Температура в камере сгорания дизельного двигателя: Бензиновый и дизельные двигатели: кому достаётся больше?

Содержание

Бензиновый и дизельные двигатели: кому достаётся больше?

БЕНЗИНОВЫЙ

Образование рабочей смеси и ее горение происходит
не так быстро, как в дизельном двигателе.

 

 

ДИЗЕЛЬНЫЙ

Дизельные двигатели более теплонапряжены,
работают на более бедных горючих смесях,
а смесеобразование и сгорание у них происходит
в сотни раз быстрее.

0,8-0,9 БАР 70-120° C

На такте впуска давление в цилиндре
ниже атмосферного — 0,8-0,9 бара.
Температура топливовоздушной смеси
из-за ее контакта с нагретыми деталями двигателя
и смешивания с остаточными раскаленными газами — 70-120 °C.

 

110-250 БАР 550-600° C

Воздух в цилиндре сжимается до давления
в 28-40 бар, нагреваясь до 550-600 °C,
иначе говоря — до температуры самовоспламенения
тяжелого жидкого топлива. У верхней
мертвой точки в цилиндр впрыскивается
топливо под давлением
110-250 бар

20-40 БАР 400-600° C

Когда поршень сжимает рабочую смесь,
давление в камере сгорания возрастает 
до 20-40 бар, сама же рабочая смесь
нагревается до 400-600° C.

 

 

40-80 БАР до 1800° C

Распыленное в среде горячего сжатого воздуха
топливо самовоспламеняется и сгорает
при температуре до 1800° C.
Поэтому часто говорят, что воспламенение 
топливной смеси дизельных двигателей
происходит «от сжатия».
Давление образовавшихся газов на поршень
составляет 40-80 бар.

0,03% СЕРЫ

Незадолго до верхней мертвой точки тепловоздушная

смесь воспламеняется от искры свечи зажигания
и сгорает при температуре 980-1100° C,
выделяя большое количество тепла.
Температура образовавшихся газовв цилиндре при
этом возрастает до 1800° C поршень
толкается под давлением порядка 40 бар.

 

40-80 БАР до 1800° C

Распыленное в среде горячего сжатого воздуха 
топливо самовоспламеняется и сгорает 
при температуре до 1800° C. Поэтому часто говорят,
что воспламенение топливной смеси
дизельных двигателей происходит «от сжатия». 
Давление образовавшихся газов на поршень 
составляет 40-80 бар.

Моторное масло QUARTZ INEO MC3 5W-30
 содержит самый современный пакет противоизносных
присадок, который позволит защитить бензиновый
двигатель от износа и обеспечить его максимальный
ресурс. Синтетическое базовое масло позволяет
выдерживать продленные интервалы замены
и свести к минимуму необходимость доливки
моторного масла в процессе эксплуатации автомобиля.

 

Пакет моюще-диспергирующих присадок в
моторном масле QUARTZ INEO MC3 5W-30
содержит все необходимые компоненты, способствующие
максимальному удалению сажи и нагаров, образующихся
при сгорании дизельного топлива,что позволяет получить

высокую степень чистоты двигателя.

Температура в камере сгорания дизельного двигателя и давление

Дизельный двигатель сегодня является вторым по степени распространенности типом ДВС после бензинового агрегата. Конструктивно дизельный мотор похож на бензиновый аналог, так как имеет все те же цилиндры, шатуны, поршни, коленвал  и т.д. При этом все детали более массивные и тяжелые, ведь они должны выдерживать повышенные нагрузки.

Дело в том, что степень сжатия в дизеле выше, чем в агрегатах на бензине. Если в бензиновом моторе указанный средний показатель составляет от 9-и до 11-и единиц, то в дизельном уже целых 20-24. По этой причине дизельный двигатель тяжелее и крупнее бензинового агрегата.

Главным же отличием является способ приготовления, подачи и воспламенения топливно-воздушной смеси. В большинстве моторов на бензине рабочая смесь образуется во впускном коллекторе и «засасывается» в цилиндры.

После подачи в цилиндры рабочая смесь воспламеняется в камере сгорания от искры. При этом в дизельном двигателе топливо и воздух подаются отдельно, при этом смесь воспламеняется самостоятельно от резкого сжатия и нагрева.

Далее мы поговорим о том, какие процессы протекают в камере сгорания дизельного двигателя, как реализована подача дизтоплива, каким образом происходит смесеобразование и воспламенение заряда, а также какое давление и температура в камере сгорания дизеля.

Содержание статьи

Камеры сгорания дизельных двигателей и особенности работы такого ДВС

Начнем с того, что камеры сгорания дизельных двигателей несколько отличаются от бензиновых. Существует два основных типа камер:

  • неразделенная камера сгорания дизельного мотора;
  • разделенная камера сгорания дизельного ДВС;

Неразделенный тип является однообъемной камерой, как правило, простой формы, которая согласована с расположением форсунок. Такие камеры обычно выполняются в днище поршней, также могут быть изготовлены частично в днище и частично в ГБЦ, редко только в головке блока.

Разделенный тип камеры сгорания предполагает два отдельных друг от друга объема, которые соединены посредством особых каналов. Таких каналов может быть от одного и больше.

Если говорить о плюсах и минусах, первый тип позволяет обеспечить двигателю лучший КПД, однако температуры в такой камере сгорания выше. Также растут и ударные нагрузки. Что касается разделенных камер сгорания, КПД меньше, однако удается реализовать более полноценное сгорание топлива, такой дизель меньше коксуется, дымит и т.д.

Как сгорает топливо в дизельном двигателе

Теперь давайте рассмотрим сам процесс горения. Как известно, для горения топлива необходимо определенное количество кислорода, а также источник, который позволит смеси воспламениться.

В дизеле вместо внешней искры таким источником является высокая температура, то есть нагрев.

Указанный нагрев достигается благодаря тому, что воздух в цилиндре сильно сжимается, а дизтопливо подается в самый последний момент. Это обусловлено тем, что температура, необходимая для воспламенения, растет с ростом давления, при этом температура самовоспламенения топлива в подобных условиях понижается.

Другими словами, топливно-воздушная смесь в дизельном двигателе самовоспламеняется от высокого давления и нагрева. При этом нормальная работа мотора сильно зависит от правильно настроенного впрыска, качественного сжатия смеси, а также от полноты сгорания заряда в цилиндрах.

В самом начале в цилиндр подается воздух, сжимается и нагревается. Далее топливо впрыскивается в камеру сгорания дизельного двигателя, во время впрыска происходит его распыление.

Затем возникает самовоспламенение, пламя распространяется по цилиндру. Впрыск горючего останавливается, а остатки топлива продолжают гореть. Далее процесс повторяется.

Как видно, хотя подача и горение заряда в дизеле протекает за очень короткий промежуток времени, этот отрезок можно разделить на этапы:

  • Первый этап- впрыск топлива до начала его воспламенения (задержка воспламенения). Форсунки на данном этапе подают солярку, причем в распыленном виде. Образуется топливный «туман», который распространяется в сильно сжатом и нагретом воздухе.

Фактически туман представляет собой мельчайшие капли топлива, но они не воспламеняются. Дело в том, что сначала горючее должно испариться.

Только после этого произойдет смешивание испаренного дизтоплива с воздухом, а сама смесь нагреется до температуры, необходимой для самостоятельного воспламенения. Отметим, что задержка воспламенения должна быть короткой.

  • Второй этап-воспламенение и распространение фронта пламени по цилиндру. Дело в том, что после воспламенения сразу горит не весь объем, а возникают точечные «очаги» возгорания. Они локализуются в местах, где топливо наиболее качественно смешалось с воздухом, а температура в камере около 1700 К.

Такое начальное горение приводит к повышению температуры и давления в цилиндре. В результате топливо, которое еще не загорелось, активно испаряется и смешивается с воздухом. В этот момент фактически происходит полное возгорание смеси в цилиндре, при этом резко увеличивается давление.

  • Наступает третий этап, года топливо непосредственно сгорает. Инжекторная форсунка еще впрыскивает солярку, горючее уже сразу загорается от контакта с пламенем в камере сгорания. Пламя в этот момент эффективно распространяется по всему объему, давление также максимально.

Именно на данном этапе давление в результате сгорающего топлива с большой силой толкает поршень, заставляя двигатель совершать полезную работу. Что касается температуры, показатель растет до 2200 К.

  • Завершающий четвертый этап является моментом, когда остатки топлива догорают в цилиндре. В это время поршень уже перемещается вниз, что означает падение давления и температуры.

Как видно, давление в камере сгорания дизельного двигателя играет первостепенную роль для реализации самовоспламенение топлива. Что касается впрыска, необходимо, чтобы солярка подавалась в строго определенный момент, в нужном количестве, а также качественно распылялась.

Если возникнут сбои, распространение пламени будет нарушено, температура в камере сгорания дизельного двигателя  повышается,  возникает риск детонации, топливо не сгорает в полном объеме и т.д.

Частые проблемы дизелей: момент впрыска и компрессия

Если сжатие смеси в цилиндре оказывается недостаточным, во время работы двигателя можно услышать шумы и металлические стуки. Дело в том, что в таком случае смеси нужно больше времени, чтобы нагреться до температуры воспламенения.

Получается, снижение компрессии дизельного двигателя увеличивает время до воспламенения заряда.

При этом в цилиндре несгоревшей смеси будет больше, чем нужно. В результате в момент возгорания такого заряда процесс горения приобретает взрывной характер, давление резко увеличивается, появляется ударная волна и детонация, разрушая ЦПГ и оказывая значительные нагрузки на детали мотора.

Также снижение компрессии приводит к тому, что дизель начинает дымить. Выхлоп может быть черным или серовато-белым. В случае с белым дымом из выхлопной трубы, дизтопливо попросту неэффективно воспламеняется в момент, когда поршень доходит до ВМТ.

Затем поршень идет вниз, температура и давление дополнительно снижаются, нет условий для горения. Получается, несгоревшая солярка испаряется и далее попадает в выпускную систему

То же самое происходит и в том случае, если впрыск дизтоплива слишком поздний. Другими словами, компрессия в цилиндрах нормальная, но подача топлива с опозданием приводит к тому, что поршень уже идет вниз, нет нужного сжатия и давления для самовоспламенения.

Если же выхлоп черный, это может указывать на то, что форсунки «переливают», то есть подача горючего происходит в большем объеме, чем необходимо. Простыми словами, дизтоплива много, а кислорода просто недостаточно на такое количество горючего.

Имеющийся кислород позволяет выгореть только части топлива, а несгоревшие остатки превращаются в углерод, что и проявляется в виде характерного черного дыма из выхлопной трубы.

Рекомендуем также прочитать статью о том, что такое степень сжатия двигателя. Из этой статьи вы узнаете о данном параметре применительно к двигателю внутреннего сгорания и особенностям его работы.

Еще отметим, что к похожим проблемам может приводить недостаточная подача воздуха (например, забит воздушный фильтр), завоздушивание системы питания дизельного двигателя и т.д.

В итоге, если нарушается нормальный процесс смесеобразования, это закономерно влияет на момент воспламенения и последующую эффективность сгорания топливного заряда в цилиндрах.

Что в итоге

С учетом вышесказанного становится понятно, что дизель особенно нуждается в высокоточном топливном впрыске. От этого напрямую завит КПД, ресурс мотора, экономичность, уровень токсичности отработавших газов и ряд других важных параметров.

По этой причине дизельные форсунки на современных типах указанных моторов способны обеспечить так называемый фазированный (многофазный) впрыск,  подавая дизтопливо до 10 раз за один рабочий такт мотора.

Напоследок отметим, что сегодня привычный ТНВД с механическими форсунками активно заменяется насос-форсунками или системой Common Rail, позволяя добиться максимальной эффективности впрыска горючего на всех этапах подачи топлива в камеру сгорания.

Подобные решения в сочетании с турбокомпрессором позволяют современному дизельному мотору уверенно конкурировать на рынке с бензиновыми аналогами, при этом высокая топливная экономичность остается главным преимуществом дизельного двигателя.

Читайте также

Что происходит в камере сгорания дизельного двигателя?

Сам процесс горения происходит при наличии нескольких компонентов – материала горения, кислорода в нужном объеме и источника воспламенения. Помимо пламени или искры источником воспламенения может стать нагрев. Как известно, дизельное топливо самовоспламеняется именно от нагрева. Воспламенение происходит в результате сжатия воздуха в цилиндре до нужной температуры. При этом температура воспламенения растет по мере роста давления, а температура самовоспламенения топлива уменьшается с ростом давления. Таким образом, топливовоздушная смесь в дизельном двигателе легко воспламеняется при высоком давлении, и это происходит тем лучше, чем больше разница этих температур.

Стоит сразу оговориться, что дизельный двигатель работает с хорошей отдачей только тогда, когда в нем хорошо сгорает топливо. При этом высокое давление в цилиндре и правильный впрыск топлива являются ключевыми факторами для горения дизтоплива.

Что происходит в камере сгорания дизельного двигателя?

Этот процесс можно описать так. Топливо из форсунки впрыскивается в цилиндр дизельного двигателя, распыляется и самовоспламеняется, и пламя распространяется по всему цилиндру. В этот момент впрыск прекращается, а несгоревшее топливо продолжает догорать. Таким образом, весь процесс горения, которое продолжается совсем короткое время, можно разбить на несколько отдельных этапов.

Этап от впрыска топлива до начала его горения – период задержки воспламенения. В этой фазе форсунки впрыскивают горючее, оно распространяется в виде тумана в воздухе, нагретом высоким давлением. Этот туман состоит из микроскопических капель топлива, но мгновенно оно не воспламеняется, так как прежде ему нужно испариться под воздействием горячего воздуха. Топливо перемешивается с воздухом и нагревается до температуры самовоспламенения. Очень важно, чтобы период задержки воспламенения был максимально коротким, так как именно от эффективности этого этапа зависят последующие этапы горения.

С начала воспламенения и до момента, когда пламя распространилось по всему цилиндру, – это второй этап, называемый периодом распространения пламени. В этот момент смесь воздуха с топливом, образовавшаяся в предыдущий период, начинает возгорать. Она воспламеняется именно в тех местах, где топливо хорошо перемешалось с воздухом. Горение воздушно-топливной смеси повышает температуру внутри цилиндра, а это увеличивает давление в камере сгорания. Из-за этого ускоряются испарение топлива и его перемешивание с воздухом. В это время пламя быстро распространяется по всей топливной смеси, образовавшейся в период задержки воспламенения. В момент начала горения топлива давление в камере сгорания резко увеличивается. Однако, если период задержки воспламенения длится слишком долго, это приводит к неправильной работе всего мотора.

Решения для ремонта

Одна из ключевых особенностей современной системы впрыска дизельных двигателей Common Rail – высокое давление в топливной рампе, достигающее 2500 и более бар. Для его поддержания во многих современных автомобилях (как легковых, так и легких коммерческих) используется топливный насос высокого давления Bosch CP4. Помимо высокой эффективности он обладает еще целым рядом преимуществ по сравнению с моделями предыдущего поколения, включая небольшие габариты и вес. Bosch предлагает эффективные комплексные решения в области обслуживания систем Common Rail в целом, позволяя дизельным мастерским выполнять весь спектр услуг – от первичной диагностики систем впрыска до ремонта инжекторов и ТНВД. Задачу первичной диагностики успешно выполняют системные сканеры Bosch KTS, позволяющие определить неисправность в системе Common Rail благодаря высокоэффективному программному обеспечению Bosch ESI[tronic] 2.0. Дальнейшая локализация проблемы в системе проводится при помощи комплекта Bosch Diesel Set 3.1, который содержит все необходимое для оценки работоспособности ТНВД и клапана регулировки давления. После выявления неисправных узлов и демонтажа инжекторов или топливного насоса высокого давления проводится их проверка на стенде Bosch EPS 708 или 815. Благодаря выпуску специальных наборов дооснащения диагностические стенды Bosch позволяют проводить испытания насосов любых поколений. Новый комплект оборудования Bosch для ремонта ТНВД CP4 позволяет производить проверку, полную разборку и ремонт насоса в точном соответствии с утвержденной технологией ремонта. В состав комплекта входят специализированные инструменты и инструкции для выполнения требуемых процедур.

Третий этап – до момента окончания впрыска – период прямого горения. Форсунка продолжает впрыскивать топливо, которое сгорает немедленно, контактируя с открытым пламенем в камере сгорания. К этому этапу пламя распространяется уже по всей камере, а давление достигает максимального показателя.

Четвертый этап – до окончания горения – называется догорание. На этом этапе несгоревшее топливо должно полностью сгореть. Поршень движется вниз, в результате давление и температура падают. Однако для полного сгорания топлива нужно высокое давление в камере сгорания, которое обеспечивает самовоспламенение топлива, а также правильный впрыск топлива, произошедший в нужный момент и в требуемом объеме. В противном случае распространение пламени существенно повышает температуру в камере сгорания, и топливо загорается немедленно. А когда впрыск заканчивается, оставшееся топливо продолжает гореть.

В случае, когда давление в цилиндре меняется, водитель может услышать длительный стук или металлический звук. Такое возникает в условиях, когда давление в цилиндре понижается и смеси требуется больше времени, чтобы достичь температуры воспламенения. Из-за низкой компрессии удлиняется период самовоспламенения. И когда смесь все же возгорится, количество топлива в камере будет больше, чем то, что необходимо для нормального режима работы. Одномоментно воспламенится большое количество топлива, что приведет к резкому увеличению давления и росту температуры в камере. По этой причине возникает ударная волна, которая действует на днище поршня и стенки цилиндра и производит металлический стук.

По причине низкой компрессии может возникать и белый дым. Это происходит тогда, когда давление падает и топливо не самовоспламеняется при достижении поршня самой высокой мертвой точки. Когда поршень идет вниз, температура падает, и пламя не успевает распространиться. Дизтопливо продолжает испаряться в периоды прямого горения и догорания. Несгоревшее горючее выбрасывается из цилиндра в конце периода дожига, и именно поэтому возникает белый дым. Он может также появиться при позднем впрыске топлива. Компрессия и температура в камере сгорания достигают необходимого уровня, однако из-за слишком позднего впрыска у топлива не остается достаточно времени для того, чтобы испариться. И тогда воспламенение дизтоплива происходит, когда поршень начинает движение вниз. В этот момент давление и температура начинают падать, и пламя не успевает распространиться по всей камере сгорания, а потому и горение быстро прекращается. При этом испарение топлива продолжается, и его несгоревший остаток выбрасывается из цилиндра.

По причине большого объема впрыскиваемого топлива возникает черный дым. Если в камеру сгорания впрыскивается нормальный объем топлива, капли перемешиваются с воздухом, и топливо эффективно сгорает. Но при большом количестве топлива в условиях ограниченного объема кислород в камере полностью выгорает в период горения, а у оставшегося топлива просто не остается достаточно воздуха для перемешивания. А несгоревшее топливо преобразуется в углерод, который и вызывает черный дым.

Повысить КПД

Современные конструкторы ищут способы, чтобы увеличить КПД дизельного двигателя и понизить при этом токсичность отработавших газов в течение всего срока службы автомобиля. Одним из способов повысить КПД двигателя и снизить уровень вредных выбросов является более точное управление системой впрыска топлива. Дизельные форсунки могут распылять топливо до 10 раз в каждом рабочем цикле двигателя, поэтому прецизионное управление каждым отдельным моментом впрыска позволяет еще больше повысить топливную экономичность, снизить уровень вредных выбросов и уменьшить уровень шума в течение всего срока службы двигателя. 

Инженеры Delphi разработали технологию управления насос-форсункой с обратной связью, реализуемую посредством аппаратного и программного обеспечения. С ее помощью поддерживается максимальная эффективность впрыска в течение продолжительного времени. Это достигается за счет использования дополнительного электрического провода внутри корпуса насос-форсунки, игла которой действует в качестве «электрического выключателя». Данный процесс обеспечивает передачу сигнала управления в реальном времени, что является более точным и более экономически выгодным решением, чем те, что реализованы в аналогичных системах.

Посылая электрический ток по игле распылителя, Delphi распознает моменты контакта иглы с седлом, ограничителем подъема или нахождения между этими двумя положениями. Этот процесс позволяет системе непрерывно перекалибровывать все моменты подачи топлива на протяжении всего срока службы автомобиля. Сочетание электрического выключателя и нового алгоритма управления создает уникальное решение, которое обеспечивает высокую точность многофазного впрыска. Такая конструкция работает независимо от настроек параметров впрыска и сгорания топлива, а также сложности конструкции двигателя или силовой установки. 

Использование в конструкции форсунки «выключателя» и нового алгоритма работы электронного блока управления позволило инженерам добиться снижения уровня вредных выбросов и предложить эффективное решение для сложных технических задач.

источник информации a-kt.ru

Работа двигателя. Процессы горения и передачи тепла

У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума — давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворо­та коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двига­телями с подводом тепла при постоянном объеме или двига­телями Отто (работающими по циклу Отто).

Для дизелей условно принимают, что часть теплоты под­водится при постоянном объеме, а часть — при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то макси­мальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 20005-2200 К.

Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геоме­трии (формы) камеры сгорания до состава, скорости и на­правления движения смеси в цилиндре в данный момент вре­мени в данной точке.

Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответ­ствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 — постоянный (стехиометрический) коэффици­ент для данного топлива — теоретически необходимое количе­ство воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.

При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимо­сти от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 («богатая» смесь и большой крутящий момент), в то время как для установивше­гося режима движения автомобиля желательно, чтобы а бы­ло близко к 1 (нормальная или слегка обедненная смесь, вы­сокая экономичность, а также приемлемая токсичность отработавших газов).

Для воспламенения и горения смеси у двигателей тради­ционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразо­ванием, т. е. подачей топлива заранее во впускной трубопро­вод (с помощью карбюратора или форсунок системы впрыс­ка). При этом топливо успевает практически полностью испа­риться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распростра­няющийся по объему камеры сгорания.

Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отрабо­тавших газов. Например, если основная часть продуктов сго­рания — это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное ко­личество оксида углерода СО, а также несгоревшие углеводо­роды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).

Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно каме­ры сгорания — пространства между головкой и днищем порш­ня. От того, как организовано движение смеси по камере сго­рания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.

В конечном счете, все указанные факторы влияют и на ко­личество выделившегося при сгорания тепла — чем оно боль­ше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое коли­чество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно так­же происходить в строго определенной фазе цикла — слишком раннее или позднее сгорание приводит к уменьшению давле­ния в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.

При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в пор­шень. Если бы конструкция поршня не позволяла от­водить тепло от днища, то поршень очень быстро бы распла­вился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наибо­лее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее — до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание коль­ца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к сниже­нию потока тепла от поршня и, соответственно, к его перегре­ву с последующим разрушением. Другая часть тепла от порш­ня передается через его юбку в стенку цилиндра, а также че­рез палец в шатун и далее рассеивается в картере. Незначи­тельная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступатель­ном движении поршня.

Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как за­зор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем на­до, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилинд­ра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и по­следующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.

При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.

Явление детонации широко известно. Внешние проявле­ния детонации — характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).

Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распростра­няющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в кото­рой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.

Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образова­нию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каж­дом конкретном случае при разработке нового двигателя оп­ределить наилучшую форму камеры сгорания — дело очень от­ветственное, долгое и кропотливое.

В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах враще­ния и больших нагрузках. Детонация изменяет характер проте­кания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали дви­гателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это — поломка поршней и пор­шневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Удар­ная волна, вызывая резкое повышение давления в зазоре меж­ду днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одно­временно не по всей окружности кольца, а в конкретной доста­точно узкой области, что облегчает поломку деталей.

Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на по­верхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.

После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ по­верхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.

Режимы детонации ограничивают углы опережения зажи­гания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повы­шаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управле­ния двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.

На некоторых двигателях (TOYOTA, NIS­SAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламе­ни по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-850С) за счет схемы и конструкции системы охлаждения двигателя.

У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем укарбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное ох­лаждение воздуха у двигателей с наддувом.

Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспла­менение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей ка­меры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпуск­ного клапана или частицы нагара, если нагар лежит на дета­лях достаточно толстым слоем.

Обычно калильное зажигание возникает из-за несоответ­ствия характеристики свечи, рекомендованной изготовите­лем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована «горячая» свеча от низкофор­сированного двигателя. При этом смесь в цилиндре самовос­пламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным обра­зом. С ростом нагрузки и частоты вращения момент самовос­пламенения отодвигается в раннюю сторону, из-за чего теп­ловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.

Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить «на слух» от обычного сгорания, в то время как с течение вре­мени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже мо­гут быть повреждены. Вследствие этого на двигате­лях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ста­вятся первые попавшиеся свечи.{jcomments on}

Горение дизельного топлива: формула, фазы горения, максимальная температура

Дизельный двигатель отличается от бензинового тем, что топливо поджигается не от искры — оно самовоспламеняется при повышении давления и происходящем от этого разогреве.

Известно, что температура воспламенения дизельного топлива составляет от 70 до 120 ºС. Температура самовоспламенения колеблется в диапазоне от 300 до 330 ºС. В цилиндрах дизеля за счёт сжатия воздуха до давлений порядка 30 бар он разогревается именно до этих температур. Впрыскиваемое в этот момент топливо самовоспламеняется и горит, резко увеличивая давление в камере. Температура горения дизельного топлива составляет примерно 1100 ºС.

Возросшее в цилиндре дизельного двигателя давление толкает поршень вниз, за счёт его перемещения совершается полезная работа, вращающая колёса.

Фазы горения дизельного топлива

Горение дизельного топлива в цилиндре разделяют на 4 периода:

  • задержки воспламенения;
  • распространения пламени;
  • прямого горения;
  • догорания.

Первый период — это время между началом впрыска топлива и началом горения. Топливо распыляется каждой форсункой сразу в нескольких направлениях. Но оно сразу не загорается. Требуется время, чтобы мельчайшие капли испарились, перемешались с воздухом и нагрелись до температуры самовоспламенения. Чем короче первый период, тем лучше проходит горение топлива на последующих этапах.

В течение второго периода пламя распространяется от начальных точек горения на весь объём. Эта задержка объясняется тем, что гореть может только смесь топлива с воздухом, и на их перемешивание по всему объёму также требуется время. В конце этого периода температура горения дизельного топлива приближается к максимальной, давление в камере резко возрастает.

Прямое горение — это период от распространения пламени по всему объёму до окончания впрыска топлива. Поскольку давление в этом периоде достигает максимума, впрыскиваемое топливо сгорает немедленно. Регулировку топливной аппаратуры производят так, чтобы давление достигало максимума через 10 угловых градусов после ВМТ.

Последний период длится от окончания впрыска топлива до окончания горения.

Нарушение условий правильного горения

Нормальное и полное сгорание топлива в дизельном двигателе происходит при правильном впрыске и высоком давлении в цилиндре.

Если компрессия по какой-то причине низкая, то:

  • период задержки воспламенения увеличивается;
  • топлива накапливается больше нормальной дозы;
  • его последующее воспламенение резко увеличивает давление;
  • возникает ударная волна, вызывающая металлический звук (дизельный стук).

Ещё большее снижение давления вызывает неполное сгорание топлива, в выхлопе появляется белый дым.

К такому же результату приводит ранний впрыск: увеличивается период задержки воспламенения и появляется дизельный стук. Он же образуется при низком давлении впрыска — капли получаются большими, поэтому не успевают испариться. Увеличивается период задержки воспламенения, результат — дизельный стук.

При позднем впрыске воспламенение топлива происходит уже после ВМТ, оно не успевает сгореть, остатки в виде белого дыма выбрасываются с выхлопом. При впрыске слишком большого количества топлива образуется нехватка кислорода для полного сгорания. Несгоревшее топливо превращается в углерод, вызывающий чёрный дым выхлопа.

Звоните по номеру +7 (812) 426-10-10. С нами удобно, доставка 24/7

Температура горения дизельного топлива и бензина

Горит ли дизельное топливо? Горит, причем достаточно сильно. Его остаток, который не участвовал в предварительно смешанном сгорании, расходуется в фазе сгорания с регулируемой скоростью.

Сжигание в дизельных двигателях очень сложно. До 90-х годов прошлого столетия его детальные механизмы не были хорошо поняты. Температура горения дизельного топлива в камере сгорания также варьировалась от случая к случаю. На протяжении десятилетий сложность данного процесса, казалось, не поддалась попыткам исследователей раскрыть его многочисленные секреты, несмотря на наличие современных инструментов, таких как высокоскоростная фотография, используемая в «прозрачных» двигателях, вычислительная мощность современных компьютеров и множество математических моделей, предназначенных для имитации сгорания в дизеле. Применение лазерной визуализации листа к традиционному процессу сжигания дизельного топлива в 90-х годах прошлого века стало ключом к значительному углублению понимания этого процесса.

В этой статье будет рассмотрена наиболее устоявшаяся модель процесса для классического дизельного двигателя. Это обычное сгорание дизельного топлива, в первую очередь, контролируется смешиванием, которое может происходить из-за диффузии горючего и воздуха перед воспламенением.

Температура горения

При какой температуре горит дизельное топливо? Если раньше этот вопрос казался сложным, то сейчас на него можно дать вполне однозначный ответ. Температура горения дизельного топлива — около 500-600 градусов по Цельсию. Температура должна быть достаточно высокой, чтобы воспламенить смесь горючего и воздуха. В холодных странах, где преобладает низкая температура окружающей среды, у двигателей была свеча накаливания, которая согревает впускной канал, чтобы помочь запустить двигатель. Вот почему необходимо всегда подождать, пока значок обогревателя не погаснет на приборной панели, прежде чем запустить двигатель. Это также влияет на температуру горения дизтоплива. Рассмотрим, какие еще есть нюансы в его работе.

Особенности

Основной предпосылкой горения дизельного топлива в горелке, температура которой регулируется извне, является его уникальный способ высвобождения химической энергии, в нем запасенной. Чтобы выполнить этот процесс, кислород должен быть доступным для него, чтобы облегчить возгорание. Одним из наиболее важных аспектов этого процесса является смешивание горючего и воздуха, которое часто называют приготовлением смеси.

Катализатор горения дизельного топлива

В дизельных двигателях горючее часто впрыскивается в цилиндр двигателя в конце такта сжатия, всего за несколько градусов угла поворота коленчатого вала до верхней мертвой точки. Жидкое топливо обычно впрыскивается с высокой скоростью в виде одной или нескольких струй через небольшие отверстия или сопла в наконечнике инжектора, распыляется на мелкие капельки и проникает в камеру сгорания. Распыленное горючее поглощает тепло от окружающего нагретого сжатого воздуха, испаряется и смешивается с окружающим высокотемпературным воздухом высокого давления. Поскольку поршень продолжает двигаться ближе к верхней мертвой точке (ВМТ), температура смеси (в основном воздуха) достигает температуры воспламенения. Температура горения дизтоплива «Вебасто» ничем не отличается от аналогичной температуры других сортов дизеля, достигая около 500-600 градусов.

Быстрое воспламенение некоторого предварительно смешанного горючего и воздуха происходит после периода задержки зажигания. Такое быстрое воспламенение считается началом сгорания и характеризуется резким увеличением давления в цилиндре по мере расходования топливовоздушной смеси. Повышенное давление, возникающее в результате предварительно смешанного сгорания, сжимает и нагревает несгоревшую часть заряда и сокращает задержку перед его воспламенением. Это также увеличивает скорость испарения оставшегося горючего. Его распыление, испарение, смешивание с воздухом продолжаются до тех пор, пока все оно не сгорит. Температура горения керосина и дизтоплива в этом отношении может быть схожей.

Характеристика

Сперва разберемся с обозначениями: далее A — это воздух (кислород), F — топливо. Дизельное сгорание характеризуется низким общим отношением A / F. Наименьшее среднее значение A / F часто наблюдается в условиях пикового момента. Чтобы избежать чрезмерного образования дыма, A / F при пиковом моменте обычно поддерживается выше 25:1, что значительно выше стехиометрического (химически правильного) отношения эквивалентности около 14,4:1. Это также касается всех активаторов горения дизтоплива.

В дизельных двигателях с турбонаддувом отношение A / F на холостом ходу может превышать 160:1. Следовательно, избыточный воздух, присутствующий в цилиндре после сгорания топлива, продолжает смешиваться с горящими и уже отработанными газами. При открытии выпускного клапана избыток воздуха вместе с продуктами сгорания истощается, что объясняет окислительный характер выхлопа дизеля.

Когда горит дизтопливо? Этот процесс происходит после того, как испаренное горючее смешивается с воздухом, образует локально богатую смесь. Также на этом этапе достигается надлежащая температура горения дизельного топлива. Однако общее отношение A / F невелико. Другими словами можно сказать, что большая часть воздуха, впускаемого в цилиндр дизельного двигателя, сжимается и нагревается, но никогда не участвует в процессе сгорания. Кислород в избытке воздуха помогает окислять газообразные углеводороды и окись углерода, снижая их до крайне малых концентраций в выхлопных газах. Этот процесс гораздо более важен, чем температура горения дизельного топлива.

Факторы

В процессе сгорания дизеля основную роль играют следующие факторы:

  • Индуцированный заряд воздуха, его температура и его кинетическая энергия в нескольких измерениях.
  • Распыляемость впрыскиваемого топлива, проникновение брызг, температура и химические характеристики.

Хотя эти два фактора являются наиболее важными, существуют другие параметры, которые могут существенно повлиять на работу двигателя. Они играют вторичную, но важную роль в процессе сгорания. Например:

  • Конструкция впускного канала. Она оказывает сильное влияние на движение наддувочного воздуха (особенно в тот момент, когда он входит в цилиндр) и на скорость перемешивания в камере сгорания. От этого может меняться температура горения дизельного топлива в котле.
  • Конструкция впускного отверстия также может влиять на температуру наддувочного воздуха. Это может быть достигнуто путем передачи тепла от водяной рубашки через площадь поверхности впускного отверстия.
  • Размер впускного клапана. Контролирует общую массу воздуха, впускаемого в цилиндр за конечное время.
  • Степень сжатия. Она влияет на испарение, скорость перемешивания и качество сгорания, независимо от температуры горения дизельного топлива в котле.
  • Давление впрыска. Оно контролирует продолжительность впрыска для заданного параметра отверстия сопла.
  • Геометрия распыления, которая непосредственно влияет на качество и температуру горения дизельного топлива и бензина за счет использования воздуха. Например, больший угол конуса разбрызгивания может поместить горючее сверху поршня и снаружи бака сгорания в дизельных двигателях DI с открытой камерой. Это условие может привести к чрезмерному «курению», так как горючее лишается доступа к воздуху. Широкие углы конуса могут также привести к разбрызгиванию топлива на стенках цилиндра, а не внутри камеры сгорания, где это требуется. Распыленное на стенку цилиндра, оно в конечном итоге будет перемещено вниз в масляный поддон, что сократит срок службы смазочного масла. Поскольку угол разбрызгивания является одной из переменных, влияющих на скорость перемешивания воздуха в топливной струе вблизи выходного отверстия инжектора, он может оказать существенное влияние на общий процесс сгорания.
  • Конфигурация клапана, которая контролирует положение инжектора. Двухклапанные системы создают наклонное положение инжектора, что подразумевает неравномерное распыление. Это приводит к нарушению смешивания топлива и воздуха. С другой стороны, конструкции с четырьмя клапанами допускают вертикальную установку инжектора, симметричное расположение распыления топлива и равный доступ к доступному воздуху для каждого из распылителей.
  • Положение верхнего поршневого кольца. Оно контролирует мертвое пространство между верхней площадкой поршня и гильзой цилиндра. Это мертвое пространство задерживает воздух, который сжимается и расширяется, даже не участвуя в процессе сгорания. Поэтому важно понимать, что система работы дизельного двигателя не ограничивается камерой сгорания, распылителями форсунок и их непосредственным окружением. Сгорание включает в себя любую часть или компонент, которые могут повлиять на конечный результат процесса. Потому ни у кого не должно быть сомнений по поводу того, горит ли дизельное топливо.

Другие нюансы

Известно, что сгорание дизеля является очень обедненным с отношением A / F:

  • 25:1 при пиковом крутящем моменте.
  • 30:1 при номинальной скорости и максимальной мощности.
  • Более 150: 1 на холостом ходу для двигателей с турбонаддувом.

Однако этот дополнительный воздух не входит в процесс сгорания. Он довольно сильно нагревается и истощается, в результате чего выхлоп дизеля становится бедным. Даже учитывая то, что среднее воздушно-топливное отношение является бедным, если в процессе проектирования не будут приняты надлежащие меры, области камеры сгорания могут быть богаты горючим и приводить к чрезмерным выбросам дыма.

Камера сгорания

Ключевая цель при ее проектировании заключается в том, чтобы обеспечить достаточное смешивание топлива и воздуха для смягчения воздействия областей, богатых горючим, и позволить двигателю достичь своих показателей производительности и выбросов. Обнаружено, что турбулентность в движении воздуха внутри камеры сгорания полезна для процесса перемешивания и может быть использована для достижения этой цели. Вихрь, создаваемый впускным отверстием, может усиливаться, а поршень может создавать сдавливание, когда он приближается к головке цилиндра, чтобы обеспечить больше турбулентности во время акта сжатия благодаря правильной конструкции чаши в головке поршня.

Конструкция камеры сгорания оказывает наиболее значительное влияние на выбросы твердых частиц. Она также может влиять на несгоревшие углеводороды и СО. Хотя выбросы NOx зависят от конструкции чаши [De Risi 1999], свойства объемного газа играют очень важную роль в уровнях их выхлопных газов. Однако из-за компромисса с NOx / PM конструкции камер сгорания должны были развиваться по мере уменьшения пределов выбросов NOx. В основном это требуется, чтобы избежать увеличения выбросов PM, которые в противном случае могли бы возникнуть.

Оптимизация

Важным параметром для оптимизации системы сгорания дизельного топлива в двигателе является доля доступного воздуха, участвующего в этом процессе. Коэффициент К (отношение объема поршневой чаши к зазору) является приблизительной мерой доли воздуха, доступного для сгорания. Уменьшение рабочего объема двигателя приводит к уменьшению относительного коэффициента К и к тенденции ухудшения характеристик сгорания. Для данного смещения и при постоянной степени сжатия коэффициент K можно улучшить, выбрав более длинный ход. На подбор соотношения диаметра цилиндра к двигателю может повлиять фактор K и ряд других факторов, таких как упаковка двигателя, отверстия и клапаны и так далее.

Возможные трудности

Особенно существенная проблема при настройке максимального отношения цилиндра к рабочему ходу заключается в очень сложной упаковке головки блока цилиндров. Это необходимо для размещения конструкции с четырьмя клапанами и системы впрыска топлива Common-Rail с инжектором, расположенным в центре. Головки цилиндров имеют сложную конструкцию из-за множества каналов, включая водяное охлаждение, удерживающие болты головки цилиндров, впускные и выпускные отверстия, инжекторы, свечи накаливания, клапаны, их стержни, углубления и седла, а также другие каналы, используемые для рециркуляции выхлопных газов в некоторых конструкциях.

Камеры сгорания в современных дизельных двигателях с прямым впрыском могут называться открытыми или повторными.

Открытые камеры

Если верхнее отверстие чаши в поршне имеет меньший диаметр, чем максимальный этот же параметр чаши, то ее называют возвратной. Такие чаши имеют «губу». Если ее нет, то это открытая камера сгорания. В дизельных двигателях данные конструкции с чашей типа «мексиканская шляпа» известны с 20-х годов прошлого века. Они использовались до 1990 года в двигателях большой грузоподъемности до того момента, когда возвратная чаша стала более важной, чем была раньше. Эта форма камеры сгорания предназначена для относительно продвинутых значений времени впрыска, где чаша содержит большую часть горящих газов. Она не очень подходит для стратегий замедленного впрыска.

Дизельный двигатель

Он назван в честь изобретателя Рудольфа Дизеля. Является двигателем внутреннего сгорания, в котором воспламенение впрыскиваемого топлива вызывается повышенной температурой воздуха в цилиндре из-за механического сжатия. Дизель работает, сжимая только воздух. Это повышает температуру воздуха внутри цилиндра до такой степени, что распыленное топливо, впрыскиваемое в камеру сгорания, самовозгорается.

Это отличается от двигателей с искровым зажиганием, таких как бензиновый или газовый (использующий газообразное горючее, а не бензин). В них используют свечу зажигания для воспламенения топливовоздушной смеси. В дизельных двигателях свечи накаливания (подогреватели камеры сгорания) могут применяться для облегчения запуска в холодную погоду, а также при низкой степени сжатия. Оригинальный дизель работает по циклу постоянного давления постепенного сгорания и не производит звукового удара.

Общая характеристика

Дизель имеет самый высокий тепловой КПД среди всех практических двигателей внутреннего и внешнего сгорания благодаря очень высокой степени расширения и присущему обедненному горению, что позволяет рассеивать тепло избыточным воздухом. Небольшая потеря эффективности также предотвращается без непосредственного впрыска, поскольку несгоревшее горючее не присутствует при перекрытии клапана, а топливо не поступает непосредственно из впускного (впрыскивающего) устройства в выхлопную трубу. Низкоскоростные дизельные двигатели, которые используются, например, на судах, могут иметь тепловой КПД, превышающий 50 процентов.

Дизели могут быть сконструированы как двухтактные, так и четырехтактные. Первоначально они использовались в качестве более эффективной замены для стационарных паровых двигателей. С 1910 года они применялись на подводных лодках и кораблях. Использование в локомотивах, грузовиках, тяжелом оборудовании и электростанциях последовало позже. В тридцатых годах прошлого века они нашли место в конструкции нескольких автомобилей.

Преимущества и недостатки

С 70-х годов прошлого столетия использование дизельных двигателей в более крупных дорожных и внедорожных транспортных средствах в США возросло. Согласно данным Британского общества производителей и производителей автомобилей, средний показатель по ЕС для дизельных авто составляет 50 % от общего объема продаж (среди них 70 % — во Франции и 38 % — в Великобритании).

В холодную погоду запуск высокоскоростных дизельных двигателей может быть затруднен, поскольку масса блока и головки цилиндров поглощает тепло сжатия, предотвращая воспламенение из-за более высокого отношения поверхности к объему. Предварительно такие агрегаты используют небольшие электрические нагреватели внутри камер, называемых свечами накаливания.

Многие двигатели используют резистивные нагреватели во впускном коллекторе для нагрева входящего воздуха и для запуска или до тех пор, пока не будет достигнута рабочая температура. Электрические резистивные нагреватели блока двигателя, подключенные к электросети, используются в холодных климатических условиях. В таких случаях его требуется включать на длительное время (более часа), чтобы уменьшить время запуска и износ.

Блочные нагреватели также применяются для аварийных источников питания с дизельными генераторами, которые должны быстро снимать нагрузку при сбое в работе. В прошлом использовалось более широкое разнообразие методов холодного запуска. Некоторые двигатели, например Detroit Diesel, использовали систему для введения небольших количеств эфира во впускной коллектор, чтобы начать сгорание. Другие использовали смешанную систему с резистивным нагревателем, сжигающим метанол. Импровизированный метод, особенно на неработающих двигателях, состоит в том, чтобы вручную распылять аэрозольный баллончик с эфирной жидкостью в поток всасываемого воздуха (обычно через узел фильтра всасываемого воздуха).

Отличия от других двигателей

Условия в дизеле отличаются от двигателя с искровым зажиганием из-за разного термодинамического цикла. Кроме того, мощность и частота его вращения напрямую контролируются подачей горючего, а не воздуха, как в двигателе с циклическим циклом. Температура горения дизельного топлива и бензина также может различаться.

Средний дизельный двигатель имеет более низкое отношение мощности к весу, чем бензиновый. Это связано с тем, что дизель должен работать на более низких оборотах из-за конструкционной необходимости в более тяжелых и прочных деталях, чтобы противостоять рабочему давлению. Оно всегда вызывается высокой степенью сжатия двигателя, которая увеличивает усилия на детали из-за сил инерции. Некоторые дизели предназначены для коммерческого использования. Это многократно подтверждено на практике.

Дизельные двигатели обычно имеют большую длину хода. В основном это нужно для облегчения достижения необходимых степеней сжатия. В результате поршень становится тяжелее. То же можно сказать и о шатунах. Через них и коленчатый вал необходимо передавать больше усилия для изменения импульса поршня. Это еще одна причина, по которой дизельный двигатель должен быть сильнее при той же выходной мощности, что и бензиновый.

Каждый автомобилист стремится узнать максимум о своем транспорте, потому что это позволяет снизить вложения в него денег и времени, а также добиться максимальной производительности. Одними из важнейших данных по праву можно признать температуры вспышки и горения солярки, а вместе с этим и время прогорания. Эти сведения формируют цетановое число, а также помогают узнать качество топлива и соответствие его действующим ГОСТам.

Цетановое число (ЦЧ) – это показатель эффективности сгорания топлива. Для любых автомобилей оптимальными показателями считаются пределы в 40-55, причем наилучший вариант для каждого отдельного случая подбирается опытным путем.

Температура горения солярки

Стандартная температура горения солярки составляет целых 1100С, что очень много по сравнению с большинством аналогов. Производители ДВС на основе этих данных в каждом отдельном случае рассчитывают оптимальное соотношение с воздухом, которое позволяет достигать максимальной эффективности от работы с минимальными затратами топлива.

В процессе сгорания 1 кг горючего выделяется в среднем 42,7 МДж энергии, что в разы выше бензина. Подобный подход гарантирует повышение эффективности работы двигателя и снижает необходимый для движения расход.

Температура вспышки солярки

Согласно действующим ГОСТам температура вспышки солярки составляет всего 40С, тогда как на практике все производители придерживаются показателя в 45С, что исключает казусы и позволяет оптимизировать рабочие показатели. Данный показатель рассматривается крайне редко, потому что поджиг в ДВС осуществляется совершенно иным образом. При иных равных условиях лучше отдать предпочтение более высоким температурам, гарантирующим исключительную безопасность эксплуатации даже в условиях с экстремальными температурами.

Температура воспламенения солярки

Когда рассматривается температура воспламенения солярки, то преимущественно указывается самовоспламенение. Для летнего горючего она равна 310С, тогда как для зимнего 240С. Причина у данной разницы заключается в условиях эксплуатации и хранения. К тому же данные показатели сильно зависят от давления, потому что процесс возгорания ДТ в двигателе происходит именно при давлении, но без дополнительного источника искры (в бензиновых аналогах задействуются свечи).

Одним из важных нюансов стоит учитывать задержку воспламенения, т.к. именно она оказывает решающее влияние на ЦЧ. К тому же минимальная задержка позволяет существенно снизить выбросы вредных веществ в атмосферу.

Температура кипения солярки

Температура кипения солярки, как и во всех указанных выше факторах, зависит от климатических особенностей горючего. Она может варьироваться от 180 до 370 С, причем данный показатель критически важен для любых расчетов.

Кипение на практике – это процесс перехода из жидкого состояния в газообразное, в котором момент вспышки значительно изменяется. Соблюдение данного параметра производителями гарантирует, что сгорание топлива будет полным с максимальным выделением энергии, а выбросы в окружающую среду окажутся минимальными.

Как ни странно это прозвучит, но дизель работает не на обеднённой, а на обогащённой смеси …
Я, как и все, хотел написать «СМЕСИ», но это неправильный и даже вредный термин. Термин, который СРАЗУ очень сильно запутывает всё вИдение процессов, происходящих в дизельном двигателе. Потому я и начну свой опус именно с этого вопроса.

Для сжигания 1 кг бензина или 1 кг керосина или 1 кг пропана или 1 кг бутана или 1кг многих прочих углеводородов требуется около 15 кг воздуха. Для сжигания 1 кг дизельного топлива требуется те же самые 15 кг воздуха. Теплотворная способность всех этих топлив тоже практически не отличается.
Почему же дизельному двигателю требуется в разы большее количество воздуха, чем бензинке?

Потому что дизель работает не на СМЕСИ и это нужно чётко понимать.
Хотя СМЕСЬ в камере сгорания дизельного двигателя, конечно же, присутствует. Но!

Топливо подаётся в камеру сгорания В ЖИДКОМ ВИДЕ через распылитель в виде тумана.
Пыли. Аэрозоли. Взвеси. Суспензии. Мельчайших капелек. Назовите как хотите, но это не СМЕСЬ!

СМЕСЬ — это всё таки нечто более-менее однородное. Нечто, УЖЕ смешанное. Сладкий чай — это смесь. Гомогенная смесь. Если сахар бросили на дно стакана и чай не размешивали — на дне стакана какое-то время будет колыхаться густой сироп — получится та самая «гетерогенная»(неоднородная) смесь. Но чай, в который падает кусок сахара — нихрена не смесь вообще!

В дизеле реальная СМЕСЬ начинает образовываться ВОКРУГ КАЖДОЙ мельчайшей частицы топлива сразу же после распыления топлива форсункой. У поверхности капельки СМЕСЬ будет очень богатой. Чем дальше от поверхности капельки — тем смесь будет беднее. Где-то посередине между этими двумя крайностями концентрация СМЕСИ будет около- и стехиометрической. В области этой довольно тоненькой СФЕРЫ и находятся наиболее благоприятные условия и для САМОВОСПЛАМЕНЕНИЯ и для СГОРАНИЯ. И именно здесь и ТОЛЬКО ЗДЕСЬ и будет происходить ВСЁ сгорание СМЕСИ топлива и… и чего? воздуха?
На первом этапе — да, воздуха. Но сразу после первого этапа СМЕСЬ начинает представлять из себя ТАКОЕ, что ни в сказке сказать, ни вслух произнести…:

Давайте посмотрим ПОДРОБНЕЕ как НА САМОМ ДЕЛЕ происходит сгорание солярки в дизельном двигателе:

Гореть не умеют ни жидкие, ни, тем более, твёрдые вещества. Мало того — гореть не умеют даже отдельные молекулы топлива, которые находятся в таки обнаруженной нами СМЕСИ. В фактическом процессе сгорания участвуют только кирпичики(радикалы) знакомых нам элементов. Потому сразу после образования вокруг капельки топлива сферы стехиометрического состава СМЕСИ процесса горения не возникает. Сразу после испарения молекула углеводородного топлива начинает стремительно нагреваться и оттого разваливаться на части. Грубо говоря — на атомы водорода и углерода. Водород чрезвычайно активный элемент и он начинает взаимодействовать с кислородом воздуха первым. Даже это взаимодействие — чрезвычайно сложный и не быстрый процесс. Можете посмотреть на него поподробнее, если интересно:

Главное в другом. Каждое такое взаимодействие — это кроме молекулы воды ещё и хорошая порция энергии. По мере нагрева таких взаимодействий становится всё больше — выделяющаяся энергия перестаёт успевать рассеиваться в пространстве и начнёт ускорять рядом идущие взаимодействия и температура СМЕСИ вокруг капельки топлива начнёт нарастать ЛАВИНООБРАЗНО. В этот момент и начнётся знакомое нам горение с выделением лучистой энергии и прочими другими сопутствующими эффектами… Кислорода много. Топлива много. Всё замечательно перемешано. Температура высокая и растёт. Давление высокое и растёт. Начинает гореть даже углерод. Вся зона околостехиометрического соотношения вокруг капельки топлива разом воспламеняется. Нечто типа взрыва сверхновой звезды:

В «научно»-популярной литературе пишется, что температура скачком повышается до 2000 градусов. Какие нафиг 2000 градусов?! В серьёзных трудах утверждается, что азот более-менее интенсивно начинает окисляться при температурах выше 2500 градусов. В дизеле окислов азота образуется страшное количество, как и сажи(судя по всему азот окисляется СНАРУЖИ сферы пламени где много кислорода, а сажа образуется ИЗНУТРИ этой сферы, где много углерода, но кислорода почти нет), но подавляющая часть окислов азота при понижении температуры опять восстанавливается до азота. Потому, скорее всего, температура в зонах богатой смеси, где и происходит реальное сгорание, взлетает намного выше 3000 градусов. Потому и сажевые частицы излучают так много лучистой энергии. Давление взлетает до небес…

Цитата из умной книжки:

Т.е. всё сгорание происходит ЛОКАЛЬНО. В ОЧЕНЬ ограниченных, фактически ИЗОЛИРОВАННЫХ зонах.
Согласно исследованиям — температуру больше 2600К имеет всего около 0,2% массы рабочего тела в камере сгорания, больше 2400К – около 2%, больше 2200К – 22%, больше 2000К – 27%, больше 1700К — 28%, остальная часть рабочего тела (около 20%) — никогда не разогреется даже до 1700К…
Из-за такой изолированности тепло относительно слабо передаётся стенкам камеры сгорания.

Вернёмся на мгновение из микромира в макромир. Пока первая капелька впрыснутого топлива готовилась к взрыву(самовоспламенению) форсунка продолжала впрыскивать в камеру сгорания тысячи других капелек, каждая из которых тоже тут же начинала готовится к взрыву — нагреваться, испаряться и образовывать СМЕСЬ. Но как только самовоспламеняется СМЕСЬ вокруг первой капельки — энергии её взрыва хватает на детонацию и воспламенение СМЕСИ вокруг других капелек. Фактически одномоментно воспламеняется ВСЯ образовавшаяся в камере сгорания СМЕСЬ. Хотя правильнее будет сказать так — «ВСЕ образовавшиеся в камере сгорания СМЕСИ» — ведь все эти СМЕСИ изолированы и находятся на расстоянии друг от друга… почти как звёзды в космосе…
Так или иначе — возникает та самая дизельная детонация(взрывное горение) из-за которого дизель и стукатит. Хорошо, что пригодной к сгоранию СМЕСИ к моменту самовоспламенения образуется не так уж и много…
Дальнейшее СМЕСЕОБРАЗОВАНИЕ будет происходить в условиях страшного дефицита кислорода. И сгорание соответственно происходит совсем не так, как это описывается в литературе.

Возвращаемся в микромир. За то время пока мы отлучались зона околостехиометрического соотношения топлива и воздуха вокруг капельки уже вся выгорела. Ни топлива, ни кислорода в ней не осталось. Только продукты сгорания, разогретые до очень высоких температур — вода, углекислота, да щепотка окислов азота… С внешней поверхности этой РАСКАЛЁННОЙ, но ВЫЗЖЕННОЙ зоны начинают ДИФФУНДИРОВАТЬ молекулы воздуха с большим количеством свободного кислорода. Изнутри начинает подниматься та каша, что образовалась из углеводородов топлива в процессе сильного нагрева и сжатия — радикалы водорода и радикалы различных СОЕДИНЕНИЙ углерода. Скорость дальнейшего СМЕСЕОБРАЗОВАНИЯ и сгорания будет определяться скоростью поступления атомов кислорода извне и атомов топлива изнутри.

Весь свободный водород, образующийся в результате температурного разложения продолжающих испаряться углеводородов, даже в условиях сильного дефицита кислорода потихоньку-полегоньку, но начинает НЕОБРАТИМО сгорать по мере взаимодействия с кислородом. Водород очень уж активное вещество. Сгорание его идёт в очень широких стехиометрических и температурных пределах. Скорость его диффузии чрезвычайно высока и сопоставима со скоростью теплопереноса. Для сгорания двум атомам водорода(мы с Томарой ходим парой) достаточно одного атома кислорода. Потому на время все реакции окисления углерода фактически останавливаются… С углеродом начинается очень нехорошая и очень длинная история с образованием и преобразованием всяких формальдегидов, гидроксилов и всяческой другой заразы… Крекинг, гомолиз, пиролиз и много других страшных слов… По мере того как атомы водорода потихоньку сваливают из молекулы углеводорода в условиях дефицита кислорода она, эта самая молекула топлива потихоньку вырождается в молекулу… графита. Да-да. Выделяющиеся в результате пиролиза атомы углерода имеют четыре свободные связи, отдельно не существуют и в зонах недостатка кислорода соединяются между собой, образуя твёрдые кристаллы графита – мельчайшие частицы сажи размером 0,3-0,4 мкм. Сравнительно недавно было обнаружено, что в хорошо нам известной копоти присутствует и большое количество шарообразных молекул, состоящих из 60 и более(до 400) атомов углерода и, иногда, и из 24 и более атомов воды — их назвали фуллеренами, а открытие этой новой формы углерода было ознаменовано присуждением в 1996 году Нобелевской премии по химии. Таких частиц образуется в дизеле неимоверное количество. Но страшный чёрный дым, который извергает дизель при перегрузке, содержит всего около 1% сажевых частиц, образовавшихся в процессе сгорания дизельного топлива — подавляющая часть образовавшихся частиц сажи сгорает в процессе догорания топлива, когда весь свободный водород уже иссякает и перестаёт перехватывать кислород под носом у углерода, каждому атому которого для полного счастия сгорания необходимо СРАЗУ аж ДВА атома кислорода… По иронии судьбы к этому времени почти весь углерод находится в состоянии раскалённой «алмазной» пыли. Начинаются танцы, подобные сгоранию водорода, но намного более сложные и многоходовые, а потому намного более длительные…
А атомов свободного кислорода меж тем остаётся всё меньше и меньше…

Пока тянется этот химический полонез начинает опускаться поршень двигателя и давление(а следовательно и температура) начинают падать. Расстояние между атомами увеличивается, энергия рассеивается в пространстве, скорость атомов падает — реакции начинают стремительно замедляться. За счёт того, что частички сажи чрезвычайно раскалены — они умудряются ещё долго реагировать с кислородом, если тот таки встретится им на пути, но по мере опускания поршня вниз толку от этого догорания становится всё меньше, а вреда всё больше. Температура в камере сгорания — не самоцель, она нужна только для двух задач — вначале максимально ПОЛНО спалить ВСЁ топливо(вытащить ВСЮ энергию) и максимально разогреть РАБОЧЕЕ ТЕЛО(всё содержимое камеры сгорания) чтобы получить максимальное ДАВЛЕНИЕ(тот самый крутящий момент) газов.
Высокая степень РАСШИРЕНИЯ(не сжатия!) дизельного двигателя позволяет полнее преобразовать энергию расширяющихся от нагрева газов в механическую РАБОТУ. Именно поэтому температура выхлопных газов дизеля заметно ниже температуры выхлопа бензинки, притом что максимальная температура сгорания топлива выше у дизеля…
Чёта меня понесло в сторону.

Углерод выгодно сжигать полностью не только с точки зрения экологических норм — при сгорании 1 атома углерода образуется в 3 раза больше энергии, чем при сгорании 1 атома водорода! Недожиг углерода(сажи) очень заметно влияет на энергетический баланс в камере сгорания, а соответственно и на мощность и на расход двигателя любой конструкции и косвенно указывает на проблемы с организацией процессов сгорания. К тому же сажа — это очень компактные кристаллы, а углекислота — это газ, который уже и сам по себе создаёт дополнительное давление на поршень…
Вот для того, чтобы сжечь МАКСИМАЛЬНОЕ количество УГЛЕРОДА и применяют в дизеле избыток воздуха. Как по мне — так эта фраза тоже насквозь лживая и не отражающая сути. А суть в данном случае такова — и в дизеле и в бензинке равного литража на режиме НОМИНАЛЬНОЙ (максимальной) мощности количество воздуха в камере сгорания практически ОДИНАКОВО! НО.
В дизеле невозможно эффективно сжечь столько топлива, столько можно сжечь в бензинке равного литража — НЕ УСПЕВАЕТ дизельное топливо связать ВЕСЬ КИСЛОРОД воздуха за время сгорания — потому в дизеле до четверти(!) кислорода воздуха вылетает в трубу даже на максимальной мощности(когда дизель уже вовсю дымит). Потому дизельным выхлопом можно спокойно дышать длительное время(не верьте сказкам про дизельные душегубки фашистов), в отличие от выхлопа бензинок, где свободного кислорода практически нет. Потому МАКСИМАЛЬНАЯ ЛИТРОВАЯ мощность атмосферного дизеля меньше МАКСИМАЛЬНОЙ ЛИТРОВОЙ мощности атмосферной же бензинки на ОДИНАКОВЫХ оборотах на те самые 25%. Плюс-минус.
Прямовпрысковый дизель имеет эффективные обороты до 3000-3500 оборотов, вихрекамерник — до 4000 с небольшим, а самая захудалая бензинка легко крутится до 6000. Только за счёт этой разницы в максимальных оборотах бензинка уже на треть мощнее дизеля. Потому МАКСИМАЛЬНАЯ паспортная МОЩНОСТЬ бензинки В РАЗЫ превышает МАКСИМАЛЬНУЮ паспортную МОЩНОСТЬ дизеля.
Мало того. Поскольку с конца 80-ых годов дизелестроители сферы легкового транспорта активно боролись с окислами азота, то почти ВСЕ дизеля 80-ых, 90-ых и начала 2000-ых имеют затянутый впрыск топлива, поздний УОПТ, гипертрофированный ЕГР и несоразмерно высокий расход топлива на мощностных режимах. Сколько-нибудь продолжительно работать с максимальной паспортной мощностью эти дизеля не в состоянии уже прямо с завода из-за перегрева камеры сгорания и поршневой. Пробежные эти дизеля мрут как мухи уже при длительных 23 максимальной ПАСПОРТНОЙ мощности…
.
.
.
.
P.S.
Ну и напоследок ещё немного про макромир камеры сгорания дизельного двигателя.
Для полноты картины.
На вихрекамерных дизелях форсунка формирует один факел. У прямовпрысковых дизелей форсунка формирует 4-8 факелов:

Не обращайте внимания на размеры факелов на вышеприведённых фотографиях — они сняты в обычных комнатных условиях. При высоком давлении в камере сгорания реального двигателя дальнобойность факела не превышает сантиметра — топливо практически никогда не попадает на стенки камеры сгорания ни вихрекамерника, ни прямовпрыскового дизеля — именно поэтому это дизеля с ОБЪЁМНЫМ смесеобразованием:

Правильная рабочая температура двигателя: Бензин- Дизель… Motoran.ru

Стабильность работы любого автомобиля зависит от условий эксплуатации и технических характеристик двигателя внутреннего сгорания. Такой показатель, как рабочая температура двигателя, зависит не только от условий окружающей среды, но и от многих эксплуатационных факторов. Если данный параметр соответствует расчетной величине, т. е. находится в допустимом диапазоне, силовой агрегат обеспечивает максимальную отдачу энергии в течение длительного времени. При оптимальных режимах двигателя внутреннего сгорания создаются лучшие условия для функционирования всех систем автомобиля.

Какая должна быть рабочая температура двигателя

При сгорании топливных смесей в цилиндрах мотора выделяется огромное количество тепла. В камерах сгорания температура достигает более 2000°С. В конструкцию силовых агрегатов включена система охлаждения, элементы которой отводят тепло от рабочих узлов. Благодаря эффективной работе элементов охлаждающей системы ДВС, тепловой режим поддерживается в оптимальных границах от +80 до 90°С. Существуют отдельные типы моторов, для которых нормы расширены до 110°С, чаще всего это механизмы с воздушным охлаждением.

При работе двигателя в оптимальном температурном режиме создаются наилучшие условия для:

  1. Полноценного наполнения цилиндров топливовоздушными смесями.
  2. Стабильности работы силового агрегата во время движения.
  3. Надежной работы механизмов и систем транспортного средства.

Отклонения от нормы температурных режимов силовых агрегатов

Показания температуры внутри двигателя можно увидеть на приборе, расположенном в салоне любого современного автомобиля.

К чему приводит превышение нормы рабочей температуры в двигателе? При сверхвысоких температурах технологические тепловые зазоры металлических элементов нарушаются. Это вызывает следующие негативные изменения в работе силового агрегата:

  • ускоренный износ рабочих узлов и деталей;
  • деформации и поломки механизмов;
  • уменьшение мощности двигателя;
  • возникновение детонации;
  • несанкционированное воспламенение горючего.

Что означает понятие – низкая температура двигателя? Если в процессе движения автомобиля стрелка прибора находится ниже рекомендуемого уровня температурного режима, имеются веские основания для тревоги. Непрогретая топливовоздушная смесь конденсируется и оседает на стенках цилиндров. При попадании конденсата в масляный поддон происходит разжижение моторного масла. Технических свойства и характеристики смазочного материала резко ухудшаются. При длительной работе в низком тепловом режиме узлы и детали силового агрегата быстро изнашиваются и приходят в негодность.

Если температура двигателя не поднимается до рабочей, во избежание преждевременного выхода из строя компонентов мотора, водителю необходимо отправить автомобиль на диагностику в ближайший сервисный центр.

Рабочая температура бензинового двигателя

Работа каждого двигателя внутреннего сгорания сопровождается выделением тепла. Рабочие элементы мотора функционируют в условиях высоких температурных режимов.

При опускании поршня в самую нижнюю точку затрачивается большое количество энергии, одновременно с этим выделяется тепло. Элементы силовых агрегатов изготовлены из металла. Как известно, при нагревании данный материал расширяется. При изготовлении узлов и деталей двигателей предусмотрены специальные тепловые зазоры, рассчитанные на нагрев изделий до оптимальных значений. Для предотвращения заклиниваний в конструкцию мотора включена система охлаждения двигателя.

Какая рабочая температура бензинового двигателя является оптимальной? Рабочая температура бензиновых силовых агрегатов как карбюраторного, так и инжекторного, не должна превышать +90°С. Задача охлаждающей жидкости – сохранять постоянную температуру двигателя на должном уровне.

Интересно: Существует понятие «опасная температура двигателя». Для ДВС бензинового типа она составляет 130°С. После достижения предельных значений может произойти заклинивание элементов силового агрегата.

Важно: После включения мотора при дальнейшем движении транспортного средства оператор, постоянно держит под контролем значения рабочей температуры ДВС. Отклонения свидетельствуют о проблемах, появившихся в охлаждающей системе:

  1. Повышение температуры в бензиновом двигателе приводит к закипанию и быстрому испарению ОЖ.
  2. При уменьшении ее количества температура мотора стремительно возрастет.
  3. Под воздействием высоких температур металл начнет деформироваться и расширяться в объеме.
  4. Размеры деталей будут сильно изменены.
  5. В результате, произойдет заклинивание мотора.

Чтобы восстановить работоспособность такого двигателя потребуется дорогостоящий капитальный ремонт автомобиля.

К чему приводит переохлаждение мотора

Такое явление, как переохлаждение также негативно сказывается на качестве работы силового агрегата. Чаще всего это случается зимой или при эксплуатации транспортного средства в сложных климатических условиях крайнего севера.

Рабочая температура двигателя зимой может быть резко снижена в процессе движения авто. При этом потоки охлажденного воздуха обдувают радиатор и весь силовой агрегат. В результате, охлаждающая жидкость резко понижает температуру мотора, даже, если он работает на полных нагрузках.

Понижение рабочей температуры мотора опасно по следующим причинам:

  1. При переохлаждении системы питания в карбюраторе обмерзает отверстие жиклера, через которое поступает воздух, в результате свечи зажигания заливаются бензином. Чтобы продолжить движение, водителю придется ждать высыхания свечей.
  2. При минусовых температурах окружающей среды в автомобилях, работающих на воде, охлаждающая жидкость (ОЖ) замерзает в трубках радиатора. Прекращение циркуляции ОЖ приводит к перегреву мотора. Опытные автовладельцы устанавливают специальные тканевые перегородки или защитные жалюзи на решетку радиатора.
  3. Ухудшение качества или отсутствие отопления салона автомобиля в зимний период может привести к нарушениям управления транспортным средством.

Рабочая температура дизельного двигателя

Поддержание рабочей температуры дизеля является необходимым условием для оптимального функционирования механизмов и систем транспортного средства. Принцип действия дизельного мотора принципиально отличается от бензинового. Здесь топливная смесь не готовится заранее. Первым в камеру попадает воздух. При сильном сжатии воздушная масса разогревается до +700°С. В момент топливного впрыска происходит взрыв с последующим равномерным сгоранием образовавшейся смеси. В результате чего, поршень перемещается в нижнюю мертвую точку.

Температура дизеля зависит от следующих факторов:

  • тип мотора;
  • период задержки воспламенения топливовоздушной смеси;
  • качество, равномерность сгорания топлива.

Считается, что оптимальная рабочая температура двигателя должна находиться в пределах 70 – 90°С. Допустимый максимум для дизельных силовых агрегатов, работающих под усиленными нагрузками, равен +97°С, не более.

Совет: Если дизельный двигатель исправен, перед началом движения рекомендуется прогреть охлаждающую жидкость до температуры не менее +40°С. При сильных морозах за бортом автомобиля мотор может начинать прогреваться только при движении. На первых порах рекомендуется включить пониженную передачу. В дальнейшем, нагрузка на движок должна повышаться постепенно, только после поднятия температуры хотя бы до 80°С.

Краткое описание принципа действия системы охлаждения

В данную систему входят следующие рабочие элементы:

  1. Расширительная емкость.
  2. Радиатор охлаждения.
  3. Патрубки верхний и нижний.
  4. Рубашки охлаждения блока цилиндров.
  5. Соединительные шланги.
  6. Насос ОЖ.
  7. Термостат.
  8. Радиатор отопителя салона.
  9. Охлаждающая жидкость.

Схема работы системы охлаждения силового агрегата:

Как видно из схемы, в охлаждающей системе происходят следующие процессы:

  • Охлаждающая жидкость под воздействием насоса в принудительном порядке проходит по шлангам, трубкам и прочим магистралям.
  • Она эффективно омывает каждый цилиндр ДВС.
  • Цилиндры, в частности камеры сгорания, являются источниками основного тепла, выделяемого силовым агрегатом.
  • Вокруг каждого цилиндра расположены специальные технологические полости под названием «рубашки охлаждения».
  • Рубашки охлаждения сообщаются между собой посредством подготовленных каналов. Через данные полости охлаждающая жидкость циркулирует в постоянном режиме.
  • Благодаря движению ОЖ, тепловая энергия отводится от двигателя внутреннего сгорания в радиатор через верхний патрубок.
  • Проходя сквозь лабиринты тонких трубок радиатора, жидкость охлаждается при помощи естественного обдува или воздушных потоков, создаваемых вентилятором.
  • Далее ОЖ продолжает круговое движение через нижний патрубок охлаждающего радиатора.

Методы восстановления нормальной температуры ДВС

При обнаружении завышения данного параметра, прежде всего, нужно остановить автомобиль, заглушить мотор и начать обследование:

  1. Убедиться в достаточном объеме антифриза в системе охлаждения.
  2. При необходимости восполнить необходимое количество.
  3. Жидкость заливается непосредственно в радиатор охлаждения (при этом необходимо соблюдать осторожность, чтобы не обжечься горячим составом).
  4. Осмотреть систему, чтобы исключить возможные протечки.
  5. Продиагностировать радиатор на предмет герметичности.

Если восполнение объема антифриза не дало ожидаемого результата, температура двигателя продолжает подниматься, это означает, что мотор нуждается в компьютерной диагностике в условиях специализированного сервисного центра.

Среди наиболее частых отказов в системе охлаждения ДВС можно выделить следующие пункты:

  • сбои в работе клапана термостата;
  • поломки электрического вентилятора;
  • чрезмерное засорение трубок радиатора;
  • поломка клапана крышки расширительного бачка;
  • протечки в корпусе насоса;
  • нарушение герметичности системы.

Тепловой режим двигателя считается оптимальным при его значениях, находящихся в пределах от +80 до +90 °С. При таких условиях мотор работает стабильно. При этом обеспечена существенная экономия горючего материала, детали и узлы силового агрегата получают минимальный износ, независимо от нагрузок на двигатель и особенностей работы транспортного средства.

Важно: Чтобы рабочая температура ДВС находилась в заданных пределах, необходимо проводить регулярную диагностику системы охлаждения силового агрегата.

Двигатели внутреннего сгорания — Wikiversity

Двигатели внутреннего сгорания (или двигатели внутреннего сгорания или ДВС, как их еще называют) используются в повседневной жизни и могут быть найдены в: автомобилях; грузовые автомобили; мотоциклы; легкие самолеты; строительная техника и автомобили; железнодорожные локомотивы; стационарные энергосистемы; и лодки и корабли всех размеров. Изучение двигателей превратилось в отрасль машиностроения.

Есть два типа двигателей внутреннего сгорания,

    Четырехтактный двигатель
  1. и
  2. Двухтактный двигатель


Также двигатели можно классифицировать по циклам, которым они следуют, как указано ниже.

  1. Дизельный двигатель
  2. Бензиновый двигатель

Четырехтактные двигатели, как следует из названия, имеют четыре разных цикла, а именно
a.прием
б. сжатие
c. зажигание / расширение
d. выхлоп

В двухтактном режиме всего два цикла, и каждый из них имеет два цикла, выполняемых одновременно.
а. впуск / выпуск
б. зажигание / сжатие

Несколько определений:

 ВМТ: Верхняя мертвая точка. Это самая верхняя часть, до которой поршень может дотянуться в вертикальном двигателе. 
BDC: нижняя мертвая точка. Это самая нижняя часть, до которой поршень может добраться в вертикальном двигателе.

Степень сжатия Двигатель внутреннего сгорания — это, по сути, насос, который сжимает смесь воздух / топливо (или просто «воздух» в случае двигателей с прямым впрыском), а затем зажигает ее, так что она расширяется и производит механическую энергию. Степень сжатия в основном показывает, насколько двигатель сжимает определенный объем всасываемого воздуха. Двигатель со степенью сжатия 12: 1 означает, что на каждые 12 единиц всасываемого объема воздуха поршень сжимает этот воздух до 1 единицы объема.Чем больше воздуха вдавливается в камеру сгорания, тем больше энергии производится на один объем двигателя на такте расширения.

Одним из ограничивающих факторов увеличения степени сжатия является детонация (известная как стук двигателя), когда вместо контролируемого горения воздушно-топливная смесь взрывается, потенциально повреждая двигатель. Кроме того, двигатель с более высокой степенью сжатия имеет тенденцию иметь меньший зазор между поршнем в верхней мертвой точке (ВМТ) и полностью открытыми клапанами, а работа на высоких оборотах может привести к смещению клапана, что может привести к контакту между клапанами и поршнем.

Коэффициент сжатия = (Рабочий объем + зазорный объем) / зазорный объем

Рабочий объем = Объем поршня, пройденного за один полный ход от ВМТ до НМТ.

Свободный объем = Объем камеры сгорания, когда поршень находится в ВМТ

Бензиновый двигатель Бензиновые двигатели, также известные как двигатели с искровым зажиганием, нуждаются во внешнем источнике энергии для воспламенения топлива как для запуска, так и для работы двигателя. Как следует из обоих названий, в этом двигателе используются свечи зажигания для обеспечения искры зажигания и бензин (бензин) в качестве топлива.


Системы бензинового двигателя

1. Топливная система перекачивает топливо из бензобака в карбюратор. Там он смешивается с воздухом и всасывается в цилиндры двигателя. При электронном впрыске топлива он поступает непосредственно из бака в цилиндры с помощью электронного компьютера.

2. Система зажигания подает искры для воспламенения топливной смеси в цилиндрах. С помощью катушки зажигания и контактного прерывателя он заряжает 12-вольтовую батарею, которая, в свою очередь, выдает импульсы в 20 000 вольт.Они проходят через распределитель к свечам зажигания в цилиндрах, где создают искры. При воспламенении топлива в цилиндрах температура достигает 700 ° C и более.

3. В системе водяного охлаждения, в которой вода циркулирует по каналам в блоке цилиндров, отводя таким образом тепло. Он течет по трубам в радиаторе, которые охлаждаются нагнетаемым вентилятором воздухом.

4. Система смазки также снижает теплоотдачу, но ее функциональная задача — поддерживать покрытие движущихся частей маслом, которое под давлением подается на распределительный вал, коленчатый вал и привод клапана.

5. Карбюратор — сердце бензиновых / бензиновых двигателей. Он точно дозирует топливно-воздушную смесь. Старые карбюраторы делают опережение искры, измеряя разницу давления между внешней и внутренней частями карбюратора. Также измеряется величина подъема дроссельной заслонки. Остатки двигателя, которые могут быть оксидом углерода или несгоревшими углеводородами, показывают, насколько хорошо работает карбюратор.


Классификация бензиновых двигателей

Поршневые двигатели подразделяются на несколько категорий.Некоторые из них:


1. По способу охлаждения,

а. Двигатели с воздушным охлаждением: Тепло от двигателя излучается в окружающий воздух. Обычно используются алюминиевые ребра, поскольку они хорошо проводят тепло. Ребра увеличивают общую площадь контакта с окружающим воздухом, обеспечивая максимальный отвод тепла.

г. Двигатели с водяным охлаждением: В этих двигателях охлаждающая жидкость / вода циркулирует через рубашки, расположенные на цилиндре, для отвода тепла.


2. По количеству ходов,

а. 2-тактные двигатели: Завершает термодинамический цикл за два хода поршня (один оборот кривошипа).

г. 4-тактные двигатели: Завершает термодинамический цикл за четыре такта поршня (два оборота кривошипа).


3. В соответствии с расположением цилиндров,

а. Линейное расположение цилиндров: все цилиндры расположены по прямой линии.

г. V-цилиндровый двигатель или V-образный двигатель: два цилиндра наклонены друг к другу под углом 90 градусов.


4. В зависимости от расположения клапана, а. Одинарный верхний распредвал (SOHC)

г. Двойной верхний распредвал (DOHC)

Детали бензинового двигателя

Ниже приведены важные части бензинового двигателя: 1. Цилиндры 2. Блок цилиндров 3. Поршень и шатуны 4. Головка блока цилиндров Картер 5. Клапаны 6. Вал коленчатый Маховик 7. Выхлопная система 8. Распредвал Топливная система 9. Система смазки 10. Система зажигания

Работа бензинового двигателя

Обычно автомобили с бензиновым / бензиновым двигателем имеют четырехтактный двигатель, поскольку они более эффективны, чем двухтактный двигатель, и обеспечивают полное сгорание топлива для оптимального использования. Четырехтактный двигатель имеет четыре такта, а именно: впуск, сжатие, мощность, и выхлопные ходы.

1. Такт всасывания или впуска — первоначально при запуске двигателя поршень движется вниз по направлению к НМТ цилиндра, что создает низкое давление вверху. Вследствие этого открывается впускной клапан, и смесь, содержащая пары бензина и воздух, всасывается цилиндром. Именно через карбюратор смешивается соотношение бензин / бензин и воздух.

2. Ход сжатия — после этого хода впускной клапан закрывается. Поршень теперь движется к верхней (ВМТ) цилиндра, тем самым сжимая топливную смесь до одной десятой ее первоначального объема.Температура и давление внутри цилиндра повышаются из-за сжатия.

3. Рабочий ход — во время этого хода впускной и выпускной клапаны остаются закрытыми. Когда поршень достигает почти верхнего положения (ВМТ), свеча зажигания производит электрическую искру. Горение запускается системой зажигания, которая зажигает искру высокого напряжения через заменяемый на месте воздушный зазор, называемый свечой зажигания. Возникшая искра вызывает взрыв топливовоздушной смеси. Горячие газы расширяются и заставляют поршень двигаться вниз.Поршень соединен со штоком поршня, а шток поршня — с коленчатым валом. Все они движутся друг к другу из-за связи между ними. Коленчатый вал соединен с колесами автомобиля. Когда коленчатый вал движется, колеса вращаются и перемещают автомобиль.

4. Такт выпуска — в этом такте выпускной клапан остается открытым в начале. Поршень вынужден двигаться вверх из-за полученного импульса. Это заставляет газы перемещаться через выпускной клапан в атмосферу.Теперь выпускной клапан закрывается, а впускной клапан открывается. После этого четыре такта двигателя повторяются снова и снова.

Приложения: Эти двигатели широко используются в транспортных средствах, переносных электростанциях для подачи энергии для работы насосов и другого оборудования на фермах. Многие небольшие лодки, самолеты, грузовики и автобусы также используют его.

Объем будущего: Постоянно ведутся исследования, чтобы повысить эффективность использования топлива, уменьшить количество загрязняющих веществ и сделать его более легким и компактным.Недавно инженеры Бирмингемского университета создали самый маленький бензиновый двигатель, способный заменить обычные батареи. Двигатель такой миниатюрный, что с ним можно потрогать кончиками пальцев.

Дизельный двигатель

Подобно бензиновому двигателю, дизель — это двигатель внутреннего сгорания, который преобразует химическую энергию топлива в механическую энергию, которая вызывает возвратно-поступательное движение внутри цилиндров. Поршни соединены с коленчатым валом двигателя, который обеспечивает движение, необходимое для приведения в движение колес транспортного средства.Как в бензиновых, так и в дизельных двигателях энергия выпущен в серии небольших взрывов, известных как горение. Топливо вступает в химическую реакцию с кислородом из воздуха, который забирается во время такта впуска двигателя. Зажигание в бензиновых двигателях происходит из-за искр от свечей зажигания, тогда как в дизельных двигателях топливо воспламеняется из-за тепла сжатия. При сжатии воздух нагревается.

Типы дизельных двигателей

Дизельные двигатели могут быть четырехтактными или двухтактными.

Четырехтактный дизельный двигатель

Работа четырехтактного дизельного двигателя следующая:

1. Такт впуска или всасывания начинается, когда поршень втягивает воздух в цилиндр через впускной клапан. Когда поршень достигает дна цилиндра, впускной клапан закрывается, задерживая воздух внутри цилиндра.

2. Такт сжатия начинается, когда поршень перемещается вверх по цилиндру, сжимая захваченный воздух.Давление повышается от 32 до 50 бар, а температура — до 600 градусов Цельсия.

3. Такт впрыска начинается где-то около ВМТ такта сжатия, топливо разбрызгивается в горячий воздух, воспламеняется и горит контролируемым образом из-за тепла сжатия, что приводит к такту мощности. 4. Такт выпуска начинается, когда поршень НМТ, поршень вытесняет все сгоревшие газы через открытый выпускной клапан. В верхней части такта выпуска выпускной клапан закрывается, а впускной клапан открывается, готовый принять свежий заряд воздуха, который возвращает двигатель в исходную точку.Цикл повторяется снова.

Двухтактный дизель

Дизельный двигатель работает так же, как четырехтактный дизельный двигатель, но уменьшает четыре хода поршня до двухтактных один раз вверх и один раз вниз по цилиндру.

1. Когда поршень находится в верхней части своего цилиндра, он находится на такте сжатия. Цилиндр заполнен сжатым перегретым воздухом. Дизельное топливо впрыскивается и воспламеняется. Поршень движется вниз по цилиндру для своего рабочего хода.Когда поршень приближается к нижней части рабочего хода, выпускные клапаны открываются, и большая часть сгоревших газов устремляется из цилиндра. Теперь, когда поршень продолжает двигаться вниз по цилиндру, он открывает ряд отверстий в стенке цилиндра, через которые вдувается воздух под давлением, выталкивая оставшиеся сгоревшие газы. из баллона и заправьте его свежим воздухом.

2. При движении поршня вверх он блокирует впускные отверстия, задерживая заряд свежего воздуха в цилиндре.Хотя поршень прошел лишь немного больше одного хода, он уже завершил свой рабочий ход, процесс выпуска и впускной цикл. Когда поршень поднимается вверх по цилиндру во время второго хода, он сжимает свежий воздух. Когда он достигнет В верхней части цилиндра происходит впрыск и сгорание, начиная цикл снова. Двухтактный двигатель производит один рабочий ход за каждый полный цикл, в то время как четырехтактный двигатель производит один рабочий ход за каждые четыре такта.

Сгорание в дизельных двигателях

Сгорание в дизельных двигателях

Ханну Яэскеляйнен, Магди К.Хаир

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : В дизельных двигателях топливо впрыскивается в цилиндр двигателя ближе к концу такта сжатия. Во время фазы, известной как задержка воспламенения, топливо распыляется на мелкие капли, испаряется и смешивается с воздухом. По мере того как поршень продолжает приближаться к верхней мертвой точке, температура смеси достигает температуры воспламенения топлива, вызывая воспламенение некоторого количества предварительно смешанного топлива и воздуха.Остаток топлива, которое не участвовало в сгорании с предварительной смесью, расходуется на фазе сгорания с регулируемой скоростью.

Компоненты процесса горения

Сгорание в дизельных двигателях очень сложно, и до 1990-х годов его подробные механизмы не были хорошо изучены. В течение десятилетий его сложность, казалось, не поддавалась попыткам исследователей раскрыть его многочисленные секреты, несмотря на доступность современных инструментов, таких как высокоскоростная фотография, используемая в «прозрачных» двигателях, вычислительная мощность современных компьютеров и множество математических моделей, предназначенных для имитации горения в дизельном топливе. двигатели.Применение лазерного луча к обычному процессу сжигания дизельного топлива в 1990-х годах было ключом к значительному углублению понимания этого процесса.

В этой статье мы рассмотрим наиболее распространенную модель сгорания для обычного дизельного двигателя . Это «обычное» сгорание дизельного топлива в первую очередь регулируется смешиванием, возможно, с некоторым сгоранием с предварительным смешиванием, которое может происходить из-за смешивания топлива и воздуха перед воспламенением. Это отличается от стратегий сжигания, которые пытаются значительно увеличить долю происходящего горения предварительно приготовленной смеси, например, различные ароматы низкотемпературного горения.

Основная предпосылка сжигания дизельного топлива — это его уникальный способ высвобождения химической энергии, хранящейся в топливе. Для выполнения этого процесса кислород должен поступать в топливо особым образом, чтобы облегчить сгорание. Одним из наиболее важных аспектов этого процесса является смешивание топлива и воздуха, которое часто называют подготовкой смеси .

В дизельных двигателях топливо часто впрыскивается в цилиндр двигателя ближе к концу такта сжатия, всего на несколько градусов угла поворота коленчатого вала до верхней мертвой точки [391] .Жидкое топливо обычно впрыскивается с высокой скоростью в виде одной или нескольких струй через небольшие отверстия или сопла в наконечнике инжектора. Он распыляется на мелкие капельки и проникает в камеру сгорания. Распыленное топливо поглощает тепло из окружающего нагретого сжатого воздуха, испаряется и смешивается с окружающим высокотемпературным воздухом под высоким давлением. По мере того как поршень продолжает приближаться к верхней мертвой точке (ВМТ), температура смеси (в основном воздуха) достигает температуры воспламенения топлива. Быстрое воспламенение некоторого количества предварительно смешанного топлива и воздуха происходит после периода задержки зажигания.Это быстрое зажигание считается началом сгорания (также концом периода задержки зажигания) и отмечается резким повышением давления в цилиндре по мере сгорания топливно-воздушной смеси. Повышенное давление в результате предварительно смешанного сгорания сжимает и нагревает несгоревшую часть заряда и сокращает время задержки перед воспламенением. Это также увеличивает скорость испарения оставшегося топлива. Распыление, испарение, смешивание паров топлива с воздухом и сгорание продолжаются до тех пор, пока все впрыскиваемое топливо не сгорит.

Сгорание дизельного топлива характеризуется обедненным общим соотношением A / F. Наименьшее среднее соотношение A / F часто наблюдается в условиях максимального крутящего момента. Чтобы избежать чрезмерного дымообразования, соотношение A / F при пиковом крутящем моменте обычно поддерживается выше 25: 1, что намного выше стехиометрического (химически правильного) отношения эквивалентности около 14,4: 1. В дизельных двигателях с турбонаддувом соотношение A / F на холостом ходу может превышать 160: 1. Таким образом, избыточный воздух, присутствующий в цилиндре после сгорания топлива, продолжает смешиваться с горящими и уже сгоревшими газами на протяжении процессов сгорания и расширения.При открытии выпускного клапана происходит выброс избыточного воздуха вместе с продуктами сгорания, что объясняет окислительный характер выхлопных газов дизельных двигателей. Хотя сгорание происходит после того, как испаренное топливо смешивается с воздухом, образует локально богатую, но горючую смесь, и достигается надлежащая температура воспламенения, общее соотношение A / F бедное. Другими словами, большая часть воздуха, подаваемого в цилиндр дизельного двигателя, сжимается и нагревается, но никогда не участвует в процессе сгорания. Кислород в избыточном воздухе помогает окислять газообразные углеводороды и окись углерода, снижая их концентрацию в выхлопных газах до чрезвычайно малых.

Следующие факторы играют основную роль в процессе сгорания дизельного топлива:

  • Модель , подаваемый наддувочный воздух , его температура и кинетическая энергия в нескольких измерениях.
  • Распыление, глубина распыления, температура и химические характеристики впрыскиваемого топлива .

Хотя эти два фактора являются наиболее важными, существуют и другие параметры, которые могут существенно повлиять на них и, следовательно, играть второстепенную, но все же важную роль в процессе горения.Например:

  • Конструкция впускного канала , которая оказывает сильное влияние на движение наддувочного воздуха (особенно когда он входит в цилиндр) и, в конечном итоге, на скорость смешения в камере сгорания. Конструкция впускного канала также может влиять на температуру наддувочного воздуха. Это может быть достигнуто за счет передачи тепла от водяной рубашки нагнетаемому воздуху через площадь поверхности впускного отверстия.
  • Размер впускного клапана , который регулирует общую массу воздуха, вводимого в цилиндр за конечный промежуток времени.
  • Степень сжатия , которая влияет на испарение топлива и, следовательно, на скорость смешивания и качество сгорания.
  • Давление впрыска , которое контролирует продолжительность впрыска для данного размера отверстия сопла.
  • Геометрия отверстия сопла (длина / диаметр), которая контролирует проникновение струи, а также распыление.
  • Геометрия распылителя , которая напрямую влияет на качество сгорания за счет использования воздуха. Например, при большем угле распылительного конуса топливо может располагаться наверху поршня и за пределами чаши сгорания в дизельных двигателях DI с открытой камерой.Это условие может привести к чрезмерному задымлению (неполному сгоранию) из-за лишения топлива доступа к воздуху, имеющемуся в чаше сгорания (камере). Большой угол конуса также может привести к разбрызгиванию топлива на стенки цилиндра, а не внутри камеры сгорания, где это необходимо. Топливо, разбрызгиваемое на стенку цилиндра, со временем соскребет вниз в масляный поддон, где сократит срок службы смазочного масла. Поскольку угол распыления является одной из переменных, влияющих на скорость смешивания воздуха с топливным жиклером рядом с выходным отверстием форсунки, он может оказывать значительное влияние на общий процесс сгорания.
  • Конфигурация клапана , который контролирует положение форсунки. Двухклапанные системы обеспечивают наклонное положение форсунки, что подразумевает неравномерное распыление, что приводит к нарушению смешивания топлива и воздуха. С другой стороны, конструкции с четырьмя клапанами допускают вертикальную установку форсунок, симметричное расположение распылителей топлива и равный доступ к доступному воздуху для каждого из распылителей топлива.
  • Положение верхнего поршневого кольца , которое регулирует мертвое пространство между верхней контактной площадкой поршня (область между верхней канавкой поршневого кольца и верхней частью днища поршня) и гильзой цилиндра.Это мертвое пространство / объем улавливает воздух, который сжимается во время такта сжатия и расширяется, даже не участвуя в процессе сгорания.

Поэтому важно понимать, что система сгорания дизельного двигателя не ограничивается камерой сгорания, распылителями форсунок и их непосредственным окружением. Скорее, он включает в себя любую часть, компонент или систему, которые могут повлиять на конечный результат процесса сгорания.

###

Дизельные двигатели

— Система внутреннего сгорания — Журнал Diesel Power

Расход воздуха и топлива в четырехтактном дизельном двигателе
Воздух, поступающий в четырехтактный дизельный двигатель, очищается при прохождении через воздушный фильтр.Затем он течет по трубопроводу, пока не сжимается вращающимися лопастями турбонагнетателя. В результате воздух становится плотнее и горячее, поэтому он охлаждается в промежуточном охладителе. Интеркулер соединен шлангами с воздухозаборником двигателя. Когда поршень скользит в нижнюю часть своего хода, камера сгорания заполняется воздухом из-за открытого впускного клапана. Это называется тактом впуска. Впускной клапан (-ы) закрывается, и поршень выталкивает воздух вверх к головке цилиндров. Во время этой фазы, известной как такт сжатия, воздух занимает примерно 1/16 объема, который он занимал раньше.

Насос (электрический или механический, расположенный в баке или на балке) подает топливо под низким давлением в топливный насос высокого давления. ТНВД значительно повышает давление до 17 000–30 000 фунтов на квадратный дюйм. Затем топливо впрыскивается в камеру сгорания (заполненную перегретым воздухом) под огромным давлением непосредственно перед верхней мертвой точкой. Возникающее сгорание толкает поршень обратно вниз. Это называется силовым ходом. Последний цикл происходит, когда выпускной клапан (ы) открывается, и поршень выталкивает выхлоп.У отработанного воздуха еще достаточно энергии, чтобы толкнуть выхлопную сторону турбонагнетателя. Затем воздух попадает в выхлопную трубу и выходит из выхлопной трубы.

Зажигание от сгорания
Зажигание от сгорания является ключевой характеристикой дизельного двигателя, и самый простой способ объяснить это — с помощью пожарного поршня. Эти древние устройства для зажигания огня состояли из поршня с утопленным концом и герметичного цилиндра. Когда они быстро сдвигаются, температура воздуха в цилиндре поднимается достаточно высоко, чтобы сгорел кусок трута, нанесенный на конец поршня.Дизельный двигатель использует тот же принцип, что и пожарный поршень, только в гораздо большем и более сложном масштабе.

Если вы любите цифры, уравнение PV = nRT очень полезно. Это уравнение определяет соотношение между давлением (P), объемом (V), количеством присутствующего газа, измеренным в молях (n), универсальной газовой постоянной (R) и температурой (T). По мере увеличения давления в цилиндре увеличивается и температура. Таким образом, когда поршень сжимает воздух внутри цилиндра до 1/16 его первоначального объема, температура внутри цилиндра превышает 400 градусов.Этого тепла и давления достаточно для воспламенения дизельного топлива без использования свечей зажигания.

Более пристальный взгляд на дизельное сгорание
Одно из основных различий между бензиновым двигателем и дизельным двигателем — это тип сгорания. Горение дизельного топлива очень сложное и использует тот же принцип, что и свеча, где топливо и воздух смешиваются в результате сгорания. Конвекционные токи и турбулентность играют большую роль в том, как сгорает несмешанное (гетерогенное) топливо.Бензиновый двигатель, с другой стороны, смешивает топливо и воздух полностью (гомогенно) задолго до его сравнительно простого сгорания. Одним из недостатков бензиновых двигателей с впрыском является то, что когда поршень сжимает топливно-воздушную смесь, часть ее застревает в дефектах стенок цилиндра. Вот почему бензиновые двигатели имеют более высокие выбросы окиси углерода (CO) и углеводородов по сравнению с дизельными двигателями.

Просмотреть все 5 фото

Почему дизельный двигатель так громко звучит?
Помните, как мы только что сказали, что у дизелей нет смеси топливо-воздух? Это не совсем так.Часть топлива смешивается с кислородом на атомарном уровне. Эти маленькие карманы похожи на маленькие бомбы и воспламеняются первыми. Эти предварительно смешанные (дефлаграционные) волны известны как детонация. Это мощный сверхзвуковой фронт пламени, который движется быстрее звука. Вследствие этого высвобождения энергии подавляющее большинство несмешанного топлива сгорает как диффузионное (не предварительно смешанное) пламя. Таким образом, количество смешанного топлива в цилиндре в начале сгорания определяет, сколько шума вы услышите.Турбокомпрессоры и системы рециркуляции выхлопных газов (EGR) делают дизель тише.

Зачем включать дизельное топливо?
Блочные обогреватели используют 110 вольт для нагрева охлаждающей жидкости и моторного масла, поэтому двигатель, подключенный к сети холодной зимней ночью, запустится намного легче, чем если его оставить отключенным от сети. В дизельном двигателе содержится большое количество густого масла. В сочетании с высокой степенью сжатия дизельного двигателя эти два условия создают большую нагрузку на аккумуляторные батареи (мощность которых снижается из-за холода).В этом случае наличие горячего резервуара с маслом в поддоне обеспечит немедленную доступность смазки для уменьшения трения и облегчения запуска.

Почему они служат дольше?
Дизельные двигатели служат дольше, потому что они созданы в тяжелой промышленности. Из этого следует, что их поршни с масляным охлаждением, механический привод всех жизненно важных компонентов, коленчатые валы из кованой стали и усиленная арматура в областях с высоким напряжением, таких как крышки подшипников. Еще одна причина, по которой они служат дольше, заключается в том, что в цилиндрах дизельного двигателя сжимается только воздух, а не такой растворитель, как бензин.Кроме того, дизельное топливо действует как смазка и хорошо влияет на стенки цилиндров и поршневые кольца. Дизели работают на более низких оборотах из-за их механической конструкции и скорости сгорания в камере сгорания. Скорость сгорания зависит от времени, необходимого для сжигания топлива. Форма распыления, размер капель, перепады давления на форсунке, температура и конструкция камеры — все это влияет на скорость вращения дизельного двигателя. Поскольку дизельный двигатель работает с высокой степенью сжатия, ему необходим прочный блок и вращающийся узел, способные выдерживать мощные нагрузки.

Как дизели развивают такой высокий крутящий момент и при этом обеспечивают отличную экономию топлива?
Дизельный двигатель развивает крутящий момент благодаря высокой степени сжатия. В тепловых двигателях увеличение разницы давлений от сжатого поршня к несжатому поршню равняется увеличению его эффективности и выходного крутящего момента. Еще одна причина мощности дизеля — это само дизельное топливо. Он содержит на 15% больше энергии на галлон, чем бензин. Кроме того, дизельный двигатель может работать на очень бедной смеси и без насосных потерь, связанных с дроссельной заслонкой.В бензиновом двигателе богатая топливно-воздушная смесь используется для охлаждения сгорания и исправной работы каталитических нейтрализаторов. Дизель может работать на очень бедной смеси и при этом иметь низкие температуры выхлопных газов.

В чем разница между свечами накаливания и свечами зажигания?
Практически все дизели используют свечи накаливания или подогреватели воздуха. Эти устройства используют электричество для создания тепла внутри цилиндра, когда он холодный во время запуска. После достижения рабочей температуры двигателю они больше не нужны.С другой стороны, свечи зажигания всегда необходимы в бензиновом двигателе, чтобы начать сгорание.

Интересные факты о дизельных двигателях
* У них нет дроссельной заслонки; крутящий момент создается за счет добавления большего количества топлива в двигатель. Топливо дозируется, и воздух следует.

* Дизели выделяют меньше окиси углерода (CO) и углеводородов, чем бензиновые двигатели, поскольку топливо не застревает в стенках цилиндров во время такта сжатия, поскольку сжимается только воздух.

* НАСА провело эксперименты с диффузионным пламенем в условиях невесомости.Они обнаружили, что из-за отсутствия конвекционных потоков пламя светилось синим цветом в идеальном круге.

Посмотреть все 5 фото Используется с двигателями GM 6,2 л и 6,5 л, Ford 6,9 л и 7,3 л (pre-Power Stroke).

Непрямой впрыск (IDI)
Непрямой впрыск (IDI) состоит из предкамеры или вихревой камеры, соединенной с основной камерой цилиндра узким проходом. Топливная форсунка распыляется в меньшую камеру, в которой также находится свеча накаливания. Здесь начинается горение.Разница давлений в двух камерах вызывает сильную турбулентность, поскольку обе стороны стремятся к равновесию. Двигатели IDI имеют более низкий тепловой КПД, чем двигатели с прямым зажиганием (DI). Это потому, что две камеры сгорания имеют большую площадь поверхности, чем одна. Потери тепла в этой области плохо сказываются на тепловом КПД — они могли привести к опусканию поршня. Энергия, необходимая для создания турбулентности в камере сгорания, учитывается в насосных потерях. Положительной особенностью двигателя IDI является то, что насосу высокого давления не требуется создавать высокое давление для распыления топлива.

Посмотреть все 5 фотографий Используется с двигателями Cummins 5,9 л и 6,7 л, Duramax 6,6 л, а также 6,0 л, 6,4 и 7,3 л двигателями Power Stroke.

Прямой впрыск (DI)
Прямой впрыск происходит, когда топливная форсунка распыляется непосредственно в камеру сгорания. Поршни этих двигателей имеют куполообразную форму, чтобы создать приют для пламени. Одна из целей распыления топлива в камеру сгорания — не задевать верхнюю часть поршня или стенки цилиндра, потому что падение температуры не позволяет топливу сгорать.Дизели с прямым впрыском более эффективны, но для поддержания горения требуется высокое давление впрыска. DP

(PDF) Анализ температуры сгорания топлива в дизельных двигателях

3

C

V

r

l

r

l

r

D

−

000

000

000

000

000

αα

π

2

2

2

sencos1..

4

. (2)

ТЕМПЕРАТУРА ПРЕДВАРИТЕЛЬНОГО СГОРАНИЯ (Tpre) — это

температура воздуха и топлива в термодинамическом балансе

, при условии полного

испарения топлива в конце жидкости. длина. Длина жидкости

определяется как максимальное расстояние, которое проходит жидкое топливо

в камере сгорания, начиная с выхода

из сопла впрыска, до испарения.

SIEBERS [4] разработал закон масштабирования для прогнозирования длины жидкости

. Допущения, сделанные SIEBERS, примененные в его модели

, включают квазистационарный поток с постоянной скоростью, равномерную скорость

, равномерную концентрацию топлива и однородные температурные профили

, что является идеальным смешиванием внутри границ распыления

, и наконец, отсутствие проскальзывания скорости между впрыскиваемым топливом

и увлеченным газом. Уравнение 3 показывает выражение для длины жидкости

(L +), где b — эмпирическая константа

со значением 0.41 и B получается с помощью термодинамических весов

.

11

2

.

2

 + =

+

B

bL (3)

зависит от отношения длины жидкости

массовых потоков воздуха и топлива, представленных термином B, который

сам по себе является балансом двух термодинамических соотношений,

согласно SIEBERS [4].Уравнение 4 показывает эти отношения

. Где εa — сжимаемость воздуха при условиях

Tpre и Pa2, εf — сжимаемость испаренного топлива

при условиях Tpre и Pf2; Pa2 — парциальное давление воздуха

при термодинамическом равновесии, Pf2 —

парциальное давление топлива при термодинамическом равновесии

, Tpre — температура, достигаемая топливом и

воздуха при термодинамическом равновесии, Mf — молярная масса

топлива, Ma — молярная масса воздуха, ha1 — начальная энтальпия увлеченного воздуха

, ha2 — конечная энтальпия

увлеченного воздуха при термодинамическом равновесии, hf1 — начальная энтальпия

топливо, а hf2 — конечная энтальпия топлива

при термодинамическом равновесии.

()

12

21

22

22

..,

..,

ff

aa

aafpref

ffaprea0003

hfaprea

h

B−

==

ε

ε

(4)

Ограничение конечного состояния топлива насыщенным паром

и предположение, что окончательная смесь топлива и воздуха находится в

термодинамическое равновесие, позволяет итеративным методом

найти конечную температуру топливовоздушной смеси.После того, как

сделано первоначальное предположение для Tpre, можно определить давление паров топлива

, а также другие свойства испаренного топлива

в предполагаемом термодинамическом состоянии.

Парциальное давление воздуха можно найти путем вычитания

парциального давления топлива из общего давления в цилиндре

при предполагаемой температуре Tpre. В этот момент

можно определить все остальные свойства воздуха в выбранном состоянии

.Если две половины уравнения 4 не равны,

делается новое предположение, используя двоичный поиск с постоянно сужающейся областью поиска

.

ТЕМПЕРАТУРА ОБРАЗОВАНИЯ САЖИ (Tsoot) —

Это температура в области образования сажи при распылительном сгорании дизельного топлива

. Эта температура определяется

, устанавливая температуру обогащенных продуктов реакции

и то, как на них влияет диффузионное пламя и давление

.Чтобы установить повышение температуры из-за реакции обогащения

, используется упрощенная односторонняя реакция, в которой применяется базовая концепция адиабатической температуры пламени

с ∆H = 0,

, согласно KEATING [5]. Теплоты образования

и массовые доли используются в уравнениях с 5 по 7 до

, определяющих температуру продуктов. Реагенты представляют собой гептан n-

, используемый в качестве однокомпонентного топлива для моделирования дизельного топлива

и воздух, взятые как смесь кислорода и азота.

Предполагается, что продуктами реакции для идеальной реакции являются

диоксид углерода, монооксид углерода, вода, избыток топлива (f2)

и азот. Согласно ARGACHOY & PIMENTA [1],

коэффициент эквивалентности (φ) определяется для модели спрея

, а массовые доли продуктов интерполируются,

из табличных данных STANJAN (Chemical Equilibrium

Solver, v 3.96 — Стэнфордский университет, 1995), для различных коэффициентов эквивалентности

.

2

222 …..

0

N

ppreNOppreOfppreffR CTmCTmCThmH +++ = (5)

2

2222 ….. 00

NCO psootCNThpsootC ++

fOH PsootffpsootOHOH CThmCThm .. 00

2

2

22 ++++ (6)

PR HH = (7)

Где mx — массовая доля вида x, 0

x

ч —

— теплота образования химического вещества, Cpx — удельная теплоемкость вещества

, Tpre — температура перед горением

(начальная температура реагентов), Tsoot — температура образования сажи

. (конечная температура продуктов),

HR — полная энергия реагентов, а HP — общая

энергии продуктов.

ТЕМПЕРАТУРА ОБРАЗОВАНИЯ NOX (TNOx) — Это

— температура в области диффузионного пламени, то есть турбулентный фронт пламени

, возникающий в результате сгорания свежего воздуха

с продуктами неполного сгорания

богатых начальные реакции. В этой области также происходит окисление

сажи, образующейся в результате предварительного сжигания. Согласно

DEC [6], этот турбулентный фронт пламени часто рассматривается как

, имеющий место, близкое к стехиометрическому.Таким образом, молярная доля кислорода

в области окисления сажи равна

, которая предполагается равной мольной доле кислорода на стороне реагента

стехиометрического горения воздуха с n-

гептаном и монооксидом углерода ( основные продукты неполной реакции

). Температура образования NOX

устанавливается аналогично тому, как

определяет температуру образования сажи. Однако

Температура сгорания — обзор

15.8 Адиабатическая температура пламени

Максимально возможная температура горения возникает, когда горение происходит внутри адиабатической (т. Е. Изолированной) системы. Эта температура называется адиабатической температурой горения или адиабатической температурой пламени . Однако на практике температура горения никогда не может достичь этой температуры, потому что

1.

Ни одна система не может быть действительно адиабатической.

2.

Реакция горения всегда протекает незавершенно.

3.

Продукты сгорания ионизируются при высоких температурах и, таким образом, понижают температуру реакции.

Тем не менее, адиабатическая температура пламени обеспечивает полезную верхнюю границу температур горения и может использоваться для оценки теплового воздействия горения на физические свойства материала и состояние выхлопных газов.

Фактически существует два типа адиабатической температуры пламени, в зависимости от того, происходит ли процесс горения при постоянном объеме или постоянном давлении.Адиабатическая температура пламени постоянного объема — это температура, возникающая в результате полного процесса сгорания, который происходит внутри закрытого жесткого сосуда без работы, теплопередачи или изменений кинетической или потенциальной энергии. Адиабатическая температура пламени при постоянном давлении — это температура, которая возникает в результате полного процесса сгорания, который происходит при постоянном давлении (например, в открытом пламени) без передачи тепла или изменения кинетической или потенциальной энергии. Температура адиабатического пламени постоянного давления ниже, чем температура адиабатического пламени постоянного объема, поскольку часть энергии сгорания используется для изменения объема реагентов и, таким образом, вызывает работу.

Для открытой адиабатической системы с постоянным давлением q¯r = 0 и уравнение. (15.9) сводится к h¯R = h¯P, тогда

∑R (ni / nfuel) [h¯f ° + h¯ (T) −h¯ (T °)] i = ∑P (ni / nfuel) [h¯f ° + h¯ (TA) −h¯ (T °)] i

, где T A — температура адиабатического пламени, а T — температура реагентов. Если все реагенты находятся в стандартном эталонном состоянии и все продукты можно рассматривать как идеальные газы с постоянной удельной теплотой в диапазоне температур от T ° до T A , то предыдущее уравнение сокращается до

∑ R (ni / nfuel) (h¯f °) i = ∑P (ni / nfuel) [h¯f ° + c¯p (TA − T °)] i

Теперь предположим, что все реагенты кроме топлива есть элементы; тогда все их значения h¯f ° равны нулю.Это уравнение теперь может быть решено для T A как

Открытая система, постоянное давление, адиабатика, температура пламени, когда реагенты находятся на уровне SRS:

(15.17) TA | opensystem = T ° + (h¯f °) топливо − P (ni / nfuel) (h¯f °) i∑P (ni / nfuel) (c¯pi) avg

Уравнение (15.17) представляет собой единственный метод прямого расчета адиабатической температуры пламени. Это требует идеального поведения газа, что обычно является разумным, и требует постоянной удельной теплоемкости в диапазоне T ° = 25.От 0 ° C до T A , что не так разумно, если не используются средние значения (как указано в уравнении). Средние молярные удельные теплоты для типичных продуктов сгорания в диапазоне от 25 до 3000 ° C приведены в таблице 15.5. Этот диапазон охватывает большинство адиабатических температур пламени.

Таблица 15.5. Молярная удельная теплоемкость, усредненная в диапазоне температур от 25 до 3000 ° C (от 77 до 5400 ° F)

8
Вещество (c¯p) avg (c¯v) avg
кДж / ( кгмоль · К) БТЕ / (фунт · моль · R) кДж / (кгмоль · К) БТЕ / (фунт · моль · R)
CO 2 (г) 58.18 13,90 49,87 11,91
H 2 O (г) 42,50 10,15 34,19 8,17
O 7,88 24,68 5,89
N 2 (г) 31,18 7,45 22,87 5,46

в случае системы постоянного объема6), уравнение. (15.7) говорит нам, что u¯P = u¯R, и если реагенты находятся в SRS и продукты снова можно рассматривать как идеальные газы с постоянной (или средней) удельной теплотой, легко показать, что адиабатическое пламя Температура в этой системе определяется по

Таблица 15.6. Постоянный объем адиабатических температур пламени обычных углеводородных топлив, когда реагенты входят в процесс горения при 25 ° C (77 ° F) и давлении 1 атм, а продукты покидают процесс при давлении 1 атм. Процесс горения стехиометрический без избытка воздуха

Acet 2 H 2 ) 908 адиабатическая температура пламени постоянного объема, когда реагенты на SRS:

(15.18) TA | closedsystem = T ° + (u¯f °) топливо − ∑R (ni / nfuel) h¯f ° −ℜT ° [∑R (ni / nfuel) −∑P (ni / nfuel)] ∑P (ni / nfuel) (c¯vi) avg

где мы снова предполагаем, что реагенты содержат только топливо и его элементы сгорания. Кроме того, мы используем определение энтальпии, чтобы найти

u¯f ° = h¯f ° — (pv¯) ° = h¯f ° −ℜT °

для продуктов идеального газа и нетопливных реагентов, где T ° — это стандартная абсолютная температура исходного состояния (298 K или 537 R). Кроме того, для большинства жидкостей и твердых тел в стандартном эталонном состоянии мы можем использовать приближение (u¯f °) fuel≈ (h¯f °) fuel.

Пример 15.10

Для жидкого октана, C8h28 (), определите следующие адиабатические температуры пламени, когда реагенты находятся в стандартном стандартном состоянии (25 ° C и 0,100 МПа), а продуктами сгорания считаются идеальные газы:

а.

Открытая система (постоянное давление) адиабатическое пламя при температуре горения 100% теоретического воздуха.

б.

В открытой системе (постоянное давление) адиабатическое пламя с температурой горения 200 ° С.% теоретического воздуха.

с.

Замкнутая система (постоянный объем) адиабатическая температура пламени горение 100% теоретического воздуха.

Раствор
а.

Уравнение горения для октанового горения при 100% теоретическом воздухе:

C8h28 + 12,5 [O2 + 3,76 (N2)] → 8 (CO2) +9 (h3O) +47 (N2)

Поскольку продукты могут быть считаются идеальными газами, мы можем использовать уравнение. (15.17) и средние значения удельной теплоемкости, приведенные в таблице 15.5. Из таблицы 15.1 находим,

(h¯f °) топливо = (h¯f °) C8h28 (ℓ) = — 249,952 МДж / кгмоль (h¯f °) CO2 = -393,522 МДж / кгмоль (h¯ f °) h3O (g) = — 241,827 МДж / кгмоль

и

(h¯f °) N2 = 0, потому что это элемент

Температура адиабатического пламени при постоянном давлении в открытой системе определяется формулой. (15.17), где

∑P (ni / nfuel) (h¯f °) i = 8 (h¯f °) CO2 + 9 (h¯f °) h3O + 47 (h¯f °) N2 = 8 ( −393,522) +9 (−241,827) +47 (0) = — 5325 МДж / кгмоль C8h28

и

∑P (ni / nfuel) (c¯pi) avg = 8 [(c¯p) CO2] avg + 9 [(c¯p) h3O] avg + 47 [(c¯p) N2] avg = 8 (0,05818) +9 (0.04250) +47 (0,03118) = 2,313 МДж / [(кгмоль C8h28) · K]

Тогда уравнение. (15,17) дает

TA | opensystem = 25,0 ° C + −249,952 МДж / кгмоль топлива — (- 5325 МДж / кгмоль топлива) 2,313 МДж / (кгмоль топлива · K) = 2170 ° C = 3940 ° F

b.

Уравнение реакции при использовании 200% теоретического воздуха:

C8h28 + 2 (12,5) [O2 + 3,76 (N2)] → 8 (CO2) +9 (h3O) +12,5 (O2) +94 (N2) )

Числитель в формуле. (15.17) здесь то же самое, что и в части a, поскольку мы только добавили дополнительные элементы в реакционную часть уравнения.Знаменатель представляет собой энергию, необходимую для повышения температуры всех продуктовых газов, и, следовательно, отличается от части а. В этом случае

∑P (ni / nfuel) (c¯pi) avg = 8 [(c¯p) CO2] avg + 9 [(c¯p) h3O] avg + 12,5 [(c¯p) O2] avg + 94 [(c¯p) N2] avg = 8 (0,05818) +9 (0,04250) +12,5 (0,03299) +94 (0,03118) = 4,19 МДж / [(кгмоль C8h28) · K]

Тогда уравнение. (15.17) дает

TA | opensystem 200% TA = -249,952 — (- 5325) 4,19 + 25,0 = 1240 ° C = 2260 ° F

Таким образом, добавление 100% избыточного воздуха, практика, иногда необходимая для полного сгорания в высокоскоростные процессы горения приводят к снижению адиабатической температуры горения почти в 2 раза.
г.

Для закрытой системы с постоянным объемом адиабатическая температура пламени определяется уравнением. (15.18). Поскольку топливо в этом примере является жидкостью, мы можем принять (u¯f °) fuel≈ (h¯f °) топливо, и уравнение. (15.18) становится

TA | closedsystem≈T ° + (h¯f °) fuel − ∑R (ni / nfuel) h¯f ° −ℜT ° [∑R (ni / nfuel) −∑P (ni / nfuel) )] ∑P (ni / nfuel) (c¯vi) avg

Числитель:

(h¯f °) топливо − ∑R (ni / nfuel) h¯f ° −ℜT ° [∑R (ni / nfuel) −∑P (ni / nfuel)] = — 249,953 — (- 5324,62) −0,0083143 (25,0 + 273) [1 + 12,4 × 4,76− (8 + 9 + 47)] = 5083.34 МДж / (кгмоль C8h28)

, а знаменатель

∑P (ni / nfuel) (c¯vi) avg = 8 [(c¯v) CO2] avg + 9 [(c¯v) h3O] avg + 47 [(c¯v) N2] avg = 8 (0,04987) +9 (0,03419) +47 (0,02287) = 1,782 МДж / [(кгмоль C8h28) · K]

Тогда адиабатическая температура пламени постоянного объема составляет приблизительно

TA | closedsystem≈25,0 + 5083,34 МДж / (кгмоль C8h28) 1,782 МДж / [(кгмоль C8h28) · K] = 2880 ° C = 5220 ° F

Обратите внимание, что адиабатическая температура пламени постоянного объема в Примере 15.10 выше, чем постоянное давление адиабатическая температура пламени из-за энергии, используемой в работе, выполняемой в процессе постоянного давления, то есть p (V̶2-V̶1).
Упражнения
28.

Определите температуру адиабатического пламени при постоянном давлении в открытой системе для октанового жидкого топлива в примере 15.10, когда горение происходит с 400% теоретического воздуха. Ответ : T A = 664 ° C.

29.

Определите температуру адиабатического пламени при постоянном давлении в открытой системе для жидкого октана в Примере 15.10, когда горение происходит с 800% теоретического воздуха. Ответ : T A = 353 ° C.

30.

Определите адиабатическую температуру пламени с постоянным объемом в замкнутой системе для октанового жидкого топлива в Примере 15.10, когда горение происходит при 200% теоретического воздуха. Ответ : T A = 1610 ° C.

Альтернативный и несколько более точный подход к определению адиабатической температуры пламени заключается в использовании газовых таблиц в термодинамических таблицах в дополнение к современной инженерной термодинамике (таблица С.16c) для определения термодинамических свойств CO 2 , H 2 O, O 2 , N 2 и так далее. Однако, поскольку T A и другие термодинамические свойства в этом состоянии неизвестны, T A необходимо определять методом проб и ошибок следующим образом:

1.

h¯R рассчитывается из Уравнение (15.9) используя уравнение. (15.14) или (15.15), если необходимо.

2.

Тогда предполагается пробное значение для T A .

3.

h¯P вычисляется из значений (h¯f °) P и значений h¯ (T) −h¯ (T °) в таблице C.16c.

4.

Если значение h¯P, вычисленное на шаге 3, равно значению h¯R, вычисленному на шаге 1, то на шаге 2 предполагается правильное значение T A . new T Выбирается значение , и процесс повторяется до тех пор, пока не будет h¯P≈h¯R.

Эта ручная схема итераций довольно утомительна, и неточности вносятся линейными интерполяциями в таблице C.16c требуется для получения решения. Эти неточности можно устранить, запрограммировав точные формулы молярной энтальпии для продуктов в микрокомпьютер. Затем компьютер можно запрограммировать на вычисление теплоты сгорания и итерацию для определения адиабатической температуры пламени за небольшую часть времени, необходимого для выполнения этих вычислений вручную. В таблицах C.14 приведены точные корреляции изменения c¯p с температурой для различных веществ. Используя эту информацию, мы можем определить точные значения для

h¯ (T) −h¯ (T °) = ∫T ° Tc¯p dT

Например, реакция горения жидкого октана с Y % Теоретический воздух

C8h28 + (Y / 100) 12.5 [O2 + 3,76 (N2)] → 8 (CO2) +9 (h3O) + (Y / 100−1) O2 + 47 (Y / 100) (N2)

Для упрощения предположим, что перед сжиганием , реагенты находятся на SRS. Тогда h¯ (TR) = h¯ (T °) и h¯ (TR) −h¯ (T °) = 0 для всех реагентов. Тепло, выделяемое в результате этой реакции, когда продукты сгорания имеют температуру T P составляет

q¯r = ∑R (ni / nfuel) (h¯f °) i − ∑P (ni / nfuel) [час ¯f ° + h¯ (TP) −h¯ (T °)] i = (h¯f °) C8h28−8 [h¯f ° + h¯ (TP) −h¯ (T °)] CO2−9 [h¯f ° + h¯ (TP) −h¯ (T °)] h3O− (Y / 100−1) [h¯f ° + h¯ (TP) −h¯ (T °)] O2−47 (Y / 100−1) [h¯f ° + h¯ (TP) −h¯ (T °)] N2

Уравнения молярной теплоемкости в кДж / (кг · моль · К) с точностью не менее 0.43% в диапазоне от 300 до 3500 K, можно найти в таблице C.14b в термодинамических таблицах, сопровождающих Modern Engineering Thermodynamics как

Углекислый газ: (c¯p) CO2 = −3,7357 + 30,529θ0,5− 4,1034θ + 0,024198θ2

Вода: (c¯p) h3O = 143,05−183,54θ0,25 + 82,751θ0,5−3,6989θ

Кислород: (c¯p) O2 = 37,432 + 0,020102θ1,5−178,57θ −1,5 + 236,88θ − 2

Азот: (c¯p) N2 = 39,060−512,79θ − 1,5 + 1072,7θ − 2−820,40θ − 3

, где θ ° = T ° / 100 = 298/100 = 2,98 , А θP = Tp / 100. Интегрирование этих уравнений от SRS (θ °) до температуры продуктов сгорания (θP) дает

[h¯ (TP) −h¯ (T °)] CO2 = 100 × ∫θ ° θP (c¯p) CO2dθ = -373.57 (θP − θ °) +2035,3 [(θP) 1,5− (θ °) 1,5] −205,17 [(θP) 2- (θ °) 2] +0,8066 [(θP) 3- (θ °) 3]

[h¯ (TP) −h¯ (T °)] h3O = 100 × ∫θ ° θP (c¯p) h3Odθ = 14 305. (ΘP − θ °) −14 683,2 [(θP) 1,25− (θ °) 1,25] +5516,7 [(θP) 1,5− (θ °) 1,5] −184,95 [(θP) 2− (θ °) 2]

[h¯ (TP) −h¯ (T °)] O2 = 100 × ∫θ ° θP (c¯p) O2dθ = 3743,2 (θP − θ °) +0,80408 [(θP) 2,5− (θ °) 2,5] +35,714. [(ΘP) −0,5− (θ °) −0,5] — 23,688 [(θP) −1− (θ °) −1]

[h¯ (TP) −h¯ (T °)] N2 = 100 × ∫θ ° θP (c¯p) N2dθ = 3906,0 (θP− θ °) +102,558 [(θP) −1 / 2− (θ °) −1/2] −107,270. [(θP) −1− (θ °) −1] +41,020 [(θP) −2− ( θ °) −2]

Для упрощения алгебры определим следующие члены:

A = θP − θ ° B = (θP) 1.25− (θ °) 1,25C = (θP) 1,5− (θ °) 1,5D = (θP) 2− (θ °) 2E = (θP) 2,5− (θ °) 2,5F = (θP) 3− ( θ °) 3G = (θP) −1 / 2− (θ °) −1 / 2H = (θP) −1− (θ °) −1I = (θP) −2− (θ °) −2

Тогда , теплота реакции сгорания равна

q¯r = ∑R (ni / nfuel) (h¯f °) i − ∑P (ni / nfuel) [h¯f ° + h¯ (TP) −h¯ (T °)] i = (h¯f °) C8h28−8 [h¯f ° −373,57A + 2035,3C − 205,17D + 0,8066F] CO2−9 [h¯f ° + 14,305.A − 14,683,2B + 5516.7C-184.95D] h3O- (Y / 100-1) [3743.2A + 0.80408E + 35,714.G-23,688H] O2-47 (Y / 100-1) [3906.0A + 102,558G-107270.H + 41,020I] N2

Из таблицы 15.1 находим

(h¯f °) C8h28 (ℓ) = — 249.952 МДж / кгмоль, (h¯f °) CO2 = -393,522 МДж / кгмоль,

(h¯f °) h3O (г) = -241,827 МДж / кгмоль, и (h¯f °) N2 = (h¯ f °) O2 = 0, потому что это элементы.

Хотя с этими уравнениями трудно справиться с помощью ручного калькулятора, они легко решаются с помощью решателя уравнений или электронной таблицы. Таблица на рис. 15.7 иллюстрирует процесс сжигания жидкого октана с 200% теоретического воздуха. Набрав Ctrl + тильда (Ctrl и Shift + ~), вы увидите детали, показанные на рисунке 15.8.

Рисунок 15.7. Решение уравнений с помощью электронной таблицы.

Рисунок 15.8. Доступ к деталям.

Камера сгорания — обзор

4.5 Камеры сгорания

В камере сгорания газовой турбины добавляется энергия, приводящая в действие всю систему. Камера сгорания современной турбины обычно состоит из цилиндра со вторым меньшим цилиндром, который называется гильзой внутри него. Топливно-воздушная смесь проходит в горловину гильзы, и дополнительный воздух может проходить вокруг нее, между гильзой и внешним цилиндром, чтобы поддерживать гильзу в прохладном состоянии.Затем этот воздух вводится через отверстия и прорези вдоль гильзы.

В большинстве современных камер сгорания газовых турбин воздух предварительно смешивается с топливом перед его впрыском в камеру сгорания через набор сопел. Форма и направление сопел и перегородок в камере сгорания тщательно продуманы для обеспечения как равномерного перемешивания, так и стабильного пламени в камере сгорания. Топливо-воздушная смесь воспламеняется в зоне горения, выделяя энергию в виде тепла. Температура в пламени зоны горения может достигать более 1900 ° C, что намного выше, чем может выдержать большинство материалов.Чтобы контролировать это, часть воздуха из компрессора может использоваться для охлаждения стенок гильзы камеры сгорания. Это также разбавит очень горячие дымовые газы, чтобы снизить их температуру.

Необходимо тщательно контролировать поток воздуха через все части камеры сгорания, чтобы избежать нестабильности пламени и турбулентности, которые могут привести к потере энергии. Цель состоит в том, чтобы обеспечить плавный поток воздуха, даже если добавление тепловой энергии повысит его температуру и общее давление.

Добавление воздуха в камеру сгорания также тщательно контролируется, чтобы контролировать образование NO x во время процесса сгорания. Высокие температуры в зоне горения приведут к быстрому образованию оксидов азота в результате реакции между кислородом и азотом из воздуха. Это можно контролировать, поддерживая восстановительные условия. Сохраняя количество кислорода на низком уровне по сравнению с количеством, необходимым для сжигания всего топлива, можно свести к минимуму производство NO x .При этом типе ступенчатого горения дополнительный воздух вводится в последние ступени зоны горения, чтобы позволить реакции горения продолжаться до завершения. Однако многие современные камеры сгорания полагаются на тщательное смешивание топлива и воздуха в стехиометрических пропорциях до того, как смесь попадет в камеру сгорания, чтобы контролировать производство NO x .

После завершения процесса сгорания горячие газы проходят в последнюю ступень камеры сгорания, которая называется переходной частью.Это сужающийся воздуховод, который преобразует статическое давление в динамическое давление, увеличивая скорость горячих газов перед их подачей в секцию турбины.

Тип и количество камер сгорания в газовой турбине будет варьироваться от производителя к производителю и от турбины к турбине. Многие более крупные конструкции турбин используют набор кольцевых камер сгорания, которые окружают вал турбины между компрессором и турбиной. Другие забирают воздух из компрессора вне корпуса турбины в одну или несколько камер сгорания, а затем возвращают газы в турбину.

По крайней мере, один производитель тяжелых промышленных газовых турбин также использует несколько комплектов газовых турбин и камер сгорания. Эта конструкция разделяет турбинную часть газовой турбины на две части. Горячий воздух из первого набора камер сгорания входит в первую секцию турбины, где энергия отбирается лопатками турбины, затем воздух входит во вторую группу камер сгорания, где сжигается больше топлива и больше энергии добавляется перед подачей во вторую секцию турбины. . Этот тип конструкции, называемый турбиной повторного нагрева, часто используется в больших паровых турбинах для выработки электроэнергии, но гораздо реже в газовых турбинах.

Дизельный двигатель — Energy Education

Рис. 1 Схема рядного четырехцилиндрового двигателя. Поршни серого цвета, коленчатый вал зеленого цвета, блок прозрачный [1]

Дизельный двигатель — это тип теплового двигателя внутреннего сгорания, работающего на дизельном топливе. Эти двигатели работают с небольшими электрическими генераторами, называемыми дизельными генераторами, часто в отдаленных районах, а также с двигателями легковых и грузовых автомобилей (как больших, так и малых).

Процессы

Зажигание топлива

В дизельных двигателях топливо воспламеняется за счет сжатия.Температура молекул газа повышается, когда объем уменьшается из-за закона идеального газа (если газ не охлаждается одновременно). На это полагаются дизельные двигатели. Поршень сжимает воздух в цилиндре (см. Рис. 1), в результате чего он становится очень горячим. Затем дизельное топливо распыляется в форсунках, и в горячий воздух распыляется туман. Горячий воздух немедленно воспламеняет топливо, обеспечивая воспламенение. [2]

Это зажигание заставляет дизельное топливо гореть кислородом из атмосферы, который превращает химическую энергию в повышенную температуру, что позволяет газу выталкиваться обратно на поршень, см. Рис. 1.

В холодном состоянии в дизельных двигателях используется нагретый кусок металла, называемый свечой накаливания, для зажигания дизельного топлива. [3]

Запуск

Запуск дизельного двигателя сложнее, чем запуск бензинового, из-за того, как дизельные двигатели воспламеняют свое топливо. Дизельный стартер должен быть достаточно мощным, чтобы сжимать газ внутри цилиндров, воспламеняя дизельную смесь с воздухом. Это требует более высокого потребления мощности, чем традиционный двигатель с искровым зажиганием, поэтому дизельные двигатели имеют более прочные батареи.

Детали дизельного двигателя

Блок

Блок — это основа двигателя. Это большой металлический блок, обычно из алюминия или стали, с прорезанными в нем отверстиями для цилиндров.

Цилиндры

Цилиндры двигателя — это то место, где выполняется работа. Топливо впрыскивается в цилиндры, где оно воспламеняется за счет сжатия дизельного топлива и воздуха, что приводит к взрыву. Этот взрыв перемещает поршни, выполняя работу, позволяя транспортному средству двигаться вперед.

Поршни

Поршни — это устройства, которые скользят вверх и вниз внутри цилиндров. Их работа заключается в том, чтобы входить и выходить, соединенные с коленчатым валом, чтобы сжимать воздух, впрыскиваемый в камеру, — это вызывает нагрев воздуха. Объем воздуха, поступающего в камеру, сжимается примерно в 14-25 раз по сравнению с первоначальным объемом. [4]

Распредвал

основная статья

Распределительный вал — это устройство, которое управляет синхронизацией двигателя.Работа распределительного вала — регулировать, когда топливо впускается в двигатель, а когда выпускается выхлоп. Эта, казалось бы, простая работа может сильно повлиять на производительность двигателя.

Форсунки

Топливная форсунка предназначена для распыления топлива. Это означает превращение жидкого топлива в туман, что резко увеличивает площадь его поверхности. Это позволяет топливу сгорать быстрее, давая больший импульс поршню. Топливные форсунки являются улучшением по сравнению с карбюраторами, поскольку они требуют меньшего обслуживания и лучше распыляют топливо.Впрыск топлива позволяет повысить эффективность двигателя, что может привести к увеличению мощности и увеличению расхода топлива.

Коленчатый вал

основная статья

Коленчатый вал является наиболее важной частью двигателя, потому что он соединяет части вместе и позволяет двигателю создавать мощность. Его цель — превратить линейное (вверх и вниз) движение поршней во вращательное движение. Один конец коленчатого вала прикреплен к распределительному валу с помощью зубчатого ремня.Другой конец подключен к маховику, который регулирует мощность, выходящую из двигателя, что-то вроде устройства защиты от перенапряжения для вашего компьютера.

Стартер

Это одно из самых больших отличий дизельного двигателя от бензинового. Поскольку дизельные двигатели воспламеняют свое топливо за счет сжатия, стартер должен иметь возможность вызывать это сжатие, чтобы двигатель начал двигаться. Это означает, что аккумулятор на автомобиле с дизельным двигателем должен быть более мощным, чем аккумулятор на автомобиле с бензиновым двигателем.

Для дальнейшего чтения

Список литературы

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Топливо Окислитель T ad (° C) T ad (° F)
Воздух 2500 4532
O 2 3480 6296
Бутан (C 908 908 908 908 908 908 908 908 908 1970 3578
O 2 3100 5612
Водород (H 2 ) Воздух 2210835 4010 2210
4010 5792
Метан (CH 4 ) Воздух 1950 3542
O 2 2810 5090
Пропан (C 3 H 8 ) Воздух 1980 3596
O 2 2526
835 4579 M 908 C 908 908 M 908 H 4 ) Воздух 2010 3650
O 2 2927 5301
Дерево Закрытая система