачивание может быть результатом нескольких проблем в гидрораспределительной системе. Чаще всего встречается динамическая нестабильность системы.Это происходит, когда пружина не может удерживать контакт между компонентами системы из-за недостаточной нагрузки на пружину », — поясняет Хергейм. «Редкое явление« накачки »непостоянно во всем диапазоне оборотов. Это может произойти только тогда, когда запас пружины или жесткость системы станут недостаточными ».

«Иногда для решения этой проблемы можно использовать пружины с более высокой нагрузкой или необходимо изменить профиль кулачка. В других случаях накачка может быть вызвана отклонением системы, когда один или несколько компонентов системы фактически изгибаются достаточно, чтобы разгрузить запорный шар, и подъемник реагирует, заполняясь маслом », — говорит Хергейм.«К сожалению, он заполнен до более высокого уровня, чем необходимо, и может удерживать клапан от седла. Температура масла могла вызвать это при холодном пуске, если давление масла было достаточно большим, чтобы преодолеть нагрузку от установленной пружины клапана. Однако оно должно быть довольно высоким ».

Не для всех гидравлических роликовых подъемников требуются стяжки для предотвращения вращения. Гидравлические роликоподъемники LS (на фото) используют подъемные лотки, которые входят в зацепление с плоскими поверхностями на корпусе подъемника, чтобы предотвратить вращение, в то время как OEM-роликовые малые блоки Ford используют скобу «паук», чтобы удерживать фиксаторы «собачьей кости», которые входят в зацепление с плоскими поверхностями и удерживают роликовые колеса выровнены с выступом кулачка.

Билли Годболд, главный инженер по проектированию клапанов Comp Cams, считает, что энтузиасты видят нечто, что может быть ошибочно принято за накачку, и это все еще проблема, которую необходимо решать.

«Речь идет о скорости отвода воздуха и эффективном зазоре (зазоре), которые сокращают динамическую продолжительность и стабильность гидравлической роликоподъемной системы на высоких оборотах», — поясняет Годболд. «Хотя отскок клапана может привести к тому, что гидравлическая система удерживает клапан в открытом состоянии, не существует реального механизма, который можно было бы точно описать как« накачивание ».«Клапан подпрыгивает, и тупая гидравлическая система просто настраивается, чтобы удерживать его в течение долгого времени».

«Хотя скорость слива определенно изменяет динамическую продолжительность, и она изменяется в зависимости от числа оборотов в минуту и ​​всевозможных других влияний, мы не видели ничего, что можно было бы точно описать как« накачка ». Самое близкое, что мы видели на Spintron — это когда вы впадаете в серьезный отскок клапана », — говорит Годболд. «В отличие от сплошного отскока подъемника, который имеет естественную симметричную параболическую форму, при значительном отскоке гидравлической системы внутренний поршень может двигаться вверх и удерживать клапан в открытом состоянии на дополнительные 50 градусов поворота кривошипа.Я считаю, что ребята, работавшие на динамометрических станциях с двигателями в 70-90-х годах, увидели зазор топлива над карбюраторами, когда это произошло, и они знали, что впускной клапан удерживался открытым ».

«Хотя эта часть их гипотезы была верной, механизм был инициирован отскоком клапана, а затем автоматической регулировкой подъемника, а не какой-либо« накачкой »гидравлического подъемника», — объясняет Годболд. «Машиностроитель [и многократный чемпион Engine Masters Challenge] Джон Каас однажды рассказал мне историю о своем опыте работы с гидравлическим подъемником.Ни он, ни я не можем полностью объяснить это… »

«У них был внутренний обратный клапан, который застрял в масляном насосе, и давление масла резко упало на более высоких оборотах. Этот двигатель гидравлического подъемника действовал точно так же, как «накачка» из учебника. Поршень высокого давления имеет площадь поверхности чуть меньше половины квадратного дюйма, поэтому можно предположить, что для преодоления 150 фунтов на квадратный дюйм потребуется давление масла почти 400 фунтов на квадратный дюйм. / весной », — говорит Годболд. «При таком расчете даже не упоминаются сумасшедшие силы инерции в 1500 с лишним фунтов, возникающие при открытии и закрытии клапанов, но как только Джон заменил неисправный масляный насос, двигатель заработал нормально!»

Характеристика Значение Единица измерения Банкноты
Диаметр поршня гидравлического подъемника.625 дюймов Типично для большинства гидравлических подъемников
Площадь поршня .307 квадратных дюймов Площадь = Пи (R) в квадрате
Давление масла 100 фунтов на кв. Дюйм фунтов силы на квадратный дюйм
Усилие на толкателе 30,7 фунтов силы F = давление x площадь
Передаточное число коромысла 1,7: 1 Усилие на наконечник уменьшается за счет передаточного числа коромысла
Общая сила, действующая против нагрузки на седло пружины 18.0 фунтов силы Для типичных уличных нагрузок на сиденье этих значений может быть достаточно, чтобы компенсировать более 10% общей нагрузки на седло пружины, но недостаточно для преодоления общей нагрузки на сиденье.

Вот таблица быстрого расчета с действительными числами силы, действующей для открытия клапана. Вам нужно будет приблизиться к давлению масла в 1000 фунтов на квадратный дюйм, чтобы фактически преодолеть нагрузку на седло клапана, но даже 100 фунтов на квадратный дюйм могут компенсировать десять или более процентов нагрузки на седло.

Интересно, но это опыт из вторых рук, который Годболду не удалось воспроизвести. «Я никогда не видел ничего подобного на Спинтроне, но мы никогда не взрывались из-за давления масла. Мы могли бы, вероятно, сделать подъемник [перекрыть пружину клапана], но математические расчеты выглядят искаженными, поскольку это возможно до тех пор, пока давление масла не превысит 150 фунтов на квадратный дюйм », — говорит Годболд. «В этот момент вы можете эффективно снять почти 50 фунтов нагрузки на седло с пружины и тем самым сделать вашу систему нестабильной, что приведет к отскоку вверх, а затем удержанию впускного клапана на 30 с лишним градусов, как я описал первоначально.”

Гонщики

— изобретательная порода, и в прошлом они пробовали многое, чтобы использовать более агрессивные распредвалы, ограничиваясь гидравлическими подъемниками. «Есть некоторые уловки, которые были опробованы с использованием профилей с плотными зазорами на сплошных подъемниках с очень высоким спуском, но это не очень эффективно, поскольку вы обычно устанавливаете зазор на высоте рухнувшего подъемника, и для этого лучше использовать подъемник. солидный лифтер, — рассказывает Годболд. «Лифт с коротким ходом Comp Cams имеет меньшую камеру высокого давления и может работать либо с более агрессивным профилем, либо с более высокими оборотами в минуту, и оба пути используются довольно успешно.Единственный фактор, который следует учитывать при использовании этого подъемника, — это то, что предварительная нагрузка должна быть установлена ​​точно ».

На этом разрезе на виде сбоку показана камера высокого давления, в которой циркулирует и прокачивается драгоценная смазка. Вы также можете увидеть описанную в тексте пружину, которая, по некоторым ощущениям, подавлена ​​высоким давлением масла. Исследования доказали, что это явление встречается очень редко.

Есть и другие факторы, которые влияют на поведение подъемника, например, само моторное масло.«И температура масла, и аэрация играют главными факторами в эффективной жесткости подъемника. Поскольку масло, как правило, становится более аэрированным при более высоких оборотах, а инерционные нагрузки на толкатель резко возрастают, мы действительно видим, что гидравлические подъемники «действуют» так, как будто у них больше ударов при оборотах », — говорит Годболд.

При изменении температуры масла меняется и его фактическая вязкость. «Эффективная продолжительность уменьшается с температурой. Люди были бы шокированы, увидев, насколько эффективный удар гидравлического подъемника меняется в этих условиях.Подъемники с коротким ходом уменьшают этот эффект, но причина, по которой точная регулировка гораздо более распространена в гоночных автомобилях, — это постоянство движения клапана при различных температурах и условиях аэрации масла », — говорит Годболд. «Я ненавижу быть излишне критичным, но обсуждать влияние на накачку — все равно что спрашивать, кто победит в схватке между снежным человеком и Лох-несским чудовищем. Это такая редкость.

Плоский или роликовый — кто-нибудь в безопасности?

«Внутренняя система регулировки очень похожа как на плоские, так и на роликовые толкатели.Обе системы имеют очень похожую скорость слива. Есть незначительные динамические различия из-за типичных характеристик массы, ускорения и скорости, но в целом эти два типа гидравлических подъемников ведут себя очень похоже », — объясняет Годболд.

Хергейм соглашается, говоря: «Как гидравлические роликовые, так и гидравлические плоские кулачки толкателя технически подвержены накачиванию. Мы видели эту проблему в гидравлических роликах чаще, чем в гидравлических кулачках с плоским толкателем. Это происходит из-за значительного веса подъемника и используемых агрессивных профилей кулачков.”

Традиционный подъемник с плоским толкателем остается популярным вариантом начального уровня для энтузиастов с ограниченным бюджетом. Внутренняя инженерия, а также улучшенные материалы и возможности контроля масла делают их отличным выбором для многих. Строгое соблюдение процедур обкатки и использование масла с адекватным уровнем цинка в критический период обкатки — ключ к обеспечению безупречной работы в течение длительного времени.

Годболд продолжил погружаться глубже.«Реальные различия в скорости слива, эффективном зазоре и динамической устойчивости в значительной степени зависят от вязкости масла», — объясняет он. «Как мы уже упоминали ранее, значение имеет фактическая рабочая вязкость, отсюда и зависимость от температуры и аэрации масла, а также номинальная вязкость».

Скорость отвода воздуха из подъемника (которая напрямую связана с эффективной жесткостью и динамической стабильностью подъемника в сборе, а также со скоростью, с которой подъемник может регулировать себя), вероятно, является наиболее важным фактором в конструкции гидравлического подъемника.«Допуски между внутренним поршнем подъемника и внутренними стенками корпуса подъемника являются наиболее строго контролируемыми размерами в современном двигателе. Другими словами, попытка заставить гидравлическую систему работать точно и стабильно на высоких оборотах — определенно то, с чего вы начинаете при использовании любого гидравлического катка или подъемника с плоским толкателем ».

Мы спросили Godbold, есть ли на горизонте какие-либо инновации, которых могут ожидать энтузиасты. Он сказал нам, что на полках уже есть много вещей, о которых люди могут не знать, и еще более захватывающие технологии появятся в ближайшем будущем.

«Есть несколько действительно потрясающих новых идей, возникающих в новых конструкциях профилей, более легких компонентах (для снижения нагрузки на гидравлическую систему) и новых клапанных пружинах, которые быстро развиваются. Улучшения в измерении слива и динамических характеристик гидравлики также улучшают существующие конструкции ».

Одна интересная концепция проиллюстрирована в гидравлических подъемниках Howards с переменной продолжительностью, изображенных здесь для Ford 5.0L. Рекламируемые как сокращающие продолжительность работы на 10 градусов при 3000 об / мин, они намеренно используют свойство гидравлических подъемников, с которым борется большинство компаний.

«Кроме того, такие ребята, как Lake Speed ​​из Driven, работают над составами масел, которые более эффективно удаляют микропузырьки при аэрации, снижающей количество масла. В совокупности все это значительно увеличивает диапазон безопасных оборотов гидравлических систем. У нас есть 6,0-литровый двигатель LS, который более 200 раз превышал 9000 об / мин на стенде Comp Cams! »

«Компоненты, которые люди выбирают для своей сборки, часто не все от одного производителя, и это часть удовольствия от гонок и создания хот-родов», — говорит Хергейм.«К сожалению, это также может стать проблемой, если компоненты не подходят для совместной работы друг с другом. Ключ к обеспечению надежности работы клапанного механизма — наличие хорошо подобранных компонентов для требуемой цели ».

После разговора с некоторыми отличными парнями, которые зарабатывают себе на жизнь работой над высококачественными компонентами клапанного механизма, кажется, что подкачка гидравлического подъемника — редкое явление, хотя это остается маловероятной возможностью. Как и в случае с большинством проблем в области создания высокопроизводительных двигателей, небольшое исследование, а также тщательный выбор и согласование компонентов должны быть всем, что нужно, чтобы этого никогда не случилось с вами.

Следовательно, ваш выбор клапанных пружин не менее важен и может быть причиной большей вины, которую возлагают на гидравлические подъемники, когда двигатель проникает на территорию с высокими оборотами и внезапно перестает выдавать мощность или набирать скорость.
Наконец, мы можем с уверенностью заключить, что современные гидравлические подъемники полностью способны работать на высоких оборотах с более агрессивными профилями кулачков, чем когда-либо прежде. Если вы проконсультируетесь напрямую с выбранным производителем, то вполне возможно получить пакет клапанного механизма на основе гидравлического подъемника, способный надежно достигать 9000 об / мин.Это означает много веселья без постоянной необходимости проверять или сбрасывать ресницы и знать, что при правильной комбинации частей накачка контролируется в то же время.

В дополнение к их способности контролировать масло и широким поверхностям подшипников качения, новейшие высокие гидравлические роликоподъемники от COMP имеют покрытия, предназначенные для минимизации трения в отверстии подъемника. Это сводит к минимуму нагрев и износ.

Руководство покупателя гидравлических подъемников

— блог MaXpeedingRods

Что такое гидравлические подъемники?

Гидравлические толкатели для клапанов, также известные как гидравлические толкатели, являются ключевой частью любого клапанного механизма.Их цель — вернуть клапан обратно в его седло после того, как он был приведен в действие распределительным валом. Эта простая, но важная операция гарантирует, что ваши клапаны действительно закроются после того, как они были открыты. Без исправного толкателя клапана работа двигателя была бы невозможна. Для подъемников гидравлических клапанов используется моторное масло, чтобы поддерживать нулевой зазор клапанов в двигателе. В отличие от подъемников со сплошным клапаном, подъемники с гидравлическими клапанами не требуют регулярной регулировки и обслуживания. Кроме того, поскольку они поддерживают постоянный нулевой зазор клапана или зазор клапана, подъемники гидравлических клапанов снижают шум двигателя, увеличивают срок его службы и сокращают объем технического обслуживания.

Как работают гидравлические подъемники?

По сути, каждый гидравлический подъемник состоит из полого стального цилиндра и поршня или плунжера внутри цилиндра. Масляный насос двигателя создает давление масла, прогоняя масло внутри подъемников через небольшие отверстия. Масло входит и заполняет пустое пространство за плунжером, когда клапан закрыт, это приводит к нулевому зазору клапана, поскольку давление масла давит на плунжер, поэтому он постоянно контактирует с распределительным валом или толкателем распределительного вала.Все гидравлические подъемники оснащены односторонними клапанами, которые позволяют маслу поступать, но не выходить. Когда клапан начинает открываться, когда распределительный вал поворачивается к своей наивысшей точке подъема и давит на подъемник, односторонний клапан предотвращает выталкивание масла из подъемника. Ключевым свойством моторного масла является то, что оно практически несжимаемо, поэтому, когда распределительный вал нажимает на подъемник, это свойство моторного масла заставляет гидравлические подъемники действовать как твердые подъемники и позволяет распределительному валу открывать клапаны.

Все это означает, что гидравлические подъемники более бережно воздействуют на клапанный механизм по сравнению с монолитными подъемниками. Поскольку гидравлические подъемники способны поддерживать нулевой зазор клапана, они уменьшают агрессивное воздействие внезапно закрывающихся клапанов на высоких оборотах двигателя. Твердые подъемники должны поддерживать зазор между кулачком и подъемником, что означает, что возврат клапана на свое седло будет более резким и не будет эффекта амортизации. С другой стороны, гидравлические подъемники следуют за кулачком на всем протяжении его вращения, обеспечивая отсутствие хлопка клапанов, когда они возвращаются на свое место.Это снижает уровень шума и продлевает срок службы клапанного механизма двигателя.

Гидравлические роликовые подъемники и гидравлические плоские толкатели


Роликовые подъемники и плоские толкатели являются гидравлическими подъемниками, поэтому они работают одинаково, но имеют разные конструкции поверхностей, контактирующих с распределительным валом. Как следует из названия, роликовые подъемники имеют ролики в нижней части подъемника, которые катятся по выступу распределительного вала. Плоские толкатели, вопреки своему названию, на самом деле имеют слегка выпуклую поверхность, которая скользит по кулачку.Как всем известно, качение создает меньшее трение, чем скольжение, а это означает, что подъемники с гидравлическими роликами облегчают вращение распределительного вала, что помогает снизить паразитные потери мощности и помогает двигателю развивать большую мощность. Но у гидравлических роликовых подъемников есть еще одно ключевое преимущество перед плоскими толкателями, так как они позволяют распредвалу работать с гораздо более агрессивными профилями и еще больше улучшают производительность.

Гидравлический роликоподъемник позволяет использовать более агрессивные профили распределительного вала, поскольку он устраняет риск царапания или заедания, присущий плоскому толкателю.Плоские толкатели, хотя и менее дорогие, имеют ограничения, когда речь идет о наклонной плоскости распределительного вала, поскольку слишком большой наклон фактически приведет к врезанию плоского толкателя в профиль кулачка. С более агрессивным профилем распределительного вала клапаны можно закрывать и открывать намного быстрее, а это означает, что у клапанов больше времени, чтобы оставаться открытыми, поэтому распределительный вал с роликовым подъемником может работать намного дольше. Вот почему установки роликового подъемника часто требуют более жестких пружин клапана для управления более агрессивным и быстрым движением клапанного механизма.

Кроме того, гидравлические роликовые подъемники также обладают повышенной прочностью. Роликовый подъемник с меньшей вероятностью выйдет из строя, потому что, в отличие от плоского толкателя, он не так сильно зависит от смазки разбрызгиванием. Еще одним преимуществом является то, что роликовые подъемники совместимы с обычными стандартными маслами и не требуют масел с высоким содержанием цинка и / или добавок, таких как плоские толкатели.

Почему стоит покупать гидравлические подъемники у MaXpeedingRods?

  • Все гидравлические подъемники MaXpeedingRods имеют жесткие внутренние допуски для надлежащего контроля масла и бесшумной работы.
  • Гидравлические роликоподъемники MaXpeedingRods оснащены высококачественными подшипниками, осями и колесами в сборе, которые повышают их прочность и обеспечивают долговечность.
  • Все наши гидравлические подъемники оснащены прецизионными клапанами и системой высокоточного измерения расхода, которая обеспечивает надлежащее движение масла по подъемнику в любых условиях эксплуатации.
  • Все наши гидравлические подъемники проходят прецизионную обработку, чтобы гарантировать, что они идеально подходят для замены вашего двигателя и соответствуют или превосходят все спецификации OEM.
  • Чтобы получить профессиональную помощь в выборе подходящего гидравлического подъемника для вашего двигателя, свяжитесь с нами через: www.maxpeedingrods.com. (Используйте код: Blog , чтобы получить скидку 10%)

Симптомы неисправности гидравлического подъемника и обслуживание

Как правило, гидравлические подъемники не требуют технического обслуживания, а при регулярной замене моторного масла они обычно служат очень долго. Признаком неисправности гидроподъемника является повышенный шум клапанного механизма. Мусор, шлам и другие остатки в моторном масле, которые не были заменены вовремя, могут заблокировать подъемник гидравлического клапана, что сделает его неспособным поддерживать нулевой зазор клапана, что приведет к дребезжанию и стуку из вашего клапана, что может быть в чем-то похоже на это слышно от толкателей с твердым клапаном.Как правило, подъемник гидравлического клапана чувствителен к частоте и качеству замены масла. Низкокачественные масла с недостаточным содержанием моющих средств неэффективны для предотвращения образования отложений, которые быстро заблокируют подъемники клапанов и не только увеличат шум, но также увеличат износ и нагрузку на весь клапанный механизм. Вот почему очень важно использовать масло хорошего качества и вовремя менять его в двигателях, оборудованных гидравлическими подъемниками.

Клапанный механизм и принцип его работы.

Автомобильная промышленность

Клапанный привод

Клапанный механизм относится к сборке компонентов, предназначенных для открытия и закрытия впускных и выпускных клапанов.Большинство новых двигателей имеют узлы верхнего распредвала, подобные показанному. В других конструкциях распределительный вал расположен ниже в двигателе, а для перемещения клапанных узлов используются толкатели. Распределительный вал вращается с помощью ремня ГРМ, цепи ГРМ или прямой передачи.

Распредвал:

Распределительный вал (1) изготовлен с точно обработанными кулачками (2), которые регулируют открытие клапана. Количество лепестков на валу определяется количеством клапанов, которыми управляет вал. В некоторых двигателях используется один вал для управления как впускными, так и выпускными клапанами.У других есть специальные распределительные валы для каждого типа клапана. Двигатели, разработанные с четырьмя клапанами на цилиндр, обычно оснащены двойными распределительными валами для каждого ряда цилиндров.

кулачок:

Лепестки кулачка (2) имеют точную форму, которая определяет, когда клапан открывается по отношению к положению поршня, насколько далеко смещен клапан и сколько времени клапан остается открытым. Расстояние между конечной точкой радиуса основания и носиком регулирует смещение клапана.Геометрия боковых сторон (фланга) и носа определяет, как долго клапан остается открытым.

Опорный кулачок:

Толкатель кулачка (3) установлен поверх штока клапана и пружины (4) и представляет собой поверхность, на которую кулачок толкает, открывая клапан. Толкатель скользит вверх и вниз внутри отверстия в головке блока цилиндров.

Подъемник распредвала:

Высота подъема распредвала — это расстояние между конечной точкой радиуса основания кулачка и носиком.Подъем определяет, насколько далеко будет смещен клапан. Увеличение подъема увеличивает смещение клапана.

Длительность хода распределительного вала:

Длительность работы распределительного вала — это время, в течение которого клапан остается открытым. Геометрия носа и бока доли определяет продолжительность. Круто изогнутый бок обеспечивает более острый нос. Это дает более короткую продолжительность.

Толкатель:

В двигателях с распределительным валом, расположенным в блоке цилиндров, для открытия клапанов используются толкатели (2), действующие на коромысла (3).Толкатели установлены на толкателях клапана (1) или толкателях, которые перемещаются на кулачки распределительного вала. Используются подъемники трех типов: подъемник с гидравлическим клапаном, механический подъемник и роликовый подъемник. Некоторые толкатели полые, что позволяет подавать масло от подъемников к коромыслам. Это снижает износ наконечника толкателя и коромысла.

Гидравлические подъемники:

Гидравлические подъемники

используются чаще всего, поскольку они могут снизить шум клапанного механизма за счет поддержания нулевого зазора клапана (отсутствие зазора между компонентами клапанного механизма.) Маслозаполненные подъемники автоматически регулируются с учетом изменений, вызванных колебаниями температуры и износом деталей. Моторное масло двигателя заполняет внутреннюю часть подъемника, толкая плунжер подъемника до тех пор, пока в клапане не появится люфт. поезд удален.

Механические подъемники:

Механические подъемники, также называемые сплошными подъемниками, просто передают действие кулачка на толкатель. Они не содержат масла и не саморегулируются. В результате они требуют периодической регулировки.Клапанные механизмы, использующие механические подъемники, подвержены щелчку или грохоту при открытии и закрытии клапанов. Вот почему гидравлические подъемники более распространены.

Роликовые подъемники:

Роликовые подъемники бывают механическими или гидравлическими. В подъемник встроен ролик, который перемещает кулачок, уменьшая трение между распредвалом и подъемником. Трение между этими двумя компонентами — одна из самых высоких точек трения в двигателе.

Пружинный фиксатор:

Фиксатор пружины предназначен для удержания на месте наконечника штока клапана.Это позволяет коромыслу воздействовать непосредственно на клапан.

Цепь привода ГРМ:

Цепи привода ГРМ становятся стандартом для поворота распредвалов впускных и выпускных клапанов. Цепи расположены на передней части двигателя и приводятся в движение ведущей звездочкой (1), которая вращается коленчатым валом двигателя. Цепи привода ГРМ требуются как для звездочки впускных кулачков (2), так и для звездочки выпускных кулачков (3). Также имеется направляющая цепи (4). В некоторых двигателях до сих пор используются ремни вместо цепей.В любом случае чрезмерный люфт или люфт ухудшат работу двигателя.

Ремень ГРМ:

Ремень ГРМ вместо цепи ГРМ может использоваться для поворота распределительных валов. Внутренняя сторона ремня имеет квадратные (зубчатые) зубцы, которые предотвращают проскальзывание ремня. Ремень следует периодически проверять на предмет износа и надлежащего натяжения.

Натяжитель ремня:

Натяжитель ремня представляет собой подпружиненное колесо, которое удерживает ремень ГРМ в натянутом состоянии и совмещает его со звездочкой кулачка.Гладкая сторона ремня ГРМ проходит через натяжитель. Натяжитель прикладывает силу к задней стороне ремня. Это держит ремень в натяжении. Когда ремень необходимо снять, натяжитель можно снять, освободив ремень.

Клапаны:

Каждый цилиндр имеет как минимум один впускной клапан (1) и один выпускной клапан (2). Некоторые двигатели имеют два набора клапанов на цилиндр, как показано на фотографии. Впускной клапан имеет больший диаметр, чем выпускной, что увеличивает поток воздуха в цилиндр.Выпускной клапан должен выдерживать более высокие температуры, чем впускной клапан, поскольку воздух, проходящий мимо впускного клапана, поддерживает более низкую температуру впускного клапана. Однако и впускной, и выпускной клапаны должны передавать свое тепло головке блока цилиндров, иначе они сгорят.

Пружины клапана:

Пружины клапана (4) обеспечивают силу сопротивления, которая возвращает смещенные клапаны в их закрытое положение. Пружина может иметь конструкцию с одной виткой или конструкцию с двумя витками, которая имеет внутреннюю и внешнюю витки.Вторая катушка увеличивает силу, удерживающую клапан в закрытом состоянии.

Клапаны с натриевым наполнением:

Клапаны, заполненные натрием, используются, когда требуется дополнительное охлаждение. В полых клапанах содержится натрий, плавящийся во время работы двигателя. Действие клапана заставляет натрий циркулировать, отводя тепло от головки клапана. Тепло проходит вверх по штоку клапана (3) и передается на головку блока цилиндров. Каналы охлаждающей жидкости в головке блока цилиндров (показаны зеленым) отводят тепло.

Стеллитовые клапаны:

Клапаны из стеллита

имеют твердосплавное покрытие, которое продлевает срок службы клапана. Еще во времена этилированного бензина свинцовые присадки покрывали клапаны, обеспечивая дополнительную защиту. Теперь, когда сжигают неэтилированное топливо, твердое металлическое покрытие обеспечивает защиту.

Lifter Tick Что это такое, каковы причины и как это исправить?

Машины очень шумные и могут издавать самые разные звуки. От свиста турбокомпрессора до треска выхлопа или треска вашего радио.Это хорошие звуки, которые вызывают улыбку на вашем лице. Хотя иногда машина издает неприятные звуки, похожие на тик лифта, от которых сердце падает на землю.

Теперь вы можете просто избавиться от легкого постукивания или тикающего шума, исходящего от вашего двигателя. «Наверное, ничего», — можете подумать вы, чтобы успокоить бурную тревогу в своем воображении. Вы, вероятно, просто продолжили бы ехать, надеясь, что тик лифта внезапно исчезнет. Или вы можете немного увеличить громкость в своем плейлисте Spotify, чтобы заглушить шум.

В конце концов, чечетку было бы гораздо приятнее слушать, чем громко стучать ваш двигатель. Все мы знаем, что подобные странные шумы часто являются плохим признаком того, что большие и дорогие счета за ремонт в порядке. Лифтер клещ может быть очень простым и безболезненным решением. Но игнорируйте это достаточно долго, и это, к счастью, будет стоить вам денег. Итак, прочтите наше руководство по тикам для подъемников, чтобы узнать больше.

Что вам нужно знать о подъемнике (клапанном)

Прежде чем мы сможем больше понять, что такое подъемник, мы должны узнать больше о том, что делает подъемник.У этой части двигателя много названий. Его можно назвать «гидравлический толкатель», «подъемник с гидравлическим клапаном» или «гидравлический регулятор зазора». Как мы сейчас, двигатель автомобиля — очень сложное устройство, и у него много движущихся частей, работающих вместе.

Очень важно, чтобы эти части работали слаженно и согласованно. Обеспечение совместной работы всех компонентов двигателя по назначению имеет решающее значение для поддержания производительности, эффективности и долговечности. Одним из таких компонентов, который должен работать в наиболее оптимальном состоянии, является толкатель.Толкатель двигателя или толкатель клапана — это то, что соединяет клапаны двигателя с распределительным валом.

Подъемник клапана переводит вращательное движение распределительного вала в вертикальное движение, которое открывает и закрывает клапаны двигателя. Это то, что контролирует поступление топлива и воздуха в камеру сгорания. Он также управляет выхлопом процесса сгорания из камеры сгорания двигателя, и процесс повторяется.

Твердотельные и гидравлические толкатели клапанов

Традиционно старые автомобили имеют толкатели с твердыми клапанами или толкатели двигателя.Они часто требуют регулярной корректировки. Это необходимо для того, чтобы гарантировать наличие небольшого зазора между ним и клапаном через коромысло двигателя или толкатель. Этот зазор предотвращает зацепление подъемника клапана с другими компонентами из-за тепла от двигателя.

Естественно, это увеличивает износ подъемников клапана, прежде чем он может достичь своей оптимальной температуры. Кроме того, он более шумный, так как части будут соприкасаться друг с другом во время работы.Гидравлические подъемники клапана были разработаны, чтобы помочь решить эту проблему. Конечная цель — обеспечить нулевой зазор клапана или зазор между толкателями клапана и вышеупомянутыми коромыслами и толкателем.

Таким образом, этот нулевой зазор позволит остальной части клапанного механизма двигателя работать плавно, тихо и без чрезмерного износа. Следовательно, это означает, что двигатели, оснащенные подъемниками с гидрораспределителями, не нуждаются в периодической калибровке. Конструкция подъемника с гидравлическим клапаном состоит из стального цилиндра, в котором расположен поршень, который затем удерживается пружиной.

Полая камера — это то, что позволяет моторному маслу течь через толкатель клапана. Как и в гидравлике, масло регулирует движение толкателя клапана. Он повышает или понижает давление в зависимости от движения клапанов двигателя и распределительного вала. Поток масла важен для обеспечения оптимальной работы подъемников клапана и обеспечения нулевого зазора клапана.

Как узнать, страдает ли ваш автомобиль клещом подъемника?

Теперь мы лучше поняли, что такое толкатель клапана двигателя и как он работает.Более того, мы также пришли к пониманию того, насколько это важно для внутренней работы двигателя. Но прежде чем мы сможем приступить к дальнейшей диагностике проблемы, вам следует узнать больше о симптомах. Это явные признаки, которые вы можете ощутить, чтобы узнать, не страдает ли ваша машина тиканием подъемника.

В случае тиканья подъемника наиболее очевидным сигнальным признаком является постукивание или тикающие звуки, которые вы слышите от двигателя. Сам звук может меняться по ритму, увеличиваясь по громкости и частоте вместе с оборотами двигателя.Часто, чем выше частота вращения, тем громче и быстрее будет постукивание. Однако, помимо очевидного шума, у клеща-лифтера есть и другие симптомы.

1. Контрольный свет двигателя

К другим признакам тикания подъемника может относиться подсветка «проверьте двигатель» на комбинации приборов. В автомобилях есть различные датчики, определяющие, что многие движущиеся части работают должным образом. При возникновении неисправностей, таких как тик подъемника, может появиться индикатор проверки двигателя, чтобы предупредить вас.

2.Пропуски зажигания в двигателе

Поврежденный или сломанный толкатель клапана может серьезно нарушить процесс сгорания в двигателе. Это касается смеси и последующего сжигания топлива и воздуха. Это может привести к пропуску зажигания в двигателе, что является еще одним признаком и следствием тикания подъемника. Пропуски зажигания могут привести к снижению производительности, например к медленному ускорению.

Стоит ли продолжать движение с подъемником?

Часто, сталкиваясь с проблемами с вашей машиной, мы сначала просто игнорируем их.Это понимание того, что проблемы всегда могут быть сложными и дорогостоящими. Итак, мы склонны просто игнорировать наши проблемы и надеяться, что они исчезнут через некоторое время. Большинство людей склонны игнорировать подъемник и продолжают водить машину, как будто этого никогда не было.

Следует ли вам продолжать движение, пока ваша машина страдает тиканием подъемника? Точно нет. Мы не рекомендуем вам продолжать ездить на машине, у которой есть подъемник. Итак, если вы уже ведете машину и слышите этот ужасный звук, как можно скорее остановитесь и вызовите эвакуатор.Если вы собираетесь съехать с подъездной дорожки, развернитесь и припаркуйте машину в безопасном месте.

После этого вы можете позвонить в ближайшую мастерскую или представительство, чтобы узнать о проверке. Лифтер клещ может быть очень простым решением, если с ним быстро справиться. Как всегда, никогда не игнорируйте странные звуки и ощущения от вашей машины. Платить за исправление может быть обидно. Но если вы продолжите игнорировать неисправности, пока они только появляются, в дальнейшем это может привести к более катастрофическим счетам за ремонт.

Каковы причины клещей лифтера, о которых вам следует знать?

«Но что заставляет мой двигатель издавать все эти громкие тикающие звуки?», — спросите вы. Что ж, теперь мы можем углубиться в коренные причины тикания подъемника двигателя. Понимание причины может помочь нам лучше понять, какие исправления необходимо внести и во что они в конечном итоге будут стоить.

Итак, у нас есть список распространенных причин, которые приводят к тиканию толкателя клапана, в порядке их серьезности.

1. Низкий уровень моторного масла

Как мы узнали ранее, моторное масло является ключевой частью внутренней работы подъемника клапана.Он, как и большинство других движущихся частей, требует постоянной смазки, чтобы избежать чрезмерного износа. Более того, подъемникам с гидравлическими клапанами для правильной работы требуется масло в качестве среды.

Номинальное количество моторного масла гарантирует, что подъемник клапана может сохранять свою подъемную силу. Таким образом, недостаточное количество моторного масла может вызвать проблемы, такие как тикание подъемника, или более серьезные проблемы в будущем. Это связано с тем, что толкатели клапана постоянно трутся о другие движущиеся части.

Или, что гидравлика не работает должным образом из-за недостатка жидкости.К счастью, у большинства автомобилей есть сигнальная лампа «низкого уровня масла», «масла» или «низкого давления масла», которая загорается на приборной панели вашего автомобиля.

2. Грязные или грязные отложения в моторном масле

Аналогичным образом, при низком уровне моторного масла грязное масло также может вызвать тик подъемника. Моторное масло не предназначено для вечного использования, и, как и все жидкости в вашем автомобиле, его нужно менять. У производителя вашего автомобиля должен быть установлен интервал замены моторного масла. Через некоторое время моторное масло может собирать грязь, сажу или загустевать, как ил.

Помните, что подъемникам клапанов требуется моторное масло в качестве смазки и для обеспечения хорошей подъемной силы. Грязное моторное масло может забить толкатель клапана, что приведет к такой же ситуации, как и недостаточный уровень масла. Это приводит к тому, что толкатели клапанов не получают оптимального количества жидкости для работы и предотвращают износ.

3. Использование моторного масла неподходящей вязкости

Это еще раз подчеркивает важность моторного масла в обеспечении бесперебойной и бесперебойной работы подъемников клапанов.Действительно, вы можете выбрать неправильный тип моторного масла для вашего конкретного автомобиля. Поэтому в следующий раз, когда будете доливать масло, не снимайте с полок старую бутылку масла.

Как и в случае с грязным моторным маслом, вязкость жидкости важна для обеспечения правильной работы подъемника клапана. Слишком густое или жидкое моторное масло может повлиять на поток масла в толкателе клапана. Каждый производитель автомобилей использует разные двигатели и, следовательно, разные комплекты толкателей клапанов.

Таким образом, у каждого из них есть собственное рекомендованное моторное масло, которое лучше всего подходит для вашего автомобиля. Поддержание идеальной вязкости поможет предотвратить появление клещей. Это также поможет гарантировать, что остальная часть двигателя будет работать так плавно, как задумано.

4. Неисправный толкатель клапана двигателя

Как и любая движущаяся часть, толкатель клапана двигателя во время работы подвергается огромным нагрузкам и деформациям. Следовательно, со временем он естественным образом изнашивается и требует замены.Помимо моторного масла, неисправный толкатель клапана также со временем вызывает тикание подъемника.

Неисправность подъемников клапана может быть вызвана рядом причин. Во-первых, подъемники клапана имеют установленный срок службы, и со временем их целостность ухудшится. Если ваш автомобиль старый или имеет большой пробег, возможно, потребуется заменить толкатель клапана. В качестве альтернативы подъемники клапана также могут выйти из строя из-за плохого обслуживания.

К непрофессиональному обслуживанию относится несоблюдение регулярной замены моторных масел или использование некачественного моторного масла.Плохой уход за автомобилем и невыполнение интервалов между его обслуживанием может в конечном итоге вызвать такие проблемы, как тик лифта.

5. Смещенный интервал подъемника

Как мы уже много раньше узнали о том, как работают подъемники клапана, расстояние очень важно для его функции. Между толкателем клапана и другими взаимодействующими деталями должен быть небольшой зазор. Сюда входят распределительные валы и толкатель или коромысло.

Плохая балансировка расстояния вокруг толкателей клапана также может вызвать тикание толкателя.Если зазор слишком велик, подъемник не сможет коснуться распредвалов или толкателя. Это приведет к тому, что подъемник будет свободно дребезжать. Между тем, слишком маленький зазор может вызвать повреждение клапана.

Это происходит из-за того, что штоки клапанов расширяются в размерах, поскольку они поглощают тепло от двигателя. Если между подъемником и штоком клапана будет передаваться слишком много тепла, это приведет к повреждению подъемника. Важно убедиться, что подъемники клапанов вашего автомобиля установлены в наиболее оптимальное положение.

6. Изогнутый толкатель

Толкатель — один из ключевых компонентов двигателя. Его основная функция — управлять впускным и выпускным клапанами камеры сгорания автомобиля. Таким образом, толкатели должны быть одними из самых надежных деталей автомобиля. Однако он может быть поврежден, если за ним не ухаживать.

Это особенно актуально, если машину толкают слишком сильно или водят слишком возбужденно. Повышенное напряжение может вызвать сильный износ, что в конечном итоге может привести к изгибу толкателя.Изгиб может привести к преждевременному износу толкателей клапана, что может вызвать тикание толкателя.

Как исправить тиканье подъемника?

Теперь, когда мы знаем и понимаем основные причины лифтерного тика, мы можем подробнее обсудить, как это исправить. Как упоминалось ранее, тиканье подъемника клапана вашего автомобиля можно так же легко исправить, как и заменить моторное масло. Однако, если вы не будете внимательны и осторожны, это может очень быстро превратиться в очень дорогостоящий ремонт.

Вот список исправлений, которые помогут заглушить ваш двигатель и навсегда решить проблему с подъемником.

1. Долейте или замените моторное масло

К настоящему времени мы узнали, что уход за моторным маслом является ключом к удовлетворению как вашего автомобиля, так и подъемников клапанов. В противном случае это может привести к проблемам, которые в конечном итоге вызовут тиканье подъемника. Моторное масло играет ключевую роль в смазке движущихся частей внутри и вокруг подъемника клапана. Кроме того, подъемникам с гидравлическими клапанами требуется моторное масло для правильной работы и поддержания подъемной силы.

Если в вашем двигателе заканчивается масло, это может быть видно по сигнальной лампе «низкий уровень масла» на комбинации приборов.Кроме того, вы можете очень быстро проверить резервуар моторного масла в моторном отсеке. Если уровень масла ниже минимума, указанного на масляном щупе, долейте его.

2. Найдите и используйте подходящее масло для вашего автомобиля

Тем не менее, не забывайте всегда обращаться к руководству по эксплуатации или звонить своему местному дилеру, чтобы найти точное моторное масло, рекомендованное для вашего автомобиля. Есть много разных типов моторного масла. Самая важная переменная, на которую следует обратить внимание, — это вязкость самого масла.Это важно для подъемников клапана, так как масло должно плавно течь через них.

Это будет зависеть от вашего индивидуального автомобиля. Вам также нужно будет обратить внимание на погоду вокруг вас. Холодной зимой рекомендуется подобрать более жидкое или менее вязкое масло. В более теплое время года вам следует использовать более густое и более вязкое моторное масло. В качестве альтернативы вы можете приобрести всесезонное моторное масло (всесезонное — оно все равно используется в большинстве новых автомобилей), которое немного дороже.

3. Замените масляный фильтр двигателя

Говоря о моторном масле, также важно следить за тем, чтобы поток масла в вашем автомобиле оставался чистым. Ранее мы обсуждали, как грязное масло может засорить поток к вашим толкателям клапана и между ними. Одна из частей автомобиля, которая следит за тем, чтобы масло не оставалось грязным или мусором, — это масляный фильтр.

Масляный фильтр, как и любые другие детали в автомобиле, со временем потребует замены. Хороший масляный фильтр должен предотвращать накопление грязи или любого другого мусора в моторном масле.Это гарантирует, что поток масла останется плавным, чистым и непрерывным. Это поможет предотвратить появление тиканья.

4. Используйте присадки к моторному маслу

Что касается масла, вы также можете рассмотреть вопрос о добавках, обеспечивающих чистоту масла. Кроме того, хорошее количество масляных присадок может также очистить компоненты, которые моторное масло должно смазывать. Сюда также входят клапаны, коромысла, толкатели и толкатели клапана.

Присадки к маслу поддерживают чистоту моторного масла и обеспечивают плавный поток через остальную часть двигателя.В вашем руководстве по эксплуатации должны быть указаны некоторые из лучших присадок к маслу, которые рекомендуются для вашего автомобиля. Добавление этого масла вместе с моторным маслом может не только помочь устранить тикание подъемника, но и предотвратить его повторение.

5. Замените или отрегулируйте подъемники клапана

В худшем случае подъемники клапана могут сломаться, и их потребуется заменить. Если даже один из них выходит из строя, часто рекомендуется заменить все подъемники клапана. Это связано с тем, что только один неисправный толкатель клапана может вызвать дополнительное напряжение и износ других.Замена толкателей клапанов стоит дорого и может зависеть от того, какой автомобиль вы ведете и какой у него двигатель.

Не только детали очень дороги, замена подъемников клапана — это еще и очень трудоемкая работа. В целом диапазон цен может варьироваться в широких пределах, и мы рекомендуем вам позвонить механику, чтобы узнать более точное предложение. Как правило, средний счет за ремонт для замены подъемников клапана может составлять от 300 до 1000 долларов. Однако не удивляйтесь, если счет вырастет до 1500 долларов и выше.

Это подчеркивает важность регулярного обслуживания автомобиля. В качестве альтернативы, подъемники клапана нуждаются только в простой регулировке. Еще раз, это связано с точным зазором, необходимым между толкателями клапана, распределительными валами и толкателями. Из-за того, насколько жесткими могут быть допуски, мы рекомендуем вам найти профессионала, который поможет вам с этой задачей.

6. Замените толкатели или коромысло

Повреждение толкателей или коромысла может вызвать тикание подъемника.Единственный способ исправить это — заменить их новыми деталями. Как и замена подъемников клапана, это еще одна дорогостоящая и трудоемкая работа. Мы также рекомендуем, чтобы эти замены выполнялись квалифицированным специалистом. Хотя хорошо осведомленный автовладелец мог бы сделать это дома.

Детали и соответствующие комплекты для толкателя или коромысла тоже недешевы. Цены опять же варьируются в зависимости от модели вашего автомобиля и двигателя, который у него есть.Но в целом мы можем ожидать в среднем от 600 до 1000 долларов на замену толкателей. Между тем, замена коромысел в среднем может стоить от 500 до 1500 долларов.

Как предотвратить повторное появление атеросклеротического клеща?

Правильно, так что вы, вероятно, остались горько-сладкими из-за того, что проблема с тиканьем подъемника вашей машины была исправлена. С одной стороны, двигатель вашего автомобиля работает плавно и больше не похоже на чечетку. С другой стороны, вы, вероятно, прожгли огромную дыру в своем кошельке, пытаясь это исправить.Вы, наверное, задаетесь вопросом: «Как я могу предотвратить повторение этого снова?»

С другой стороны, по крайней мере, мы узнали, что тик лифтера легко предотвратить. На самом деле, лучший метод профилактики работает так же хорошо, как и при большинстве других проблем и душевных болей, связанных с автомобилем. То есть просто для того, чтобы обеспечить хорошее обслуживание вашего автомобиля и соблюдение регулярных графиков обслуживания. Помните, что многих проблем можно избежать, если поддерживать автомобиль в отличной форме.

Правильное техническое обслуживание имеет большое значение

Этот совет подходит для любого типа автомобиля, типа и любой марки.Это работает так же, как соблюдение здорового питания или регулярные упражнения для вашего тела. Каждый автопроизводитель разработает разумный график обслуживания для каждого автомобиля. Это зависит от того, как долго они проехали, и от пробега. Просто отремонтировав его, вы можете предотвратить много стрессов в будущем, в том числе и тикание подъемника.

Как мы уже узнали, наиболее частой причиной тикания подъемника является состояние моторного масла. Моторное масло необходимо регулярно менять, и это часть программы обслуживания вашего автомобиля.Сохраняя масло чистым и на достаточном уровне, двигатель и многие его детали могут оставаться смазанными и охлажденными. Одно это может легко гарантировать, что тиканье никогда не произойдет.

Lifter Tick — Заключение

К настоящему времени мы смогли узнать, что такое подъемник клапана двигателя и как он работает. Мы даже узнали больше о причинах появления клещей у лифтера и о том, как их решить. Мы надеемся, что это было полезно для диагностики того раздражающего звука постукивания, который вы, возможно, слышали от вашего двигателя.Это почти всегда небольшая проблема, но она также заслуживает вашего внимания.

Мы не можем не подчеркнуть, насколько легко проблемы с подъемными клещами можно исправить и предотвратить. Однако постоянное игнорирование этих странных шумов и ощущений довольно легко может нанести серьезный ущерб вашему двигателю. Всегда следите за состоянием вашего автомобиля и вырабатывайте привычку регулярно его обслуживать. Если вы будете достаточно внимательны, возможно, вам никогда больше не придется слышать этот тикающий звук.

Утвержденные инструменты

Эти инструменты были испытаны и протестированы нашей командой, они идеально подходят для ремонта вашего автомобиля в домашних условиях.

сообщить об этом объявлении

Как вы регулируете гидравлические толкатели? — Mvorganizing.org

Как отрегулировать гидравлические толкатели?

Регулировка гидравлических подъемников

  1. Чтобы установить предварительный натяг подъемника, поверните двигатель в обычное вращение, пока подъемник не начнет двигаться вверх.
  2. Отрегулируйте впускной клапан до нулевого люфта, а затем поверните регулировочную гайку коромысла на 1/2 — 1 оборот.

Как использовать концентрат подъемника гидравлического клапана?

Использование подъемника гидравлического клапана (концентрат) 1- Откройте крышку заливной горловины моторного масла, горячий или холодный двигатель.2- Слейте все содержимое присадки к маслу подъемника гидравлического клапана. 3- Используйте свой автомобиль в обычном режиме не менее 2000 км или до следующей замены масла.

Как работает гидравлический толкатель?

Гидравлические подъемники

устраняют стук и необходимость периодической регулировки, поддерживая нулевой зазор при работающем двигателе. Они делают это за счет давления масла на подпружиненный плунжер внутри корпуса подъемника. Это подталкивает плунжер вверх, чтобы устранить провисание клапанного механизма и удерживать его прочно.

Как исправить шумный толкатель?

Одна замена масла или использование присадок к маслу может помочь вам снова получить удовольствие от плавного и бесшумного вождения. Гидравлические толкатели клапана, также известные как гидравлические толкатели или толкатели, находятся внутри каждого двигателя … Вот четыре способа уменьшить шум подъемника:

  1. Замена масла.
  2. Используйте присадки к маслам.
  3. Выполните регулировку подъемника.
  4. Исправить поврежденные толкатели.

Как снизить уровень шума двигателя дизельного автомобиля?

Что вы можете сделать, чтобы снизить уровень шума, производимого вашим дизельным автомобилем?

  1. Используйте синтетическое моторное масло: использование синтетического моторного масла вместо обычного минерального масла может привести к значительным улучшениям.
  2. Используйте присадки: Если синтетическое масло кажется слишком дорогим, вы можете выбрать более дешевую присадку на масляной основе.

Какое масло вы используете для шумных подъемников?

Если можете, убедитесь, что это синтетическое масло. Если вы не можете получить синтетическое масло, по крайней мере, используйте синтетическую смесь. После замены масла дайте машине поработать около получаса, чтобы масло проскочило через систему.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *