Транзисторная система зажигания: Как работает контактно-транзисторное зажигание в автомобиле?

Содержание

Устройство контактно транзисторной системы зажигания

Работа контактно транзисторной системы основана на использовании полупроводниковых приборов. Преимущества контактно транзисторной системы по сравнению с батарейной системой зажигания следующие:

  • через контакты прерывателя проходит небольшой ток управления транзистора, а не ток (до 8 А) первичной обмотки катушки зажигания (исключается эрозия и износ контактов).
  • Возрастает ток высокого напряжения и энергия искрового разряда (это позволяет увеличить зазор между электродами свечи зажигания, приводит к облегчению пуска двигателя, делает двигатель экономичнее).

Для начала давайте разберемся,

Что такое транзистор

Транзистор — это трехэлектродный прибор, изменяющий сопротивление от нескольких сот омов (транзистор закрыт) до нескольких долей ома (транзистор открыт).

Имея малое сопротивление во включенном состоянии и очень большое сопротивление в выключенном состоянии, транзистор вполне удовлетворяет требованиям предъявляемым к переключающим элементам.

В контактно-транзисторной системе зажигания транзистор работает в режиме переключения (режим ключа).

Устройство контактно транзисторной системы ЗИЛ-130

Схема устройства контактно-транзисторной системы зажигания двигателя ЗИЛ-130 (стрелками указана цепь высокого напряжения):

а – расположение выводов на транзисторном коммутаторе; б – общая схема системы зажигания; 1 – транзисторный коммутатор ТК 102; 2 — резисторы; 3 – блок защиты транзистора; 4 – первичная обмотка; 5 – катушка зажигания; 6 – вторичная обмотка; 7 – свечи зажигания; 8 — крышка; 9 – ротор с электродом; 10 – распределитель зажигания; 11 –подвижный контакт; 12 – неподвижный контакт; 13 – кулачок прерывателя; 14 – добавочные резисторы СЭ 117; 15 – выключатель добавочного резистора; 16 — АКБ; 17 – выключатель зажигания; 18 — стабилитрон; 19 — диод; 20 – импульсный трансформатор; 21 – германиевый транзистор; К, Б, Э – электроды транзистора (коллектор, база, эмиттер).

Контактно транзисторная система ЗИЛ-130 состоит из транзисторного коммутатора1, катушки зажигания 5, свечей зажигания 7, распределителя 10, добавочных резисторов 14, выключателя 15 добавочного резистора, АКБ 16 и выключателя зажигания 17.

Катушка зажигания Б114 – маслонаполненная, выполнена по трансформаторной схеме, т.е. ее первичная и вторичная обмотки не соединены между собой и между ними существует только магнитная связь. Первичная обмотка катушки зажигания имеет два вывода, расположенные на карболитовой крышке. Один вывод обозначен буквой К, другой не имеет обозначения. Один вывод вторичной обмотки присоединен к корпусу, а другой соединен с проводом высокого напряжения, укрепленным в центральном отверстии крышки катушки зажигания. При установке катушки зажигания ее надежно соединяют с массой так, чтобы не было зазоров.

Добавочные резисторы СЭ 107, выполненные в виде двух спиралей, установлены в отдельном кожухе и имеют три вывода: ВК-Б, ВК и К. Спирали изготовлены из константановой проволоки, сопротивление которой при нагреве не изменяется, и в первичной обмотке катушки зажигания поддерживается постоянное напряжение.

Транзисторный коммутатор ТК 102 состоит из транзистора 21, импульсного трансформатора 20 и блока 3 защиты транзистора. В блок защиты входят резисторы 2, диод 19, стабилитрон 18 и конденсатор.

Все приборы коммутатора размещены в алюминиевом корпусе, имеющем ребра для лучшего отвода теплоты. У транзисторного коммутатора есть четыре вывода, обозначенные М, К, Р, и один без обозначения. Вывод М надежно соединяют с массой автомобиля многожильным неизолированным проводом, вывод К с концом первичной обмотки катушки зажигания, вывод без обозначения – со вторым концом первичной обмотки катушки зажигания, Р с подвижным контактом прерывателя.

Как работает контактно-транзисторная система зажигания?

Если выключатель зажигания 17 включен, а контакты прерывателя разомкнуты, то транзистор 21 заперт, так как нет тока в его цепи управления, т.е. в переходе эмиттер – база. Ток не проходит и между эмиттером и коллектором на массу, так как сопротивление этого перехода очень большое. При замыкании контактов прерывателя в цепи управления транзистора (эмиттер-база) проходит ток, в результате транзистор открывается. Сила тока управления невелика около (0,8 А) и уменьшается до 0,3 А с увеличением частоты вращения кулачка прерывателя. В контактно-транзисторной системе зажигания имеются две цепи низкого напряжения: цепь управления транзистора и цепь рабочего тока.

Цепь управления транзистора: положительный вывод АКБ 16 – выключатель зажигания 17 – выводы ВК-Б и К добавочных резисторов 14 – первичная обмотка 4 катушки зажигания 5 – вывод транзисторного коммутатора 1 – электроды перехода эмиттер – база транзистора 21 – первичная обмотка импульсного трансформатора 20 – вывод Р – контакты 11 и 12 прерывателя – масса – отрицательный вывод АКБ. При прохождении тока управления транзистора через переход эмиттер-база значительно уменьшается сопротивление эмиттер-коллектор, и транзистор открывается, включая цепь рабочего тока (7-8 А).

Цепь рабочего тока низкого напряжения

Положительный вывод АКБ 16 – выключатель зажигания 17 – выводы ВК-Б и К добавочных резисторов 14 – первичная обмотка 4 катушки зажигания 5 – вывод транзисторного коммутатора 1 – электроды перехода эмиттер-коллектор транзистора 21 – вывод М – масса – отрицательный вывод АКБ. При размыкании контактов прерывателя прекращается ток в цепи управления транзистора и значительно возрастает его сопротивление. Транзистор закрывается, выключая цепь рабочего тока низкого напряжения. Магнитный поток изменяющегося поля пересекает витки катушки зажигания, индуктируя во вторичной обмотке ЭДС, в результате чего возникает высокое напряжение (около 30000 В), а в первичной обмотке ЭДС самоиндукции (около 80-100 В).

Цепь высокого напряжения

Вторичная обмотка 6 катушки зажигания 5 ротор 9 распределителя 10 – свечи зажигания 7 ( в соответствии с порядком работы двигателя) – масса – вторичная обмотка 6 катушки зажигания 5.

Импульсный трансформатор необходим для быстрого запирания транзистора. При размыкании контактов прерывателя во вторичной обмотке импульсного трансформатора индуктируется ЭДС самоиндукции, направление которой противоположно направлению рабочего тока на переходе база-эмиттер. Благодаря этому быстро исчезает магнитное поле и ток в первичной обмотке 4 катушки зажигания 5. Диод 19 и стабилитрон 18 в прямом направлении – мимо первичной обмотки катушки зажигания.

Необходимо помнить, что контакты прерывателя пропускают и прерывают только силу тока управления транзистора 0,3-0,8 А. Если на них попало масло, образовалась масляная пленка или слой окиси, то ток управления транзистора не сможет пройти через контакты. Поэтому контакты прерывателя промывают бензином и следят за тем, чтобы они всегда были чистыми.

Контактно транзисторная система зажигания

Автор admin На чтение 4 мин. Просмотров 4.1k.

Исторически сложилось так, что для первых бензиновых моторов использовалась батарейная (аккумуляторная) система зажигания, основанная на эффекте самоиндукции. Самой первой была контактная, ставшей впоследствии классической, система. По мере совершенствования автомашины развивались и его отдельные компоненты, так появилась контактно транзисторная система зажигания. На примере сравнения этих двух систем можно проследить, как происходило развитие самого автомобиля.

О принципах работы классической системы зажигания

Надо сразу отметить, несмотря на простоту, изящество примененных технических решений. Схема подобной системы приведена на рисунке ниже:


Работа осуществляется следующим образом – при повороте ключа в замке через контакты прерывателя и обмотку (первичную) катушки, называемой еще бобиной, начинает протекать ток. Когда размыкаются контакты прерывателя, цепь разрывается, и в первичной обмотке бобины прекращается ток. Но благодаря эффекту самоиндукции в обмотке (вторичной) появляется напряжение. А так как число витков обеих обмоток существенно различается (во вторичной витков больше), величина вторичного напряжения может достигать десятков киловольт.
Это напряжение, через распределитель, поступает на нужную свечу, где возникает искра, которая и поджигает бензин в цилиндрах двигателя.
Все просто и красиво, и такая схема прекрасно работала на первых моторах.
Недостатки, которыми она обладает, начали проявляться, когда у бензинового двигателя стало:
  • увеличиваться число цилиндров;
  • повышаться число оборотов, развиваемых двигателем, двигатели стали высокооборотистыми;
  • возможным увеличивать степень сжатия в цилиндрах;
  • практиковаться использование обедненных смесей.

Кроме того, недостатком надо считать низкую надежность, в первую очередь обусловленную обгоранием контактов прерывателя, из-за чего порой переставала работать вся система зажигания. Естественно, никто с этим мириться не собирался, и появилась контактно транзисторная система зажигания.

Новый этап развития

Основным элементом, благодаря которому новая схема приобрела улучшенные характеристики, относительно прежней, классической, стал транзистор. Причем он явился причиной, что контактно-транзисторная система зажигания получила новый узел – коммутатор.


Отличительной особенностью, присущей транзистору, является то, что небольшой ток, поступающий на управление (в базу), позволяет управлять током гораздо большей величины, протекающим через прибор.

Контактно транзисторная система зажигания, несмотря на незначительные, на первый взгляд, изменения и сохранение принципа работы, приобрела новые свойства, недоступные классической системе. Но прежде чем оценивать достоинства и недостатки, которыми обладает контактно-транзисторная схема, необходимо коснуться отличий в работе.

Главное отличие от классического зажигания заключается в том, что прерыватель воздействует не на бобину, а на базу транзистора. В остальном контактно-транзисторная схема работает так же, как обычная система зажигания. При прерывании, в первичной обмотке бобины протекания тока, во вторичной наводится высоковольтное напряжение. Не касаясь деталей внутреннего устройства коммутатора и его подключения, можно отметить, что транзисторная схема зажигания даже в таком упрощенном виде обладает следующими достоинствами:

Контактно-транзисторное управление процессами, происходящими в катушке зажигания, обеспечивает возможность увеличить в первичной обмотке ток, вследствие чего:

  1. можно повысить величину вторичного напряжения;
  2. увеличить между электродами свечи зазор;
  3. улучшить процесс искрообразования, сделать его более устойчивым, а также улучшить запуск двигателя при пониженной температуре;
  4. повысить количество оборотов и увеличить мощность двигателя.

Однако подобная контактно-транзисторная схема требует использования катушки зажигания с отдельными обмотками (первичной и вторичной).


Повысилась надёжность: контактно-транзисторная система позволяет снизить нагрузку на контакты прерывателя, уменьшив значение проходящего через них тока, следствием чего является уменьшение подгорания контактов.
Однако не все так хорошо, как кажется с первого взгляда. Подобная контактно-транзисторная система зажигания имеет и свои недостатки. Вызваны они использованием прерывателя, т.е. система начинает работать и формировать искру, когда контактно разрывается цепь прохождения тока в обмотке бобины. Величина тока, поступающего в базу транзистора, существенно влияет на его работу, и уменьшение тока из-за качества контактов скажется на работе всей системы.

Значение контактно-транзисторной схемы в развитии автомобиля

В данном случае мы рассмотрели только два начальных этапа на пути развития системы зажигания автомобиля. В дальнейшем она претерпела гораздо более значительные изменения, но контактно-транзисторная схема была первой. Именно на ней были отработаны возможные варианты повышения ее эффективности, в частности, уход от классического, контактного зажигания, и намечены пути развития в сторону использования бесконтактных способов получения искры.

Контактно-транзисторная система зажигания оказалась первым шагом, в совершенствовании классического подхода к получению искры на бензиновом ДВС, и явилась закономерным этапом развития автомобиля в целом, и его отдельных узлов в частности.

Мне нравится2Не нравится1
Что еще стоит почитать

Контактно-транзисторная система зажигания.


Контактно-транзисторная система зажигания




Наиболее слабым звеном контактной (батарейной) системы зажигания являются контакты прерывателя. Ток высокого напряжения, проходя через контакты, приводит к их интенсивному износу, подгоранию, эрозии, в результате чего нарушается регулировка зазора и, как следствие, угол опережения зажигания, продолжительность и мощность искры.
Все это сказывается на надежности, долговечности системы зажигания и трудоемкости ее обслуживания.

Развитие электронной техники привело к созданию мощных полупроводниковых приборов, способных выполнять функции механических ключей, разрывающих электрическую цепь посредством управляющего тока небольшой величины, т. е. электронных реле. Такие реле, выполненные на транзисторах, пришли на смену механическим контактам, а батарейную систему зажигания сменила контактно-транзисторная.
В контактно-транзисторной системе зажигания механические контакты служат лишь для разрыва цепи, в которой протекает небольшой по величине ток, управляющий полупроводниковыми переходами транзистора, а транзистор, выполняя функцию реле, подает ток в первичную обмотку катушки зажигания. Благодаря этому удалось существенно повысить срок службы контактов и стабильность работы системы.

***

Работа контактно-транзисторной системы зажигания

Контактно-транзисторная система зажигания состоит, в основном, из тех же элементов, что и классическая батарейная, и отличается от неё наличием транзистора, резисторов и отсутствием конденсатора, ранее шунтировавшего контакты прерывателя.

Работает эта система зажигания следующим образом (рис. 1).
Когда контакты прерывателя Пр разомкнуты, транзистор V закрыт, и ток в первичной обмотке катушки зажигания отсутствует.
При замыкании контактов транзистор V открывается и через первичную обмотку катушки зажигания начинает протекать ток, нарастающий от нуля до некоторого значения, определяемого параметрами первичной цепи и временем, в течение которого контакты замкнуты. В сердечнике катушки накапливается электромагнитная энергия.

При размыкании контактов прерывателя транзистор V закрывается, и ток в первичной обмотке w1 катушки зажигания резко уменьшается. В этом случае во вторичной обмотке возникает высокое напряжение w2, которое поступает на контакт распределителя и переносится к соответствующей свече зажигания. Резистор R2 служит для ограничения тока базы транзистора, а резистор R1 обеспечивает запирание транзистора, когда контакты прерывателя разомкнуты.

Особенностью такой системы зажигания является то, что в ней контакты прерывателя коммутируют только незначительный ток базы транзистора, в тоже время ток через первичные обмотки катушки зажигания коммутирует транзистор.
При этом вторичное напряжение в катушке зажигания может быть повышено, поскольку увеличение тока разрыва уже не ограничено электроэрозионной стойкостью контактов прерывателя, а зависит только от параметров транзистора.

Однако следует иметь в виду, что преимущества транзисторной системы зажигания могут быть реализованы лишь при применении специальной катушки зажигания, которая должна иметь первичную обмотку с низким омическим сопротивлением, малой индуктивностью и большим коэффициентом трансформации. В этом случае необходимые энергия искрообразования и вторичное напряжение достигаются соответствующим увеличением тока разрыва и коэффициентом трансформации.

***



К недостаткам транзисторных систем зажигания следует отнести большую потребляемую мощность. Это связано с необходимостью увеличения тока разрыва. Кроме того, мощные транзисторы, используемые в таких системах, требуют эффективного охлаждения во время работы, а электронные блоки систем зажигания обязательно должны иметь средства защиты от импульсных помех напряжением более 100 В.

Еще один недостаток транзисторной системы зажигания заключается в ее относительной сложности, обусловленной применением полупроводниковых приборов. Классическая контактная система зажигания состоит всего из нескольких элементов, которые даже специалист невысокой квалификации может легко проверить без специальных измерительных приборов и оборудования.
Состояние контактов прерывателя можно проверить просто визуально. Замена контактов не вызывает трудности, а зная характерные признаки неисправности катушки зажигания или распределителя можно устранить и проблемы, связанные с их отказом.
Для ремонта же или проверки электронного блока требуется специальное оборудование и персонал соответствующей квалификации.

Тем не менее, очевидные достоинства и простота их реализации предопределили широкое использование индуктивных систем зажигания на автомобильных двигателях.
Последние достижения в области создания транзисторных систем зажигания, т.е. использования высоковольтных транзисторов Дарлингтона, применение принципа нормирования времени накопления энергии, позволили практически устранить такие недостатки индуктивных систем, как большая зависимость вторичного напряжения от шунтирующего сопротивления на изоляторе свечи и от частоты вращения коленчатого вала.

Составной транзистор Дарлингтона был изобретен в 1953 году инженером Сидни Дарлингтоном (Sidney Darlington). Транзистор Дарлингтона является каскадным соединением двух (реже трех или более) биполярных транзисторов, включённых таким образом, что нагрузкой в эмиттерной цепи предыдущего каскада является переход база-эмиттер транзистора последующего каскада (то есть эмиттер предыдущего транзистора соединяется с базой последующего), при этом транзисторы соединяются коллекторами. Такое соединение позволило улучшить электрические характеристики соединяемых по схеме Дарлингтона транзисторов.

Благодаря перечисленным новшествам, тиристорные системы зажигания с емкостным накопителями потеряли часть преимуществ перед индуктивными системами зажигания, и практически не используются на автомобильных двигателях.

***

Бесконтактная система зажигания


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Контактно-транзисторная система зажигания

просмотров 8 710 Google+

С развитием техники и повышением мощности бензинового двигателя потребовалась модернизация системы зажигания. При увеличении числа цилиндров, повышении числа оборотов вращения коленвала, увеличение степени сжатия и применение обеднённых рабочих смесей, она не могла обеспечивать нормального пробивного напряжения на свечах.
Если на шестицилиндровом двигателе эта система ещё как то справлялась со своей функцией, то при появлении восьмицилиндрового двигателя, начала давать сбой при малейшей неполадке. Так же существенно снизился срок службы контактов в прерывателе.

Контактно-транзисторная система зажигания отличия от контактной.

В 60-х годах на её смену в этих двигателях пришло контактно-транзисторное зажигание. Его единственное отличие контактно-транзисторной система зажигания от контактной, это наличие в цепи между контактами трамблёра и катушкой зажигания, коммутатора, на базе транзистора.
Транзистор – электропреобразовательный полупроводниковый прибор, служащий для преобразования электрических величин. В контактно-транзисторной системе зажигания он в частности служит для коммутации цепи первичной обмотки катушки зажигания.

Контактно-транзисторная система зажигания преимущества перед контактной.

Что даёт применение транзисторного коммутатора в системе зажигания?
Во первых, самое главное преимущество, это возможность применения катушек зажигания с большим числом трансформации. То есть, возможно, уменьшить число витков в первичной обмотке катушки зажигания и в тоже время увеличить число витков во вторичной катушке. Это на четверть даёт возможность повысить вторичное напряжение и как следствие увеличить зазор на свечах зажигания до 1мм.

При всём этом ток, проходящий через контакты трамблёра минимален, примерно 0,5А. Поэтому не нужно применения конденсатора для гашения искрения и позволяет уменьшить зазор при этом увеличивается срок службы контактов.
К недостаткам этой системы можно отнести наличие трущихся деталей в трамблёре. При износе упора подвижного контакта изменяется зазор между ними, при этом изменяется угол замкнутого состояния контактов и изменяется момент искрообразования. Кроме этого трамблёр остаётся чувствительным к износу втулок кулачкового вала.  Но контактно-транзисторная система зажигания, в отличае от контактной, менее чувствительна к износам в трмблёре.

Контактно-транзисторная система зажигания принцип работы.

Рассмотрим подробнее схему подключения и работу контактно – транзисторной системы зажигания. Как видно из схемы единственным отличием от контактной системы зажигания является наличие коммутатора на базе транзистора. Транзистор выполняет роль ключа, замыкает и размыкает цепь первичной катушки зажигания. Контакты трамблёра в этом случае выполняют роль датчика, подавая импульсы на базу транзистора.

При включенном зажигании, когда контакты разомкнуты, база транзистора в коммутаторе не соединяется с минусом, при этом из-за большого переходного сопротивления в P-N переходе отсутствует ток между эмиттером и коллектором транзистора (транзистор закрыт). Следовательно, ток в первичной обмотке катушки зажигания отсутствует.

При замыкании контактов, база транзистора соединяется с минусом, при этом сопротивление в P-N-P переходе падает и через базу и коллектор будет проходить ток. При этом сопротивление эмиттер – коллектор резко снижается (транзистор открывается) замыкая цепь первичной обмотки катушки зажигания. При размыкании контактов прерывателя база транзистора отключается от минуса, при этом резко увеличивается сопротивление эмиттер – коллектор, транзистор закрывается, и цепь питания катушки зажигания рвётся.
В конструкцию коммутатора добавлена схема отключения питания катушки зажигания при длительно замкнутом положении контактов, то есть когда коленчатый вал двигателя не вращается. Это служит для защиты катушки зажигания от перегрева при замкнутых контактах трамблёра.

Эта система стала первой на пути электронного зажигания. На её основе было сделано множество приставок к контактному зажиганию, преимуществом которых является возможность регулировки угла опережения зажигания непосредственно из салона автомобиля при его движении.

admin 24/02/2012 «Если Вы заметили ошибку в тексте, пожалуйста выделите это место мышкой и нажмите CTRL+ENTER» «Если статья была Вам полезна, поделитесь ссылкой на неё в соцсетях»

Контактно-транзисторная система зажигания | Устройство автомобиля

 

Что входит в устройство контактно-транзисторной системы зажигания?

Контактно-транзисторная система зажигания (рис.93) состоит из аккумуляторной батареи 1 напряжением 1.2 В; зажима 2 стартера; включателя (замка) зажигания 3; добавочных резисторов 4, изготовленных из константа новой проволоки; транзисторного коммутатора ТК-102, включающего электролитический конденсатор 5; германиевого диода 8; транзистора 9; резисторов 6 и 10 сопротивлением 20 Ом, импульсного трансформатора с первичной 11 и вторичной 12 обмотками; стабилитрона 22; прерывателя с подвижным 14 и неподвижным 15 контактами и кулачковой муфтой 21; распределителя 16 с токоразносной пластиной 17; свечей зажигания 18; катушки зажигания 19 и помехоподавительного сопротивления 20.

Рис.93. Схема контактно-транзисторного зажигания.

Транзисторный коммутатор смонтирован в алюминиевом ребристом корпусе, установленном в кабине автомобиля, и имеет четыре зажима «Р», «К», «М» и один зажим без обозначения. Зажим «М» надежно соединен с массой многожильным проводом; зажим «К» – с зажимом катушки зажигания; зажим без обозначения – с соответствующим зажимом этой же катушки зажигания и зажим «Р» – с подвижным контактом прерывателя.

Как работает контактно-транзисторная система зажигания?

Контактно-транзисторная система зажигания работает так. При выключенном зажигании или разомкнутых контактах прерывателя транзистор закрыт. С включением зажигания и при замкнутых контактах 14 и 15 (рис.93) прерывателя образуется цепь тока управления транзистором: «+» батареи – зажим стартера 2 – включатель зажигания 3 – резисторы 4 – первичная обмотка катушки зажигания – зажим без обозначения транзисторного коммутатора – вторичная 12 обмотка импульсного трансформатора – резистор 10 – эмиттер – база транзистора – зажим 13, к которому подключена первичная 11 обмотка импульсного трансформатора – подвижный 14 – неподвижный 15 контакты прерывателя –  «масса» – «–» аккумуляторной батареи.

В результате прохождения тока управления через переход эмиттер – база транзистора сопротивление перехода эмиттер – коллектор снижается и транзистор открывается. Образуется такая цепь рабочего тока низкого напряжения: «+» батареи – зажим стартера 2 – включатель зажигания 3 – резисторы 4 – первичная обмотка катушки зажигания – эмиттер – база – коллектор – зажим «М» транзисторного коммутатора – «масса» – «–» батареи. Благодаря небольшому сопротивлению транзистора в первичной обмотке катушки зажигания создается сильное магнитное поле, что способствует получению более высокого (до 30 тыс. В) напряжения во вторичной обмотке. При вращении коленчатого вала грань кулачковой муфты 21 воздействует на рычаг подвижного контакта 14, прерывая цепь тока управления, и транзистор закрывается, что ведет к прерыванию цепи рабочего тока низкого напряжения. В это же время во вторичной обмотке 12 импульсного трансформатора индуктируется ЭДС взаимоиндукции, действие которой противоположно направлению рабочего тока низкого напряжения. В результате этого ускоряется закрывание транзистора. При резком прерывании тока в первичной обмотке катушки зажигания ее магнитные силовые линии, исчезая, пересекают витки вторичной обмотки и в них индуктируется ток высокого напряжения (до 30 тыс. В). Этот ток проходит по проводу напряжения через помехоподавительное сопротивление 20 на центральную клемму распределителя 16. Далее токоразносной пластиной 17 подводится к боковому электроду и по проводу на свечи зажигания 18 воспламеняет горючую смесь и по «массе» на корпус 19 катушки зажигания и во вторичную обмотку катушки зажигания. Следовательно, ток высокого напряжения не проходит через транзистор, что предотвращает его пробой и повышает надежность работы системы зажигания.

Одновременно в первичной обмотке катушки зажигания теми же магнитными силовыми линиями индуктируется ток самоиндукции напряжением до 100 В, который может повредить (пробить) транзистор. Поэтому параллельно первичной обмотке катушки зажигания последовательно включены диод 8 и стабилитрон 22, со встречным направлением прямых проводимостей. Диод 8 препятствует протеканию тока через стабилитрон, минуя первичную обмотку катушки зажигания. Стабилитрон пропускает ток самоиндукции, если напряжение его превышает 100 В. В результате общее напряжение в цепи первичной обмотки катушки зажигания снижается.

В момент размыкания контактов прерывателя в первичной обмотке 11 импульсного трансформатора также индуктируется ЭДС самоиндукции. Она заряжает конденсатор 7, который затем разряжается на резистор 6, а он преобразует электрическую энергию в тепловую.

Электролитический конденсатор 5 включен параллельно генератору и аккумуляторной батарее и защищает транзистор от импульсных перенапряжений, возникающих в цепи генератор – батарея в случае выключения батареи, обрыва одной из фаз обмотки статора генератора переменного тока, обрыва провода, соединяющего корпуса генератора и регулятора напряжения. В этом случае конденсатор 5 будет заряжаться, что снизит напряжение в цепи приборов, предотвращая пробой транзистора.

Какие условия следует соблюдать при эксплуатации контактно-транзисторной системы зажигания?

Во время эксплуатации контактно-транзисторной системы зажигания необходимо тщательно контролировать чистоту контактов прерывателя, так как попадание масла на них или их окисление могут вызвать нарушение работы всей системы. Соединять с «массой» только «–» аккумуляторной батареи. Не менять местами провода, подсоединенные к транзисторному коммутатору или к резисторам. Не замыкать накоротко резисторы. Следить и своевременно регулировать зазор между контактами прерывателя и электродами свечей зажигания. Сразу же после остановки двигателя выключить зажигание. Разбирать транзисторный коммутатор только в специальной мастерской.

***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Система электрического зажигания»

батарея, зажигание, зажим, катушка, контакт, напряжение, обмотка, ток, транзистор

Смотрите также:

в чём отличия от классической схемы?

В предыдущей статье подробно рассказано о классической схеме системы зажигания, так называемой контактной. Идеальной её не назовешь, главной болезнью её является подгорание и быстрый износ контактов прерывателя. Она побудила инженеров продолжить разработки новых конструкций и новым шагом стала контактно транзисторная система зажигания.

Проблемы контактных систем и способы их решения

Освежим в памяти принцип работы классической схемы зажигания, чтобы понять, что в ней ненадёжно.

При повороте ключа в замке на катушку зажигания подаётся низкое напряжение сначала от аккумулятора, а потом и от бортовой сети.

Для того чтобы в силу вступили законы физики, и во вторичной обмотке катушки появилось высокое напряжение, достаточное для образования искры, прерыватель разрывает низковольтную цепь.

В это же время распределитель подключает контакты с высоким напряжением, идущие к нужной свече.

На первый взгляд всё просто и ломаться тут особо нечему. Но реальность сложнее – постоянное размыкание и замыкание контактных групп, коммутирующих катушку, приводит к их подгоранию из-за появляющегося в эти моменты импульса тока, а также износу.

Это и является главной проблемой классической схемы. Помимо этого, развитие самих моторов: увеличение их мощности, количества цилиндров и оборотов, сделало её применение очень сложным, а порой и невозможным.

Контактно транзисторная система зажигания. Что придумали инженеры?

Контактно транзисторная система зажигания, о которой мы сегодня говорим, лишена одного из основных недостатков своего предшественника – подгорания контактов прерывателя.

Решена эта проблема была радикально – нет больших токов на контактах, нет обгорания.

Для этого в цепи схемы появился новый узел, так называемый коммутатор, основу которого составляет полупроводниковый транзистор.

Он позволяет управлять большими токами при помощи малых. Для этого транзистор имеет три контакта – база, эмиттер, коллектор. Прикладывая к первым двум небольшой управляющий ток, можно управлять цепью коллектор эмиттер, где значение тока может быть в десятки раз больше.

Данное свойство и позволило избежать подгорания контактов.

Как устроена система с транзистором?

С теоретической частью мы закончили, теперь давайте еще раз пробежимся по чертежам выше и более детально посмотрим на устройство контактно транзисторной системы зажигания.

В принципе, как вы уже поняли, кардинальных отличий от более ранней контактной схемы не очень много. Основными составными частями являются:

От классической схемы отличается только наличием коммутатора.

Данный узел представляет собой блок, внутри которого, помимо силового транзистора находится ещё ряд элементов, защищающих его от бросков обратного тока, и прочие дополнительные детали.

Главное предназначение данного узла – управление током, проходящим через низковольтную обмотку катушки зажигания.

Прерыватель в этом случае управляет током базы транзистора, который в свою очередь подключает и отключает катушку зажигания, где токи гораздо выше и опаснее для механических контактов. В остальном алгоритм работы такой же, как и в простой контактной системе.

Плюсы и минусы

Неужели контактно транзисторная система зажигания отличается от классической схемы только отсутствием подгорающих контактов? И ради этого стоило городить огород с коммутатором?

На самом деле есть у этой системы и другие преимущества, а именно:

  • появилась возможность увеличить ток первичной обмотки катушки зажигания, а значит и во вторичной он увеличится, и как следствие, станет больше напряжение на свечах;
  • большее напряжение позволит увеличить зазор между контактами свечи, а это сделает её долговечней;
  • данная система зажигания позволяет повысить обороты мотора и его мощность;
  • работа мотора становиться устойчивее, благодаря улучшенному искрообразованию.

В целом контактно транзисторная система зажигания имеет хороший ресурс, долговечна и довольно надёжна, хотя и она не лишена недостатков.

К примеру, зависимость тока низковольтной обмотки катушки от тока базы транзистора, который, в свою очередь, может меняться в зависимости от состояния контактов прерывателя.

Ну что ж, коллеги-автолюбители, в заключение можно сделать вывод, что схема, ставшая героем этой статьи, является шагом вперёд по сравнению со старыми классическими вариантами, но и она далека от того, чтобы именоваться совершенной.

По большому счёту, контактно транзисторная система зажигания принцип работы которой мы попытались объяснить мало чем отличается от простой контактной. То ли дело бесконтактные технологии зажигания, и о них мы поговорим в следующей статье, не пропустите!

Схема и принцип работы контактно-транзисторной системы зажигания


Рис. 1. Электрические схемы контактно-транзисторной системы зажигания: а — принципиальная; б — с транзисторным коммутатором TK102.

На рис. 1, а показана принципиальная схема контактно-транзисторной системы зажигания. Контакты прерывателя S1 включены в цепь базы (Б) транзистора VT, а первичная обмотка L1 катушки зажигания Т1 — в цепь эмиттера (Э) этого транзистора. Наличие транзистора VT значительно облегчает работу контактов прерывателя, так как через них протекает ток управления транзистором (ток базы Iб), а ток первичной обмотки катушки зажигания I1 — через переход эмиттер — коллектор транзистора.

В цепь первичной обмотки включены добавочный резистор Rд шунтируемый контактами S2 в момент пуска двигателя стартером, выключатель зажигания S3 и аккумуляторная батарея GB.

При включении зажигания и замыкании контактов прерывателя S1 потенциал базы транзистора VT будет отрицательным относительно эмиттера, поэтому транзистор откроется и в первичной цепи появится ток I1. В этом случае сопротивление транзистора (переход эмиттер—коллектор) будет минимальным (0,15 Ом).

При размыкании контактов прерывателя S1 ток базы транзистора Iб прерывается, разность потенциалов базы и эмиттера становится равной нулю, транзистор запирается (значительно повышается сопротивление перехода эмиттер—коллектор), сила тока в первичной обмотке катушки зажигания резко убывает, что обеспечивает индуктирование высокого напряжения во вторичной обмотке L2.

В случае запирания транзистора при прекращении тока базы, т. е. при обрыве цепи базы, снижается устойчивость работы транзистора. Для улучшения процесса запирания транзистора в реальных схемах контактно-транзисторных систем зажигания применяют запирание транзистора, при котором на базу транзистора в момент размыкания контактов прерывателя подается положительный по отношению к эмиттеру потенциал. В этом случае получается наибольшая скорость спада силы первичного тока, что способствует увеличению вторичного напряжения в катушке зажигания.

На рис. 1, б приведена электрическая схема контактно-транзисторной системы зажигания с транзисторным коммутатором ТК102, которая предназначена для восьмицилиндровых двигателей.

Схема включает транзисторный коммутатор I (ТК102), катушку зажигания Т1 (Б114), прерыватель S1 и распределитель S4, блок резисторов II (СЭ107), составленный из резисторов Rд1 (0,5 Ом) и Rд2 (0,5 Ом), выключатель добавочного резистора S2. Резистор Rд1 ограничивает максимальную силу тока ток I1 в первичной цепи, а резистор Rд2 выполняет функции добавочного резистора, как в контактной системе зажигания. Катушка зажигания Б114 имеет первичную обмотку L1 из 180 витков провода диаметром 1,25 мм, марки ПЭВ и вторичную L2 из 41 ООО витков провода диаметром 0,06 мм марки ПЭЛ. Сопротивление первичной обмотки 0,38 Ом, вторичной 20 500 Ом. Индуктивность первичной обмотки 3,7 мГн, а вторичной 150—170 Гн. Коэффициент трансформации Кт = w1/w2 = 228. Уменьшение числа витков первичной обмотки и ее индуктивности по сравнению с катушками зажигания контактных систем необходимо для понижения ЭДС самоиндукции в первичной цепи чтобы исключить возможность пробоя силового транзистора коммутатора. Поэтому катушки зажигания контактных и контактно-транзисторных систем зажигания не взаимозаменяемы.

Транзисторный коммутатор включает мощный германиевый транзистор VT3 типа ГТ701А, стабилитрон VD2 (Д817В), диод VD1 (Д226), импульсный трансформатор Т2, конденсаторы C1 (1 мкФ) и С2 (50 мкФ), резистор R1 (27 Ом).

Все элементы транзисторного коммутатора смонтированы в литом алюминиевом корпусе, имеющем ребристую поверхность для увеличения теплоотдачи. Необходимость интенсивного отвода теплоты вызвана применением германиевого транзистора. Чтобы транзистор не перегревался, температура окружающей среды не должна превышать 65°С, поэтому транзисторный коммутатор ТК102 на автомобиле устанавливается в кабине водителя, а не под капотом двигателя.

Система работает следующим образом. При включении выключателя зажигания S3 после замыкания контактов прерывателя S1 транзистор VT3 открывается, так как потенциал его базы (Б) становится ниже потенциала эмиттера (Э), и по первичной обмотке L1 катушки зажигания будет протекать ток I1. Сила тока базы Iб равна 0,8—0,3 А (уменьшаясь при увеличении частоты вращения кулачка валика прерывателя), а сила тока в первичной обмотке 7—8 А.

В момент размыкания контактов прерывателя транзистор VT3 запирается. Ток в первичной цепи резко уменьшается, и во вторичной обмотке L2 катушки зажигания создается высокое напряжение, импульсы которого распределяются по свечам зажигания распределителем S4. Трансформатор Т2 обеспечивает активное запирание транзистора VT3. Первичная обмотка L3 этого трансформатора включена последовательно с контактами прерывателя. При размыкании контактов прерывателя во вторичной обмотке L4 индуктируется ЭДС, обеспечивающая активное запирание транзистора VT3 (потенциал его базы в момент запирания становится выше потенциала эмиттера).

Резистор формирует импульс, ускоряющий запирание транзистора. При наличии резистора (27 Ом) время запирания транзистора составляет около 30 мкс, без него 60 мкс.

Для защиты транзистора при возрастании ЭДС самоиндукции, возникающей в первичной обмотке катушки зажигания (например, при отсоединении провода высокого напряжения от свечи или крышки распределителя во время работы двигателя и при проверке системы зажигания на искру), включен кремниевый стабилитрон VD2. Напряжение стабилизации стабилитрона выбрано таким, что оно вместе с напряжением питания не превышало предельно допустимого напряжения на участке эмиттер—коллектор (свыше 100 В) транзистора VT3.

Диод VD1, включенный встречно стабилитрону, предотвращает шунтирование стабилитроном первичной обмотки.

Конденсатор С2 предназначен для защиты транзистора от случайных перенапряжений в цепи питания схемы (например, при работе без батареи, при неисправности регулятора напряжения, коротком замыкании в обмотках генератора, ухудшении контакта с массой генератора и регулятора). При увеличении скорости запирания транзистора импульсном трансформатором Т2 скорость спада силы тока первичной цепи достаточна для получения необходимого вторичного напряжения, поэтому в контактно-транзисторных системах зажигания конденсатор параллельно контактам прерывателя не включается.

Конденсатор С1 обеспечивает снижение тепловых потерь в транзисторе VT3 в период его переключения.

К преимуществам контактно-транзисторной системы зажигания относятся увеличение в два раза вторичного напряжения, энергии и длительности искрового разряда, повышение срока службы контактов прерывателя, времени наработки свечей между регулировкой зазора в свечах, так как система менее чувствительна к возрастанию искрового промежутка свечи.

Вместе с тем контактно-транзисторная система зажигания не устраняет некоторых недостатков контактных систем: вибраций контактов при большой частоте вращения валика прерывателя, износа подушечки рычажка и граней кулачка прерывателя, что требует систематической проверки и регулировки зазора и угла замкнутого состояния контактов. Последнее особенно неудобно при экранировании распределителя. Поэтому разработаны бесконтактные системы зажигания, где прерывание тока в первичной цепи осуществляется электронным устройством.

транзисторов обещают лучшие системы зажигания

За последние полвека самым слабым звеном между аккумулятором вашего автомобиля и его свечами зажигания были распределительные точки, пара крошечных металлических дисков, которые сталкиваются друг с другом несколько тысяч раз в минуту. Автомобильным инженерам, наконец, пришлось обратиться к быстро меняющейся области электроники, чтобы укрепить это звено. В частности, они обратились к транзисторным системам зажигания, которые обещают более длительный срок службы распределительных устройств и свечей зажигания, повышенную мощность, улучшенную экономию топлива и более быстрые запуски в холодную погоду.

Транзисторные системы зажигания бывают разных размеров, форм и цен. Он доступен как опция, устанавливаемая на заводе, с некоторыми двигателями Chevrolet, Ford, Mercury и Pontiac. Его также может установить механик на Volkswagen, RollsRoyce или что-то среднее между ними. Комплекты для преобразования стандартного зажигания стоят примерно от 25 до 125 долларов.

Стоят ли системы такой цены? Работают ли они так, как рекламируется? Однозначного ответа нет. Но в целом, чем больше миль проехала машина, тем более ценными могут быть транзисторы.

Чтобы узнать, как крошечный транзистор может повлиять на производительность двигателя, вернитесь на минутку к злодеям в этой части, указывает прерыватель распределителя. Система зажигания предназначена для повышения напряжения с 12 вольт от аккумулятора до примерно 25000 вольт на свечах зажигания.

В традиционной установке ток течет от батареи к катушке, которая представляет собой не что иное, как сердечник из мягкого железа, окруженный двумя наборами обмоток, все они содержатся в металлической банке. Первичная обмотка состоит из 200–300 витков относительно тяжелой проволоки, а вторичная обмотка состоит из тысяч витков очень тонкой проволоки.

Электричество, проходящее через первичные обмотки, создает магнитное поле вокруг катушек с проводом и сердечника. Затем ток течет через точки прерывателя и возвращается к батарее, замыкая первичную цепь.

Выключатели действуют как переключатель для включения и выключения первичного тока. Когда точки разделены, первичная цепь разрывается, и магнитное поле в катушке разрушается. Это вызывает скачок высокого напряжения во вторичных обмотках. Вращающийся переключатель внутри крышки распределителя направляет этот электрический заряд на соответствующую свечу зажигания..

У такой конструкции есть один серьезный недостаток. Сила тока в первичной цепи должна быть ограничена, чтобы предотвратить возгорание и точечную коррозию в точках прерывания. В то время как через систему протекает достаточно тока, чтобы обеспечить горячую, толстую искру при нормальных оборотах двигателя, зажигание может выйти из строя на высокой скорости, что приведет к пропускам зажигания.

По мере увеличения оборотов двигателя точки прерывания замыкаются на более короткий период времени. Магнитное поле не успевает набраться до полной напряженности, поэтому напряжение на свече зажигания снижается.В лучшем случае мощность стандартной системы зажигания на высокой скорости незначительна.

Эту проблему можно решить довольно просто, пропустив больше тока и уменьшив время, необходимое для создания магнитного поля. К сожалению, это решение привело бы к проблемам на другом конце диапазона скоростей.

При запуске двигателя, особенно в холодную погоду, он очень медленно вращается. Пункты закрыты на такой длительный период, что сильный электрический ток может привести к чрезмерному нагреву.Это окисляет точки, создавая на них покрытие, которое увеличивает электрическое сопротивление и снижает напряжение. Слишком часто результатом является либо слабая искра, либо ее полное отсутствие.

Транзисторные системы зажигания позволяют пропускать через катушку более сильный ток, не сжигая точки. Вот как они работают.

Транзистор представляет собой электронный переключатель без движущихся частей.

Он использует очень малый ток, чтобы вызвать гораздо больший заряд. В большинстве транзисторных систем зажигания точки прерывания вставлены в цепь управления, а катушка подключена к цепи питания.

Когда точки закрываются, через цепь управления проходит ток менее одного ампера, включающий силовую цепь и пропускающий через катушку 5-10 ампер или более.

Когда точки открываются, цепь управления разрывается, поэтому цепь питания отключается, и магнитное поле внутри катушки разрушается. Всплеск высокого напряжения индуцируется во вторичных обмотках и направляется на свечи зажигания таким же образом, как и в обычной системе.

Поскольку токи несут лишь долю ампера, вместо 3–4 ампер, протекающих через стандартную систему зажигания, горение и точечная коррозия практически исключаются.Их жизнь увеличена с обычных 10 000 до 15 000 миль в несколько раз. Операторы автопарков сообщили о пробеге 100 000 миль только по одному набору точек.

Двигатель запускается быстрее в холодную погоду, потому что острия больше не горят и не рвутся. Увеличение количества тока, проходящего через катушку, обеспечивает полное нарастание магнитного поля даже на высокой скорости. Свечи зажигания не нужно закрывать или заменять так часто, поскольку высокое напряжение, создаваемое в транзисторной системе, позволяет им зажигать, несмотря на более широкие искровые промежутки, вызванные изношенными электродами.

Труднее обосновать утверждения об улучшении экономии топлива. Некоторые автовладельцы сообщают о чудесных скачках расхода бензина. В таких случаях логическое объяснение состоит в том, что до переоборудования в обычном зажигании автомобиля что-то было не так.

Поставщики транзисторных блоков рекомендуют устанавливать новые точки, очищать или заменять заглушки и проверять всю проводку и соединения во время переключения. Если бы такое внимание было уделено стандартному зажиганию автомобиля, результаты были бы столь же впечатляющими.Нет никаких технических причин, по которым транзисторная система даст больше пробега, чем идеально настроенная обычная установка.

Однако в течение длительного периода времени транзисторное зажигание может сэкономить значительное количество топлива, поскольку оно остается на пике эффективности без частых настроек.

Все типы транзисторного зажигания имеют определенные преимущества, но стоят ли они дополнительных затрат?

Среднестатистический владелец автомобиля, который проезжает около 10 000 миль в год, вряд ли может рассчитывать сэкономить достаточно денег на обслуживании и топливе, чтобы заплатить за транзисторную систему зажигания.Однако, если он хочет избежать неудобств, связанных с частыми настройками, но при этом поддерживать работу своего двигателя с максимальной эффективностью, их стоит изучить.

Работа и схема транзисторной системы зажигания

Транзисторная система зажигания — это схема зажигания, которая сокращает использование механических устройств. Целью транзисторной системы зажигания является повышение эффективности работы системы зажигания путем замены движущихся частей, таких как точки прерывателя.

Основным принципом транзисторных систем зажигания является использование транзисторов в качестве электронных ключей вместо точек прерывания.

Тем из вас, кто уже знаком с системами зажигания транспортных средств, следует знать точку прерывания или платину.

Выключатель — это устройство, используемое для прерывания тока первичной обмотки в катушке зажигания, так что может возникнуть электромагнитная индукция. Эта точка размыкания работает механически за счет использования кулачка, который может растягивать зазор точки размыкания.

Однако использование прерывателей считается менее эффективным, потому что трущиеся компоненты разрушаются, что может повлиять на общую производительность системы зажигания.Кроме того, когда точка прерывателя растягивается, в точке прерывания часто возникает искра, так что мощность индукции катушки зажигания снижается.

Для этого есть регулировка зазора точки прерывателя.

Используя транзисторы, можно решить две проблемы, указанные выше. Так что нам не нужно устанавливать разрыв.

Почему вместо выключателей используются транзисторы?

Как мы уже говорили в начале, транзистор выполняет функцию электронного переключателя.На транзисторе есть три ножки: база, коллектор и эмиттер.

Коллектор на входе, эмиттер на выходе. База как контроллер, если на базе течет электрический ток (низкое напряжение), то ток на входе (коллекторе) будет течь на выход (эмиттер).

Однако, когда электрический ток в базе прекращается, коллектор снова отключается эмиттером.

Итак, в заключение, транзистор может использоваться в системе зажигания из-за его характеристик, которые позволяют быстро отключать и соединять линии.

Чтобы контролировать работу транзистора, нам понадобится один дополнительный датчик, катушка захвата. Этот датчик будет посылать низковольтный ток с паузами в зависимости от времени зажигания у основания. Так что производительность транзистора будет соответствовать частоте вращения двигателя.

Как работает катушка?

Подбирающая катушка состоит из трех частей: ротора с кулачком, постоянного магнита и катушки.


Три компонента размещены, как показано, подтверждается, что постоянный магнит излучает магнитное поле, которое ударяет по ротору.В то время как ротор сделан из металла, который может притягиваться магнитами.

Кулачок на роторе служит для сокращения зазора между ротором с постоянным магнитом.

Этот изменяющийся зазор вызывает зигзагообразный ток в измерительной катушке. Когда кулачок параллелен постоянному магниту, есть электрический ток, но когда кулачок смещается, ток исчезает. Это падение напряжения используется в качестве тайминга для отключения первичного тока в катушке зажигания.

Схема транзисторной системы зажигания

  • Аккумулятор
  • Замок зажигания
  • Вход катушки зажигания
  • Выход первичной обмотки
  • Выход вторичной обмотки
  • Транзистор
  • Подбирающая катушка
  • дистрибьютор
  • Свеча зажигания

Рабочий процесс трансизоризованной системы зажигания

Когда двигатель запускается, коленчатый вал будет вращать приемную катушку, так что приемная катушка генерирует ток низкого напряжения.Это приведет к тому, что база транзистора станет активной, так что коллектор будет подключен к эмиттеру.

В катушке зажигания ток от аккумулятора будет течь по обеим катушкам в катушке зажигания.

Как объяснено выше, считывающая катушка будет генерировать зигзагообразный электрический ток. Затем ток от приемной катушки передается на основание транзистора.

Индукция в катушке зажигания возникает, когда на опорную ногу не подается электрический ток, но она длится мгновение, поэтому в одном цикле 4-цилиндрового двигателя может происходить четырехкратный процесс индукции.

Индукция создает высокое напряжение, которое распределяется по распределителю и распределяется по каждой свече зажигания в соответствии с порядком зажигания.

Integrated Publishing — Ваш источник военных спецификаций и образовательных публикаций

Integrated Publishing — Ваш источник военных спецификаций и образовательных публикаций

Администрация — Военнослужащие. Навыки, процедуры, обязанности и т. Д.

Продвижение — Военное продвижение по службе книги и др.

Аэрограф / Метеорология — Метеорология основы, физика атмосферы, атмосферные явления и др.
Руководство по аэрографии и метеорологии ВМФ

Автомобили / Механика — Руководства по обслуживанию автомобилей, механика дизельных и бензиновых двигателей, руководства по автомобильным запчастям, руководства по запчастям дизельных двигателей, руководства по запчастям для бензиновых двигателей и т. Д.
Автомобильные аксессуары | Перевозчик, Персонал | Дизельные генераторы | Механика двигателя | Фильтры | Пожарные машины и оборудование | Топливные насосы и хранилище | Газотурбинные генераторы | Генераторы | Обогреватели | HMMWV (Хаммер / Хаммер) | и т.п…

Авиация — Принципы полета, авиастроение, авиационная техника, авиационные силовые установки, руководства по авиационным деталям, руководства по деталям самолетов и т. д.
Руководства по авиации ВМФ | Авиационные аксессуары | Общее техническое обслуживание авиации | Руководства по эксплуатации вертолетов AH-Apache | Руководства по эксплуатации вертолетов серии CH | Руководства по эксплуатации вертолетов Chinook | и т.д …

Боевой — Служебная винтовка, пистолет меткая стрельба, боевые маневры, органическое вспомогательное оружие и т. д.
Химико-биологические, маски и оборудование | Одежда и индивидуальное снаряжение | Инженерная машина | и т.д …

Строительство — Техническое администрирование, планирование, оценка, календарное планирование, планирование проекта, бетон, кладка, тяжелые строительство и др.
Руководства по строительству военно-морского флота | Агрегат | Асфальт | Битуминозный распределитель кузова | Мосты | Ведро, раскладушка | Бульдозеры | Компрессоры | Обработчик контейнеров | Дробилка | Самосвалы | Земляные двигатели | Экскаваторы | и т.п…

Дайвинг — Руководства по дайвингу и утилизации разного оборудования.

Чертежник — Основы, приемы, составление проекций, эскизов и др.

Электроника — Руководства по обслуживанию электроники для базового ремонта и основ. Руководства по компьютерным компонентам, руководства по электронным компонентам, руководства по электрическим компонентам и т. Д.
Кондиционер | Усилители | Антенны и мачты | Аудио | Аккумуляторы | Компьютерное оборудование | Электротехника (NEETS) (самая популярная) | Техник по электронике | Электрооборудование | Электронное общее испытательное оборудование | Электронные счетчики | и т.п…

Инженерное дело — Основы и приемы черчения, черчение проекций и эскизов, деревянное и легкое каркасное строительство и т. Д.
Военно-морское дело | Программа исследования прибрежных заливных отверстий в армии | так далее…

Еда и кулинария — Руководства по рецептам и оборудованию для приготовления пищи.

Логистика — Логистические данные для миллионов различных деталей.

Математика — Арифметика, элементарная алгебра, предварительное исчисление, введение в вероятность и т. д.

Медицинские книги — Анатомия, физиология, пациент уход, оборудование для оказания первой помощи, аптека, токсикология и др.
Медицинские руководства военно-морского флота | Агентство регистрации токсичных веществ и заболеваний

MIL-SPEC — Государственные стандарты MIL и другие сопутствующие материалы

Музыка — мажор и минор масштабные действия, диатонические и недиатонические мелодии, ритм биения, пр.

Ядерные основы — Теории ядерной энергии, химия, физика и др.
Справочники DOE

Фотография и журналистика — Теория света, оптические принципы, светочувствительные материалы, фотографические фильтры, копия редактирование, написание статей и т. д.
Руководства по фотографии и журналистике военно-морского флота | Армейская фотография Полиграфия и пособия по журналистике

Религия — Основные религии мира, функции поддержки поклонения, венчания в часовне и т. д.

Электронное зажигание (автомобиль)

16.3.

Электронное зажигание

Обычная индукционная система зажигания
могла не удовлетворять повышенным требованиям к системам зажигания с 1960 года. Введение новых критериев выбросов выхлопных газов в 1965 году и потребность в улучшенной экономии топлива в 1975 году вынудили использовать электронику в системе зажигания для удовлетворения законодательные требования к транспортному средству. Законодательные требования и требования водителей по улучшению характеристик двигателя, добавленные к маркетинговой стратегии производителя по предложению более совершенного автомобиля, являются стимулом для электронных инноваций в этой области.

Недостатки традиционной системы.

Основной принцип обычной индукционной системы зажигания не менялся в течение нескольких десятилетий, пока она не стала неспособной удовлетворить потребности в отношении выходной энергии и рабочих характеристик контактного выключателя. В отличие от мощности воспламенения 10-15 кВ, использовавшейся ранее, современному высокоскоростному двигателю требуется мощность 15-30 кВ для зажигания более слабых смесей, необходимых для обеспечения большей экономичности и выбросов. Чтобы удовлетворить это требование, часто используется малоиндуктивная катушка.Из-за гораздо более высокого тока, протекающего в этой катушке, эрозионный износ прерывателя контактов недопустим. Одной этой причины достаточно, чтобы заменить механический выключатель электронной системой. Однако другие недостатки прерывателя:
(i) Зажигание отличается от указанного значения из-за изменения скорости из-за (а) износа пятки контакта, кулачка и шпинделя, (б) эрозии контактных поверхностей, и (c) отскок контакта и неспособность пятки следовать за кулачком на высокой скорости.(«) Неблагоприятное влияние на время выдержки в результате изменения угла выдержки. (Привет) Частое обслуживание.
Следующие описания охватывают основные принципы электронных систем зажигания, используемых в период от начала перехода от механического прерывателя к самому последнему.
16.3.1.


Системы срабатывания прерывателя

Контакты с транзисторным управлением (TA.C.)

Эта система включает в себя обычные механические прерыватели, которые приводят в действие транзистор для управления током в первичной цепи.Поскольку используется очень небольшой ток прерывателя, эрозия контактов
устраняется, так что сохраняется хороший выходной сигнал катушки. Также он обеспечивает точную синхронизацию зажигания в течение гораздо более длительного периода. Когда с этой системой используются катушка с низкой индуктивностью и балластный резистор, также исключается чрезмерное искрение контактов, вызванное высоким первичным током.
Основной принцип индуктивной полупроводниковой системы зажигания, запускаемой выключателем, проиллюстрирован на рис. 16.25, где транзистор работает как контактный выключатель, действуя как

Рис.16.25. T.A.C. система зажигания.
выключатель питания для включения и отключения первичной цепи. Транзистор работает как реле, которое управляется током, подаваемым кулачковым управляющим переключателем и, таким образом, называется срабатывающим выключателем.
Небольшой управляющий ток проходит через базу-эмиттер транзистора, когда прерыватель контактов находится в замкнутом состоянии. Это включает цепь коллектор-эмиттер транзистора и позволяет полному току протекать через первичную цепь для возбуждения катушки.На этом этапе протекание тока в цепи управления и базе транзистора регулируется суммарными и относительными значениями резисторов R1 и R2. Эти значения сопротивления выбраны для обеспечения управляющего тока около 0,3 А, что достаточно для обеспечения самоочищающегося действия контактных поверхностей без перегрузки выключателя.
Когда требуется искра, кулачок размыкает контакт для прерывания цепи базы, что вызывает отключение транзистора. При внезапном размыкании первичной цепи во вторичной возникает высокое напряжение, которое вызывает искру на свече.Эта последовательность повторяется, чтобы обеспечить необходимое количество искр на каждый оборот кулачка (рис. 16.26). T.A.C. Такое расположение обеспечивает более быстрый разрыв цепи по сравнению с нетранзисторной системой и, как следствие, более быстрое схлопывание магнитного потока. Следовательно, получается высокое вторичное напряжение HT. Компоненты этой системы зажигания аналогичны компонентам, используемым в обычной системе, за исключением дополнительного модуля управления, содержащего силовой транзистор.
Требуются дополнительные усовершенствования базовой схемы (рис. 16.25) для защиты полупроводников от перегрузки из-за самоиндукции и минимизации радиопомех. Также эта схема не подходит для использования с обычным автоматическим выключателем с фиксированным заземляющим контактом. Для решения этой проблемы используется дополнительный транзистор (рис. 16.27). В этой схеме транзистор Т \ включен последовательно с выключателем в цепи управления и действует как драйвер для силового транзистора Т%.Подобно предыдущим системам, резисторы ограничивают ток базы в Т \ и Т2, а также ток размыкателя контактов.

Рис. 16.26. Контроль первичного тока (4-цилиндровый двигатель).

Рис. 16.27. TA.C. с драйвером и силовыми транзисторами.
В замкнутом положении выключателя в цепи управления течет небольшой ток. Хотя большая часть этого тока проходит через Ri, очень небольшая часть проходит через базу T1 для включения транзистора.Этот чувствительный транзистор затем подает ток на базу силового транзистора T2, чтобы включить его. Следовательно, коллектор-эмиттер T2 проводит и замыкает первичную цепь, позволяя нарастать магнитный поток в катушке. Во время искры размыкается контактный выключатель, который прерывает ток в цепи управления и базовой цепи Т \. При выключенном T \ ток отсекается от базы T%, тем самым разрывая первичную цепь
. Силовой транзистор T
Рис. 16.28. Усилитель Дарлингтона. Транзистор
Т2 в системе, показанной на рис. 16.27, значительно повышает надежность системы. Схема усилителя Дарлингтона (рис. 16.28) с двумя транзисторами образует интегральную схему (IC) с тремя выводами, E, B и C. Когда небольшой ток подается на базу T \ t, он включается и вызывает пропорциональную больший ток течет к базе T2.Это, в свою очередь, включает T%, что позволяет основному току течь через T2 от коллектора к эмиттеру.
16.3.2.

Системы без выключателя

Электронный выключатель вместо механического выключателя дает следующие преимущества.
(i) Точная синхронизация зажигания доступна во всем диапазоне рабочих скоростей.
(ii) Отсутствие эрозии и износа из-за отсутствия каких-либо контактов. Эта система не требует обслуживания в отношении постоянной замены, регулировки выдержки и настройки момента зажигания.Также время остается правильным в течение очень длительного периода.
(Hi) Время нарастания катушки зажигания можно изменять, изменяя период выдержки в соответствии с условиями. Это обеспечивает более высокий выход энергии из катушки на высокой скорости, но не имеет риска высокотемпературной эрозии на низкой скорости.
(iv) Отсутствует отскок контактов на высокой скорости, и, следовательно, исключается возможность потери первичного тока катушки.
Основная схема без прерывателя электронной системы зажигания показана на рис.16.29. Блок распределителя аналогичен обычному блоку, за исключением того, что электронный переключатель, называемый генератором импульсов, заменяет прерыватель контактов. Генератор импульсов генерирует электрический импульс, чтобы сообщить, когда требуется искра. Твердотельный модуль управления создает и прерывает в электронном виде первичный ток для катушки зажигания, усиливая и обрабатывая сигналы, полученные от генератора импульсов. Кроме того, модуль управления определяет частоту вращения двигателя по частоте импульсов и, соответственно, изменяет время задержки в соответствии с частотой вращения двигателя.

Генератор импульсов.

Три основных типа генераторов импульсов: (i) индуктивный (ii) генератор Холла и (Hi) оптический.

Генератор индуктивных импульсов.

Одна из конструкций этого генератора показана на рис. 16.30, где постоянный магнит и индуктивная обмотка прикреплены к опорной плите. Вал распределителя приводит в движение железное спусковое колесо. Количество зубцов на спусковом колесе или отражателе соответствует количеству цилиндров двигателя.Если зуб приближается к сердечнику статора из мягкого железа, магнитный путь завершается, вызывая поток потока. Когда колесо спускового механизма
перемещается из показанного положения, воздушный зазор между сердечником статора и зубцом спускового механизма увеличивается, из-за чего магнитное сопротивление или магнитное сопротивление также увеличивается, вызывая уменьшение магнитного потока в магнитной цепи.
Изменение магнитного потока создает ЭДС в индуктивной обмотке, установленной вокруг стального сердечника статора. Максимальное напряжение индуцируется, когда скорость изменения магнитного потока является наибольшей, что происходит непосредственно перед и сразу после точки, где зубец триггера находится ближе всего к сердечнику статора.На рисунке 16.31 показано изменение напряжения из-за перемещения спускового колеса на один оборот. Положительный и отрицательный пик устанавливаются из-за нарастания потока и спада потока соответственно. В положении триггера с наибольшим потоком ЭДС в обмотку не наводится. Средняя точка изменения между положительным и отрицательным импульсами используется, чтобы сигнализировать о необходимости наличия искры.
Поскольку скорость вращения колеса триггера определяет скорость изменения магнитного потока, выходной сигнал генератора импульсов изменяется примерно от 0.От 5 В до 100 В. Это изменение напряжения в сочетании с изменением частоты используется модулем управления в качестве сигналов считывания для различных целей, кроме запуска искры. Поскольку сопротивление магнитной цепи зависит от размера воздушного зазора, выходное напряжение также зависит от размера воздушного зазора. Из-за магнитного эффекта для проверки воздушного зазора используется немагнитный щуп, например, пластмассовый.
Генератор импульсов Bosch работает по аналогичному принципу, но имеет другую конструкцию (рис.16.32). Он состоит из круглого дискового магнита с двумя плоскими поверхностями, действующими как полюса N и S. Круглый полюсный наконечник из мягкого железа помещен на верхнюю поверхность магнита, пальцы которого загнуты вверх для образования четырех полюсов статора в случае 4-цилиндрового двигателя. Подобное количество зубцов сформировано на спусковом колесе, чтобы создать путь, по которому поток проходит к несущей пластине, поддерживающей магнит. Индуктивная катушка намотана концентрично со шпинделем

и Рис. 16.29. Компоновка безбарьерной электронной установки

. 16.30. Генератор индуктивных импульсов.

Рис. 16.31. Выход напряжения от генератора импульсов.
весь узел образует симметричный узел, устойчивый к вибрации и износу шпинделя.

Рис. 16.32. Генератор импульсов (Bosch).
Некоторые производители не используют обычные распределители. Citroen использует единственную металлическую пробку, называемую мишенью, закрепленную болтами на периферии маховика, и датчик цели, установленный на картере сцепления (рис.16.33). Датчик цели использует индуктивную обмотку, размещенную вокруг магнитопровода таким образом, чтобы сердечник находился на расстоянии 1 ± 0,5 мм от пули, когда нет. 1 поршень находится прямо перед ВМТ. Выходное напряжение аналогично другим генераторам импульсов, за исключением того, что модуль управления (компьютер) в этом случае получает только один импульс сигнала на оборот. В целях управления Citroen включает второй датчик цели, конструкция которого идентична другому датчику, и расположенный рядом с зубьями стартового кольца на маховике.Этот датчик сигнализирует прохождение каждого зубца маховика, чтобы компьютер мог подсчитать зубцы и определить частоту вращения двигателя, чтобы установить опережение зажигания в соответствии с условиями.

Генератор импульсов Холла.

Принцип действия генератора импульсов этого типа основан на эффекте Холла. Когда микросхема, сделанная из полупроводникового материала, пропускает по себе ток сигнала и подвергается воздействию магнитного поля, между краями кристалла под углом 90 градусов к пути прохождения сигнального тока генерируется небольшое напряжение, называемое напряжением Холла.Напряжение Холла изменяется из-за изменения напряженности магнитного поля, и этот эффект можно использовать в качестве переключающего устройства для срабатывания точки зажигания путем изменения тока Холла.
Принцип работы генератора Холла показан на рис. 16.34. Полупроводниковый кристалл, удерживаемый в керамической опоре, имеет четыре электрических соединения. Ток входного сигнала подается на AB, а выходной ток Холла поступает от CD. Напротив чипа расположен постоянный магнит, разделенный воздушным зазором.Переключение осуществляется лопатками на спусковом колесе, которое приводится в движение шпинделем распределителя. Генератор Холла может генерировать искру при неподвижном двигателе, что невозможно при использовании индуктивного генератора импульсов. При обращении с этой системой следует соблюдать осторожность, поскольку существует риск поражения электрическим током.

Рис. 16.33. Генератор импульсов (Citroen)
Когда металлическая пластина выходит из воздушного зазора, микросхема подвергается воздействию магнитного потока, и на CD подается напряжение Холла.Теперь переключатель включен, и в цепи CD течет ток. Перемещение лопасти в воздушный зазор между магнитом и блоками микросхемы отводит магнитный поток от микросхемы, что приводит к падению напряжения Холла до нуля. Если лопатка находится в этом положении блокировки потока, переключатель выключен, и в цепи CD не течет холловский ток. Когда триггерная лопасть генератора импульсов проходит через воздушный зазор, модуль управления
, используемый с этой системой, включает первичный ток для катушки зажигания.Следовательно, угловое расстояние между лопатками определяет период выдержки. Если пространство между лопатками уменьшается, время закрытия первого контура увеличивается. Когда переключатель Холла замкнут, то есть когда лопатка покидает воздушный зазор, закрытый период заканчивается и возникает искра.
Схема генератора Холла, используемого в распределителе Bosch, показана на рис. 16.35. Полупроводниковый чип в этой модели используется в интегральной схеме, которая также выполняет функции формирования импульсов, усиления импульсов и стабилизации напряжения.Количество лопаток на спусковом колесе равно количеству цилиндров двигателя. В этой конструкции спусковое колесо и лопасти ротора составляют одно целое. Трехжильный кабель соединяет генератор Холла с модулем управления, а его выводы образуют вход сигнала, выход Холла и землю.

Генератор оптических импульсов.

Этот тип работает по обнаружению точки искры с помощью заслонки для прерывания светового луча, проецируемого светоизлучающим диодом (LED) на фототранзистор.Этот фотоэлектрический метод запуска был разработан для системы Lumenition.
Принцип действия триггера этого типа показан на рис. 16.36. Невидимый свет с частотой, близкой к инфракрасной, излучается полупроводниковым диодом из арсенида галлия, а его луч фокусируется полусферической линзой до ширины около 1,25 мм в точке прерывания. К шпинделю распределителя крепится стальной измельчитель с лезвиями, соответствующими количеству цилиндров и периоду выдержки. Это контролирует периоды времени, когда свет падает на кремниевый фототранзисторный детектор.Этот транзистор образует первую часть усилителя Дарлингтона, который формирует сигнал и включает в себя средство предотвращения изменения синхронизации из-за изменения линейного напряжения или из-за накопления грязи на линзе. Сигнал, посылаемый генератором на модуль управления, включает ток в первичной катушке. Следовательно, когда прерыватель разрезает лучи, первичная цепь разрывается, и на свече возникает искра.

Модули управления.


Фиг.16.34. Эффект Холла.

Рис. 16.35. Генератор Холла (Bosch).

Рис. 16.36. Генератор оптических импульсов.
Модуль управления или триггерный блок переключает ток первичной обмотки катушки зажигания в соответствии с сигналом, полученным от генератора импульсов. Используются как индуктивные системы накопления
, так и системы управления емкостным разрядом. Эти два разных типа управления образуют две разные электронные системы зажигания.
16.3.3.

Индуктивное зажигание с накоплением

Первичная цепь этой системы аналогична системе Кеттеринга, за исключением того, что надежный силовой транзистор, установленный в модуле управления, замыкает и размыкает первичную цепь вместо контактного выключателя. Типичное управление выполняет четыре функции, такие как формирование импульса, управление периодом задержки, стабилизация напряжения и первичное переключение (рис. 16.37) в четырех полупроводниковых каскадах.

Рис.16.37. Модуль управления индуктивным накоплением.

Формирование импульса.

Сплошная линия на рис. 16.38 представляет выходное напряжение от генератора импульсов индуктивного типа, подключенного к схеме модуля управления. Полная отрицательная волна получается только при испытании генератора на разрыв цепи. После того, как сигнал переменного тока подается на каскад схемы запуска, импульс принимает прямоугольную форму постоянного тока (рис. 16.38). Ширина прямоугольного импульса зависит от длительности выходного импульса генератора.Однако высота прямоугольника или выходной ток триггерных цепей не зависят от скорости двигателя.

Рис. 16.38. Формирование импульса.

Контроль периода выдержки и стабилизация напряжения.

Период ожидания на этом этапе обычно изменяется путем изменения начала периода ожидания. Таким образом, вторичный выход уменьшается при уменьшении периода выдержки. Эта функция управления используется для управления периодом времени, в течение которого ток проходит через первичную обмотку катушки в соответствии с частотой вращения двигателя.
Напряжение, подаваемое на эту цепь резистора-конденсатора (RC), должно оставаться постоянным, независимо от изменения напряжения питания модуля управления из-за изменений мощности зарядки и нагрузок потребителей. Это достигается за счет секции стабилизации напряжения модуля.

Первичное переключение.

Ток в первичной цепи обычно переключается усилителем Дарлингтона. Импульсные сигналы, полученные от каскада управления периодом выдержки, передаются на транзистор управления, действующий как усилитель управляющего тока.В нужное время ток от драйвера включается или выключается для управления мощным силовым транзистором выходного каскада Дарлингтона.

Обработка импульсов.

Последовательность событий от момента получения сигнала от исходного генератора импульсов до момента искры в цилиндре показана на рис. 16.39. A

Рис. 16.39. Импульсная обработка. Электронно-лучевой осциллограф
(CRO), когда он подключен к выходу катушки зажигания, составляющей часть электронной системы зажигания, дает изображение, показываемое вторичными выходными шаблонами.Вертикальная и горизонтальная оси шаблона CRO представляют напряжение и время соответственно. Основные характеристики одного вторичного разряда показаны на рис. 16.40.
Если первичная цепь разорвана, вторичное напряжение увеличивается до тех пор, пока не возникнет искра. Когда это происходит, напряжение, необходимое для поддержания искры, падает до значения, которое затем поддерживается до тех пор, пока выходная энергия не станет достаточной для поддержания процесса искры. В этот момент вторичное напряжение немного повышается, прежде чем упасть, и колеблется в два или три раза, поскольку оставшаяся энергия рассеивается в катушке.
Управление вторичным выходом. За исключением изменений, вызванных механическими дефектами, система срабатывания прерывателя имеет постоянную задержку во всем диапазоне скоростей. В результате на высокой скорости период ожидания слишком короткий, из-за чего вторичный выход плохой из-за сравнительно низкого первичного тока. Однако катушка с низкой индуктивностью улучшает выходную мощность в верхнем диапазоне скоростей, но вызывает эрозионный износ в нижнем диапазоне скоростей. Использование системы постоянного энергопотребления решает эту проблему. Эта энергетическая система включает в себя катушку с высокой выходной мощностью и управляется электроникой для изменения периода выдержки, подходящего для всех скоростей.На низкой скорости процент задержки остается относительно небольшим, который постепенно увеличивается с увеличением скорости.

Как показано на рис. 16.40, задержка начинается в точке (1) и заканчивается в точке (2) на низких скоростях. С увеличением оборотов двигателя начало периода ожидания (то есть точка, в которой начинается ток

рис. 16.40. Задержка относительно вторичного напряжения.
течет в первичной обмотке) постепенно смещается в сторону крайнего предела. (3). Любое увеличение времени задержки после точки (3) снижает продолжительность искры, поскольку этот предел представляет собой конец периода искрового разряда.
Изменение процентной задержки в зависимости от частоты вращения двигателя показано на рис. 16.41. На холостом ходу процент задержки устанавливается большим, чтобы дать искру высокой энергии для контроля выбросов выхлопных газов. Однако между холостым ходом и 4000 об / мин увеличение процента задержки предотвращает снижение накопленной энергии. Следовательно, это обеспечивает почти постоянное вторичное напряжение вплоть до максимального значения системы, которое, как считается, составляет около 15000 искр / мин.

ИНТЕНСИВНОСТЬ ИСКРЫ / МИН, 4 ЦИЛИНДРА
Рис.16.41. Доработка выдержки в соответствии с оборотами двигателя.
Когда система встроена в 6- и 8-цилиндровые двигатели, возникает необходимость уменьшить процентное значение задержки на скоростях выше 5000 об / мин, в противном случае начало задержки произойдет до окончания периода искрового разряда. Эта проблема решается с помощью транзистора в системе управления для включения первичного тока в заданное время после возникновения искры. Продолжительности 0,4 миллисекунды обычно достаточно для удовлетворения большинства требований сгорания.На рисунке 16.42 показан выходной сигнал, выдаваемый системой постоянной энергии с использованием управления углом выдержки.

Цепь модуля управления.

На рисунке 16.43 представлена ​​упрощенная схема модуля управления с указанием четырех основных секций A, B, C и D, обсуждаемых ниже.

Рис. 16.42. Выход из системы постоянной энергии.

Рис. 16.43. Схема модуля управления (упрощенная).

Стабилизация напряжения (А).

Использование стабилитрона (ZD) обеспечивает подачу постоянного напряжения на управляющие секции B и C и не зависит от колебаний напряжения, возникающих в других цепях транспортного средства.Падение напряжения на диоде постоянно, и эта функция используется для обеспечения регулируемого напряжения для управления схемой управления.

Формирование импульса (B).

В этом разделе два транзистора, T1 и T2, образуют устройство, называемое триггером Шмитта, который является обычным методом, используемым в аналого-цифровом преобразователе для формирования прямоугольного импульса при преобразовании аналогового сигнала в цифровой сигнал. Транзистор Ti включается, когда импульс, генерируемый внешним триггером, противодействует току, протекающему от батареи к триггеру через диод D.Это заставляет ток течь через базу-эмиттер T \, который включает транзистор и отклоняет ток от базы T%. Действие триггера Шмитта приводит к тому, что T2 выключается, когда T \ включен, и наоборот. Напряжение во время переключения регулируется пороговым напряжением, необходимым для включения Т \. Переключение Ti происходит при очень низком пороговом напряжении, поэтому для практических целей считается, что переключение происходит, когда триггерный потенциал изменяется с положительного на отрицательный.

Контроль выдержки (С).

Первичный ток в катушке протекает, когда включен pnp-транзистор T \, который управляется T3. Переключение T3 контролируется током, подаваемым через i? 5, и состоянием заряда конденсатора C. Во время зарядки конденсатора током от R5 ток не проходит на базу T3, поэтому T3 переключается. -выключенный. Как только конденсатор полностью заряжен, ток проходит к базе T3 и включает его, чтобы начать период выдержки (т.е.е. для инициирования протекания тока в первичной обмотке катушки). Время, необходимое для зарядки конденсатора, определяет период выдержки. Постоянная времени RC в этом случае определяется величиной разряда конденсатора до получения заряда от R5.
При низких оборотах двигателя транзистор Т2 включен на сравнительно долгое время. Это позволяет обкладке конденсатора, смежной с T2, передавать на землю заряд, который она получила от Ra, когда T2 был выключен. На этой низкой скорости конденсатора достаточно времени, чтобы полностью разрядиться до точки, где потенциал пластины становится подобным заземлению.Это заставляет конденсатор притягивать большой заряд от R5, когда транзистор T2 выключается. Поскольку время, необходимое для обеспечения этого заряда, велико, точка включения T3 задерживается, и в результате возникает короткий период ожидания.
На высокой скорости T2 включается на короткое время, тем самым позволяя только частичный разряд конденсатора. Следовательно, время, необходимое для зарядки конденсатора, короче, и задержка начинается в более ранней точке, обеспечивая более длительный период. Прерывание первичной обмотки происходит при включении Т2.Это продиктовано триггерным сигналом, из-за которого конец периода задержки всегда наступает в одно и то же время. В момент включения T2 конденсатор начинает разряжаться, что приводит к отключению T3 и возникновению искры.

Выход Дарлингтона (Д).

Пара Дарлингтона, обычная матрица силовых транзисторов, используется для коммутации больших токов. В паре используются два надежных транзистора, T5 и Tq, которые встроены в металлический корпус с тремя выводами — базой, эмиттером и коллектором.
Если напряжение прямого смещения приложено к цепи база-эмиттер T5, транзистор включается. Это увеличивает напряжение, приложенное к базе T &, и если оно превышает пороговое значение, T% также включается. Когда t5 и Tq включены, первичная обмотка находится под напряжением. Если T5 отключается отключением T4, первичная цепь разрывается и образуется искра. Чтобы сделать систему пригодной для транспортного средства, в схеме
, показанной на рис.16.43, которые предотвращают повреждение полупроводников из-за высокого переходного напряжения, а также уменьшают радиопомехи.

Альтернативный метод контроля выдержки.

Другой метод управления углом задержки заключается в наложении опорного напряжения на выходной сигнал, подаваемый генератором импульсов (рис. 16.44A). В этой схеме срабатывание искры в конце периода задержки происходит в точке переключения между положительной и отрицательной волнами, но начало периода задержки сигнализируется, когда импульсное напряжение превышает опорное напряжение.Опорное напряжение 1,5 В действует на ступень управления выдержкой на низкой скорости, которая повышается до 5 В на высокой скорости. Более сильный импульсный сигнал в сочетании с более высоким опорным напряжением обеспечивает более длительный период задержки (рис. 16.44B). Когда двигатель неподвижен, импульсный сигнал не генерируется, поэтому через катушку не может протекать ток, и, следовательно, управление выдержкой не может работать.

Рис. 16.44. Использование опорного напряжения для управления задержкой.

Рис. 16.45. Распределитель со встроенным усилителем.

Ford Escort Электронное зажигание. В двигателях

Ford 1300 и 1600 используются электронные системы зажигания с 1981 года. Модуль управления установлен на стороне распределителя в сборе. Питание модуля управления осуществляется через четырехконтактный мультиштекер, встроенный в корпус распределителя. Внешние кабели LT от распределителя ограничиваются двумя выводами, соединяющимися с катушкой и замком зажигания (рис. 16.45). Тахометр, подключенный к ’-’ стороне катушки, использует LT-импульсы заряда катушки для измерения скорости двигателя.
После установки распределитель точно настроен для двигателя, и, поскольку он имеет конструкцию без прерывателя, дальнейшая проверка синхронизации во время обслуживания автомобиля не требуется. Поскольку угол задержки регулируется модулем управления, проверка или регулировка не требуется.

Электронное зажигание Honda.

Эта система, установленная на Accord, содержит генератор импульсов индуктивного типа и модуль управления, называемый воспламенителем (рис. 16.46). Коммутация первичного тока катушки осуществляется двумя транзисторами, а именно транзистором Ti и силовыми транзисторами T%. В генераторе импульсов используется реактор, имеющий форму зуба пилы для создания формы волны переменного тока.

Рис. 16.46. Электронная схема зажигания (Honda).
Если ключ зажигания замкнут при неподвижном двигателе, R2 подает напряжение на базу T \. Это напряжение выше триггерного напряжения, и, поскольку сопротивление обмотки генератора импульсов превышает 700 Ом, транзистор Т \ включен. На этом этапе T \ проводит ток «a» на землю, а не на базу T2. Следовательно, Т2 отключается и первичная цепь разомкнута.
Во время проворачивания двигателя движением рефлектора возникает эрнф.Если полярность ЭДС генератора на конце T \ обмотки отрицательная, резистор R2 подает ток на землю через обмотку и диод D \. На этом этапе напряжение, приложенное к базе T \, меньше напряжения триггера, и, следовательно, T \ выключен. Ток ‘a’ от R3 теперь отводится от T \ к базе T2, поэтому T2 включен, и ток проходит через первичную обмотку. Если эл.
Стабилитроны ZD \ и ZD2, установленные на каждом конце первичной обмотки, проводят на землю колебательный ток высокого напряжения, вызванный самоиндукцией, и тем самым защищают оба транзистора от высоковольтных зарядов.
16.3.4.

Емкость Разряда (КД) Зажигание

Эта система хранит электрическую энергию высокого напряжения в конденсаторе до тех пор, пока спусковой механизм не отправит заряд в первичную обмотку катушки. Катушка в данном случае представляет собой импульсный трансформатор вместо обычного накопителя энергии (рис.16,47). Чтобы подать на конденсатор напряжение около 400 В, ток батареи инвертируется в переменный, а затем напряжение повышается через трансформатор. Когда требуется искра, триггер передает энергию первичной обмотке катушки, «зажигая» тиристер, который представляет собой тип транзисторного переключателя. После срабатывания тиристера он продолжает пропускать ток через переключатель даже после того, как ток срабатывания триггера прекратится. Из-за внезапного разряда энергии высокого напряжения в первичной обмотке происходит быстрое увеличение магнитного потока катушки, что индуцирует напряжение, превышающее 40 кВ, во вторичной цепи, создавая короткую искру высокой интенсивности.

Рис. 16.47. Схема электронного зажигания разряда емкости.
Преимущества системы CD:
(i) Она сохраняет высокое вторичное напряжение.
Hi) Обеспечивает постоянный входной ток и постоянное выходное напряжение в широком диапазоне скоростей.
(Hi) Вызывает быстрое нарастание выходного напряжения. Поскольку скорость нарастания примерно в десять раз выше, чем у индуктивного типа электронного зажигания, система CD снижает риск короткого замыкания высокотемпературного тока на землю через загрязненный изолятор вилки или попадание в путь, отличный от электродов вилки.
Хотя система CD специально подходит для двигателей с высокими рабочими характеристиками, продолжительность искры около 0,1 мс, обеспечиваемая этой системой, обычно слишком мала для надежного воспламенения более слабых смесей, используемых во многих современных двигателях. Чтобы решить проблему малой продолжительности искры, иногда используется преимущество высокой вторичной выходной мощности, чтобы обеспечить большую искру за счет увеличения зазора свечи зажигания.
Система может срабатывать с помощью механического прерывателя, но для повышения привлекательности системы используется генератор импульсов индуктивного типа или типа эффекта Холла.Сигнал переменного тока от генератора подается на схему управления формированием импульса, которая преобразует сигнал в выпрямленный прямоугольный импульс, а затем преобразует его в треугольный импульс запуска, чтобы запустить тиристер, когда требуется искра.
Трансформатор напряжения, обеспечивающий одно- или многоимпульсный выход, используется для зарядки конденсатора емкостью 1 мкФ до напряжения около 400 В. В обоих случаях между этапом зарядки и конденсатором установлен диод, чтобы предотвратить повреждение конденсатора. протекание тока от конденсатора.Одноимпульсный заряд конденсатора позволяет нарастить максимальное напряжение примерно за 0,3 мс, тогда как колебательный заряд, обеспечиваемый многоимпульсным, намного медленнее (рис. 16.48), и, следовательно, первый является предпочтительным. Это короткое время зарядки устраняет необходимость в управлении углом выдержки, поскольку время зарядки системы CD не зависит от частоты вращения двигателя. Поскольку первичная обмотка трансформатора зажигания (катушка) всегда получает одинаковый энергетический разряд от конденсатора, доступное вторичное напряжение остается постоянным во всем диапазоне оборотов двигателя (рис.16,49).

Рис. 16.48. Зарядка конденсатора.

Рис. 16.49. Вторичный выход из системы CD.
Внешний вид трансформатора зажигания системы CD похож на обычную катушку зажигания, но внутренне он совсем другой. Он прочен, чтобы выдерживать более высокие электрические и термические нагрузки. Кроме того, индуктивность первичной обмотки составляет всего около 10% от индуктивности нормальной катушки. Из-за низкого импеданса, составляющего около 50 кОм, катушка CD легко принимает энергию, выделяемую конденсатором, из-за чего нарастание вторичного напряжения происходит в десять раз быстрее.Эта особенность снижает риск пропусков зажигания из-за наличия шунтов HT, например пути утечки через загрязненную свечу зажигания, которая имеет сопротивление 0,2–1,0 M £ 2.
При замене следует использовать только трансформатор рекомендованного типа. Стандартная катушка вместо трансформатора зажигания, однако, работает без повреждения системы, но многие преимущества системы CD теряются. С другой стороны, если запальный трансформатор используется с системой без CD, повреждение модуля управления и трансформатора происходит сразу после включения системы.Принцип CD также применяется в некоторых небольших двигателях, устанавливаемых на мотоциклы, газонокосилки и т. Д. Поскольку в этих случаях батарея не используется, энергия, необходимая для системы CD, подается с помощью магнето.

Как собрать модули зажигания на транзисторах

ЗАЖИГАНИЕ СИСТЕМЫ > ЗАЖИГАНИЕ ТРАНЗИСТОРА МОДУЛИ > КАК ПОСТРОИТЬ

КАК СОЗДАТЬ МОДУЛИ ЗАЖИГАНИЯ ТРАНЗИСТОРОВ

«Большинство проблем карбюратора — электрические» Это было рассказанный мне опытным старым автомехаником давно, и это оказалось правдой больше раз, чем я могу вспомнить.

Стандартные точки Кеттеринга / установка времени зажигания конденсатора работают просто отлично, если точечные грани параллельны и чисты, закрыты надлежащее давление, и конденсатор (конденсатор — текущий член) хорошее и правильной стоимости. Много «если», не правда ли? Также, к несчастью для нас, моделистов, либо слишком крупногабаритных необходимо использовать комплект точек / конденсатора от двигателей газонокосилок старого образца или миниатюрный набор очков придется изготовить из сомнительных материалы и с сомнительной точностью.Большинство двигателей моделей не имеют сальники вала и небольшая утечка масла на остриях вызвать серьезные проблемы. Вы когда-нибудь задумывались, почему так много модельных газовых двигателей на показ на выставках никогда не запускается? Вы думаете, это потому, что они Легкие стартеры и хорошие бегуны? Некоторые могут быть. Но сколько на самом деле иначе отличные двигатели не будут работать или их будет так трудно запустить из-за проблемы с зажиганием, которые хозяин даже не побеспокоит? Какая жалость! Если вам не нравится, когда ваши двигатели заканчиваются как полочные модели, тогда Продолжай читать!

Я нашел ответ несколько лет назад в журнальной статье, написанной от Флойда Картера, и все мои газовые двигатели модели зажигания используют его. с отличными результатами.Оригинальный транзисторный модуль зажигания (ТИМ-4) представляет собой простую двухтранзисторную схему, которую легко собрать в домашних условиях. ТИМ-4 был разработан для работы от 3,6 В (три никель-кадмиевых элемента последовательно) для использовать с авиамодельными двигателями. Устраняет все проблемы стандартные системы баллов. Катушка будет давать хорошую горячую искру каждые время. Схема требует очень небольшого тока для срабатывания (25 мА). Этот позволяет использовать крошечный микровыключатель для точек, которые можно легко скрытый.Нет дуги, поэтому контакты в микровыключателе будут никогда не гори. Если вы хотите, чтобы ваша модель старинного двигателя была подлинной, или на уже построенных двигателях, которые вы не хотите менять, старая точка набор можно использовать при желании. «Конденсатор» не нужен, но может быть включены для взглядов.

А теперь о действительно БОЛЬШОМ преимуществе …….. Поскольку теперь у нас есть цепь, которую так легко запускать, мы можем использовать крошечный магнитный датчик вместо механических точечных контактов (переключатель высокого тока)! В магнитный датчик называется «устройством на эффекте Холла».Они действительно крошечные, толщиной всего 0,125 дюйма x 0,170 дюйма x 0,060 дюйма (3 мм x 4,3 мм x 1,52 мм). Вместо кулачка для управления контактами используется крошечный магнит (диаметром всего 1/8 дюйма). толщиной 1/16 дюйма или меньше) на барабане или диске (кулачковая передача) запускает устройство Холла, установленное в непосредственной близости. Зал датчик расположен вдали от печатной платы, которую можно скрыть под двигатель или где угодно. Теперь у вас есть максимум возможностей маленький и надежный розжиг, отсутствие механических частей, блоков или контактов баллы вообще! Схемы чрезвычайно надежны.

Флойд — специалист по аэрокосмической электронике на пенсии, который сейчас наслаждается жизнью и намеревается продолжать это делать. Он продает свои ТИМ-4 в готовом виде. Он не делает какие-либо единицы доступными в виде комплектов. На самом деле есть ничего сложного в построении этих схем, кроме небольшого забота и проявление некоторого здравого смысла. С некоторой помощью и советом от Floyd (и против некоторых!) Я делаю эти комплекты доступными под следующие условия: Если вы не умеете паять, не иметь мощность от 25 до 35 Вт (макс.) паяльный карандаш (без припоя 150 — 300 ватт) пистолеты), у вас нет опыта работы с электронными деталями и печатных плат, то вам, вероятно, не стоит заказывать эти комплекты, потому что я безусловно, не буду заменять поврежденные детали за мой счет ни за какие причина. Я продам замену поврежденных деталей по очень разумной цене. цены в том маловероятном случае, если они вам понадобятся.

Поменял некоторые компоненты оригинального блока TIM на 6 вольт работа на стационарных двигателях.Я обозначил это как ТИМ-6.

Для запуска двигателя с электронным зажиганием вам потребуются: модуль ТИМ-6, подходящую катушку зажигания на 6 В (см. ниже), свечу зажигания и исправную катушку на 6 В аккумуляторная батарея вольт, способная обеспечить ток не менее 5 ампер.

Эти модули зажигания могут использоваться на многоцилиндровых двигателях, если модель катушки зажигания, такие как Exciter, Modelectric или Gettig и имеющие сопротивление первичной обмотки не менее 1 Ом. Эта комбинация работает мой V-Twin, V-Four и другие двигатели без каких-либо проблем.

Если вы хотите использовать катушки зажигания автомобиля или мотоцикла с сопротивление первичной обмотки менее 1 Ом, используйте соответствующий балласт резистор включен последовательно с катушкой, поэтому потребляемый ток не превышает 4,5 усилители.


Угол задержки зажигания

Практическое правило для расчета Угол остановки составляет об / мин кулачкового вала x 0,0075 для 4-тактных двигателей или коленчатого вала Обороты x .0075 для 2-тактных двигателей. Это определит вращение вала. в градусах, в которых катушка должна находиться под напряжением (точки замкнуты или Холла Датчик включил «ВКЛ»).Слишком маленький угол задержки ограничит максимальные обороты двигателя. искра будет слабой или отсутствовать — слишком большой угол задержки приведет к перегреть катушку и электронику на низких оборотах. Простой расчет или два будут определять радиус от центра вала для установки магнит и датчик Холла. Для высокоскоростных двигателей нужен небольшой радиус (или несколько магнитов в дуге), чтобы получить достаточный угол задержки, медленный ход двигатели требуют большего радиуса (или меньшего магнита) для предотвращения чрезмерный угол пребывания.Рассчитайте угол задержки для самого высокого ожидаемые обороты двигателя. Следовательно, если у 2-тактного двигателя максимальная частота вращения скажем, 6000 об / мин, затем 0,0075 умноженное на 6000 = угол задержки 45 градусов. в В приведенном выше случае нарисуйте круг, представляющий наименьший радиус, который вы можете установить магниты в диск, а также установить датчик Холла на том же диске. радиус. Это будут определять характеристики двигателя. Нарисуйте угол 45 градусов линии от центра этого круга. Дуга на окружности между Линии под углом 45 градусов — это длина дуги, необходимая для создания магнитов.Для 4-тактный двигатель со скоростью 6000 об / мин, используйте частоту вращения распредвала 3000 об / мин, которая дает угол задержки 22,5 градуса. Если датчик Холла можно установить так что его можно вращать вокруг центра вала, угол опережения зажигания может быть отрегулирован на «опережение» или «замедление». Попытайтесь найти правильное времяпрепровождение для хорошо работающего двигателя. См. Схему ниже.

Очень немногим моделям двигателей требуется более одного магнита для получения правильного угол выдержки — ни одному из моих двигателей не требовалось более одного магнита на цилиндр.

Следующие измерения относятся к датчикам Холла и магнитам, которые я в настоящее время есть в наличии.

Магниты TIM-6 имеют диаметр 1/8 дюйма и толщину 1/16 дюйма. Редкий диаметр 1/8 дюйма магниты земли на расстоянии 0,030 дюйма от поверхности датчика Холла, датчик будет должен быть включен в течение времени, необходимого для перемещения магнита на 0,125 дюйма. по лицевой стороне датчика. Другими словами, в какой-то момент, как одно ребро магнита начинает движение поперек лицевой стороны датчика Холла, датчик включится и останется включенным до тех пор, пока магнит диаметром 1/8 дюйма не переместится. поперек лицевой панели датчика Холла на расстояние.125 «. Как магнит переместится за эту точку, датчик Холла снова выключится. В расстояние, на которое перемещаются магниты при включении, не меняется значительно с магнитами от 0,025 «до 0,035» от холла Датчик, поэтому расстояние не так критично.

Для магнита диаметром 2 мм на расстоянии 0,030 дюйма от холла. Лицевая сторона датчика, датчик Холла будет включен во время требуется для диаметра 2 мм. редкоземельный магнит для перемещения на расстояние.050 » по лицевой стороне датчика. Все эти измерения были выполнены с использованием УЦИ на моем фрезерном станке.


Дополнительная информация в Strictly I.C. журнал № 27 и № 36. Назад проблемы доступно [email protected]


Обратите внимание

Мне задают много вопросов об использовании этих модулей зажигания на цепной пиле, поедателях сорняков и других нестационарные и / или немодельные двигатели.Многие из этих типов двигателей были преобразованы и работают в различных приложениях. Тем не мение, Я не заявляю о пригодности любого из вышеперечисленных устройств зажигания для немодельные двигатели. Некоторые из этих типов двигателей могут быть подходящими, а некоторые может и не быть. Если вы хотите преобразовать эти двигатели, вы сами, поэтому вам следует рассмотреть возможность использования этих модулей зажигания и / или катушек на немодельных двигателях, чтобы экспериментировать с вашей стороны. Пожалуйста, также примечание — электрические элементы не подлежат возврату за очевидные причины.

С учетом вышеизложенного, вы все равно хотите идти вперед, вот несколько рекомендаций. С правильным напряжение аккумуляторной батареи и, что очень важно, катушка зажигания с первичной обмоткой. сопротивление не менее 1 Ом, не вижу причин, почему предприимчивый человек не должен иметь возможность преобразовать большинство, если не все, из этих двигателей. Вкратце, определите по вашему двигателю минимальный диаметр окружности. вы можете использовать, чтобы получить правильный угол остановки (см. выше) от вращающегося магнит (ы), которые установлены на барабане или диске где-нибудь на коленчатый вал (2 цикла) или распредвал (4 цикла) и подходящая установка стационарный датчик Холла в непосредственной близости от вращающегося магнита (ов) и сделайте эту установку.Это все, что вам нужно сделать. к одноцилиндровому двигателю. Есть много способов настроить системы зажигания многоцилиндровых двигателей. Обычно несколько магнитов и дистрибьютор обязательны. Опять же, я не консультирую, поэтому вы твой собственный. Также, если вы собираетесь использовать двигатель с радиоуправлением, помните, что вся система зажигания — модуль ТИМ, катушка, штекерный провод, вилка и т. д. должны быть экранированы и заземлены на двигатель во избежание радиопомехи и возможная потеря контроля над вашей моделью.На с другой стороны, я разговаривал с некоторыми товарищами, которые сказали, что не нашли это необходимо с их конкретным радио, установив радио как как можно дальше в кормовой части фюзеляжа самолета.

Вы сами решаете, что вам удобно. Удачи!

Подробная ошибка IIS 10.0 — 404.11

Ошибка HTTP 404.11 — не найдено

Модуль фильтрации запросов настроен на отклонение запроса, содержащего двойную escape-последовательность.

Наиболее вероятные причины:
  • Запрос содержал двойную escape-последовательность, а фильтрация запросов настроена на веб-сервере, чтобы отклонять двойные escape-последовательности.
Что можно попробовать:
  • Проверьте параметр configuration/system.webServer/security/requestFiltering@allowDoubleEscaping в файле applicationhost.config или web.confg.
Подробная информация об ошибке:
Модуль RequestFilteringModule
Уведомление BeginRequest
Обработчик StaticFile
Код ошибки 0x600000000
Запрошенный URL http: // retrojdm.com: 80 / scans / toyota / misc / service% 20manuals / sizes% 20control% 20-% 201975 / pdf / 15% 20-% 20transistorized% 20ignition% 20system.pdf
Physical Path W: \ vhosts \ datsun1000.com \ retrojdm.com \ scans \ toyota \ misc \ service% 20manuals \ sizes% 20control% 20-% 201975 \ pdf \ 15% 20-% 20transistorized% 20ignition% 20system.pdf
Метод входа в систему Нет еще не определено
Пользователь входа в систему Еще не определено
Дополнительная информация:
Это функция безопасности.Не изменяйте эту функцию, пока не полностью осознаете масштаб изменения. Перед изменением этого значения необходимо выполнить трассировку сети, чтобы убедиться, что запрос не является вредоносным. Если сервер разрешает двойные escape-последовательности, измените параметр configuration/system.webServer/security/requestFiltering@allowDoubleEscaping. Это могло быть вызвано неправильным URL-адресом, отправленным на сервер злоумышленником.

Просмотр дополнительной информации »

Блок зажигания (системы TCI и CDI) | Мотоциклетные изделия

  • TCI и CDI
  • Блок зажигания для мотоциклов

Блок зажигания — это компонент, который охватывает последнюю часть процесса зажигания и сжигания топлива, подаваемого в цилиндр (цилиндры) двигателя.

Использование и совместимость

Использование Зажигание двигателя
Совместимые продукты Мотоциклы, малые универсальные двигатели и судовые двигатели

Продукты

Система зажигания с транзисторным управлением (TCI)

Когда транзистор включен, ток проходит через первичную обмотку катушки зажигания (далее катушка) от батареи для хранения энергии. И когда транзистор выключен, ток отключается, вызывая внезапное изменение тока, генерируя высокое напряжение на вторичной стороне катушки и инициируя зажигание.

Характеристики
  • Зажигание возможно даже без подключения аккумулятора
  • Встроенный электролитический конденсатор для кикстарта
  • Совместимость со всеми типами управления, такими как зажигание и нагрузка автомобиля, управляемая встроенным ЦП
  • Структура цепи TCI

CDI (воспламенитель разряда конденсатора)

Конденсатор заряжается через прямое соединение с напряжением от ACG или батареи, или напряжение увеличивается для зарядки конденсатора.Заряженная электрическая нагрузка полностью разряжается, создавая высокое напряжение на вторичной стороне катушки, инициируя воспламенение и горение.

Характеристики
  • Зажигание возможно даже без подключения аккумулятора
  • Стабильное зажигание возможно до высоких оборотов
  • Встроенный электролитический конденсатор для кикстарта
  • Совместимость со всеми типами управления, такими как зажигание и нагрузка автомобиля, управляемая встроенным ЦП
  • Использование собственных повышающих трансформаторов, диодов и тиристоров для обеспечения высокой надежности при низкой стоимости
  • Структура схемы CDI
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *