Виды редуктор: Виды редукторов: устройство, назначение, типы, схемы

Содержание

Виды редукторов

Точное техническое определение редуктора — устройство для преобразования механической энергии в разрезе параметров. Он имеет характеристику входных и выходных показателей. На практике редуктор может не только менять параметры кинетики и уровни передачи энергии, но и изменять направление вращения и следования валов.

Сегодня редуктор рассматривается в разрезе приспособления, которое используется для изменения частоты вращения вала относительно показателей приводного механизма. При этом параллельно может рассматриваться возможность увеличения крутящего момента или же — обеспечения крайне малого числа оборотов при очень серьезных усилиях. По конструкции редукторы делятся на:

Чтобы понять, насколько тот или иной тип редуктора подойдет для решения поставленных перед ним задач, стоит подробно остановиться на особенностях их работы и условий использования.

Цилиндрический редуктор относится к самому распространенному типу преобразовательных механизмов. Он обладает главной характеристикой: входной и выходной валы строго параллельны, но не обязательно соосны.

rxp-bevel-helical.png

К достоинствам цилиндрического редуктора относятся:

  • высокий КПД, потери энергии минимальны;
  • не обладает самоторможением, всегда есть возможность прокрутить выходной вал даже при приложении малого усилия;
  • может транспортировать высокую мощность;
  • обладает кинематической точностью;
  • практически не нагреваются, не требуя особых условий охлаждения;
  • выпускаются изделия с разным передаточным числом и ступенями преобразования.

Благодаря присутствию на рынке большого ассортимента изделий, нетрудно подобрать цилиндрический редуктор с нужным передаточным числом для применения в том или ином механизме.

Основа конструкции цилиндрического редуктора — зубчатые колеса в форме цилиндров. Соосность (Расположение осей деталей машины (узлов, агрегатов и т. п.) на одной линии)входного и выходного валов зависят от числа ступеней передачи. В самом простом варианте внутри корпуса находятся всего два цилиндрических зубчатых колеса. В этом случае смещение выходного вала от оси входного определяется как сумма радиусов колес по внешнему контуру за вычетом глубины зубьев.

Соосность входного и выходного валов достигается применением нескольких ступеней преобразования. В этом случае внутри корпуса расположено нечетное количество цилиндрических зубчатых колес, некоторые из которых являются вспомогательными. Они могут выполнять роль как простого передаточного механизма без преобразования, так и иметь передаточный коэффициент для снижения нагрузки на зубья и повышения срока службы механизма.

Цилиндрические редукторы выпускаются в закрытых корпусах, большинство из них не требует специального обслуживания. Область применения этих устройств чрезвычайно широка. Они гарантируют плавную передачу хода, но не позволяют изменить направление вала.

Цилиндрические редукторы могут располагаться вертикально или горизонтально, расчет нагрузки и оборотов прост: высокий КПД позволяет применять указанное производителем передаточное число в арифметических операциях. Главное достоинство редуктора — преобразование энергии привода практически без искажений и потерь.

Работа конических и коническо-цилиндрических редукторов имеет те же особенности и основные характеристики, что и у цилиндрических устройств. Главное отличие — в форме зубчатых колес внутри корпуса.

Как следует из названия, у конического редуктора все шестерни конической формы, у коническо-цилиндрического в конструкции присутствуют элементы обоих типов.

Редукторы этих классов имеют свои особенности:

  • способны изменять направление валов, конический редуктор с одной ступенью преобразования обеспечивает поворот на 90 градусов;
  • усилие при работе шестерней направлено под углом к оси вала. Поэтому редукторы конического и коническо-цилиндрического класса должны отдельно закрепляться для избежания бокового давления на ось привода. Это может несколько осложнить конструирование механизмов с их участием.

Рассматриваемые типы редукторов применяются только в случаях, когда без изменения направления вала нельзя обойтись. Данные устройства дороги, что легко объясняется повышенной сложностью изготовления зубчатых колес и необходимостью гарантировать точность сборки редуктора в целом.

Но в остальном — устройства работают практически бесшумно, предлагаются продукты с разным передаточным числом, им не требуется специального обслуживания, а срок эксплуатации очень велик. Правила расчета выходной частоты вращения вала и крутящего момента — такие же, как для цилиндрических редукторов.

Червячные редукторы: общие сведения

ri_crmi_cr.jpg

В основе механики работы червячного редуктора лежит идея передачи крутящего момента с винта особой резьбы на зубчатое колесо.

Виды редукторов 02.jpg

При этом в ходе работы механизма образуются значительные показатели силы трения между поверхностями червяка и зуба приводного механизма вала.

Wormgearboxweb.jpg

В результате устройство выделяет большое количества тепла, требует особых условий охлаждения, имеет низкую наработку на отказ.

С течением времени из-за разрушения элементов привода возможно возникновения люфтов и увеличение выделения тепла.

К достоинствам червячного редуктора относятся:

  • плавность хода выходного вала;
  • большие передаточные коэффициенты;
  • для выполнения поставленных перед некоторыми механизмами задач полезно свойство самоторможения редуктора: вал невозможно прокрутить при отключенном приводе.

Есть у червячного редуктора весомый список недостатков. Кроме уже упомянутых (значительное выделение тепла, низкий срок службы), к ним относятся:

  • сниженный коэффициент полезного действия, который падает в ходе эксплуатации из-за износа механики;
  • необходима точная регулировка и настройка.

Червячный редуктор требует отдельного крепления при установке для гарантии отсутствия паразитных разнонаправленных сил, действующих на выходной и входной валы. Если это условие не соблюдено — срок службы устройства может быть снижен по сравнению с задекларированным производителем.

Где применяют червячные редукторы

Червячные редукторы чаще всего используются в механизмах, где требуется передача незначительной мощности при большом коэффициенте преобразования. Например, устройства со слабыми высокооборотистыми двигателями, обеспечивающие малое количество ходов или оборотов исполнительного органа.

Множество механизмов могут требовать низкой угловой скорости поворота выходного вала. В этом случае червячный редуктор будет идеален. Он гарантирует значительный крутящий момент на выходе, а благодаря огромному передаточному числу — количество оборотов на выходе весьма мало. Это могут быть приводы ворот, различные подъемники рычажной конструкции.

Для решения некоторых задач может быть полезным особенность червячных редукторов, которая состоит в изменении направления выходного вала относительно входного на 90 градусов. Этот показатель никогда не изменяется.

Отдельно стоит отметить комбинированные зубчатые редукторы. В них осуществляется двойное преобразование: предварительное с помощью цилиндрической схемы и окончательное — червячной передачей. Этим достигается еще больший коэффициент преобразования для самых низких показателей угловой скорости выходного вала.

Планетарный редуктор: общие сведения

Конструкция планетарного редуктора позволяет ему работать в двух режимах: в роли жесткого преобразователя механической энергии и в модели суммирующего механизма, который отбирает крутящий момент от двух приводов. К достоинствам планетарного редуктора относятся:

  • компактность;
  • универсальность применения выходного крутящего момента, как для привода валов, так и для передачи вращения шестерням;
  • малый вес;
  • высокий коэффициент полезного действия.

К недостатку планетарного редуктора относится его высокая стоимость. Это обусловлено как большим количеством деталей в составе механизма преобразования, так и требованиями высокой точности их изготовления.

ex multi.pngexb.pngexr.png

Как работает планетарный редуктор

Передача вращения в планетарном редукторе производится от центральной «солнечной» шестерни, которую вращает привод, к внешнему круговому элементу — эпициклу. Коэффициент преобразования зависит от соотношения числа зубьев на солнечной шестерне и планетарных зубчатых колесах.

Схема редуктора представлена на рисунке:

Без имени-1.jpgпланетарный редуктор.png

Когда водило, обозначенное зеленым, жестко зафиксировано — планетарный редуктор работает как простой преобразователь механической энергии одного привода. Второй вариант использования заключается во вращении солнечной шестерни и водила от разных источников. При этом энергия суммируется, а расчет итоговой мощности на эпицикле достаточно сложен.

EXV.pngEX (1).png

Благодаря малым размерам и плавности хода, планетарный редуктор рекомендован для точных механизмов. На массовом рынке предлагается широкий спектр изделий. Доступны редукторы с разным коэффициентом преобразования, которые могут передавать большую мощность, снижая угловую скорость выходного устройства. Это может быть крайне полезным в металлообрабатывающих станках.

Хорошие результаты показывают планетарные редукторы в различных подъемниках и транспортерах. Они способны обеспечить плавное изменение мощности при незначительных бросках нагрузки на приводе. Для обеспечения высокой мощности транспортеров можно применять дополнительные приводы с планетарными редукторами в режиме суммирования, которые смогут обеспечить создание длинных высоконагруженных транспортеров или подъемников.

Заключение

Полезность того или иного редуктора для создания конкретного устройства всегда оценивается индивидуально. Цилиндрические — способны удовлетворить большинство потребностей. Однако отраслей, где крайне полезными будут червячные или планетарные редукторы — также достаточно много.

Все о редукторах. Справочная информация

Классификация, основные параметры редукторов
Цилиндрические редукторы
Червячные редукторы
Планетарные редукторы
Конические редукторы
Классификация редукторов в зависимости от вида передач и числа ступеней
Конструкция и назначение редуктора
Особенности редукторов по виду механических передач
Количество ступеней редуктора
Входные и выходные валы редукторов
Срок службы редуктора
Устройство редуктора
Монтажное исполнение
Как подобрать редуктор? Простые правила и примеры расчета
Передаточное отношение и как его определить?

 

Редукторы (латинского слова reductor) получили широкое распространение во всех отраслях промышленного и аграрного хозяйства, поэтому их производство с каждым годом увеличивается, появляются новые модификации, совершенствуются уже существующие модели.

Редуктор служит для снижения частоты вращения тихоходного вала и увеличения усилия на выходном валу. Редуктор может иметь одну или несколько ступеней, цель которых увеличение передаточного отношения. По типу механической передачи редукторы могут быть червячными, коническими, планетарными или цилиндрическими. Конструктивно редуктор выполнен как отдельное изделие, работающее в паре с электродвигателем и установленное с ним на одной раме.

Промышленностью сегодня выпускаются редукторы общего и специального назначения.
Редукторы общего назначения могут применяться во многих случаях и отвечают общим требованиям. Специальные же редукторы имеют нестандартные характеристики подходящие под определенные требования.

 

Классификация, основные параметры редукторов

В зависимости от типа зубчатой передачи редукторы бывают цилиндрические, конические, волновые, планетарные, глобоидные и червячные. Широко применяются комбинированные редукторы, состоящие из нескольких совмещенных в одном корпусе типов передач (цилиндро-конические, цилиндро-червячные и т.д.).

Конструктивно редукторы могут передавать вращение между перекрещивающимися, пересекающимися и параллельными валами.
Так, например цилиндрические редукторы позволяют передать вращение между параллельными валами, конические — между пересекающимися, а червячные — между пересекающимися валами.

Общее передаточное число может достигать до нескольких десятков тысяч, и зависит от количества ступеней в редукторе. Широкое применение нашли редукторы, состоящие из одной, двух или трех ступеней, при чем они могут, как описывалось выше, совмещать разные типы зубчатых передач.

Ниже представлены наиболее популярные виды редукторов, серийно выпускаемые промышленностью.

 

Цилиндрические редукторы

Цилиндрические редукторы являются самыми популярными в машиностроении. Они позволяют передавать достаточно большие мощности, при этом КПД достигает 95%. Вращение передается между параллельными или соосными валами. Передаваемая мощность зависит от типоразмера редуктора. В цилиндрических редукторах применяются передачи, состоящие из прямозубых, косозубых или шевронных зубчатых колес. Количество цилиндрических передач напрямую влияет на передаточное отношение. Например, одноступенчатый редуктор может иметь передаточное число 1,5 до 10, две ступени — от 10 до 60, а три ступени — от 60 до 400.

Кинематические схемы наиболее распространенных видов цилиндрических редукторов представлены на рисунке ниже:


А) — Простой одноступенчатый цилиндрический редуктор
Б) – Двухступенчатый редуктор цилиндрический с несимметричным расположением зубчатых колес
В) – Трехступенчатый цилиндрический редуктор, входной вал быстроходной передачи изготовлен с двумя шестернями
Г) – Соосный цилиндрический редуктор
Д) — Соосный цилиндрический редуктор с симметричным расположением опор относительно тихоходной передачи
Е) — Соосный цилиндрический редуктор с шевронной быстроходной передачей
Ж) — Соосный цилиндрический редуктор с раздвоенной передачей
З) — Соосный цилиндрический редуктор с посаженными на быстроходный вал двумя косозубыми шестернями с противоположенным наклоном зубьев
И) – Трехступенчатый цилиндрический редуктор с раздвоенной быстроходной и тихоходной передачей

 

 

Червячные редукторы

Червячные редукторы получили большую популярность в виду своей простоты и достаточно низкой стоимости. Из всех видов червячных редукторов наиболее распространены редукторы с цилиндрическими или глобоидными червяками. Как и многие другие типы редукторов червячные могут состоять из одной или нескольких ступеней. На одноступенчатом редукторе передаточное отношение может быть в пределах 5-100, а на двух ступенях может достигать 10000. Основными достоинствами редукторов червячного типа являются компактные размеры, плавность хода и самоторможение. Из недостатков можно отметить не очень высокий КПД и ограниченная нагружаемая способность. Основными элементами являются зубчатое колесо и цилиндрический червяк. Цилиндрический червяк представляет собой винт с нанесенной на его поверхности резьбой определенного профиля. Число заходов зависит от передаточного отношения, и может составлять от 1 до 4. Вторым основным элементом редуктора является червячное колесо. Оно представляет собой зубчатое колесо из сплава бронзы, количество зубьев также зависит от передаточного отношения и может составлять 26-100.

В ниже приведенной таблице представлена зависимость передаточного отношения от количества зубов колеса и заходов винта.

Передаточное отношение

Число заходов червяка

Число зубов колеса

7-8

4

28-32

9-13

3-4

27-52

14-24

2-3

28-72

15-27

2-3

50-81

28-40

1-2

28-80

40

1

40

Кинематические схемы одноступенчатых червячных редукторов представлены ниже:

 

А) Редуктор с нижним расположением червяка
Б) Редуктор с верхним расположением червяка
В) Редуктор с боковым расположением червяка (ось червяка расположена горизонтально)
Г) Редуктор с боковым расположением червяка (ось червяка расположена вертикально)

Редукторы червячные двухступенчатые позволяют получить моменты в диапазоне 100 – 2800Нм. Конструкция представляет собой жесткую скрутку двух редукторов. Между собой редукторы соединены с помощью фланца. Цилиндрический вал первой ступени установлен в полый вал второй ступени.
Вариант расположения червячных пар представлен на рисунке ниже:

Расположение входного и выходного вала зависит от варианта сборки. Существуют следующие сборки: 11, 12, 13, 16, 21, 22, 23, 26.

 

 

Планетарные редукторы

Планетарные редукторы нашли широкое применение в тяжелом машиностроении, так как обладают рядом преимуществ перед редукторами другого типа. На редукторах планетарного типа можно получить достаточно большие передаточные числа, при этом габариты редуктора будут намного меньше чем у червячного или цилиндрического редуктора. Конструкция редуктора представляет собой планетарный механизм. Основными элементами редуктора являются сателлиты, солнечная шестерня, кольцевая шестерня и водило.

Внешний вид устройства планетарного редуктора представлен ниже:

А) сателлиты
Б) солнечная шестерня
В) водило
Г) кольцевая шестерня

Кольцевая шестерня планетарного редуктора находится в неподвижном состоянии, Вращение от входного вала передается на солнечную шестерню находящеюся в зацеплении со всеми сателлитами. Сателлиты вращаются внутри неподвижной кольцевой шестерни передавая энергию вращения на водило, а далее на выходной вал редуктора. Планетарный механизм может быть одно-, двух- и трехступенчатым, передаточное отношение зависит от количества зубьев на каждой шестерне.

Свое название планетарный редуктор получил благодаря тому, что зубчатые колеса вращаются подобно планетам солнечной системы. Планетарные редукторы могут быть одно-, двух- и трехступенчатыми. Передаточное отношение может быть в пределах 6 – 450. Редукторы планетарного типа обладают высоким КПД, и позволяют передавать большие мощности без потерь на нагрев. Для удобства монтажа планетарные редукторы выпускаются на лапах или на опорном фланце, а также возможен комбинированный вариант.

В настоящий момент на Российском рынке приводной техники пользуются популярностью редукторы серии 3МП и МПО.

 

Конические и цилиндро-конические редукторы

Конические и цилиндро-конические редукторы передают момент между пересекающимися или скрещивающимися валами. В редукторах применяются шестерни в виде конуса с прямыми или косыми зубами. Конические редукторы имеют большую плавность зацепления, что позволяет им выдерживать большие нагрузки. Редукторы могут быть одно-, двух- и трехступенчатыми. Большое распространение получили цилиндро-конические редукторы, где общее передаточное отношение может достигать 315. Быстроходный и тихоходный валы редуктора могут располагаться горизонтально и вертикально. По типу кинематической схемы конические и цилиндро-конические редукторы могут быть развернутые или соосные.

На рисунке ниже представлены кинематические схемы конических редукторов:

А) Реверсивный конический редуктор. Смена направления вращения достигается установкой зубчатого колеса с противоположенной стороны конической шестерни.

Б) Реверсивный конический редуктор. Конические шестерни вращаются в разных направлениях. Подключение тихоходного вала к одной из конических шестеренок происходит за счет кулачковой муфты.

В) Двухступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Г) Двухступенчатый коническо-цилиндрический редуктор. Входной и выходные валы перекрещиваются и лежат в разных плоскостях.

Д) Трехступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Е) Трехступенчатый коническо-цилиндрический редуктор. Промежуточная и тихоходная цилиндрическая передача собраны по соосной схеме.

 

Конические редукторы широко используются в изделиях, где требуются передать высокий момент под прямым углом. В отличие от червячных редукторов, конические редукторы не имеют быстро изнашиваемого бронзового колеса, что позволяет работать им в тяжелых условиях длительное время. Также важным отличием является обратимость, возможность передавать вращение от тихоходного вала к быстроходному валу. Обратимость позволяет разгрузить редукторный механизм в отличие от червячного редуктора, что позволяет использовать конический редуктор в установках с высокой инерцией.

 

Классификация редукторов в зависимости от вида передач и числа ступеней:

Тип редуктора

Количество ступеней

Тип механической передачи

Расположение тихоходного и быстроходного валов

Цилиндрический

Одна ступень

Одна или несколько цилиндрических передач

Параллельное

Две ступени; три ступени

Параллельное или соосное

Четыре ступени

Параллельное

Конический

Одна ступень

Одна коническая передача

Пересекающееся

Коническо-цилиндрический

Две ступени; три ступени; четыре ступени

Одна коническая передача и одна или несколько цилиндрических передач

Пересекающееся или скрещивающееся

Червячный

Одна ступень; две ступени

Одна или две червячные передачи

Скрещивающееся

Параллельное

Цилиндрическо-червячный или червячно-цилиндрический

Две ступени; три ступени

Одна или две цилиндрические передачи и одна червячная передача

Скрещивающееся

Планетарный

Одна ступень; две ступени; три ступени

Каждая ступень состоит из двух центральных зубчатых колес и сателлитов

Соосное

Цилиндрическо-планетарный

Две ступени; три ступени; четыре ступени

Сборка из одной или нескольких цилиндрических и планетарных передач

Параллельное или соосное

Коническо-планетарный

Две ступени; три ступени; четыре ступени

Сборка из одной конической и планетарных передач

Пересекающееся

Червячно-планетарный

Две ступени; три ступени; четыре ступени

Сборка из одной конической и планетарных передач

Скрещивающееся

Волновой

Одна ступень

Одна волновая передача

Соосное

 

 

Конструкция и назначение редуктора

Механизм, служащий для понижения угловой скорости и одновременно повышающий крутящий момент, принято называть редуктором. Энергия вращения подводится на входной вал редуктора, далее в зависимости от передаточного отношения на выходном валу получаем пониженную частоту и увеличенный момент.

В состав редуктора в зависимости от типа механической передачи обычно входят зубчатые или червячные пары, центрирующие подшипники, валы, различные уплотнения, сальники и т.д. Элементы редуктора помещаются в корпус, состоящий из двух частей – основания и крышки. Рабочие механизмы редуктора при работе непрерывно смазываются маслом путем разбрызгивания, а в отдельных случаях применяется принудительный насос, помещенный внутрь редуктора.

Существует огромное количество различных типов редукторов, но наибольшую популярность получили цилиндрические, планетарные, конические и червячные редукторы. Каждый тип редуктора имеет свои определенные преимущества и недостатки, которые следует учитывать при конструировании оборудования. Основными же критериями для подбора редуктора являются определение необходимой мощности или момента нагрузки, коэффициента редукции (передаточного отношения), а также монтажного расположения источника вращения и рабочего механизма.

 

Особенности редукторов по виду механических передач

Мировой промышленностью выпускается огромное количество редукторов и редукторных механизмов различающихся по типу передачи, вариантам сборки и т.д. Рассмотрим основные типы механических передач, их особенности и преимущества.

Цилиндрическая передача – является самой надежной и долговечной из всех видов зубчатых передач. Данная передача применяется в редукторах, где требуется высокая надежность и высокий КПД. Цилиндрические передачи обычно состоят из прямозубых, косозубых или шевронных зубчатых колёс.

а) Прямозубая цилиндрическая передача

б) Косозубая цилиндрическая передача

в) Шевронная цилиндрическая передача

г) Цилиндрическая передача с внутренним зацеплением

 

Конические передачи – обладают всеми преимуществами цилиндрических зубчатых передач и применяются в случае перекрещивания входного и выходного валов.

а) Коническая зубчатая передача с прямым зубом

б) Коническая зубчатая передача с косым зубом

в) Коническая зубчатая передача с криволинейным зубом

г) Коническая гипоидная передача

 

Червячная передача – позволяет передавать кинетическую энергию между пересекающимися в одной плоскости валами. Основными преимуществами данной передачи является высокий показатель передаточного отношения, самоторможение, компактные размеры. Недостатками являются низкий КПД, быстрый износ бронзового колеса, а также ограниченная способность передавать большие мощности.

Гипоидная передача – она же спироидная состоит из конического червяка и диска со спиральными зубьями. Ось червяка значительно смещена от оси конического колеса, благодаря чему число зубьев одновременно входящих в зацепление в несколько раз больше чем у червячных передач. В отличие от червячной пары в гипоидной передаче линия контакта перпендикулярна к направлению скорости скольжения, что обеспечивает масленый клин и уменьшает трение. Благодаря этому КПД гипоидной передачи выше, чем у червячной передачи на 25%.

а) Червячная передача с цилиндрическим червяком

б) Червячная передача с глобоидным червяком

в) Спироидная передача

г) Тороидно-дисковая передача

д) Тороидная передача внутреннего зацепления

 

Волновая передача – прототипом является планетарная передача с небольшой разницей количества зубов сателлита и неподвижного колеса. Волновая передача характеризуется высоким показателем передаточного отношения (до 350). Основными элементами волновой передачи являются гибкое колесо, жесткое колесо и волновой генератор. Под действием генератора гибкое колесо деформируется и происходит зацепление зубьев с жестким колесом. Волновые передачи широко применяются в точном машиностроении благодаря высокой плавности и отсутствия вибраций во время работы.

1) Зубчатое колесо с внутренними зубьями

2) Гибкое колесо с наружными зубьями соединенное с выходным валом редуктора

3) Генератор волн

 

Количество ступеней редуктора

Число ступеней редуктора напрямую влияет на передаточное отношение. В червячных редукторах наиболее распространены одноступенчатые пары. Цилиндрические же редукторы, состоящие из одной ступени, применяются реже, чем двух- или трехступенчатые редукторы. В производстве редукторов все чаще применяются комбинированные передачи, состоящие из разных типов передач, например коническо-цилиндрические редукторы.

 

Входные и выходные валы редукторов

В редукторах обычно применяются обычные прямые валы, имеющие форму тел вращения. На валы редукторов действуют внешние нагрузки, консольные нагрузки и усилия преодоления зацеплений. Крутящий момент на валу определяется рабочим крутящим моментом редуктора или реактивным крутящим моментом привода. Консольная нагрузка определяется способом соединения редуктора с двигателем, зависит от радиального или осевого усилия на вал. В ряде машин, к которым предъявляются особые требования в отношении габаритов или веса используются редукторы с полым валом. Полый вал редуктора позволяет располагать вал исполнительного механизма внутри редуктора, тем самым отпадает необходимость использовать переходные полумуфты и т.п.

 

Срок службы редуктора

Срок службы редуктора зависит от правильных расчетов параметров действующей нагрузки. Также на длительность работы влияет своевременное профилактическое обслуживание редуктора, замена масла и сальников. Регулярный профилактический осмотр позволит избежать незапланированного ремонта или замену редуктора. Уровень масла контролируется через смотровое окно в редукторе и при необходимости доливается до нужного уровня.

Ниже приведена таблица зависимости срока службы редуктора от типа передачи:

Тип передачи редуктора

Гарантированный ресурс в часах

Цилиндрическая, планетарная, коническая, цилиндро-коническая

более 25000

Волновая, червячная, глобоидная

более 10000

 

 

Устройство редуктора

Основными элементами редуктора являются:

1. Прошедшие обработку зубчатые колеса с зубьями высокой твердости. Материалом обычно служит сталь марки (40Х, 40ХН ГОСТ 4543-71). В планетарных редукторах шестерни и сателлиты изготовлены из стали марки 25ХГМ ГОСТ 4543-71. Зубчатые венцы из стали 40Х. Червячные валы изготавливаются из стали марки ГОСТ 4543-71 – 18ХГТ, 20Х с последующей цементацией рабочих поверхностей. Венцы червячных редукторов изготавливают из бронзы Бр010Ф1 ГОСТ 613-79. Гибкое колесо волнового редуктора изготовлено из кованой стали 30ХГСА ГОСТ 4543-71.
2. Валы (оси) быстроходные, промежуточные и тихоходные. Материалом является — сталь марки (40Х, 40ХН ГОСТ 4543-71). В зависимости от варианта сборки выходные валы могут быть одно- и двухконцевыми, а также полыми со шпоночным пазом. Выходные валы планетарных редукторов изготовлены заодно с водилом последней ступени. Материалом служит чугун или сталь.
3. Подшипниковые узлы. Используются подшипники качения воспринимающие большие осевые и консольные нагрузки. Применяются обычно конические роликоподшипники.
4. Шлицевые, шпоночные соединения. Шлицевые соединения чаще применяются в червячных редукторах (выходной полый вал). Шпонки применяются для соединения валов с зубчатыми колесами, муфтами и другими деталями.
5. Корпуса редукторов. Корпуса и крышки редукторов выполняются методом литья. В качестве материалов используется чугун марки СЧ 15 ГОСТ 1412-79 или сплав алюминия АЛ11. Для улучшения отвода тепла корпуса редукторов снабжаются ребрами.

 

Монтажное исполнение

Соосный редуктор — входной и выходной вал находятся на одной оси

Червячный редуктор — входной и выходной вал находятся под прямым углом

Цилиндрический редуктор — входной и выходной вал находятся на параллельных осях

Коническо-цилиндрический редуктор — входной и выходной вал перекрещиваются

 

Монтажное положение соосных цилиндрических или планетарных редукторов

 

Монтажное положение и вариант сборки червячных одноступенчатых редукторов

 

Монтажное положение и вариант сборки червячных двухступенчатых редукторов

 

Монтажное положение и вариант сборки цилиндрических редукторов

 

 

Методика выбора редуктора в зависимости от нагрузки

Методика выбора редуктора заключается в грамотном расчете основных параметров нагрузки и условий эксплуатации.

Технические характеристики описаны в каталогах, а выбор редуктора делается в несколько этапов:

  • выбор редуктора по типу механической передачи
  • определение габарита (типоразмера) редуктора
  • определение консольных и осевых нагрузок на входной и выходной валы
  • определение температурного режима редуктора

На первом этапе конструктор определяет тип редуктора исходя из заданных задач и конструктивных особенностей будущего изделия. На этом же этапе закладываются такие параметры как: передаточное отношение, количество ступеней, расположение входного и выходного валов в пространстве.

На втором этапе следует определить межосевое расстояние. Исходные данные на каждый тип редуктора можно найти в каталоге. Следует помнить, что межосевое расстояние влияет на способность передать момент от двигателя к нагрузке.

Консольные и осевые нагрузки определяются уравнениями, а потом сравниваются со значениями в каталоге. В случае превышения расчетных нагрузок, на какой либо вал, редуктор выбирается на типоразмер выше.

Температурный режим определяется во время работы редуктора. Температура не должна превышать + 80° гр. при длительной работе редуктора с действующей нагрузкой.

 

Как выбрать редуктор?

Выбор редуктора должен производить квалифицированный сотрудник т.к. неправильные расчеты могут привести к поломке редуктора или сопутствующего оборудования. Грамотный выбор редуктора поможет избежать дальнейшие затраты на ремонт и покупку нового привода. Основными параметрами для выбора редуктора как было сказано выше, являются: тип редуктора, габарит или типоразмер, передаточное отношение, а также кинематическая схема.

Определить габарит редуктора можно с помощью каталога, где указаны максимальные значения крутящего момента для каждого типоразмера. Момент действующей нагрузки на редуктор определяется следующим выражением:

где:
M2 — выходной момент на валу редуктора (Н/М)
P1 — подводимая мощность на быстроходном валу редуктора (кВт)
Rd — динамический КПД редуктора (%)
n2 — частота вращения тихоходного вала (об/мин)

Частоту вращения тихоходного вала n2 можно определить, зная значения передаточного отношения редуктора i, а также значения скорости быстроходного вала n1.

где:
n1 — частота вращения быстроходного вала (об/мин)
n2 — частота вращения тихоходного вала (об/мин)
i — передаточное отношение редуктора

Еще одним важным фактором, который следует учитывать при подборе редуктора, является величина – сервис фактор (s/f). Сервис фактор sf – это отношение максимально допустимого момента M2 max указанного в каталоге к номинальному моменту M2 зависящего от мощности двигателя.

где:
M2 max — максимально допустимый момент (паспортное значение)
M2 — номинальный момент на валу редуктора (зависит от мощности двигателя)

Значение сервис фактора (s/f) напрямую связан с ресурсом редуктора и зависит от условий работы привода.

При работе редуктора с нормальной нагрузкой, где число стартов не превышает 60 пусков в час — сервис фактор может выбираться: sf = 1.

При средней нагрузке, где число стартов не превышает 150 пусков в час — сервис фактор выбирается: sf = 1,5.

При тяжелой ударной нагрузке с возможностью заклинивания вала редуктора сервис фактор выбирается: sf = 2 и более.

 

Передаточное отношение и как его определить?

 

Основное назначение любого редуктора понижение угловой скорости подводимой на его входной вал. Значения выходной скорости определятся передаточным отношением редуктора. Передаточное отношение редуктора — это отношение скорости входного вала к скорости выходного вала.

Виды редукторов | AUTO-GL.ru

Для изменения характеристик крутящего момента используется специальный механизм, который получил название «редуктор». Данное слово образовано от латинского reductor — отводящий назад или возвращающий, что очень точно отображает принцип работы этого механизма. На данный момент существует несколько видов редукторов, которые применяются в различных агрегатах для трансформации и передачи крутящего момента от двигателя устройства, к потребителям мощности.

Виды редукторов

Данные устройства отличаются по типу передачи крутящего момента.

  • Червячные редукторы. Передаточная система этих устройств содержит червячную передачу, которая позволяет не только значительно уменьшить обороты рабочего вала, но и изменить направление вращения. Вал редуктора на выходе устройства, обычно расположен под прямым углом по отношению к входному валу. Такая особенность червячных устройств позволяет наиболее компактно разместить двигатель совместно с передающим крутящий момент механизмом. Передаточное число редуктора этого типа может быть до 1 к 100 и более;Виды редукторов
  • Зубчатые редукторы. Зубчатые механизмы трансформации крутящего момента, часто применяются в агрегатах, в которых необходимо осуществить различное соотношение передаточного числа между входным и выходным валом. Устройство редуктора этого типа может выполнено с одним передаточным механизмом, или с использованием нескольких шестерён при значительном передаточном соотношении. Зубья, в таких устройствах, могут иметь различную форму, но качество обработки таких деталей должно быть наивысшим;Виды редукторов
  • Гидравлические редукторы. Такие устройства устанавливаются между насосом и гидравлическими механизмами. Используется гидравлический редуктор с той же целью, что и механические — для уменьшения передаваемой энергии или частоты вращения;Виды редукторов
  • Мотор-редуктор. Эта система также используется для трансформации крутящего момента и представляет собой объединённый в одном корпусе редуктор и двигатель. Наиболее часто встречаются мотор-редукторы, работающие на электрической тяге. В этом случае удаётся значительно уменьшить размер редуктора и увеличить КПД устройства;Виды редукторов
  • Планетарные редукторы. Передающая система и схема редуктора планетарного типа, представляет собой разновидность зубчатого механизма, но благодаря оригинальности применяемого способа передачи крутящего момента может считаться отдельным видом. Такие механизмы компактны и очень надёжны в эксплуатации, но требуют точного расчёта при производстве. Зубья планетарных редукторов должны находиться в плотном зацеплении между собой, но легко приводиться в движение.Виды редукторов

Перечисленные виды редукторов, могут разделяться по количеству передач, которые применяются для трансформации крутящего момента. Наиболее распространённые устройства состоят из одной передачи, но если необходимо изменять соотношения частоты вращения входного и выходного вала, то используются механизмы с большим количеством передач.

Рабочие части редукторов, обязательно должны работать в смазке, для снижения коэффициента трения и потери мощности. Способ нанесения смазочных материалов зависит от вида редуктора и мощности передаваемой энергии. Если передаточная система не работает в условиях повышенных скоростей вращения, то достаточно однократного нанесения смазки на рабочие поверхности в течение всего срока эксплуатации. Для мощных устройств применяется специальная система принудительной подачи смазочной жидкости, с последующим охлаждением и очисткой.

Виды редукторов

Корпус редуктора может быть разборной и неразборной конструкции.

Изделия неразборного вида, как правило, работают при незначительных мощностных показателях и в тех сферах, где не требуется эксплуатации устройства в жёстких режимах. Редукторы, которые используются для трансформации больших мощностей располагаются в корпусе разборной конструкции, которая позволяет, в случае необходимости, осуществить плановый или экстренный ремонт и настройку механизма.

Корпус редуктора может быть изготовлен из различных материалов. Подбор материала зависит от условий эксплуатации и мощности устройства. Редуктор для маломощных устройств бытового назначения может быть сделан из высокопрочного пластика или алюминиевого сплава.

Где применяются редукторы

Редукторы применяются в автомобилестроении, станкостроении, кухонной и бытовой электротехнике, бензоинструментах. Учитывая тот факт, что каждый вид передачи крутящего момента, имеет свои положительные характеристики и недостатки, которые определяют возможность использовать тот или иной вид редуктора в определённых технических условиях.

Червячные редукторы, не способны трансформировать крутящий момент слишком большой мощности, поэтому основная сфера применения таких устройств — это электрические мотор-редукторы. Например, такой механизм успешно реализован в приводе стеклоочистителей автомобиля.

Виды редукторов

В мостовой передаче автомобилей, как правило, используется зубчатая передача, которая позволяет не только изменить направление крутящего момента, но и изменить силу и распределить усилие равномерно между осями привода колёс. Зубья позволяют передавать мощность с минимальными потерями, поэтому если для функционирования механизма не требуется повышенной плавности хода, а мощность редуктора требуется достаточно большая, то применяются зубчатые механизмы для передачи крутящего момента.

Если в механизме необходимо исключить вероятность обратной передачи крутящего момента к двигателю устройства, то применяются червячные редукторы, которые полностью лишены такого недостатка.

Червячный механизм, позволяет передавать вращение с соотношением более 100 к 1, но низкий КПД таких устройств, не позволяет их применять в мощных агрегатах.

Различные типы редукторов, которые будут использованы в тех или иных механизмах должны быть подобраны только профессиональными инженерами. Расчёт редуктора должен осуществляться в КБ, которое имеет специалистов высокого уровня. Чертёж редуктора должен быть выполнен до мельчайших подробностей и гаек, которые могут быть использованы в данном механизме.

Даже если известны характеристики редукторов, которые необходимо применить в передаточном механизме, не следует доверять работу по проектированию таких сложных механизмов случайным людям. Если требуется новая крышка редуктора, или гайка редуктора, то лучше заказать оригинальную деталь на предприятии, где был произведён механизм.

Что такое редуктор? Характеристики. Виды.

Что такое редуктор? Характеристики. Виды.

Что такое редуктор? Характеристики. Виды.

В настоящее время сотни миллионов редукторов работают на повышение эффективности на суше, в воде и воздухе во всем мире. Редукторы применяются уже не один десяток лет в различных областях техники и приборостроения, однако, наибольшее распространение, редукторы получили в автомобильной промышленности при производстве узлов и агрегатов автомобилей.

Ответить на вопрос «Что такое редуктор?» поможет данная статья. Мы постарались по-максимуму осветить теоретические аспекты понятия «редуктор».

Большая советская энциклопедия определяет редуктор как механизм, который входит в приводы различных машин, и который служит для снижения угловых скоростей ведомого вала для повышения крутящего момента.

Редуктор, также, является устройством для снижения и поддержания постоянного давления рабочей среды, например, газа, пара или жидкости на выходе из ёмкости с высоким давлением (баллона), при этом выполняющим функции запорного и предохранительного клапана. Редукторы устанавливаются в аппаратах газовой сварки, в сатураторах, хлораторах воды и др., и используются в различных аппаратах для осуществления таких дополнительных операций, как смешение, подогрев и охлаждение.

Многообразие сфер применения редукторов обусловило появление огромного количества его разновидностей. В зависимости от сферы применения и конструктивных особенностей выделяют: общепромышленные редукторы и мотор-редукторы. Выделяют, также, и другие разновидности: турборедуктор, мультипликатор (вариатор), конический, цилиндрический, червячный, волновой, планетарный редуктор.

Однако, в любом редукторе, главными характеристиками служат: коэффициент полезного действия (КПД), передаточное отношение, мощность, угловые скорости валов, количество ступеней или передач.

Итак, рассмотрим некоторые виды редукторов подробнее.

Мотор-редуктор – это сложная конструкция, которая представляет собой систему, состоящую из двух элементов: двигателя и, непосредственно, редуктора (Рисунок 1.)Используется мотор-редуктор в тех механизмах, в которых не требуется чрезмерно точное позиционирование. Конструктивно, в мотор-редукторе могут быть использованы червячные, цилиндрические или планетарные редукторы. Так, например, червячный мотор-редуктор предполагает использование, в своей конструкции, червячной передачи. Такой мотор-редуктор обладает относительно бесшумной работой и сравнительно небольшими размерами.

Рисунок 1. Мотор-редуктор

В редукторах используются зубчатые передачи, червячные передачи и цепные передачи, которые также могут применяться в различных сочетаниях одновременно, например, червячные и зубчатые, цепные и зубчатые и др. Существуют комбинированные приводы, в которых редукторы компонуют с вариатором.

Цилиндрический редуктор — такая конструкция редуктора является одной из самых популярных. Цилиндрические редукторы используются для изменения скорости вращения при передаче крутящего момента (Рисунок 2). Такие редукторы активно применяются в современных узлах и механизмах общепромышленного назначения.

Рисунок 2. Цилиндрический редуктор.

Цилиндрические редукторы представлены одно-, двух- и трехступенчатыми модификациями. Такие редукторы надежны и долговечны, поэтому, обладающие цилиндрическими редукторами машины и оборудование, выносливы и производительны.

Червячный редуктор – конструкция такого редуктора использует передачу, обладающую резьбой с червячным профилем (Рисунок 3). Механизм червячного редуктора является превосходным решением для передачи крутящего момента между двумя перпендикулярными осями. Так, например, Червячный редуктор используется в рулевом управлении механических транспортных средств, таких, как автомобили. Достоинством червячного редуктора является возможность получения большого передаточного числа в одной ступени (от 80 до нескольких сотен). Червячные редукторы бесшумны, обладают плавностью хода, а также, не требуют использования тормозных механизмов благодаря возможности самостоятельного торможения при достижении определенных передаточных чисел.

Рисунок 3. Червячный редуктор.

Комбинированный редуктор — данный тип редукторов — это совокупность нескольких конструктивных решений, включающая в себя разные виды передач объединенных в одном корпусе. Комбинированный редуктор относится к ряду наиболее практичных редукторов. Он выгодно отличается от других типов редукторов хорошими эксплуатационными характеристиками, при небольших габаритах, а также относительно невысокой ценой. К редукторам комбинированного типа относят: цилиндро-червячные редукторы (Рисунок 4), коническо-цилиндрические и др.

Рисунок 4. Цилиндро-червячный редуктор.

Коническо-цилиндрический редуктор — конструктивно включает в себя одну коническую и несколько цилиндрических передач (Рисунок 5). Использование коническо-цилиндрического редуктора оправдано в случаях, когда ось вала подвода перпендикулярно пересекается с осью вала отбора мощности. Коническо-цилиндрический редуктор, в зависимости от специфики эксплуатации, может быть изготовлен в вертикальном или горизонтальном исполнении. В первой ступени конические колеса, как правило, имеют зубья с криволинейным профилем, поскольку именно на эту ступень приходятся максимальные (до 60 тыс. об/мин) линейные и угловые скорости. В подобных случаях, зубья с плавным профилем не могут обеспечить плавность хода. Несомненными преимуществами конструкции коническо-цилиндрического редуктора являются достаточно высокий КПД, износостойкость и долговечность.

Коническо-цилиндрический редуктор

Рисунок 5. Коническо-цилиндрический редуктор.

Планетарный редуктор — один из типичнейших представителей механических редукторов. В основе конструкции такого редуктора лежит использование планетарной передачи, которая преобразует крутящий момент при помощи нескольких зубчатых шестерен, которые взаимодействуя с центральной шестернёй, изменяют скорость вращения на выходе (Рисунок 6).

 

Рисунок 6.

Планетарный редуктор также называют дифференциальным. В таком редукторе может использоваться как одна, так и несколько планетарных передач (Рисунок 7).

Планетарный редуктор

Рисунок 7. Планетарный редуктор.

На сегодняшний день, редукторы широко распространены во всех сферах промышленности и народного хозяйства. Любая строительная, дорожная, землеройная, карьерная техника оснащается стандартными и специальными редукторами. Редукторы интегрируются как в гусеничный, так и в традиционный колесный привод; благодаря этому, специальные машины, эксплуатируемые в сложных условиях, имеют большой клиренс.

Используемое в лесной отрасли и сельском хозяйстве оборудование, такое, как транспортеры, погрузчики, приводы подъемников, поворотные механизмы и многое другое, должно соответствовать самым строгим критериям надежности, эффективности и долговечности. Именно поэтому, редукторы в этих механизмах, а также в оборудовании для горнорудной и добывающей сферы характеризуются максимальной выносливостью и способностью работать продолжительное время в режиме интенсивной эксплуатации.

Редукторы планетарной конструкции подходят для работы в устройствах и механизмах, в которых осуществляется передача очень больших крутящих моментов. Редукторы, удовлетворяющие самым жестким критериям долговечности и надежности, применяются на предприятиях энергетики и нефтепереработки в отопительных системах, вентиляторах, винтовых компрессорах, генераторных установках.

Редукторы, также, нашли применение в пищевой промышленности, особенно в тех механизмах, где реализуются циклы с высоким крутящим моментом при низких оборотах. Это такие механизмы, как мельницы, экструдеры, мешалки, спиральные морозильные аппараты.

В бытовой технике и электрооборудовании, в составе которого имеются электродвигатели, также применяются редукторы, как понижающие и регулирующие обороты устройства. Невозможно представить без редукторов конструкцию миксеров, стиральных машин, кухонных комбайнов, болгарок, дрелей.

Редукторы — необходимая и незаменимая часть очистных сооружений, насосных систем, вентиляционного оборудования.

Классификация редукторов и их особенности и различия

Редуктором называется устройство, которое входит в состав приводных механизмов машин и оборудования. Его главной задачей является повышение крутящих моментов путем снижения угловых скоростей ведущего вала. В разных редукторах применяются разные виды передач — червячные, цепные, зубчатые, а также комбинированные (зубчато-червячные, зубчато-цепные и др.). Основными техническими характеристиками являются:

  • мощность;
  • угловые скорости валов;
  • КПД;
  • передаточное отношение;
  • число передач и ступеней.

В настоящее время существует несколько разновидностей редукторов. Кратко охарактеризуем каждую из них.

Цилиндрический редуктор

Эта конструкция является одной из самых популярных. Как и другие разновидности, она используется для изменения скорости вращения при передаче крутящего момента. Ее активно применяют в современных узлах и механизмах общепромышленного характера.

Цилиндрические редукторы бывают одно-, двух- и трехступенчатыми. Выносливость и производительность устройства в определяющей степени влияет на выполнение машинами и оборудованием своих функциональных задач, а также на их надежность и долговечность.

Червячный редуктор

В данной конструкции используется передача, имеющая резьбу с червячным профилем. Данный механизм является хорошим решением для передачи крутящего момента между расположенными перпендикулярно осями (например, он может использоваться в рулевом управлении механических транспортных средств). Его несомненным достоинством является способность получить большое передаточное число в одной ступени (от 80 до нескольких сотен). Такие редукторы характеризуются отсутствием шума, плавностью хода и возможностью самостоятельного торможения при достижении определенных передаточных чисел, благодаря чему отпадает необходимость использования тормозных механизмов.

Комбинированный редуктор

Данный тип включает в себя сразу несколько конструктивных решений: разные передачи объединены в одном корпусе. Он относится к числу наиболее практичных решений, поскольку выгодно отличается хорошими эксплуатационными характеристиками, небольшими габаритами и относительно невысокой ценой. Таковыми являются, например, коническо-цилиндрические редукторы, цилиндро-червячные и др.

Коническо-цилиндрический редуктор

Данное устройство включает в себя одну коническую и несколько цилиндрических передач. Его использование целесообразно в случаях, когда ось вала подвода пересекается с осью вала отбора мощности. Такой редуктор может иметь вертикальное и горизонтальное исполнение, в зависимости от специфики эксплуатации. В первой ступени конические колеса имеют, как правило, зубья с криволинейным профилем, поскольку именно на эту ступень приходятся максимальные линейные и угловые скорости (до 60 тыс. об/мин). В подобной ситуации зубья с плавным профилем не способны обеспечить плавность хода. Несомненными преимуществами данной конструкции являются высокий КПД, износостойкость и долговечность.

Планетарный редуктор

Один из наиболее типичных представителей категории механических редукторов. В основе конструкции лежит использование планетарной передачи (отсюда и название устройства), которая преобразует крутящий момент с помощью нескольких зубчатых шестерен, взаимодействующих с центральной шестерней. Такой редуктор также называют дифференциальным; в нем может использоваться как одна, так и несколько планетарных передач.

Сегодня редукторы широко используются во всех сферах промышленности и народного хозяйства. Землеройная, карьерная и строительно-дорожная техника оснащается специальными и стандартными редукторами. Они могут интегрироваться как в гусеничный, так и в традиционный колесный привод, благодаря чему для машин, эксплуатируемых в сложных условиях, обеспечивается большой клиренс.

Оборудование, используемое в лесной отрасли и сельском хозяйстве (погрузчики, транспортеры, поворотные механизмы, приводы подъемников и др.), должно соответствовать самым строгим критериям надежности, эффективности и долговечности. Редукторы для горнорудной и добывающей сферы характеризуются выносливостью и способностью долгое время работать в режиме интенсивной эксплуатации.

Редукторы планетарной конструкции широко используются в устройствах и механизмах, осуществляющих передачу очень больших крутящих моментов. На предприятиях энергетической сферы и нефтеперерабатывающей отрасли редукторы, удовлетворяющие самым жестким критериям долговечности и надежности, применяются в отопительных системах, винтовых компрессорах, вентиляторах, генераторных установках.

Также редукторы повсеместно используются в пищевой промышленности, особенно в механизмах, реализующих циклы с высоким крутящим моментом при низких оборотах. Это характерно для экструдеров, мельниц, спиральных морозильных аппаратов, мешалок и др.

Все о редукторах. Справочная информация

Классификация, основные параметры редукторов
Цилиндрические редукторы
Червячные редукторы
Планетарные редукторы
Конические редукторы
Классификация редукторов в зависимости от вида передач и числа ступеней
Конструкция и назначение редуктора
Особенности редукторов по виду механических передач
Количество ступеней редуктора
Входные и выходные валы редукторов
Срок службы редуктора
Устройство редуктора
Монтажное исполнение
Как подобрать редуктор? Простые правила и примеры расчета
Передаточное отношение и как его определить?

 

Редукторы (латинского слова reductor) получили широкое распространение во всех отраслях промышленного и аграрного хозяйства, поэтому их производство с каждым годом увеличивается, появляются новые модификации, совершенствуются уже существующие модели.

Редуктор служит для снижения частоты вращения тихоходного вала и увеличения усилия на выходном валу. Редуктор может иметь одну или несколько ступеней, цель которых увеличение передаточного отношения. По типу механической передачи редукторы могут быть червячными, коническими, планетарными или цилиндрическими. Конструктивно редуктор выполнен как отдельное изделие, работающее в паре с электродвигателем и установленное с ним на одной раме.

Промышленностью сегодня выпускаются редукторы общего и специального назначения.
Редукторы общего назначения могут применяться во многих случаях и отвечают общим требованиям. Специальные же редукторы имеют нестандартные характеристики подходящие под определенные требования.

 

Классификация, основные параметры редукторов

В зависимости от типа зубчатой передачи редукторы бывают цилиндрические, конические, волновые, планетарные, глобоидные и червячные. Широко применяются комбинированные редукторы, состоящие из нескольких совмещенных в одном корпусе типов передач (цилиндро-конические, цилиндро-червячные и т.д.).

Конструктивно редукторы могут передавать вращение между перекрещивающимися, пересекающимися и параллельными валами.
Так, например цилиндрические редукторы позволяют передать вращение между параллельными валами, конические — между пересекающимися, а червячные — между пересекающимися валами.

Общее передаточное число может достигать до нескольких десятков тысяч, и зависит от количества ступеней в редукторе. Широкое применение нашли редукторы, состоящие из одной, двух или трех ступеней, при чем они могут, как описывалось выше, совмещать разные типы зубчатых передач.

Ниже представлены наиболее популярные виды редукторов, серийно выпускаемые промышленностью.

 

Цилиндрические редукторы

Цилиндрические редукторы являются самыми популярными в машиностроении. Они позволяют передавать достаточно большие мощности, при этом КПД достигает 95%. Вращение передается между параллельными или соосными валами. Передаваемая мощность зависит от типоразмера редуктора. В цилиндрических редукторах применяются передачи, состоящие из прямозубых, косозубых или шевронных зубчатых колес. Количество цилиндрических передач напрямую влияет на передаточное отношение. Например, одноступенчатый редуктор может иметь передаточное число 1,5 до 10, две ступени — от 10 до 60, а три ступени — от 60 до 400.

Кинематические схемы наиболее распространенных видов цилиндрических редукторов представлены на рисунке ниже:


А) — Простой одноступенчатый цилиндрический редуктор
Б) – Двухступенчатый редуктор цилиндрический с несимметричным расположением зубчатых колес
В) – Трехступенчатый цилиндрический редуктор, входной вал быстроходной передачи изготовлен с двумя шестернями
Г) – Соосный цилиндрический редуктор
Д) — Соосный цилиндрический редуктор с симметричным расположением опор относительно тихоходной передачи
Е) — Соосный цилиндрический редуктор с шевронной быстроходной передачей
Ж) — Соосный цилиндрический редуктор с раздвоенной передачей
З) — Соосный цилиндрический редуктор с посаженными на быстроходный вал двумя косозубыми шестернями с противоположенным наклоном зубьев
И) – Трехступенчатый цилиндрический редуктор с раздвоенной быстроходной и тихоходной передачей

 

 

Червячные редукторы

Червячные редукторы получили большую популярность в виду своей простоты и достаточно низкой стоимости. Из всех видов червячных редукторов наиболее распространены редукторы с цилиндрическими или глобоидными червяками. Как и многие другие типы редукторов червячные могут состоять из одной или нескольких ступеней. На одноступенчатом редукторе передаточное отношение может быть в пределах 5-100, а на двух ступенях может достигать 10000. Основными достоинствами редукторов червячного типа являются компактные размеры, плавность хода и самоторможение. Из недостатков можно отметить не очень высокий КПД и ограниченная нагружаемая способность. Основными элементами являются зубчатое колесо и цилиндрический червяк. Цилиндрический червяк представляет собой винт с нанесенной на его поверхности резьбой определенного профиля. Число заходов зависит от передаточного отношения, и может составлять от 1 до 4. Вторым основным элементом редуктора является червячное колесо. Оно представляет собой зубчатое колесо из сплава бронзы, количество зубьев также зависит от передаточного отношения и может составлять 26-100.

В ниже приведенной таблице представлена зависимость передаточного отношения от количества зубов колеса и заходов винта.

Передаточное отношение

Число заходов червяка

Число зубов колеса

7-8

4

28-32

9-13

3-4

27-52

14-24

2-3

28-72

15-27

2-3

50-81

28-40

1-2

28-80

40

1

40

Кинематические схемы одноступенчатых червячных редукторов представлены ниже:

 

А) Редуктор с нижним расположением червяка
Б) Редуктор с верхним расположением червяка
В) Редуктор с боковым расположением червяка (ось червяка расположена горизонтально)
Г) Редуктор с боковым расположением червяка (ось червяка расположена вертикально)

Редукторы червячные двухступенчатые позволяют получить моменты в диапазоне 100 – 2800Нм. Конструкция представляет собой жесткую скрутку двух редукторов. Между собой редукторы соединены с помощью фланца. Цилиндрический вал первой ступени установлен в полый вал второй ступени.
Вариант расположения червячных пар представлен на рисунке ниже:

Расположение входного и выходного вала зависит от варианта сборки. Существуют следующие сборки: 11, 12, 13, 16, 21, 22, 23, 26.

 

 

Планетарные редукторы

Планетарные редукторы нашли широкое применение в тяжелом машиностроении, так как обладают рядом преимуществ перед редукторами другого типа. На редукторах планетарного типа можно получить достаточно большие передаточные числа, при этом габариты редуктора будут намного меньше чем у червячного или цилиндрического редуктора. Конструкция редуктора представляет собой планетарный механизм. Основными элементами редуктора являются сателлиты, солнечная шестерня, кольцевая шестерня и водило.

Внешний вид устройства планетарного редуктора представлен ниже:

А) сателлиты
Б) солнечная шестерня
В) водило
Г) кольцевая шестерня

Кольцевая шестерня планетарного редуктора находится в неподвижном состоянии, Вращение от входного вала передается на солнечную шестерню находящеюся в зацеплении со всеми сателлитами. Сателлиты вращаются внутри неподвижной кольцевой шестерни передавая энергию вращения на водило, а далее на выходной вал редуктора. Планетарный механизм может быть одно-, двух- и трехступенчатым, передаточное отношение зависит от количества зубьев на каждой шестерне.

Свое название планетарный редуктор получил благодаря тому, что зубчатые колеса вращаются подобно планетам солнечной системы. Планетарные редукторы могут быть одно-, двух- и трехступенчатыми. Передаточное отношение может быть в пределах 6 – 450. Редукторы планетарного типа обладают высоким КПД, и позволяют передавать большие мощности без потерь на нагрев. Для удобства монтажа планетарные редукторы выпускаются на лапах или на опорном фланце, а также возможен комбинированный вариант.

В настоящий момент на Российском рынке приводной техники пользуются популярностью редукторы серии 3МП и МПО.

 

Конические и цилиндро-конические редукторы

Конические и цилиндро-конические редукторы передают момент между пересекающимися или скрещивающимися валами. В редукторах применяются шестерни в виде конуса с прямыми или косыми зубами. Конические редукторы имеют большую плавность зацепления, что позволяет им выдерживать большие нагрузки. Редукторы могут быть одно-, двух- и трехступенчатыми. Большое распространение получили цилиндро-конические редукторы, где общее передаточное отношение может достигать 315. Быстроходный и тихоходный валы редуктора могут располагаться горизонтально и вертикально. По типу кинематической схемы конические и цилиндро-конические редукторы могут быть развернутые или соосные.

На рисунке ниже представлены кинематические схемы конических редукторов:

А) Реверсивный конический редуктор. Смена направления вращения достигается установкой зубчатого колеса с противоположенной стороны конической шестерни.

Б) Реверсивный конический редуктор. Конические шестерни вращаются в разных направлениях. Подключение тихоходного вала к одной из конических шестеренок происходит за счет кулачковой муфты.

В) Двухступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Г) Двухступенчатый коническо-цилиндрический редуктор. Входной и выходные валы перекрещиваются и лежат в разных плоскостях.

Д) Трехступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Е) Трехступенчатый коническо-цилиндрический редуктор. Промежуточная и тихоходная цилиндрическая передача собраны по соосной схеме.

 

Конические редукторы широко используются в изделиях, где требуются передать высокий момент под прямым углом. В отличие от червячных редукторов, конические редукторы не имеют быстро изнашиваемого бронзового колеса, что позволяет работать им в тяжелых условиях длительное время. Также важным отличием является обратимость, возможность передавать вращение от тихоходного вала к быстроходному валу. Обратимость позволяет разгрузить редукторный механизм в отличие от червячного редуктора, что позволяет использовать конический редуктор в установках с высокой инерцией.

 

Классификация редукторов в зависимости от вида передач и числа ступеней:

Тип редуктора

Количество ступеней

Тип механической передачи

Расположение тихоходного и быстроходного валов

Цилиндрический

Одна ступень

Одна или несколько цилиндрических передач

Параллельное

Две ступени; три ступени

Параллельное или соосное

Четыре ступени

Параллельное

Конический

Одна ступень

Одна коническая передача

Пересекающееся

Коническо-цилиндрический

Две ступени; три ступени; четыре ступени

Одна коническая передача и одна или несколько цилиндрических передач

Пересекающееся или скрещивающееся

Червячный

Одна ступень; две ступени

Одна или две червячные передачи

Скрещивающееся

Параллельное

Цилиндрическо-червячный или червячно-цилиндрический

Две ступени; три ступени

Одна или две цилиндрические передачи и одна червячная передача

Скрещивающееся

Планетарный

Одна ступень; две ступени; три ступени

Каждая ступень состоит из двух центральных зубчатых колес и сателлитов

Соосное

Цилиндрическо-планетарный

Две ступени; три ступени; четыре ступени

Сборка из одной или нескольких цилиндрических и планетарных передач

Параллельное или соосное

Коническо-планетарный

Две ступени; три ступени; четыре ступени

Сборка из одной конической и планетарных передач

Пересекающееся

Червячно-планетарный

Две ступени; три ступени; четыре ступени

Сборка из одной конической и планетарных передач

Скрещивающееся

Волновой

Одна ступень

Одна волновая передача

Соосное

 

 

Конструкция и назначение редуктора

Механизм, служащий для понижения угловой скорости и одновременно повышающий крутящий момент, принято называть редуктором. Энергия вращения подводится на входной вал редуктора, далее в зависимости от передаточного отношения на выходном валу получаем пониженную частоту и увеличенный момент.

В состав редуктора в зависимости от типа механической передачи обычно входят зубчатые или червячные пары, центрирующие подшипники, валы, различные уплотнения, сальники и т.д. Элементы редуктора помещаются в корпус, состоящий из двух частей – основания и крышки. Рабочие механизмы редуктора при работе непрерывно смазываются маслом путем разбрызгивания, а в отдельных случаях применяется принудительный насос, помещенный внутрь редуктора.

Существует огромное количество различных типов редукторов, но наибольшую популярность получили цилиндрические, планетарные, конические и червячные редукторы. Каждый тип редуктора имеет свои определенные преимущества и недостатки, которые следует учитывать при конструировании оборудования. Основными же критериями для подбора редуктора являются определение необходимой мощности или момента нагрузки, коэффициента редукции (передаточного отношения), а также монтажного расположения источника вращения и рабочего механизма.

 

Особенности редукторов по виду механических передач

Мировой промышленностью выпускается огромное количество редукторов и редукторных механизмов различающихся по типу передачи, вариантам сборки и т.д. Рассмотрим основные типы механических передач, их особенности и преимущества.

Цилиндрическая передача – является самой надежной и долговечной из всех видов зубчатых передач. Данная передача применяется в редукторах, где требуется высокая надежность и высокий КПД. Цилиндрические передачи обычно состоят из прямозубых, косозубых или шевронных зубчатых колёс.

а) Прямозубая цилиндрическая передача

б) Косозубая цилиндрическая передача

в) Шевронная цилиндрическая передача

г) Цилиндрическая передача с внутренним зацеплением

 

Конические передачи – обладают всеми преимуществами цилиндрических зубчатых передач и применяются в случае перекрещивания входного и выходного валов.

а) Коническая зубчатая передача с прямым зубом

б) Коническая зубчатая передача с косым зубом

в) Коническая зубчатая передача с криволинейным зубом

г) Коническая гипоидная передача

 

Червячная передача – позволяет передавать кинетическую энергию между пересекающимися в одной плоскости валами. Основными преимуществами данной передачи является высокий показатель передаточного отношения, самоторможение, компактные размеры. Недостатками являются низкий КПД, быстрый износ бронзового колеса, а также ограниченная способность передавать большие мощности.

Гипоидная передача – она же спироидная состоит из конического червяка и диска со спиральными зубьями. Ось червяка значительно смещена от оси конического колеса, благодаря чему число зубьев одновременно входящих в зацепление в несколько раз больше чем у червячных передач. В отличие от червячной пары в гипоидной передаче линия контакта перпендикулярна к направлению скорости скольжения, что обеспечивает масленый клин и уменьшает трение. Благодаря этому КПД гипоидной передачи выше, чем у червячной передачи на 25%.

а) Червячная передача с цилиндрическим червяком

б) Червячная передача с глобоидным червяком

в) Спироидная передача

г) Тороидно-дисковая передача

д) Тороидная передача внутреннего зацепления

 

Волновая передача – прототипом является планетарная передача с небольшой разницей количества зубов сателлита и неподвижного колеса. Волновая передача характеризуется высоким показателем передаточного отношения (до 350). Основными элементами волновой передачи являются гибкое колесо, жесткое колесо и волновой генератор. Под действием генератора гибкое колесо деформируется и происходит зацепление зубьев с жестким колесом. Волновые передачи широко применяются в точном машиностроении благодаря высокой плавности и отсутствия вибраций во время работы.

1) Зубчатое колесо с внутренними зубьями

2) Гибкое колесо с наружными зубьями соединенное с выходным валом редуктора

3) Генератор волн

 

Количество ступеней редуктора

Число ступеней редуктора напрямую влияет на передаточное отношение. В червячных редукторах наиболее распространены одноступенчатые пары. Цилиндрические же редукторы, состоящие из одной ступени, применяются реже, чем двух- или трехступенчатые редукторы. В производстве редукторов все чаще применяются комбинированные передачи, состоящие из разных типов передач, например коническо-цилиндрические редукторы.

 

Входные и выходные валы редукторов

В редукторах обычно применяются обычные прямые валы, имеющие форму тел вращения. На валы редукторов действуют внешние нагрузки, консольные нагрузки и усилия преодоления зацеплений. Крутящий момент на валу определяется рабочим крутящим моментом редуктора или реактивным крутящим моментом привода. Консольная нагрузка определяется способом соединения редуктора с двигателем, зависит от радиального или осевого усилия на вал. В ряде машин, к которым предъявляются особые требования в отношении габаритов или веса используются редукторы с полым валом. Полый вал редуктора позволяет располагать вал исполнительного механизма внутри редуктора, тем самым отпадает необходимость использовать переходные полумуфты и т.п.

 

Срок службы редуктора

Срок службы редуктора зависит от правильных расчетов параметров действующей нагрузки. Также на длительность работы влияет своевременное профилактическое обслуживание редуктора, замена масла и сальников. Регулярный профилактический осмотр позволит избежать незапланированного ремонта или замену редуктора. Уровень масла контролируется через смотровое окно в редукторе и при необходимости доливается до нужного уровня.

Ниже приведена таблица зависимости срока службы редуктора от типа передачи:

Тип передачи редуктора

Гарантированный ресурс в часах

Цилиндрическая, планетарная, коническая, цилиндро-коническая

более 25000

Волновая, червячная, глобоидная

более 10000

 

 

Устройство редуктора

Основными элементами редуктора являются:

1. Прошедшие обработку зубчатые колеса с зубьями высокой твердости. Материалом обычно служит сталь марки (40Х, 40ХН ГОСТ 4543-71). В планетарных редукторах шестерни и сателлиты изготовлены из стали марки 25ХГМ ГОСТ 4543-71. Зубчатые венцы из стали 40Х. Червячные валы изготавливаются из стали марки ГОСТ 4543-71 – 18ХГТ, 20Х с последующей цементацией рабочих поверхностей. Венцы червячных редукторов изготавливают из бронзы Бр010Ф1 ГОСТ 613-79. Гибкое колесо волнового редуктора изготовлено из кованой стали 30ХГСА ГОСТ 4543-71.
2. Валы (оси) быстроходные, промежуточные и тихоходные. Материалом является — сталь марки (40Х, 40ХН ГОСТ 4543-71). В зависимости от варианта сборки выходные валы могут быть одно- и двухконцевыми, а также полыми со шпоночным пазом. Выходные валы планетарных редукторов изготовлены заодно с водилом последней ступени. Материалом служит чугун или сталь.
3. Подшипниковые узлы. Используются подшипники качения воспринимающие большие осевые и консольные нагрузки. Применяются обычно конические роликоподшипники.
4. Шлицевые, шпоночные соединения. Шлицевые соединения чаще применяются в червячных редукторах (выходной полый вал). Шпонки применяются для соединения валов с зубчатыми колесами, муфтами и другими деталями.
5. Корпуса редукторов. Корпуса и крышки редукторов выполняются методом литья. В качестве материалов используется чугун марки СЧ 15 ГОСТ 1412-79 или сплав алюминия АЛ11. Для улучшения отвода тепла корпуса редукторов снабжаются ребрами.

 

Монтажное исполнение

Соосный редуктор — входной и выходной вал находятся на одной оси

Червячный редуктор — входной и выходной вал находятся под прямым углом

Цилиндрический редуктор — входной и выходной вал находятся на параллельных осях

Коническо-цилиндрический редуктор — входной и выходной вал перекрещиваются

 

Монтажное положение соосных цилиндрических или планетарных редукторов

 

Монтажное положение и вариант сборки червячных одноступенчатых редукторов

 

Монтажное положение и вариант сборки червячных двухступенчатых редукторов

 

Монтажное положение и вариант сборки цилиндрических редукторов

 

 

Методика выбора редуктора в зависимости от нагрузки

Методика выбора редуктора заключается в грамотном расчете основных параметров нагрузки и условий эксплуатации.

Технические характеристики описаны в каталогах, а выбор редуктора делается в несколько этапов:

  • выбор редуктора по типу механической передачи
  • определение габарита (типоразмера) редуктора
  • определение консольных и осевых нагрузок на входной и выходной валы
  • определение температурного режима редуктора

На первом этапе конструктор определяет тип редуктора исходя из заданных задач и конструктивных особенностей будущего изделия. На этом же этапе закладываются такие параметры как: передаточное отношение, количество ступеней, расположение входного и выходного валов в пространстве.

На втором этапе следует определить межосевое расстояние. Исходные данные на каждый тип редуктора можно найти в каталоге. Следует помнить, что межосевое расстояние влияет на способность передать момент от двигателя к нагрузке.

Консольные и осевые нагрузки определяются уравнениями, а потом сравниваются со значениями в каталоге. В случае превышения расчетных нагрузок, на какой либо вал, редуктор выбирается на типоразмер выше.

Температурный режим определяется во время работы редуктора. Температура не должна превышать + 80° гр. при длительной работе редуктора с действующей нагрузкой.

 

Как выбрать редуктор?

Выбор редуктора должен производить квалифицированный сотрудник т.к. неправильные расчеты могут привести к поломке редуктора или сопутствующего оборудования. Грамотный выбор редуктора поможет избежать дальнейшие затраты на ремонт и покупку нового привода. Основными параметрами для выбора редуктора как было сказано выше, являются: тип редуктора, габарит или типоразмер, передаточное отношение, а также кинематическая схема.

Определить габарит редуктора можно с помощью каталога, где указаны максимальные значения крутящего момента для каждого типоразмера. Момент действующей нагрузки на редуктор определяется следующим выражением:

где:
M2 — выходной момент на валу редуктора (Н/М)
P1 — подводимая мощность на быстроходном валу редуктора (кВт)
Rd — динамический КПД редуктора (%)
n2 — частота вращения тихоходного вала (об/мин)

Частоту вращения тихоходного вала n2 можно определить, зная значения передаточного отношения редуктора i, а также значения скорости быстроходного вала n1.

где:
n1 — частота вращения быстроходного вала (об/мин)
n2 — частота вращения тихоходного вала (об/мин)
i — передаточное отношение редуктора

Еще одним важным фактором, который следует учитывать при подборе редуктора, является величина – сервис фактор (s/f). Сервис фактор sf – это отношение максимально допустимого момента M2 max указанного в каталоге к номинальному моменту M2 зависящего от мощности двигателя.

где:
M2 max — максимально допустимый момент (паспортное значение)
M2 — номинальный момент на валу редуктора (зависит от мощности двигателя)

Значение сервис фактора (s/f) напрямую связан с ресурсом редуктора и зависит от условий работы привода.

При работе редуктора с нормальной нагрузкой, где число стартов не превышает 60 пусков в час — сервис фактор может выбираться: sf = 1.

При средней нагрузке, где число стартов не превышает 150 пусков в час — сервис фактор выбирается: sf = 1,5.

При тяжелой ударной нагрузке с возможностью заклинивания вала редуктора сервис фактор выбирается: sf = 2 и более.

 

Передаточное отношение и как его определить?

 

Основное назначение любого редуктора понижение угловой скорости подводимой на его входной вал. Значения выходной скорости определятся передаточным отношением редуктора. Передаточное отношение редуктора — это отношение скорости входного вала к скорости выходного вала.

Устройство и виды редукторов :: SYL.ru

В прямом переводе с латинского языка редуктор – это то устройство, которое отводит обратно и преобразует некоторые физические величины, например крутящий момент. Но в более широком понимании такие агрегаты выполняют и другие функции. К примеру, они могут стабилизировать и понижать давление воды или газа при выводе из каких-либо емкостей, сетей, а также коммуникаций.

Для чего нужен?

виды редукторов

Редуктор является преобразующим механизмом, который состоит из более мелких компонентов (чаще всего передач) и выполнен в виде отдельно функционирующего или дополнительного устройства для конкретной машины. Как и было сказано ранее, с его помощью можно передавать необходимые вращения от ведущего к ведомому валу. Кроме того, подобный агрегат также отвечает за снижение угловой скорости и увеличение крутящего момента в передачах.

Конструкция редуктора на примере механического устройства

Как правило, эти машины состоят из стандартных литых корпусов. В редких случаях, когда требуется, чтобы конструкция механизма стала легче, вместо чугуна используют стальные сплавы. В корпусах находятся все необходимые элементы передачи. К компонентам механических видов редукторов можно отнести зубчатые колеса, подшипники, входной и выходной вал.

Кроме того, конструкция редукторов напрямую зависит от их назначения. Если механизм изготавливается специально для конкретной машины, то он может иметь дополнительные элементы, помимо вышеупомянутых. Нередко в корпуса встраивают специальные смазочные (масляные насосы) или охладительные устройства.

Классификация агрегатов

Различают следующие виды редукторов:

  • Газовые.
  • Водные.
  • Механические редукторы.

Такое деление обусловлено не только особенностями, но и назначением, а также сферой, в которой применяется это устройство.

Виды редукторов, упомянутые в списке, более детально рассмотрены ниже.

Газовые

виды газовых редукторов

Эти агрегаты являются устройствами, которые способны понижать давление на выходе из какой-либо емкости (например, в баллоне).

Существуют следующие виды газовых редукторов:

  • Кислородные, применяющиеся на многих машиностроительных предприятиях. С помощью таких редукторов можно выполнять любые автогенные работы. Например, сваривать или паять детали.
  • Ацетиленовые, которые часто применяются в коммунальном хозяйстве для резки трубопроводов.
  • Воздушные редукторы. Такие агрегаты используют многие предприятия. С их помощью можно непрерывно поддерживать необходимое давление воздуха в сетях и коммуникациях. Кроме того, подобные виды редукторов используют в дайвинге как устройства, которые способны снижать давление дыхательной смеси.
  • Пропановые, использующиеся в металлургии. Они помогают рабочим проводить различные автогенные работы, наподобие резки или пайки. Кроме того, эти редукторы можно встретить и в быту. Ярким примером являются плиты, в которых встроены подобные регуляторы давления газа.

Водные редукторы

Такие агрегаты – это малогабаритные механизмы в непроницаемом стальном корпусе, который имеет два резьбовых отверстия на выходе и входе. Эти виды редукторов позволяют стабилизировать или снизить давление воды в сетях и коммуникациях, сохраняя тем самым трубопровод или любое другое оборудование от каких-либо повреждений.

В основе работы подобного механизма лежит принцип выравнивания пружины настройки и усилий мембраны.

В зависимости от принципа действия, редукторы бывают:

  • Статистическими, которые монтируются на входе водопровода в квартирах и частных домах. Такие механизмы могут работать практически в любых условиях. Например, при непостоянном потреблении воды.
  • Динамическими, которые устанавливаются преимущественно на промышленных объектах. Подобные механизмы способны обеспечить равномерный, круглосуточный напор и поток воды.

Как и для любой другой техники, для этих редукторов существуют некоторые требования, которых нужно придерживаться во время эксплуатации. К таковым относится возможность использования только при температуре не более 70 °C и максимальном давлении, равном не менее 15-16 бар. Кроме того, среда, в которой работает механизм, не должна содержать сжатый воздух и масла.

Механические

устройство и виды редукторов

Практически в любой технике встречаются подобные виды редукторов. Их назначение состоит в том, чтобы понижать угловую скорость для увеличения крутящего момента ведомого вала по отношению к ведущему. Такие агрегаты используют в производстве станков, автомобилей, спецтехники и т. д.

Существуют следующие основные виды этих машин:

  • Червячные.
  • Конические.
  • Цилиндрические.
  • Волновые.
  • Планетарные.
  • Глобоидные.
  • Комбинированные редукторы, которые сочетают в себе различные виды передач. Например, червячно-конические или планетарно-цилиндрические.

Некоторые вышеупомянутые виды редукторов, их назначение и устройство более подробно рассмотрены ниже.

Червячные агрегаты

виды редукторов и их назначение

Эти машины имеют одну или две передачи одноименного типа. Такие редукторы преобразовывают угловую скорость и крутящий момент выходного вала за счет червячной передачи, которая обычно располагается под прямым углом. Подобные механизмы универсальны, поэтому широко используются во многих промышленных сферах деятельности. Например, их можно встретить в машиностроении и производстве автомобилей.

Самыми распространенными считаются одноступенчатые и двухступенчатые виды червячных редукторов. При этом чаще всего в промышленности используется второй тип. Обусловлено это тем, что двухступенчатый механизм дает высокое передаточное отношение всего редуктора. Такая особенность позволяет получить еще больший крутящий момент при малых входных мощностях.

Конические редукторы

виды редукторов их назначение и устройство

Эти устройства предназначены для передачи мощности от привода к рабочим механизмам с повышением или снижением вращающего момента ведущего вала. Работают такие виды редукторов с помощью конической зубчатой передачи, которая обеспечивает движение между звеньями с переменным межосевым углом. Они имеют высокий уровень КПД, жесткую конструкцию и более герметичный корпус, вследствие чего утечка масла в процессе использования сводится к минимуму. Единственным недостатком таких машин является то, что технология их изготовления значительно сложнее, чем, к примеру, цилиндрических агрегатов. К тому же валы в конических передачах подвергаются большей нагрузке, в связи с консольным расположением зубчатых колес.

В зависимости от конструктивных особенностей, есть:

  • Редукторы с широким типом корпуса.
  • Быстроходные.
  • Тихоходные.
  • Многоступенчатые.
  • Одноступенчатые.

Цилиндрические редукторы

 виды червячных редукторов

Эти машины получили свое название отнюдь не из-за своего специфического строения, а благодаря одноименной передаче, которая в них используется. В отличие от остальных механических редукторов, цилиндрический работает в горизонтальном положении, что позволяет добиться большей производительности при малых мощностях. Даже КПД такого устройства намного превышает другие агрегаты и, в зависимости от передаточного числа, составляет около 98%! Благодаря этому также не тратится лишняя энергия и компоненты цилиндрического редуктора меньше нагреваются.

Используются такие агрегаты как в машиностроении, так и в более тяжелой промышленности. Например, в черной и цветной металлургии, химическом производстве и горном деле.

Организация редуктора — шаг вперед / Хабр


Что мы будем здесь освещать?

Мы рассмотрим эволюцию редукторов в моих приложениях Redux / NGRX, которая произошла за последние два года. Начиная с коммутатора vanilla , переходя к выбору редуктора из объекта по ключу, наконец, остановимся на редукторах на основе классов. Мы не будем говорить только о том, как, но и о том, почему.


Если вы хотите обойти слишком много шаблонов в Redux / NGRX, вы можете проверить эту статью.

Если вы уже знакомы с выбором редуктора из метода карты, попробуйте перейти прямо к классовым редукторам.


Корпус коммутатора Vanilla

Итак, давайте рассмотрим повседневную задачу асинхронного создания объекта на сервере. На этот раз я предлагаю описать, как мы могли бы создать нового джедая.

  const actionTypeJediCreateInit = 'jedi-app / jedi-create-init'
const actionTypeJediCreateSuccess = 'jedi-app / jedi-create-success'
const actionTypeJediCreateError = 'jedi-app / jedi-create-error'

const reducerJediInitialState = {
  загрузка: ложь,
  // Список наших джедаев
  данные: [],
  ошибка: не определена,
}
const reducerJedi = (состояние = reducerJediInitialState, действие) => {
  переключатель (действие.тип) {
    case actionTypeJediCreateInit:
      возвращение {
        ...штат,
        загрузка: есть,
      }
    case actionTypeJediCreateSuccess:
      возвращение {
        загрузка: ложь,
        данные: [... state.data, action.payload],
        ошибка: не определена,
      }
    case actionTypeJediCreateError:
      возвращение {
        ...штат,
        загрузка: ложь,
        ошибка: action.payload,
      }
    дефолт:
      возвратное состояние
  }
}  

Позвольте мне быть честным, я никогда не использовал подобные редукторы в производстве.Я рассуждаю три раза:


  • В распределительном шкафу представлены некоторые точки натяжения, протекающие трубы, которые мы можем забыть вовремя исправить. Мы всегда можем забыть поставить с перерывом , если не сделать немедленный с возвратом , мы всегда можем забыть добавить по умолчанию , который мы должны добавить к каждому редуктору.
  • Корпус коммутатора имеет некоторый шаблонный код, который не добавляет контекста.
  • распределительный шкаф является O (n), вид.Сам по себе это не является убедительным аргументом, потому что Redux в любом случае не очень эффективен, но это сводит моего внутреннего перфекциониста с ума.

Следующим логичным шагом, который предлагает сделать официальная документация Redux, является выбор редуктора из объекта по ключу.


Выбор редуктора из объекта по ключу

Идея проста. Каждое преобразование состояния является функцией от состояния и действия и имеет соответствующий тип действия. Учитывая, что каждый тип действия является строкой, мы можем создать объект, где каждый ключ - это тип действия, а каждое значение - это функция, преобразующая состояние (редуктор).Затем мы можем выбрать требуемый редуктор из этого объекта по ключу, который равен O (1), когда мы получим новое действие.

  const actionTypeJediCreateInit = 'jedi-app / jedi-create-init'
const actionTypeJediCreateSuccess = 'jedi-app / jedi-create-success'
const actionTypeJediCreateError = 'jedi-app / jedi-create-error'

const reducerJediInitialState = {
  загрузка: ложь,
  данные: [],
  ошибка: не определена,
}
const reducerJediMap = {
  [actionTypeJediCreateInit]: (состояние) => ({
    ...штат,
    загрузка: есть,
  }),
  [actionTypeJediCreateSuccess]: (состояние, действие) => ({
    загрузка: ложь,
    данные: [...state.data, action.payload],
    ошибка: не определена,
  }),
  [actionTypeJediCreateError]: (состояние, действие) => ({
    ...штат,
    загрузка: ложь,
    ошибка: action.payload,
  }),
}

const reducerJedi = (состояние = reducerJediInitialState, действие) => {
  // Выбор редуктора по типу действия
  const reducer = reducerJediMap [action.type]
  если (! редуктор) {
    // Возвращаем состояние без изменений, если мы не нашли подходящего редуктора
    возвратное состояние
  }
  // Запустить подходящий редуктор, если он найден
  обратный редуктор (состояние, действие)
}  

Крутая вещь в том, что логика внутри reducerJedi остается неизменной для любого редуктора, что означает, что мы можем использовать его повторно.Есть даже небольшая библиотека, называемая redux-create-reducer, которая делает именно это. Это делает код похожим на это:

  import {createReducer} из 'redux-create-reducer'

const actionTypeJediCreateInit = 'jedi-app / jedi-create-init'
const actionTypeJediCreateSuccess = 'jedi-app / jedi-create-success'
const actionTypeJediCreateError = 'jedi-app / jedi-create-error'

const reducerJediInitialState = {
  загрузка: ложь,
  данные: [],
  ошибка: не определена,
}
const reducerJedi = createReducer (reducerJediInitialState, {
  [actionTypeJediCreateInit]: (состояние) => ({
    ,..штат,
    загрузка: есть,
  }),
  [actionTypeJediCreateSuccess]: (состояние, действие) => ({
    загрузка: ложь,
    данные: [... state.data, action.payload],
    ошибка: не определена,
  }),
  [actionTypeJediCreateError]: (состояние, действие) => ({
    ...штат,
    загрузка: ложь,
    ошибка: action.payload,
  }),
})  

Красиво и красиво, а? Хотя у этого довольно все еще есть несколько предостережений:


  • В случае сложных редукторов мы должны оставить множество комментариев, описывающих, что делает этот редуктор и почему.
  • Огромные карты редуктора трудно читать.
  • Каждый редуктор имеет только один соответствующий тип действия. Что если я хочу запустить один и тот же редуктор для нескольких действий?

Классовый редуктор стал моим светом в царстве ночи.


Редукторы на основе классов

На этот раз позвольте мне начать с того, почему этот подход:


    Методы класса
  • будут нашими редукторами, а методы будут иметь имена, которые являются полезной метаинформацией, и мы можем отказаться от комментариев в 90% случаев.
  • Методы класса
  • могут быть украшены, что является простым для чтения декларативным способом сопоставления действий и редукторов.
  • Мы все еще могли бы использовать карту действий под капотом, чтобы иметь O (1) сложность.

Если это звучит как разумный список причин для вас, давайте копаться!

Прежде всего, я хотел бы определить, что мы хотим получить в результате.

  const actionTypeJediCreateInit = 'jedi-app / jedi-create-init'
const actionTypeJediCreateSuccess = 'jedi-app / jedi-create-success'
const actionTypeJediCreateError = 'jedi-app / jedi-create-error'

class ReducerJedi {
  // Взгляните на предложение «Class field delcaratrions», которое сейчас находится на этапе 3.// https://github.com/tc39/proposal-class-fields
  initialState = {
    загрузка: ложь,
    данные: [],
    ошибка: не определена,
  }

  @Action (actionTypeJediCreateInit)
  startLoading (state) {
    возвращение {
      ...штат,
      загрузка: есть,
    }
  }

  @Action (actionTypeJediCreateSuccess)
  addNewJedi (состояние, действие) {
    возвращение {
      загрузка: ложь,
      данные: [... state.data, action.payload],
      ошибка: не определена,
    }
  }

  @Action (actionTypeJediCreateError)
  ошибка (состояние, действие) {
    возвращение {
      ,..штат,
      загрузка: ложь,
      ошибка: action.payload,
    }
  }
}  

Теперь, когда мы видим, куда мы хотим попасть, мы можем сделать это шаг за шагом.


Шаг 1. Действие декоратора.

Здесь мы хотим принять любое количество типов действий и сохранить их в качестве метаинформации для последующего использования метода класса. Для этого мы могли бы использовать полифилл-метаданных отражений, который привносит функциональность метаданных в объект Reflect. После этого этот декоратор просто присоединяет свои аргументы (типы действий) к методу как метаданные.

  const METADATA_KEY_ACTION = 'редуктор-класс-действие-метаданные'

export const Action = (... actionTypes) => (target, propertyKey, descriptor) => {
  Reflect.defineMetadata (METADATA_KEY_ACTION, actionTypes, target, propertyKey)
}  

Шаг 2. Создание функции редуктора из класса редуктора

Как мы знаем, каждый редуктор является чистой функцией, которая принимает состояние и действие и возвращает новое состояние. Ну, класс тоже является функцией, но классы ES6 не могут быть вызваны без , нового , и мы все равно должны сделать реальный редуктор из класса с несколькими методами.Поэтому нам нужно как-то его трансформировать.

Нам нужна функция, которая будет принимать наш класс, проходить через каждый метод, собирать метаданные с типами действий, строить карту редуктора и создавать окончательный редуктор из этой карты редуктора.

Вот как мы можем проверить каждый метод класса.

  const getReducerClassMethodsWthActionTypes = (instance) => {
  // Получить имена методов из прототипа класса
  const proto = Object.getPrototypeOf (instance)
  const methodNames = Object.getOwnPropertyNames (прото).фильтр(
    (имя) => имя! == 'конструктор',
  )

  // Мы хотим получить коллекцию с типами действий и соответствующими редукторами
  const res = []
  methodNames.forEach ((methodName) => {
    const actionTypes = Reflect.getMetadata (
      METADATA_KEY_ACTION,
      пример,
      имяМетода,
    )
    // Мы хотим привязать каждый метод к экземпляру класса, чтобы не потерять контекст this
    const method = instance [methodName] .bind (instance)
    // У нас может быть много типов действий, связанных с редуктором
    actionTypes.forEach ((actionType) =>
      res.push ({
        ActionType,
        метод,
      }),
    )
  })
  вернуть Res
}  

Теперь мы хотим обработать полученную коллекцию в карту редуктора.

  const getReducerMap = (methodWithActionTypes) =>
  methodWithActionTypes.reduce ((reducerMap, {method, actionType}) => {
    reducerMap [actionType] = метод
    возвращаем редукторКарта
  }, {})  

Итак, последняя функция может выглядеть примерно так.

  import {createReducer} из 'redux-create-reducer'

const createClassReducer = (ReducerClass) => {
  const reducerClass = new ReducerClass ()
  const methodWithActionTypes = getReducerClassMethodsWthActionTypes (
    reducerClass,
  )
  const reducerMap = getReducerMap (methodWithActionTypes)
  const initialState = reducerClass.начальное состояние
  const reducer = createReducer (initialState, reducerMap)
  обратный редуктор
}  

И мы можем применить его к нашему классу ReducerJedi следующим образом.

  const reducerJedi = createClassReducer (ReducerJedi)  

Шаг 3. Объединяем все вместе.

  // Мы перемещаем этот общий код в выделенный модуль
import {Action, createClassReducer} из 'utils / reducer-class'

const actionTypeJediCreateInit = 'jedi-app / jedi-create-init'
const actionTypeJediCreateSuccess = 'jedi-app / jedi-create-success'
const actionTypeJediCreateError = 'jedi-app / jedi-create-error'

class ReducerJedi {
  // Взгляните на предложение «Class field delcaratrions», которое сейчас находится на этапе 3.// https://github.com/tc39/proposal-class-fields
  initialState = {
    загрузка: ложь,
    данные: [],
    ошибка: не определена,
  }

  @Action (actionTypeJediCreateInit)
  startLoading (state) {
    возвращение {
      ...штат,
      загрузка: есть,
    }
  }

  @Action (actionTypeJediCreateSuccess)
  addNewJedi (состояние, действие) {
    возвращение {
      загрузка: ложь,
      данные: [... state.data, action.payload],
      ошибка: не определена,
    }
  }

  @Action (actionTypeJediCreateError)
  ошибка (состояние, действие) {
    возвращение {
      ,..штат,
      загрузка: ложь,
      ошибка: action.payload,
    }
  }
}

export const reducerJedi = createClassReducer (ReducerJedi)  

Следующие шаги

Вот что мы пропустили:


  • Что если одно и то же действие соответствует нескольким методам? Текущая логика не справляется с этим.
  • Можем ли мы добавить immer?
  • Что если я использую действия на основе классов? Как я мог передать создателя действия, а не тип действия?

Все это с дополнительными примерами кода и примерами покрыто классом редуктора.

Я должен сказать, что использование классов для редукторов - не оригинальная мысль. @amcdnl довольно давно придумал удивительные ngrx-действия, но, похоже, сейчас он сосредоточен на NGXS, не говоря уже о том, что я хотел более строгой типизации и развязки от специфичной для Angular логики. Вот список ключевых отличий между классом редуктора и действиями ngrx.


Если вам нравится идея использования классов для ваших редукторов, вы можете сделать то же самое для создателей ваших действий. Взгляните на flux-action-class.

Надеюсь, вы нашли что-то полезное для вашего проекта. Не стесняйтесь сообщить мне свой отзыв! Я, безусловно, ценю любую критику и вопросы.

Организация редукторов - шаг вперед | Андрей Гончаров Andrey Goncharov

Мы рассмотрим эволюцию редукторов в моих приложениях Redux / NGRX, которая произошла за последние два года. Начиная с коммутатора vanilla , переходя к выбору редуктора из объекта по ключу, наконец, остановимся на редукторах на основе классов. Мы не будем говорить только о том, как, но и о том, почему.

Если вам интересно обойти слишком много шаблонов в Redux / NGRX, вы можете проверить эту статью .

Если вы уже знакомы с выбором редуктора из метода карты, попробуйте перейти прямо к классовым редукторам.

Итак, давайте рассмотрим повседневную задачу асинхронного создания объекта на сервере. На этот раз я предлагаю описать, как мы могли бы создать нового джедая.

Позвольте мне быть честным, я никогда не использовал подобные редукторы в производстве. Я рассуждаю три раза:

,
    ,
  • , , распределительная коробка, вводит некоторые точки натяжения, протекающие трубы, которые мы могли бы забыть вовремя исправить.Мы всегда можем забыть поставить с перерывом , если не выполнить немедленное с возвратом , мы всегда можем забыть добавить по умолчанию , которое мы должны добавить к каждому редуктору.
  • Корпус коммутатора имеет некоторый шаблонный код, который не добавляет контекста.
  • распределительный шкаф является O (n), вид. Сам по себе это не является убедительным аргументом, потому что Redux в любом случае не очень эффективен, но это сводит моего внутреннего перфекциониста с ума.

Следующим логичным шагом, который предлагает сделать официальная документация Redux, является выбор редуктора из объекта по ключу.

Идея проста. Каждое преобразование состояния является функцией от состояния и действия и имеет соответствующий тип действия. Учитывая, что каждый тип действия является строкой, мы можем создать объект, где каждый ключ - это тип действия, а каждое значение - это функция, преобразующая состояние (редуктор). Затем мы можем выбрать требуемый редуктор из этого объекта по ключу, который равен O (1), когда мы получим новое действие.

Крутая вещь в том, что логика внутри reducerJedi остается неизменной для любого редуктора, что означает, что мы можем использовать его повторно.Есть даже небольшая библиотека, называемая redux-create-reducer, которая делает именно это. Это делает код похожим на это:

Красиво и красиво, а? Хотя это довольно много предостережений:

  • В случае сложных редукторов мы должны оставить множество комментариев, описывающих, что делает этот редуктор и почему.
  • Огромные карты редуктора трудно читать.
  • Каждый редуктор имеет только один соответствующий тип действия. Что если я хочу запустить один и тот же редуктор для нескольких действий?

Классовый редуктор стал моим светом в царстве ночи.

На этот раз позвольте мне начать с того, почему этот подход:

  • Методы класса будут нашими редукторами, а методы имеют имена, которые являются полезной метаинформацией, и мы могли бы отказаться от комментариев в 90% случаев.
  • Методы класса могут быть украшены, что является простым для чтения декларативным способом сопоставления действий и редукторов.
  • Мы все еще могли бы использовать карту действий под капотом, чтобы иметь O (1) сложность.

Если это звучит как разумный список причин для вас, давайте углубимся!

Прежде всего, я хотел бы определить, что мы хотим получить в результате.

Теперь, когда мы видим, куда мы хотим попасть, мы можем сделать это шаг за шагом.

Здесь мы хотим принять любое количество типов действий и сохранить их в качестве метаинформации для последующего использования метода класса. Для этого мы могли бы использовать полифилл-метаданных отражений, который привносит функциональность метаданных в объект Reflect. После этого этот декоратор просто присоединяет свои аргументы (типы действий) к методу как метаданные.

Как мы знаем, каждый редуктор является чистой функцией, которая принимает состояние и действие и возвращает новое состояние.Ну, класс тоже является функцией, но классы ES6 не могут быть вызваны без , нового , и мы все равно должны сделать реальный редуктор из класса с несколькими методами. Поэтому нам нужно как-то его трансформировать.

Нам нужна функция, которая будет принимать наш класс, проходить через каждый метод, собирать метаданные с типами действий, строить карту редуктора и создавать окончательный редуктор из этой карты редуктора.

Вот как мы можем исследовать каждый метод класса.

Теперь мы хотим обработать полученную коллекцию в карту редуктора.

Итак, финальная функция может выглядеть примерно так.

И мы можем применить его к нашему классу ReducerJedi следующим образом.

Вот что мы пропустили:

  • Что если одно и то же действие соответствует нескольким методам? Текущая логика не справляется с этим.
  • Можем ли мы добавить immer?
  • Что если я использую действия на основе классов? Как я мог передать создателя действия, а не тип действия?

Все это с дополнительными примерами кода и примерами покрыто классом редуктора.

Я должен сказать, что использование классов для редукторов не оригинальная мысль. @amcdnl довольно давно придумал отличные ngrx-действия, но похоже, что сейчас он сосредоточен на NGXS, не говоря уже о том, что я хотел более строгой типизации и развязки от специфичной для Angular логики. Вот список ключевых отличий между классом редуктора и действиями ngrx.

Если вам нравится идея использовать классы для ваших редукторов, вы можете сделать то же самое для создателей ваших действий. Взгляните на flux-action-class.

Надеюсь, вы нашли что-то полезное для вашего проекта. Не стесняйтесь сообщить мне свой отзыв! Я, безусловно, ценю любую критику и вопросы.

UPD # 1: посмотрите на это обсуждение Reddit, чтобы услышать другие аргументы за и против этого подхода

.
JavaScript - доступ к части состояния редуктора из одного редуктора в другом редукторе Переполнение стека
  1. Товары
  2. Клиенты
  3. Случаи использования
  1. Переполнение стека Публичные вопросы и ответы
  2. Команды Частные вопросы и ответы для вашей команды
  3. предприятие Частные вопросы и ответы для вашего предприятия
  4. работы Программирование и связанные с ним технические возможности карьерного роста
  5. Талант Нанимать технический талант
  6. реклама Связаться с разработчиками по всему миру

Загрузка…

,

mapreduce - Количество редукторов в sqoop

Переполнение стека
  1. Товары
  2. Клиенты
  3. Случаи использования
  1. Переполнение стека Публичные вопросы и ответы
  2. Команды Частные вопросы и ответы для вашей команды
  3. предприятие Частные вопросы и ответы для вашего предприятия
  4. работы Программирование и связанные с ним технические возможности карьерного роста
  5. Талант Нанимать технический талант
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *