Принцип работы датчика давления: Принцип работы датчика давления воды

Содержание

Принцип работы датчика давления воды

Датчик давления — это устройство, у которого физические параметры изменяются в зависимости от давления измеряемой среды, это могут быть газы, жидкости, пар. При изменении измеряемой среды, в которой находиться датчик давления, меняется и его выходные унифицированный пневматический, электрический сигналы или цифровой код.

Принципы использования датчика давления

Устройство состоит из первичного преобразователя давления, в составе которого чувствительный элемент и приемник давления, схемы вторичной обработки сигнала, различных по конструкции корпусных деталей и устройства вывода.

Основным отличием каждого датчика давления является точность регистрации давления (Диапазоны измерения от 0 … 6 бар до 0 … 60 бар), которая зависит от принципа преобразования давления в электрический сигнал: пьезорезистивный, тензометрический, емкостной, индуктивный, резонансный, ионизационный.

Методы преобразования давления в электрический сигнал
  • тензометрический

Чувствительные элементы датчиков базируются на принципе измерения деформации тензорезисторов, припаянных к титановой мембране, которая деформируется под действием давления.

  • пьезорезистивный

Основаны на интегральных чувствительных элементах из монокристаллического кремния. Кремниевые преобразователи имеют высокую временную и температурную стабильности. Для измерения давления чистых неагрессивных сред применяются, так называемые, Low cost — решения, основанные на использовании чувствительных элементов либо без защиты, либо с защитой силиконовым гелем. Для измерения агрессивных сред и большинства промышленных применений используется преобразователь давления в герметичном металло-стеклянном корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды посредством кремнийорганической жидкости.

Ёмкостные преобразователи используют метод изменения ёмкости конденсатора при изменении расстояния между обкладками. Известны керамические или кремниевые ёмкостные первичные преобразователи давления и преобразователи, выполненные с использованием упругой металлической мембраны. При изменении давления мембрана с электродом деформируется и происходит изменение емкости. В элементе из керамики или кремния, пространство между обкладками обычно заполнено маслом или другой органической жидкостью. Недостаток — нелинейная зависимость емкости от приложенного давления.

Резонансный метод — это волновые процессы: акустические или электромагнитные. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора. К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, невозможность проводить измерения в агрессивных средах без потери точности показаний прибора.

Основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном. Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенному давлению.

  • ионизационный

Ионизационный метод — регистрации потока ионизированных частиц. Аналогом являются ламповые диоды. Лампа оснащена двумя электродами: катодом и анодом, — а также нагревателем. В некоторых лампах последний отсутствует, что связано с использованием более совершенных материалов для электродов. Преимуществом таких ламп является возможность регистрировать низкое давление — вплоть до глубокого вакуума с высокой точностью. Однако следует строго учитывать, что подобные приборы нельзя эксплуатировать, если давление в камере близко к атмосферному. Поэтому подобные преобразователи необходимо сочетать с другими датчиками давления, например, емкостными. Зависимость сигнала от давления является логарифмической.

Регистрация сигналов датчиков давления

Сигналы с датчиков давления являются медленноменяющимися. Это значит, что их спектр лежит в области сверхнизких частот. Для того чтобы с высокой точностью оцифровать такой сигнал необходимо подавить высокочастотную часть спектра, полностью состоящую из помех. Это особенно актуально в промышленных условиях. Специально для ввода медленноменяющихся сигналов используются интегрирующие АЦП. Они проводят измерение не мгновенного значения сигнала (которое изменяется под действием помех), а интегрируют сигнальную функцию за заданный промежуток времени, который заведомо меньше постоянной времени процессов, происходящих в контролируемой среде, но заведомо больше периода самой низкочастотной помехи

Какие отличия датчика давления от манометра?

Манометр — прибор, предназначенный для измерения (а не преобразования) давления. В манометре от давления зависят показания прибора, которые могут быть считаны с его шкалы, дисплея или аналогичного устройства.

Нужен датчик давления?

Для подбора необходимого датчика давления для работы с частотным преобразователем или другим устройством обратитесь по телефону электротехнической компании ЭНЕРГОПУСК: (495) 775-24-55.

Датчики давления

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Датчики давления. Виды и работа. Как выбрать и применение

Датчики давления являются устройством, выдающим сигналы на выходе, зависящие от давления измеряемой среды. Сегодня не обходятся без точных датчиков определения давления. Они применяются в автоматизированных системах всех отраслей промышленности.

Классификация и принцип работы

Многие датчики давления функционируют на преобразовании давления в движение механической части. Кроме механических элементов (трубчатые пружины, мембраны) для замеров используются тепловые и электрические системы. Электронные элементы дают возможность осуществить производство датчиков давления на электронных элементах.

Датчик давления состоит из:

  • Первоначальный преобразователь вместе с чувствительным элементом.
  • Корпус датчика, имеющий разные конструкции.
  • Электрическая схема.
Волоконно-оптические

Этот тип датчиков считается самым точным в работе, которая не имеет большой зависимости от изменений температуры. Элементом точной чувствительности действует оптический волновод. Давление в волоконно-оптических приборах определяется путем поляризации света, прошедшего по элементу чувствительности, и колебаниям амплитуды.

Оптоэлектронные датчики давления

Датчики давления состоит из нескольких слоев, через которые проходит свет. Один слой меняет свойства от величины давления среды. Меняются 2 параметра: величина преломления и размер слоя. Методы изображены на рисунках.

При изменении свойств будет изменяться характеристика света, проходящего через слои. Фотоэлемент производит регистрацию изменений. Преимуществом оптоэлектронных приборов стала высокая точность.

Датчики легко определяют давление, имеют повышенное разрешение, чувствительность, стабильны к действию температуры. Перспективность оптоэлектронных приборов обуславливается работой на интерференции света, использованием интерферометра для замера малых перемещений. Основные составляющие элементы датчика – кристалл оптического анализатора с диафрагмой, фотодиод и детектор. Детектор составляют три светодиода.

К 2-м фотодиодам прикреплены оптические фильтры, которые имеют отличия по толщине. Фильтры состоят из кремниевых зеркал, имеющих отражение от лицевой части поверхности, которые имеют слой оксида кремния. Поверхность напылена слоем алюминия малой толщины.

Световой преобразователь подобен емкостному датчику. Его диафрагма смоделирована способом травления, которая покрыта металлическим тонким слоем. Стеклянная пластина снизу покрыта металлическим слоем. Между подложкой и стеклом есть промежуток, образованный двумя прокладками.

Два металлических слоя образуют интерферометр с изменяемым воздушным промежутком. В его состав вошли: зеркало на стекле стационарного вида и меняющее положение зеркало на мембране.

На подобной основе изготавливают чувствительные датчики размером 0,55 мм. Они легко проходят через ушко иглы.

Оптическое волокно взаимосвязано с сенсором. В нем с помощью управления микропроцессора подключается монохроматический свет, который вводится в волокно. Делается замер интенсивности обратного света, по калибровке рассчитывается наружное давление и результат показывается на экране. Сенсоры используют в медицине для проверки давления внутри черепа, измерения кровяного давления в артериях легких. Другими методами в легкие добраться невозможно.

Магнитные

Магнитные датчики давления еще называют индуктивными. Элементом чувствительности служит Е-пластина, в центре расположена катушка, и проводящая мембрана. Она расположена на малом расстоянии от конца пластины. При подсоединении обмотки образуется магнитный поток, он идет через пластину, промежуток воздуха и мембрану.

Магнитная проницаемость воздуха в зазоре в 1000 раз слабее мембраны и пластины. Малое изменение параметра зазора приводит к значительному изменению индуктивности.

При воздействии давления мембрана изгибается, сопротивление катушки меняется. Преобразователь переводит изменение в сигнал тока. Измерительный рабочий элемент преобразователя сделан по схеме моста, обмотка включена в плечо. АЦП подает сигнал от элемента измерения в виде сигнала от давления.

Емкостные

Датчики давления самой простой конструкции, состоящий из плоских электродов (2 шт.) с зазором. Электрод сделан мембраной, на нее давит измеряемое давление. Меняется размер зазора. Такой вид датчика образует конденсатор с меняющимся зазором. Величина емкости конденсатора меняется при изменении промежутка от пластин или от электродов в данном случае.

Для определения очень небольших изменений давления приборы наиболее применимы и эффективны. Они дают возможность произвести замеры избыточного давления в различной среде. На предприятиях при выполнении технологических процессов, в которых задействованы системы воздушного и гидравлического оборудования, в насосах, компрессорах, на станках емкостные датчики нашли широкое применение. Датчик емкостного вида имеет конструкцию, которая имеет стойкость к вибрациям, скачкам температуры, защищена от химической и электромагнитной среды.

Ртутные

Также простая конструкция прибора. Действует по закону о сообщающихся сосудах. На одну емкость давит давление, которое нужно измерить. По величине другого сосуда – определяется давление.

Пьезоэлектрические

Элементом чувствительности в этом датчике служит пьезоэлемент. Это вещество, создающее электрический сигнал во время деформации. Такое свойство называется прямым пьезоэффектом. В измеряемой области находится пьезоэлемент, который образует ток, прямо зависящий от значения давления. Сигнал в датчике из пьезоматериала образуется только при деформации. При неизменном давлении нет деформации, поэтому датчик годен только для проведения замеров среды с быстро изменяемым давлением.

Если давление не будет изменяться, то не будет деформации, пьезоэлектрик не сгенерирует сигнал.

Пьезоэлектрики нашли использование в первичных преобразователях потока водяных вихревых счетчиков, и других сред. Их устанавливают парами в трубу с проходом в несколько сотен мм за предметом обтекания. Фиксируют вихри. Количество и частота вихрей прямо зависят от скорости потока и расхода по объему.

Пьезорезонансные датчики давления

В отличие от вышеописанного вида датчика здесь применяется обратный пьезоэффект, то есть, форма материала пьезоэлемента изменяется от тока подачи. Применяется резонатор в виде пластины из пьезоматериала. На пластину с двух сторон нанесены электроды. На них подключается по очереди напряжение питания с разным знаком, пластина производит изгиб в обе стороны в зависимости от полярности поданного напряжения и частоты.

Если воздействовать на пластину силой, чувствительной мембраной к давлению, то резонатор изменит частоту колебаний. Частота резонатора укажет значение давления на мембрану, которая оказывает давление на резонатор.

На рисунке изображен пьезорезонансный датчик с абсолютным давлением, который сделан герметичной камерой 1. Она достигается корпусом 2, основанием 6, мембраной 10. Мембрана крепится на электронную сварку к корпусу. Держатели закреплены на основании перемычками. Силочувствительный резонатор удерживает держатель.

Мембрана 10 давит на втулку 13 и шарик 6, который закреплен в держателе. Шарик давит на чувствительный резонатор 5. Проводка закреплена на основании 6, необходима для слияния резонаторов с генераторами. Сигнал на выходе абсолютного давления образуется по схеме путем разности генераторных частот. Датчик находится в активном термостате 18 с неизменной температурой 40 градусов. Давления для измерения поступает через штуцер 12.

Резистивные датчики давления

Другим названием этот датчик называется тензорезистор. Это элемент, который меняет собственное сопротивление при деформации. Такие тензорезисторы монтируют на мембрану, которая чувствительна к изменяющемуся давлению. В результате при приложении силы на мембрану происходит ее изгиб, из-за этого изгибаются тензорезисторы, которые на ней закреплены. На тензорезисторах меняется сопротивление и значение тока цепи.

Растяжение элементов из проводников на каждом тензорезисторе ведет к увеличению длины и снижению сечения. В итоге сопротивление повышается. При сжатии процесс происходит наоборот. Изменения сопротивления незначительные, поэтому для обработки сигнала применяются усилители. Деформация переделывается в изменение сопротивления проводника или полупроводника, а затем в сигнал тока.

Тензорезисторы выполнены в виде проводящего зигзагообразного элемента, или из полупроводника, который расположен на гибкой подложке, приклеенной к мембране. Подложка сделана из слюды, полимерной пленки или бумаги. Элемент проводника – из полупроводника, тонкой проволоки или фольги, напыленных на металл в вакуумном состоянии. Чувствительный элемент соединяют с цепью измерения выводами из проволоки или площадками контактов. Тензорезисторы чаще имеют размер площади до 10 мм2. Они более подходят для замера давления, веса, силы нажатия.

Как выбрать
  • Тип давления. Важно определить, что вы будете измерять. Есть несколько типов давления: барометрическое, избыточное, вакуумное, относительное, абсолютное.
  • Интервал разбега давления.
  • Класс защиты датчика. Для разных условий работы определены свои степени защиты от пыли и влаги.
  • Термокомпенсация. Эффекты температуры: например, расширение предметов, создают значительные помехи на результат измерения датчика. Если температура всегда изменяется в среде, то нужна термокомпенсация. Про границы температур тоже нельзя забывать.
  • Вид материала. Свойства материала играют значительную роль для агрессивных условий.
  • Тип сигнала выхода. Бывают цифровой вид и аналоговый. Нужно также учесть интервалы выхода сигнала, количество проводов.
Похожие темы:

принцип работы и типы датчиков

Настоящим я выражаю свое согласие ООО «Пауэр Интернэшнл–шины» (ОГРН 1027739435570, ИНН 7703247653) при оформлении Заказа товара/услуги на сайте

www.4tochki.ru в целях заключения и исполнения договора купли-продажи обрабатывать — собирать, записывать, систематизировать, накапливать, хранить, уточнять (обновлять, изменять), извлекать, использовать, передавать (в том числе поручать обработку другим лицам), обезличивать, блокировать, удалять, уничтожать — мои персональные данные: фамилию, имя, номера домашнего и мобильного телефонов, адрес электронной почты.

Также я разрешаю ООО «Пауэр Интернэшнл–шины» направлять мне сообщения информационного характера о товарах и услугах ООО «Пауэр Интернэшнл–шины», а также о партнерах.

Согласие может быть отозвано мной в любой момент путем направления ООО «Пауэр Интернэшнл–шины» письменного уведомления по адресу: 129337, г. Москва, ул. Красная Сосна, д.30

Конфиденциальность персональной информации

1. Предоставление информации Клиентом:

1.1. При оформлении Заказ товара/услуги на сайте www.4tochki.ru (далее — «Сайт») Клиент предоставляет следующую информацию:

— Фамилию, Имя, Отчество получателя Заказа товара/услуги;

— адрес электронной почты;

— номер контактного телефона;

— адрес доставки Заказа (по желанию Клиента).

1.2. Предоставляя свои персональные данные, Клиент соглашается на их обработку (вплоть до отзыва Клиентом своего согласия на обработку его персональных данных) компанией ООО «Пауэр Интернэшнл–шины» (далее – «Продавец»), в целях исполнения Продавцом и/или его партнерами своих обязательств перед Клиентом, продажи товаров и предоставления услуг, предоставления справочной информации, а также в целях продвижения товаров, работ и услуг, а также соглашается на получение информационных сообщений. При обработке персональных данных Клиента Продавец руководствуется Федеральным законом «О персональных данных» и локальными нормативными документами.

1.2.1. Если Клиент желает уничтожения его персональных данных в случае, если персональные данные являются неполными, устаревшими, неточными, либо в случае желания Клиента отозвать свое согласие на обработку персональных данных или устранения неправомерных действий ООО «Пауэр Интернэшнл–шины» в отношении его персональных данных, то он должен направить официальный запрос Продавцу по адресу: 129337, г. Москва, ул. Красная Сосна, д.30

1.3. Использование информации предоставленной Клиентом и получаемой Продавцом.

1.3.1 Продавец использует предоставленные Клиентом данные в целях:

· обработки Заказов Клиента и для выполнения своих обязательств перед Клиентом;

  • для осуществления деятельности по продвижению товаров и услуг;
  • оценки и анализа работы Сайта;
  • определения победителя в акциях, проводимых Продавцом;

· анализа покупательских особенностей Клиента и предоставления персональных рекомендаций;

· информирования клиента об акциях, скидках и специальных предложениях посредством электронных и СМС-рассылок.

1.3.2. Продавец вправе направлять Клиенту сообщения информационного характера. Информационными сообщениями являются направляемые на адрес электронной почты, указанный при Заказе на Сайте, а также посредством смс-сообщений и/или push-уведомлений и через Службу по работе с клиентами на номер телефона, указанный при оформлении Заказа, о состоянии Заказа, товарах в корзине Клиента.

2. Предоставление и передача информации, полученной Продавцом:

2.1. Продавец обязуется не передавать полученную от Клиента информацию третьим лицам. Не считается нарушением предоставление Продавцом информации агентам и третьим лицам, действующим на основании договора с Продавцом, для исполнения обязательств перед Клиентом и только в рамках договоров. Не считается нарушением настоящего пункта передача Продавцом третьим лицам данных о Клиенте в обезличенной форме в целях оценки и анализа работы Сайта, анализа покупательских особенностей Клиента и предоставления персональных рекомендаций.

2.2. Не считается нарушением обязательств передача информации в соответствии с обоснованными и применимыми требованиями законодательства Российской Федерации.

2.3. Продавец получает информацию об ip-адресе посетителя Сайта www.4tochki.ru и сведения о том, по ссылке с какого интернет-сайта посетитель пришел. Данная информация не используется для установления личности посетителя.

2.4. Продавец не несет ответственности за сведения, предоставленные Клиентом на Сайте в общедоступной форме.

2.5. Продавец при обработке персональных данных принимает необходимые и достаточные организационные и технические меры для защиты персональных данных от неправомерного доступа к ним, а также от иных неправомерных действий в отношении персональных данных.

Как правильно выбрать преобразователь давления

Давление, эта важнейшая после температуры физическая величина, является определяющей во многих технологических процессах.

Преобразователи давления предназначены для измерений и непрерывного преобразования давления в унифицированный выходной сигнал постоянного тока, напряжения или в цифровой сигнал.

Используются датчики в регуляторах и других устройствах автоматики в системах автоматического контроля, регулирования и управления технологическими процессами в системах водообработки, отопления, вентиляции и кондиционирования; гидравлических системах, холодильной технике, расходомерах и счетчиках; дизельных двигателях; тормозных системах; уровнемерах, в испытательных стендах и т.д.

Индустриальные измерения и контрольно-измерительная аппаратура применяются во всех областях промышленности — от атомной до пищевой и фармакологической; соответственно, везде нужны и преобразователи давления и преобразователи уровня.

Принцип действия датчиков основан на упругой деформации чувствительного элемента (сенсора), на который нанесены полупроводниковые тензорезисторы, включенные по схеме моста Уинстона. Измеряемое давление подводится через штуцер в рабочую полость датчика и вызывает деформацию диафрагмы. Это приводит к изменению геометрии резисторов, находящихся с ней в тесной механической связи и изменению их сопротивления. Происходит преобразование приложенного давления (механический вход) в изменение сопротивления (электрический выход).

Мы предлагаем следующий алгоритм, чтобы правильно подобрать датчик для Вашего применения:

1. Тип измеряемого давления

Преобразователи давления измеряют разность двух давлений, воздействующих на измерительную мембрану (чувствительный элемент) датчика. Одно из этих давлений — измеряемое, второе — опорное, то есть то давление, относительно которого происходит отсчет измеряемого. В зависимости от вида опорного давления все датчики разделяются на следующие виды:

Практически все наши преобразователи давления имеют модификации для измерения как абсолютного так и избыточного (в том числе разряжения) давлений. Подробнее Вы можете ознакомиться в разделе продукция/преобразователи давления.

Преобразователи абсолютного давления
Предназначены для измерения величины абсолютного давления жидких и газообразных сред. Опорное давление — вакуум. Воздух из внутренней полости чувствительного элемента датчика откачан. Например, барометр –частный случай датчика абсолютного давления.

Минимальный доступный у нас для заказа диапазон абсолютного давления с погрешностью 0,1%ВПИ — это 0…50мбар (0…5кПа). Описание на датчик 41X Вы можете увидеть здесь.

Преобразователи избыточного (относительного) давления
Предназначены для измерения величины избыточного давления жидких и газообразных сред. Опорное давление — атмосферное; таким образом, одна сторона мембраны соединена с атмосферой.

Преобразователи дифференциального (разности, перепада) давления
Предназначены для измерения разности давления среды и используются для измерения расхода жидкостей, газа, пара, уровня жидкости. Давление подается на обе стороны мембраны, а выходной сигнал зависит от разности давлений.

В нашей линейке предствалены датчики

  • PD-33X — отличительной особенностью является высокая точность измерения перепада давления, а также возможность исполнения для значений опорного давления до 600бар. При этом измеряемый перепад может составлять всего 0…0,2 бар
  • PRD-33X — эти датчики уникальны способностью выдерживать перегрузки по давления и с положительной и с отрицательной стороны. При диапазоне измерений 0…0,350мбар перегрузка может составлять 35 бар!
  • PD-39X — эти датчики давления имеют особенную конструкцию с двумя сенсорами абсолютного давления. Это обеспечивает повышенную надежность и стойкость к перегрузкам, однако применимы данные датчики только в условиях, когда перепад давления одного порядка с опорным давлением в линии.
  • PD-41X — это сверхчувствительные датчики для измерения перепада давления. минимальный диапазон — это 0…0,5кПа. Это идеальное решения для измерения малых скоростей потока. Дифференциальный преобразователь PD-41X подходит только для неагрессивных газов.

Преобразователи гидростатического давления (преобразователи уровня)
Предназначены для преобразования гидростатического давления контролируемой среды в сигнал постоянного тока. Измеряют давление столба жидкости, зависящее только от его высоты и от плотности самой жидкости. Изменение атмосферного давления компенсируется при помощи капиллярной (дыхательной трубки)

Преобразователи вакууметрического давления (разряжения)
Предназначены для измерения величины вакуумметрического давления жидких и газообразных сред. Опорное давление в этих датчиках также атмосферное. Однако, в отличие от датчиков избыточного давления, измеряемое давление меньше атмосферного, т.е. существует разрежение относительно атмосферы.

Преобразователи избыточного давления-разряжения
Представляют собой сочетание датчиков избыточного и вакуумметрического давлений, т.е. измеряют как давление, так и разрежение, например -1…6 бар. У нас Вы можете заказать абсолютно любой такой диапазон в пределах максимального диапазона измерений конкретного датчика.

2. Среда использования датчика

Для надежной работы датчиков необходимо выбирать материалы элементов, контактирующих с измеряемой средой (мембран, фланцев, кабеля и уплотнительных колец) химически стойкими к этим средам. Например, для различных сред эксплуатации материалом мембран сенсоров может быть нержавеющая сталь, титан, титановый сплав, хастеллой, керамика, Kynar и др. Материал кабеля особенно актуален для погружных гидростатических датчиков давления. Для питьевой воды идеально подойдет полиэтиленовый PE кабель, для не агрессивных промышленных сред полиуретановый PUR. Если же Вы собираетесь использовать датчик в топливе или агрессивной жидкости, то оптимальным решением будет термопластичный эластомер (Hytrel) или тефлон (PTFE). Все эти материалы мы используем и предлагаем в своих модификациях датчиков Келлер.

3. Климатическое исполнение

Преобразователи давления также отличаются по климатическому исполнению. Следует обращать внимание на климатические условия (температура окружающей среды, влажность, прямое попадание воды и солнечных лучей) в месте установки датчика. Они должны соответствовать тем, на которые он рассчитан. Причем очень важно различать две температуры, которые могут оказывать влияние на наш датчик: температура окружающей среды и температура измеряемой среды. Наши преобразователи давления могут работать в условиях окружающей и измеряемой среды от -55 до 150С. Специальные исполнения преобразователей давления способны работать при температурах среды до +300С.

4. Выходной сигнал

Рассмотрим основные типы:

  • Аналоговый выходной сигнал. На выходе из датчика мы имеем непрерывный линейный сигнал по току или по напряжению, который мы можем регистрировать самыми простыми приборами, даже обычным бытовым тестером. 4…20 mA — это самый распространенный выходной сигнал для датчиков во всем мире, также популярными аналоговыми сигналами являются 0…10В, 0,5…4,5В и другие.
  • Цифровой выходной сигнал. На сегодняшний день существует огромное множество различных цифровых сигналов и отдельно останавливаться на них мы не будем. Пожалуй, самым широко используемым является интерфейс RS485 протокол MODBUS. Это открытый протокол, который позволяет объединить в систему до 128 устройств с максимальным расстоянием между ними 1300м.
  • Ратиометрический выходной сигнал. Этот сигнал используется пока достаточно редко, особенно в нашей стране, но с каждым днем он набирает все большую популярность. Особенностью ратиометрического выходного сигнала является зависимость значения сигнала от напряжения питания. Т.е. мы можем говорить, что этот сигнал является безразмерным и представляет собой ничто иное как процентное отношение сигнала питания. Обычно, про датчик с ратиометрическим выходным сигналом говорят 0,5…4,5В ратиометрический (ratiometric), на самом же деле 0,5…4,5В мы имеем только при условии стабильного напряжения питания 5В, поэтому правильно с физической точки зрения говорить: 0,5В/5В…4,5В/5В. Если же напряжение питания изменится, то пропорционально ему изменится и выходной сигнал.

Тип выходного сигнала прежде всего зависит от уже имеющегося оборудования и стоящей перед Вами задачи. Для этого необходимо изучить входы, которые имеют используемые контроллеры, приборы, машины или регуляторы. Все перечисленные сигналы мы используем в наших датчиках давления, а также и многие другие.

Для автономных приборов мы бы посоветовали использовать датчики с цифровым интерфейсом I2C с данными датчиками Вы можете ознакомиться здесь. Если же Вам не удобно работать с цифровым выходом, то лучше использовать датчики с минимальным напряжением питания например 3,5V — это датчики 33X или 5V — это датчики 21Y.

5. Точность измерений

Преобразователи давления имеют различные метрологические характеристики (классы точности) – обычно от 0,05% до 0,5%. Особо точные датчики используются на важных объектах в различных отраслях промышленности. Опционально датчики серии 33x могут иметь основную погрешность до 0,01% ВПИ (доступно только для диапазонов >10 бар).

На рисунке представлен датчик без температурной компенсации и с температурной компенсацией осуществляемой по специальным алгоритмам микропроцессором в преобразователях давления Келлер.

Особое внимание следует уделять стабильности датчиков давления. Ведь даже очень точный датчик спустя нескольких часов работы при температурных циклах в широком диапазоне начинает давать дополнительную погрешность более 0,5%ВПИ. Что говорить, если эти циклы будут продолжаться месяцами и даже годами!

Некоторые виды датчиков давления имеют взрывозащищенное исполнение. Эти модели могут успешно использоваться для определения давления на взрывоопасных объектах с присутствием взрывчатых и легко воспламеняющихся газов и жидкостей. В линейке Келлер представлены как преобразователи с искробезопасной цепью, так и преобразователи со взрывонепроницаемой оболочкой.

Преобразователи давления относятся к измерительной технике и должны проходить обязательные сертификационные испытания. После этого они утверждаются и вносятся в Госреестр средств измерений.

Надеемся, что данный материал поможет Вам лучше ориентироваться при выборе преобразователей давления.

Вы также можете подобрать решение, которое будет актуально именно для Вашей задачи с помощью наших специалистов. Заявку на подбор можно отправить любым удобным Вам способом: через форму обратной связи, по электронной почте [email protected] или же по телефону 8 (800) 777 18 50. 

Как хранить шины без дисков: правильно, зимние и летние

Контроль давления в автомобильных шинах реализуют с помощью нескольких вариантов систем с разным принципом действия. Производители монтируют штатное оборудование с непосредственным или косвенным контролем. Также известны внештатные версии с разными датчиками и степенью информативности. Разберемся в основных способах контроля давления и рассмотрим принципы работы систем.

Измерение давления в шинах

Штатные системы

Оборудование для контроля давления в шинах, которое предусмотрено базовой комплектацией, относится к штатному. Также оно может выпускаться в качестве платной опции. Но в любом случае такие системы подразделены на 2 вида.

Косвенный контроль без датчиков в шинах

Штатное оснащение обозначается аббревиатурой TPMS, которая расшифровывается, как Tires Pressure Monitoring System. В буквальном переводе это “Система контроля давления в шинах”.

Особенность модели с косвенным контролем состоит в том, что она не измеряет давление. Её работа основана на системе ABS, которая считывает обороты колес при движении.

Данные от ABS передаются к блоку управления, который сравнивает показатели с фактически пройденным расстоянием за определенные промежутки времени. Если давление в шине упало, уменьшается и ее реальный размер. В итоге такому колесу приходится делать больше оборотов для прохождения того же расстояния. Система TPMS фиксирует эту разницу и подает сигнал водителю.

Такое оборудование стоит недорого и, с механической точки зрения, надежно, потому что нет лишних датчиков, которые могли бы выйти из строя или дать сбой. Но информативность и точность не на высоте: система не отображает величину давления в шине и подает сигнал при его падении минимум на 30 — 40%.

Непосредственный контроль с датчиками в колесах

Этот вариант информативнее и состоит из:

  • блока управления с источником питания, передающим модулем и считывающим устройством;
  • сигнализации;
  • 4-х датчиков, установленных по одному в каждом колесе вместо стандартных золотников.

Считывающее устройство на пьезоэлементах или тензоэлементах меняет электрическое сопротивление в зависимости от давления в шинах. В итоге блок управления обрабатывает и передает водителю сигнал об изменившемся давлении.

Штатная система контроля давления в шинах

Система надежна, но иногда возникают проблемы с принимающими устройствами. Их ставят как можно ближе к датчикам – в колесных арках, здесь электроника рискует выйти из строя из-за влаги или грязи.

Внештатные системы

Эти устройства продаются отдельно и адаптируются под любой автомобиль. Делятся на 3 категории.

  • С простой сигнализацией – состоят из блока и 4-х датчиков. Включают 4 светодиода, которые загораются при падении давления, а на его увеличение не реагируют. Наружные версии устанавливаются на колеса вместо стандартных колпачков, внутренние – на внутреннюю поверхность диска.
  • Внешние с точным измерением. Надежнее вышеописанных, комплектуются датчиками для установки на места штатных колпачков, ЖК-дисплеем и центральным блоком. На экране показываются цифровые значения давления в колесах, а также аварийные сигналы. При выборе проще всего ориентироваться на цену – чем дороже оборудование, тем точнее результаты измерений.
  • Внутренние с точным измерением. Система такая же, как и предыдущая, но с отличием – датчики ставятся внутрь колес. Эти модификации стоят дороже, но и обладают рядом преимуществ – точнее, надежно защищены от кражи, не подвергаются воздействию влаги.

Внештатная система контроля давления в шинах

Это основные системы контроля давления в шинах, которые устанавливаются на большинство современных автомобилей. Выбор устройств зависит от ожиданий к точности и надежности, а также от ваших финансовых возможностей.

Содержание

Поделитесь статьей со своими друзьями:

Спасибо, заявка принята!

Вы подписаны на обновления авто!

Мы оповестим вас если у нас появятся автомобили по выбранным вами параметрам.

Датчики давления: устройство и принцип работы

Иногда многим людям может потребоваться измерить давление. Для этого необходимо использовать датчики давления. Их принцип работы основан на преобразовании давления в механическое перемещение.

Кроме, механических систем, для измерения давления также могут использоваться механические и тепловые системы.

Датчики давления

Механические датчики давления состоят из:

  1. Жидкостных датчиков давления.
  2. Поршневых систем.
  3. Пружинных систем.

Теперь пришло время рассмотреть датчики движения, которые встречаются наиболее часто. Наиболее часто на сегодняшний день используют пружинные датчики давления. Их действие будет основано на том, что возникновении упругой деформации пружины, которая считается пружинным элементом прибора. При изменении давления будет возникать деформация внутри и снаружи. Изменение формы определенного элемента будет передаваться на подвижную часть прибора со стрелкой. При снятии давления элемент примет прежнюю форму.

В технических манометрах чаще всего применяются упругие пружины:

  • Одновитковые.
  • Многовитковые.
  • Плоские мембраны.
  • Сильфоны.

Раскручивание пружины будет происходить из-за того, что при увеличении внутреннего давления эллиптическое сечение будет стремиться принять круглую форму. В результате этого могут возникать напряжения, которые будут раскручивать пружину. Свободный конец будет перемещаться прямопропорционально давлению внутри ее. Таким образом, можно сказать о том, что измеряемое давление будет преобразовываться в механическое перемещение свободного конца пружины. Величина такого перемещения чаще всего будет составлять 5-7 мм.

Многовитковая трубчатая пружина будет иметь 6-9 витков. Перемещение свободного конца пружины значительно больше, чем у одновитковой пружины. Обычно датчики в виде одновитковой пружины могут применяться в показывающих приборах. В большинстве случаев это будет связано с тем, что в самопишущих приборах датчик должен иметь большое усилие, которого хватит для преодоления трения. В нашем разделе также есть статья о том, как работает тензодатчик.

Плоская гофрированная мембрана будет использоваться отдельно. При необходимости также можно применять плоскую прорезиненную ткань, которая будет плотно соединена с плоской калиброванной пружиной. Гармоникообразная мембрана отличается от других, так как имеет наибольшую чувствительность.

Сильфонные приборы предназначаются для измерения и записи избыточного давления в схемах автоматизации. Кроме этого, подобные устройства также можно использовать в качестве вторичных приборов к устройствам, которые имеют приспособление для пневматической передачи показаний на расстояние. Пружинные датчики давления в схемах позволяют преобразовывать механическое перемещение в электрический сигнал с помощью индуктивного или контактного датчика.

На рисунке выше представлена схема датчика давления типа МЭД. Здесь сначала давление будет восприниматься трубчатой манометрической пружиной. В дальнейшем оно будет преобразовываться в перемещение конца манометрической трубки. Это перемещение также может передаваться плунжеру трансформаторного датчика. Вторичным приборов в этой конструкции считается устройство типа ЭПИД.

Специалисты сообщают, что датчики расхода на сегодняшний день могут быть:

  1. Механические.
  2. Термические.
  3. Ионизационные.
  4. Индукционные.
  5. Акустические.

Важно знать! Механические датчики расхода разделяются на датчики переменного и постоянного перепада. Также могут быть датчики со сливным отверстием.

Датчики расхода будут действовать по принципу возникновения перепада давления в сужающем устройстве. Перепад давления в этом случае является функцией расхода. Сужающее устройство считается воспринимающим органом датчика расхода. Датчики расхода постоянного перепада (ротаметры) используются для регулирования сечения с целью поддерживания постоянным перепада давления. Если будет интересно, тогда можете прочесть про принцип работы термопары.

На рисунке, который расположен выше вам предоставлена схема ротаметра с индуктивным датчиком. Ротаметр состоит из:

  • Конической трубки.
  • Поплавка.

Во время движения жидкости или газа в кольцевом зазоре между поплавком и трубками будет создаваться перепад давления, который в дальнейшем будет создавать силу, действующую навстречу силе веса поплавка, который здесь расположен. Ротаметры на сегодняшний день могут выполняться, как показывающие приборы и как датчики. Обмотка индуктивного датчика располагается на трубке сопла. Железный поплавок в свою очередь будет являться сердечником катушки индуктивного датчика. При изменении расхода поплавок может перемещаться и соответственно изменять индуктивность катушки.

Датчики уровня

В последнее время наиболее распространенными устройствами считаются поплавковые датчики. Поплавковый датчик будет состоять из: поплавка, промежуточного и выходного органа. Поплавок – это орган, который позволяет воспринимать уровень жидкости. Преобразующий орган позволяет механическое воздействие выходному органу.

Датчики уровня могут быть основаны на измерении веса и гидростатического давления, а также на использовании электрических свойств жидкости.

Отечественная промышленность старается выпускать датчики давления разнообразного типа. Теперь вы точно знаете, принцип работы датчиков давления, расхода и уровня. Надеемся, что эта информация была полезной и интересной.

Читайте также: электромагнитное реле.

Преобразователь давления. Общая информация

Преобразователь давления — измерительный прибор, предназначенный для непрерывного измерения давления различных сред и последующего преобразования измеренного значения в унифицированный выходной сигнал по току или напряжению. Преобразователи давления часто называют датчиками давления. Давление определяется как единица силы создаваемая на единицу площади поверхности. В системе СИ единицей измерения давления является Паскаль (Па). Один Паскаль равен силе в один Ньютон, приложенной на площадь в один квадратный метр (Па = Н / м²).

В зависимости от вида измеряемого давления, преобразователи давления делятся на несколько видов.

Преобразователи избыточного давления

Рисунок 1 — Датчик давления общепромышленный PTE5000

Данные преобразователи измеряют давление, создаваемое какой-либо средой относительно атмосферного давления. Этот тип преобразователей давления является самым распространенным и применяется практически во всех отраслях промышленности: ЖКХ, энергетика, водоподготовка, водоочистка, системы отопления, кондиционирования и вентиляции, пищевая промышленность, химия и др.

Для измерения избыточного давления воды, пара, нейтральных жидкостей и газов ООО «КИП-Сервис» предлагает датчик давления общепромышленного назначения PTE5000. Данные датчики широко применяются российскими предприятиями для измерения давления воды в системах котельной автоматики, системах водоснабжения и водоотведения, ЖКХ и других системах, где на первом плане стоит невысокая стоимость оборудования.

Преобразователи абсолютного давления

Рисунок 2 — Датчик давления общепромышленный CER-1

Данные преобразователи измеряют давление, создаваемое какой—либо средой относительно абсолютного разряжения (вакуума). Эти датчики давления не так широко распространены, и используются в основном в химической промышленности. В ассортименте датчиков ООО «КИП-Сервис» преобразователи абсолютного давления представлены серией преобразователей давления CER-8000 и CER-2000 голландской фирмы KLAY-INSTRUMENTS BV, выполненные в корпусе из нержавеющей стали, что актуально именно для химической промышленности. Следует отметить, что данные серии датчиков давления, в зависимости от модификации, могут применяться для измерения и других видов давления.

Преобразователи вакууметрического давления (разряжения)

Рисунок 3 — Преобразователь абсолютного давления. Датчики Klay.

Эти датчики измеряют уровень разряжения (вакуума) относительно атмосферного давления. На сегодняшний день вакуумные процессы находят широкое применение в таких отраслях, как пищевая промышленность (вакуумная упаковка, вакуумный транспорт), металлургическая промышленность и производство РТИ (литье под вакуумом), автомобилестроение и др.

Преобразователи гидростатического давления (гидростатические уровнемеры)

Данные преобразователи представляют собой разновидность датчиков избыточного давления, в том случае, когда последние применяются для измерения гидростатического уровня жидкостей. Преобразователь фактически измеряет давление столба жидкости над ним. Для применения в водоканалах и системах водоочистки в номенклатуре ООО «КИП-Сервис» представлены погружные гидростатические датчики уровня Hydrobar производства фирмы KLAY-INSTRUMENTS BV.

Как было сказано выше, единицей измерения давления в системе СИ является «Паскаль» (Па). На практике в промышленности широко применяются и другие единицы измерения, кроме «Па» наиболее распространенными являются «bar» (бар), «м.в.с.» (метр водяного столба) и «кгс/см²» (килограмм-сила на сантиметр квадратный), а также производные этих единиц: «мбар» (миллибар), «кПа» (килопаскаль), «МПа» (мегапаскаль).

Таблица перевода популярных единиц измерения давления
ЕдиницыПакПаМПакгс/см²мм рт.ст.мм вод.ст.бар
1 Па110–310–610,197 16 
х 10–6
0,007 500 620,101 971 60,000 01
1 кПа1 000110–30,010 197 167,500 62101,971 60,01
1 МПа1 000 0001 000110,197 167 500,62101 971,610
1 кгс/м29,806 659,806 65 
х 10–3
9,806 65 
х 10–6
0,000 10,073 555 9198,066 5 
х 10–6
1 кгс/см298 066,598,066 50,098 066 51735,55910 0000,980 665
1 мм рт.ст. (при 0 °C)133,322 40,133 322 40,000 133 322 40,001 359 51113,595 10,001 332 24
1 мм вод.ст. (при 0 °C)9,806 659,807 750 
х 10–3
9,806 65 
х 10–6
0,000 10,073 555 9198,066 5 
х 10–6
1 бар100 0001000,11,019 716750,06210 197,161

Конструкция преобразователей давления

Рисунок 4 — Схема конструкции преобразователей давления

На рисунке снизу приведена общая схема конструкции преобразователей давления. В зависимости от типа датчика, производителя прибора и особенностей применения, конструкция может меняться. Данная схема предназначена для ознакомления с основными элементами типового измерительного преобразователя давления.

  1. Кабельный ввод: Эта часть преобразователя давления используется для герметичного ввода электрического кабеля в датчик. Как правило, используется сальниковый ввод типа PG9, но встречаются и другие варианты подсоединения (например PG16, M20x1,5).
  2. Клеммы: Клеммы необходимы для физического подключения электрических проводов к датчику. На сегодняшний день подавляющее большинство преобразователей давления используют 2-проводную схему подключения с выходным сигналом 4…20 мА.
  3. Плата питания / искорзащиты: Данная плата осуществляет распределение электрической энергии между электронными компонентами датчика. У преобразователей во взрывобезопасном исполнении на данной плате реализуется функция искрозащиты. У недорогих датчиков давления (например, PTE5000), как правило, плата питания и преобразовательная плата совмещены.
  4. Корпус электроники: Часть датчика давления, в которой расположены плата питания и преобразовательная плата. У преобразователей низкой ценовой категории (WIKA, BD Sensors) корпус электроники и корпус собственно датчика представляют одно целое. Наличие отдельного корпуса для электроники характерно только для высококачественных преобразователей давления (например KLAY-INSTRUMETNS, EMERSON, VALCOM, YOKOGAWA).
  5. Преобразовательная плата: Это одна из самых важных частей преобразователей давления. Данная плата осуществляет преобразование сигнала от первичного сенсора в унифицированный электрический сигнал по току или по напряжению.
  6. Корпус датчика: Основная механическая часть, представляющая собой собственно тело преобразователя.
  7. Провода и атмосферная трубка: Провода, как правило, представляют собой кабельный шлейф, соединяющий выводы сенсора и преобразовательную плату. Атмосферная трубка используется в датчиках избыточного и вакууметрического давления для осуществления связи чувствительного элемента (сенсора давления) с атмосферным давлением.
  8. Технологическое соединение: Эта часть преобразователей давления используется для физического подключения датчика к процессу (к трубопроводу, емкости, аппарату). Наиболее распространенным соединением является резьбовое манометрическое подсоединение G1/2″ по стандарту DIN 16288 и резьба М20х1,5. Также широко встречаются соединения G1/4″, G1″, фланцевые соединения. В пищевой промышленности распространены специальные санитарные соединения, например молочная гайка DIN 11851, DRD-фланец, хомуты Tri-clamp. В ассортименте ООО «КИП-Сервис» есть специальные преобразователи давления для применения в пищевой (молочной, пивоваренной) промышленности. Это приборы производства KLAY-INSTRUMENTS BV — датчики давления серии 8000-SAN и интеллектуальные датчики давления серии 2000-SAN, которые полностью удовлетворяют всем требованиям пищевой промышленности по гигиене, точности измерений и температурным режимам. Рисунок 5 — Технологические соединения
  9. Сенсор давления (первичный преобразователь): Сенсор давления — один из ключевых элементов любого преобразователя давления. Данный элемент непосредственно осуществляет преобразование действующего на него давления в электрический сигнал, который потом унифицируется на преобразовательной плате. На сегодняшний день существует несколько способов преобразования давления в электрический сигнал. В промышленности применяются индуктивный, емкостной и тензорезистивный методы преобразования. Самым распространенным является тензорезистивный. Данный метод основан на явлении тензоэффекта в металлах и полупроводниках. Тензорезисторы соединенные в мостовую схему (мост Уитстона) под действием давления изменяют свое сопротивление, что приводит к разбалансу моста. Разбаланс прямо пропорционально зависит от степени деформации резисторов и, следовательно, от приложенного давления. Рисунок 6 — Мост Уитстона

На рынке существует 4 основных типа сенсоров, основанных на тензорезистивном методе преобразования, которые используют все существующие производители преобразователей давления. Рассмотрим каждый тип отдельно.

Типы сенсоров

1. Толстопленочные сенсоры на металлической/керамической мембране

Толстопленочный сенсор на металлической/керамической мембране

Данный тип тензорезистивных сенсоров является самых дешевым, и, как следствие, широко используется для производства недорогих преобразователей давления неагрессивных сред (вода, воздух, пар).

Толстопленочные сенсоры обладают следующими особенностями:

  • Самое недорогое решение;
  • Низкая точность — 0,5% или 1%;
  • Измерение только высокого давления — от 1 бар и выше;
  • Низкий запас по перегрузке, не более 2-кратной;
  • Отсутствие термокомпенсации.

2. Тонкопленочные сенсоры на стальной мембране

Тонкопленочные сенсоры на стальной мембране

Тонкопленочные сенсоры на стальной мембране были разработаны специально для применения в составе преобразователей высокого (более 100 бар) давления. Они обеспечивают хорошую линейность и повторяемость при работе с высокими значениями давления.

Особенности тонкопленочных сенсоров:

  • Применяются только для высоких давлений — от 6 бар;
  • Точность — не более 0,25%;
  • Низкий запас по перегрузке, не более 2-х, иногда 4-кратной;
  • Отсутствие термокомпенсации.

3. Керамические тензорезистивные сенсоры

Керамические тензорезистивные сенсоры

Данный вид сенсоров используется для высокоточного измерения давления сред, не агрессивных к материалу керамики (как правило Al2O3), кроме пищевых продуктов (т. к. необходимо использование уплотнителя сенсора) и вязких сред. Данный тип сенсоров используют практически все ведущие производители преобразователей давления.

Особенности:

  • Применяются для измерения как низкого так и высокого давления;
  • Высокая точность — до 0,1%;
  • Средняя устойчивость к перегрузкам;
  • Шероховатая поверхность (нежелателен контакт с пищевыми средами).

4. Кремниевые тензорезистивные сенсоры

Кремниевые тензорезистивные сенсоры

Кремниевые тензорезистивные сенсоры широко применяются всеми ведущими производителями преобразователей давления в сочетании с защитной разделительной мембраной из нержавеющей стали (или других химически стойких сплавов) для высокоточного измерения давления различных сред. Использование сварной разделительной мембраны из нерж. стали позволяет применять данный тип сенсоров в пищевой промышленности и для вязких сред.

Особенности:

  • Применяются для измерения как низкого, так и высокого давления;
  • Высокая точность — до 0,1%;
  • Высокая устойчивость к перегрузкам.

Руководитель отдела маркетинга ООО «КИП-Сервис»
Стариков И.И.

Дополнительные материалы:

Читайте также:

Как работает датчик давления?

Omega — надежный источник датчиков давления и тензодатчиков, обеспечивающих получение высококачественных данных по множеству процессов. Чтобы датчики давления и тензодатчики предоставляли информацию, которую ищут наши клиенты, давление или сила этого процесса должны достигать чувствительного элемента. Чувствительный элемент реагирует на силу или давление процесса, создавая выходной сигнал, который может интерпретироваться устройством считывания или устройством сбора данных.Таким образом, чувствительный элемент является сердцем преобразователя или тензодатчика.

Теория системы измерения давления

Система измерения давления состоит из чувствительного элемента с прикрепленными к нему четырьмя тензодатчиками. Тензодатчики сконфигурированы в виде моста Уитстона, где все 4 резистора (обозначенные R1 — R4 на рисунке 2) равны и изменяются на равную величину пропорционально при приложении напряжения. Чем больше сила или напряжение (вход), тем больше выход.Устройство моста Уитстона требует 4 провода для подключения, положительного и отрицательного возбуждения, а также положительного и отрицательного выхода датчика.

Типичный датчик давления работает, создавая выходной сигнал тензометрического датчика, когда возникает отклонение диафрагмы. В зависимости от технологии тензодатчика выходная мощность может варьироваться от 1 до 3 милливольт на вольт (мВ / В) до 10–30 мВ / В. Чтобы рассчитать выходную мощность в полном масштабе, вы должны умножить выходную мощность датчика на напряжение, используемое для питания устройства.Например, для датчика 3 мВ / В, если мы использовали 10 В постоянного тока в качестве напряжения возбуждения, мы ожидали бы получить 3 мВ / В x 10 В = 30 мВ на полной шкале.

Рисунок 1.
Рисунок 2.
Рисунок 3.
Типичная реакция диафрагмы при приложении давления.

Примеры

Хорошим примером того, как работает датчик давления, является датчик давления PX4600. Давление технологического процесса, которое пытается измерить заказчик, будет подводиться к элементу диафрагмы через порт доступа.Давление вызовет отклонение диафрагмы, нагружая мост Уитстона на другой стороне диафрагмы и создавая выходной сигнал мВ / В. Затем этот милливольтный сигнал считывается устройством, способным принимать милливольтный сигнал, или передается в усилитель или формирователь сигнала для дальнейшей обработки сигнала.

PX409-USBH имеет разъем USB на конце кабеля для прямого ввода в портативный компьютер. Бортовая электроника преобразует сигнал в удобный, простой в использовании протокол связи.Воспользуйтесь нашим бесплатным программным обеспечением, которое доступно на нашем веб-сайте. Устройство можно подключить к ноутбуку, который будет отображать и собирать данные, одновременно обеспечивая питание самого датчика.

Рисунок 6.
DPG409 Цифровой манометр DPGM409 использует цифровой выход в версиях с беспроводным передатчиком. Это позволяет получать показания с удаленной прямой видимости без необходимости прокладывать сигнальный провод. Беспроводной приемник будет принимать этот сигнал и отображать или записывать данные.

Категории датчиков

Рис. 7. без усиления
Большинство тензодатчиков имеют выходной сигнал без усиления. Неусиленные выходы распространены среди устройств, которые слишком малы для оснащения электроникой формирования сигнала, или в тех случаях, когда окружающая среда слишком экстремальна, чтобы электроника могла выжить.

Это относится к продуктам PX1004, PX1005 и PX1009, которые не имеют усиления из-за очень высоких и очень низких рабочих температур, в которых они предназначены для работы.Датчики без усиления имеют довольно короткую дальность передачи, обычно не более 6,1–9,1 м (20–30 футов). Это потому, что сила сигнала очень мала. Это также делает их восприимчивыми к электромагнитному шуму из окружающей среды.

Если вы хотите узнать больше об измерении давления высокотемпературных сред, прочтите эту статью.

Рис. 8. Датчики с усилением
Датчики с усилением используют внутреннюю электронику преобразования сигнала для создания более сильного сигнала.Это делает их менее восприимчивыми к окружающему шуму и позволяет преодолевать большие расстояния до своих приемных устройств. Датчики с внутренними усилителями имеют меньший диапазон рабочих температур из-за температурных ограничений электроники формирования сигнала внутри датчика.

Датчики с токовым выходом могут посылать усиленный сигнал на расстояние до 304,8 м (1000 футов) и при этом обеспечивать высокую точность. Как правило, датчики на выходе напряжения могут поддерживать точность менее 30,5 м (100 футов).

Цифровой
Третий тип датчика, классифицируемый по выходу, — это датчик цифрового выхода.Этот тип выхода может обеспечить самый низкий уровень шума и самые большие доступные расстояния передачи. Доступно несколько стилей связи, например DPGM409 и PX409-USBH или устройства RS485.

Соображения по точности

Рисунок 9. Типовая калибровка по 5 точкам
.

Общий диапазон ошибок
Это максимальное отклонение диапазона для любого выхода с учетом всех определенных источников ошибок, таких как вибрация, температура или влажность.Выражается в процентах от номинальной мощности.

Рисунок 10.
Статическая точность
Совместное влияние линейности, гистерезиса и повторяемости. Статическая точность выражается как ±% от диапазона и относится к BSL. Диапазон статической погрешности является хорошим показателем точности, которую можно ожидать от датчика давления или тензодатчика при постоянной температуре.

BSL (Лучшая прямая линия)
BSL — максимальное отклонение ошибки от базовой линии, разделенное пополам.Чтобы определить эту линию, выходы от нуля и полной шкалы используются для создания линии. Остальные точки данных измеряются на основе расстояния от этой линии. Лучшая прямая линия — это линия, которая имеет тот же уклон, что и базовая линия терминала, но смещена так, чтобы ошибки равномерно разделялись по обе стороны от BSL. Лучшая прямая линия используется для описания характеристик линейности.

Нелинейность
Это максимальное отклонение калибровочной кривой от прямой линии между выходами без нагрузки и номинальными выходами.Он выражается в процентах от номинальной мощности и измеряется только при увеличении нагрузки давления.

Гистерезис
Гистерезис — это максимальная разница между выходными показаниями для одного и того же приложенного давления при приближении с противоположных направлений. Он определяется путем сравнения выходных данных для значения давления, сначала полученного при приближении от более низкого давления, а затем при приближении от более высокого давления. Чем ближе два показания, тем меньше гистерезис. Эту ошибку сложно исправить.

Повторяемость
Максимальная разница между выходными показаниями для повторяющихся нагрузок давлением при одинаковой нагрузке и условиях окружающей среды называется повторяемостью. Чем ближе эти показания, тем выше воспроизводимость. Эту ошибку исправить нельзя.

Датчик давления

: типы, принцип работы

Датчик давления, часто называемый датчиком давления, представляет собой датчик, который преобразует давление в аналоговый электрический сигнал.Несмотря на многочисленные типы датчиков давления, одним из наиболее распространенных является тензометрический базовый датчик.

Преобразование давления в электрический сигнал достигается за счет физической деформации тензодатчиков, которые прикреплены к диафрагме датчика давления и подключены к мосту Уитстона. Давление, подаваемое на датчик давления, вызывает отклонение диафрагмы, что вызывает деформацию датчиков. Деформация вызовет изменение электрического сопротивления, пропорциональное давлению.

Принцип работы преобразователя давления

Наиболее популярные конструкции преобразователя давления включают в себя коллектор силы, такой как эластичная диафрагма, и преобразовательный элемент, в котором используется зависимый резистивный, индуктивный или емкостной метод для создания электрического сигнала. Тип используемого электрического устройства определяет компоненты, используемые для изготовления датчика давления.

В датчиках давления используются тензодатчики для измерения действующей на них силы.Тензодатчики выдерживают деформацию, и эта деформация вызывает изменение генерируемого им напряжения. Измерение давления основывается на степени изменения обнаруженного напряжения.

Существуют также исключительные преобразователи давления, в которых используются емкостные или пьезоэлектрические датчики, а не тензодатчики. Они предпочтительны в зависимости от диапазона, рабочей среды и точности, ожидаемой от датчика давления. Чтобы узнать больше о том, как работает датчик давления, щелкните здесь.

Датчик давления преобразует давление в аналоговый электрический сигнал (Ссылка: omega.com )

Как работает датчик статического давления?

Датчики статического давления оценивают давление застойной жидкости, что является наиболее распространенным инструментом для контроля давления.

Когда жидкость оказывает давление на датчик давления, тензодатчик (или датчик) деформируется. Эта деформация происходит при изменении напряжения.Величие вариаций согласуется с силой давления. Как только давление сбрасывается, тензодатчик возвращается к своей исходной конфигурации.

Пьезоэлектрические преобразователи давления являются иллюстрацией преобразователей динамического давления или нестатических преобразователей. Они не могут измерить статическое давление; в качестве альтернативы они измеряют колебания давления в режиме реального времени.

Пьезорезистивный датчик деформации Датчик давления

В обычном пьезорезистивном датчике давления используются тензодатчики, прикрепленные к гибкой диафрагме, так что любое изменение давления вызывает небольшую деформацию или деформацию в веществе диафрагмы.Деформация изменяет сопротивление тензодатчиков, которое обычно регулируется как мост Уитстона, обеспечивая удобное преобразование измерения давления в практический электрический сигнал.

Схема тензометрического датчика давления (Ссылка: Instrumentationtools.com )
Емкостной датчик давления

Датчик давления с переменной емкостью имеет диафрагму и другой электрод, прикрепленный к негерметичной поверхности с зазором определенного расстояния в пределах диафрагма и электрод.Изменение давления увеличивает или уменьшает зазор, что приводит к изменению емкости. Это изменение емкости затем преобразуется в правильный сигнал.

Схема емкостного датчика давления (Ссылка: Instrumentationtools.com )

Типы давления

Для измерения давления определены три эталона давления. Хотя существуют и другие типы, такие как герметичные манометры или вакуумметры, все они могут быть разделены на эти три класса: абсолютное давление, манометрическое давление и дифференциальное давление.

Абсолютное давление

Абсолютное давление измеряет давление относительно полного вакуума, используя абсолютный ноль в качестве точки отсчета. Датчик барометрического давления — яркий тому пример. Они также включают герметичный манометр, где сигнал был смещен, чтобы соответствовать манометрическому давлению во время строительства.

Манометрическое давление

Манометрическое давление измеряет давление относительно атмосферного. Датчик давления в шинах является примером оборудования для измерения манометрического давления.Он также включает в себя датчики вакуума, чьи сигналы инвертируются, чтобы их сигнал был положительным, когда определяемое давление находится под атмосферным давлением.

Дифференциальное давление

Преобразователь перепада давления измеряет разницу между двумя давлениями на каждой стороне датчика. Датчик давления жидкости — очевидный пример, в котором измеряются уровни жидкости над и под жидкостью.

Различные типы давлений (Артикул: blog.wika.com )

Типы выходных сигналов давления

Преобразователь давления генерирует электрический выходной сигнал, сравнимый с давлением, приложенным к электрическому источнику и источнику давления. Это может быть ток, напряжение или частота. Доступны четыре различных выходных параметра, их краткое описание и наилучшие условия использования приведены ниже.

Цифровой датчик давления

Цифровой сигнал более универсален, чем аналоговые сигналы; обычно их называют интеллектуальными устройствами, поскольку они предлагают большую функциональность, чем другие типы датчиков.

Интеллектуальные датчики могут регулярно отображать свое местоположение, регистрировать данные, информацию о калибровке, обнаруживать аномальные события или активировать сигналы тревоги. При определении цифрового выхода, поскольку доступно множество протоколов связи, важно выбрать протокол, совместимый с вашей системой. В зависимости от протокола дальность передачи может превышать милю. Датчики этого типа подходят для интеллектуального зондирования и применения на больших расстояниях передачи.

Милливольтный выход Датчик давления (логометрический)

В этом типе выходного сигнала фактический выходной сигнал прямо пропорционален входному возбуждению или мощности датчика давления.Если возбуждение будет чередоваться, результат тоже будет разным. Из-за его зависимости от уровня возбуждения для преобразователей милливольт рекомендуется использовать контролируемые источники питания.

Датчик не должен находиться в электрически зашумленном состоянии, так как выходной сигнал очень слабый. Однако эти устройства могут легко работать в более суровых условиях, чем другие типы выходов, из-за отсутствия на выходе преобразования сигнала и компактной конструкции. Их можно использовать на малых расстояниях, когда существует минимальный электрический шум или требуется более надежный датчик давления для работы в суровых условиях.

Напряжение Преобразователь давления

В датчиках давления такого типа выходной сигнал обычно составляет 0-5 или 0-10 В постоянного тока, и он обеспечивает более высокий выходной сигнал по сравнению с преобразователем милливольт из-за состояния его интегрального сигнала.

Независимо от модели, выходной сигнал преобразователя обычно не является прямой функцией входного сигнала. Это означает, что неуправляемых источников питания часто бывает достаточно, если они находятся в пределах определенного диапазона мощности. Они имеют выходной сигнал более высокого уровня и, следовательно, не так чувствительны к электрическому шуму, как преобразователи милливольт.Их можно использовать в промышленных условиях с относительно высоким уровнем шума.

мА Выход Преобразователь давления

мА — самый популярный выходной сигнал. Сигнал может отличаться от 0 до 4 мА до 20 мА и создается как двухпроводное устройство, в котором линии электропитания подают напряжение на преобразователь, а преобразователь регулирует ток в цепи, формируя сигнал.

Эта конфигурация представляет сигнал, более устойчивый к электрическому сопротивлению, и позволяет использовать длинные кабели, превышающие 1000 футов.Они используются в средах с высоким уровнем электрического вмешательства или там, где требуются большие дальности передачи.

Чтобы узнать больше о типах датчиков давления, посетите здесь!

Выбор подходящего датчика давления

Вы все еще должны выбрать, какой тип датчика давления или датчика давления вам нужен?

Как упоминалось ранее, существуют различные типы датчиков давления для множества применений. У каждого датчика давления есть несколько аспектов, которые будут влиять на его работу и области применения, для которых датчик давления работает лучше всего.При выборе датчика давления необходимо учитывать эти шесть критериев:

Применение и тип измерения

Стандартный тип измерения давления включает: абсолютное, манометрическое, вакуумное, дифференциальное, двунаправленное и герметичное. Приложение ограничивает наиболее подходящий тип измерения.

Диапазон давления

По-видимому, наиболее важным решением при выборе датчика давления является диапазон входного сигнала.При выборе подходящего датчика давления в зависимости от диапазона измерения давления необходимо учитывать два противоречивых соображения:

  • Необходимо учитывать точность прибора и его защиту от избыточного давления. С точки зрения точности, диапазон датчика должен быть достаточно низким, т. Е. Стандартное рабочее давление около среднего диапазона. Таким образом, эта ошибка, обычно в процентах от полной шкалы, сводится к минимуму.
  • С другой стороны, всегда следует допускать последствия повреждения из-за избыточного давления из-за дефектной конструкции, ошибок эксплуатации или невозможности изолировать прибор во время опрессовки и запуска.Следовательно, важно определить требуемый диапазон и требуемую степень защиты от избыточного давления.

Технологическая среда

Технологическая жидкость — еще один важный фактор при выборе подходящего датчика. Эти материалы, которые часто рассматриваются как «смачиваемые части», следует выбирать так, чтобы они соответствовали измеряемой жидкости. Для помещений с чистым и сухим воздухом разрешены практически любые материалы. Однако для условий использования морской воды следует использовать сплавы с высоким содержанием никеля, такие как сплав 718 INCONEL® (UNS N07718).Другие популярные материалы включают нержавеющую сталь 316 и нержавеющую сталь 17-4. Также, если нужна сантехника, это стоит учитывать.

Диапазон температур и среда установки

Очень высокие колебания температуры или вибрации ограничивают правильную работу преобразователей. Для экстремальных температур предпочтительна тонкопленочная технология. Экстремальные температуры также вызывают ошибки на выходе преобразователя.

Среды с высокой вибрацией поддерживают небольшие преобразователи без усиления.Корпус преобразователя следует выбирать в соответствии как с классификацией электрических зон, так и с условиями коррозии конкретной установки.

Необходимо учитывать защиту от коррозии, как при разбрызгивании агрессивных жидкостей, так и при воздействии коррозионных газов за пределами корпуса.

Обычно это достигается размещением их внутри продуваемых или взрывозащищенных домов или в искробезопасных конструкциях. Если требуется компактный размер, лучшим выбором будет датчик без усиления.

Точность

Манометры бывают различной точности. Точность типичных датчиков давления может отличаться от 0,5% до 0,05% от полной шкалы. Требуется более высокая точность, когда необходимо считывать значения давления на небольшой глубине для критических требований.

Выход

Существуют различные типы выходов для датчиков давления, о которых говорилось ранее. В общем, очень важно учитывать ограничения и преимущества каждого вывода, чтобы определить лучший тип вывода для конкретного приложения.

Приложения для датчиков давления

Далее будут упомянуты некоторые основные области применения датчиков давления:

  • Эти преобразователи подходят для любых приложений, работающих с жидкостями, где требуется точное определение силы с высоким разрешением.
  • Эти преобразователи используются там, где требуется измерение силы с объединенным цифровым дисплеем.
  • Эти преобразователи используются в насосах с обратной связью для проверки рабочих характеристик насоса.
  • Эти преобразователи используются в качестве реле давления с электронным переключением.
  • Эти преобразователи подходят для приложений с обратной связью, таких как электронная компенсация давления, которые вычисляют силу до и после сопоставимого дозирующего крана для точного измерения падения давления.

Преобразователи давления предназначены для использования в промышленности. Однако из-за неправильной подгонки возникает ряд проблем. При устранении этой проблемы устройство должно быть установлено в правильном месте.Если датчик препятствует работе во время работы, определите передаваемый ампер, если только не будет исходное напряжение без давления от датчика, а также укажите полную мощность при давлении. Если сигнал не изменяется, мы можем понять, что устройство не реагирует на давление. В некоторых штатах проблемы датчика можно решить путем ремонта, повторной калибровки; в противном случае этот преобразователь можно заменить.

Преимущества и недостатки датчика давления

Вот некоторые плюсы и минусы использования датчиков давления:

Преимущества :

1) Они экономичны, надежны и быстро реагируют.

2) Они обладают превосходной точностью, отличной стабильностью, регулируемым выходом и соответствующей линейностью.

3) Это быстро реагирующие, высокочувствительные измерительные приборы небольшого размера.

Недостаток:

1) У них средняя точность, подверженная дрейфу или нестабильности.

2) Они задержали реакцию на удары и вибрацию.

3) Они работают в узком температурном диапазоне, с умеренной точностью и вялым откликом.

4) Они относительно чувствительны к условиям окружающей среды.

Как работает датчик давления? Руководство для начинающих по датчику давления

Что такое датчик давления?

Датчик давления , часто называемый датчиком давления , представляет собой преобразователь, который преобразует давление в аналоговый электрический сигнал.

Несмотря на то, что существуют различные типы датчиков давления , одним из наиболее распространенных является базовый датчик тензодатчика.

Преобразование давления в электрический сигнал достигается за счет физической деформации тензодатчиков, которые прикреплены к диафрагме датчика давления и подключены к конфигурации моста Уитстона.

Давление, приложенное к датчику давления, вызывает отклонение диафрагмы, что приводит к деформации датчиков.

Деформация вызывает изменение электрического сопротивления, пропорциональное давлению.

Думаю, вам понравится:

Принцип работы преобразователя давления

Для чего нужен датчик давления?

Принцип работы преобразователя дифференциального давления

Выход датчика давления

Датчик давления цена

Калибровка датчика давления

Типы датчиков давления

Существуют различные типы датчиков давления в зависимости от их конструкции.

Эти датчики могут быть разных форм и размеров, но внутренняя технология также может отличаться.

На основе этого 4 основных типа датчиков давления:

  • Тензометрические преобразователи давления
  • Емкостные преобразователи давления
  • Потенциометрические преобразователи давления
  • Резонансные проволочные преобразователи давления

Подробнее о Промышленные датчики давления

Рекомендуемые датчики давления

Принцип работы датчика давления

Как правило, преобразователь давления состоит из трех основных компонентов: датчика давления, измерительной цепи и технологического соединения.

Основная функция датчика давления — преобразование физических параметров газа, жидкости и других физических параметров датчика давления в стандартный электрический сигнал.

Стандартный электрический сигнал более удобен для индикации сигнального устройства, регулирующего устройства, самописца и вспомогательного прибора.

Емкостные преобразователи давления измеряют все чувствительные компоненты в цельносварной конструкции.

Электронная схема — вершина пайки и монтажа разъема.

В целом конструкция прочная, прочная и имеет несколько недостатков.

Емкостной датчик давления состоит из измерительной диафрагмы и электродов с обеих сторон изоляционного листа.

Емкостные преобразователи давления измеряемой среды разделены на камеры высокого и низкого давления, и на разделительных диафрагмах с обеих сторон чувствительного элемента заполненная жидкостью изоляция и компоненты переносятся на стороны мембрана для измерения.

Когда давления с обеих сторон несовместимы, измерение смещения диафрагмы, смещения и разности давлений пропорционально двум сторонам диапазона емкости.

Через процесс осцилляции и демодуляции давление преобразуется в сигнал.

Принцип работы емкостного датчика давления аналогичен принципу работы датчика перепада давления , а отличается от давления в камере давления камеры давления.

Подробнее о: Как работает преобразователь дифференциального давления

Аналого-цифровой преобразователь емкостного датчика давления преобразует ток демодулятора в цифровой сигнал и использует значение микропроцессора для определения значения входного давления.

Микропроцессор управляет передатчиком.

Как работает датчик давления?

Установка преобразователя дифференциального давления Измерительная система состоит из трех частей.А именно прокладка направляющей трубы давления, прокладка электрического сигнального кабеля и установка датчика перепада давления.

Во время работы преобразователя давления давление среды передается на центральную измерительную диафрагму. Через изолирующую диафрагму и силиконовое масло.

И разница давлений от двусторонней напорной трубки принимается на двустороннюю изолирующую диафрагму, где измеряется мембрана.

Лист действует как упругий элемент и деформируется под действием перепада давления.

Существует прямая пропорциональная зависимость между смещением измерительной диафрагмы и перепадом давления, и под влиянием смещения диафрагмы емкость дифференциального конденсатора также изменяется, и измерительная цепь преобразует ее в постоянный ток. токовый сигнал 4-20 мА.

Датчик перепада давления с выносным разделителем Датчик уровня перепада давления (DP)

Если взять в качестве примера преобразователь модели SI1151, этот тип преобразователя давления не имеет центральной оси, неподвижная пластина имеет сферическую форму, а преобразователь имеет симметричную двухкамерную структуру.

При обжиге готового стекла и металлического тела после работы узла образуется сферическая вогнутая поверхность.

Наконец, на поверхность стекла наносится металлическая пленка, так что образуется неподвижная пластина.

Между двумя неподвижными пластинами приварена измерительная диафрагма, образующая подвижную пластину.

Изолирующая диафрагма на внешней стороне неподвижной пластины отвечает за передачу давления силиконового масла.

Когда диафрагма находится под давлением, она направляется к измерительной диафрагме, и диафрагма деформируется под действием давления, что приводит к изменению относительного положения емкостной подвижной пластины и сферической неподвижной пластины, а также емкости изменения в моторе.

Линия преобразует его в сигнал постоянного тока 4-20 мА.

В случае перенапряжения в первую очередь необходимо защитить измерительную диафрагму, которая прикреплена к сферической неподвижной пластине.

При возникновении перенапряжения изолирующая диафрагма полностью прикрепляется к неподвижной пластине.

Функция преобразователя в основном заключается в преобразовании стандартного электрического сигнала и настройке сигнала.

Усилители регулирования тока, преобразователи тока, генераторы, регуляторы напряжения и т. Д.вместе образуют схему преобразования.

Блок-схема показана на рисунке ниже.

Как работает датчик давления?

Подробнее о: Что такое промышленный датчик давления?

Какова функция преобразователя давления?

Преобразователь давления — это широко используемый датчик в промышленных приложениях.

Он широко используется в различных промышленных средах самоконтроля, включая водное хозяйство и гидроэнергетику, железнодорожный транспорт, интеллектуальное строительство, автоматизацию производства, аэрокосмическую, военную, нефтехимическую, нефтяную скважину, электроэнергию, корабли.

Во многих отраслях промышленности, таких как станки и трубопроводы, основная роль датчиков давления заключается в передаче сигналов давления для отображения давления на компьютере.

Принцип грубый: механический сигнал давления воды от давления преобразуется в ток (4-20 мА), а электронный сигнал давления имеет линейную зависимость от величины напряжения или тока, которая равна в целом пропорциональный.

Следовательно, напряжение или ток, выдаваемые датчиком, возрастают с увеличением давления, таким образом получая соотношение между давлением и напряжением или током.

Два давления измеряемой среды датчика давления: высокое и низкое, а низкое напряжение — низкое.

Давление в камере прикладывается к изолирующей диафрагме с обеих сторон элемента δ (т. Е. Чувствительного элемента) атмосферным давлением или вакуумом и передается на обе стороны измерительной диафрагмы через прокладку и заполняющую жидкость в резервуаре. элемент.

Каков принцип работы преобразователя дифференциального давления?

Датчики перепада давления измеряют разницу между двумя давлениями.

Датчик перепада давления преобразует измерения давления в пропорциональный выходной сигнал 4–20 мА или 1–5 В постоянного тока, который действует как вход для контроллера, записывающего устройства, индикатора или аналогичного устройства.

Эти преобразователи находят применение в газовой, водной и перерабатывающей промышленности, где требуются точные измерения в широком диапазоне условий окружающей среды.

Самый распространенный и полезный промышленный прибор для измерения давления
— это датчик перепада давления .

Это оборудование будет определять разницу в давлении между двумя портами и генерировать выходной сигнал, относящийся к откалиброванному диапазону давления.

Промышленные преобразователи дифференциального давления состоят из двух корпусов.

Чувствительный элемент давления расположен в нижней половине, а электроника — в верхней половине.

Он будет иметь два порта давления, обозначенные как «Высокое» и «Низкое».

Не обязательно, чтобы порт высокого давления всегда находился под высоким давлением, а порт низкого давления всегда под низким давлением.

Эта маркировка имеет отношение к влиянию порта на выходной сигнал.

Благодаря своим выходным сигналам 4… 20 мА, 4… 20 мА HART® , PROFIBUS® PA или FOUNDATION Fieldbus ™ в сочетании с искробезопасной или взрывобезопасной защитой от воспламенения (по ATEX) преобразователь дифференциального давления DPT является подходит для приложений, требующих этих функций.

Электроника всех преобразователей с взрывозащитой , даже во взрывозащищенном исполнении, безопасна.

Таким образом, можно производить настройку инструмента во взрывоопасных зонах, пока инструмент находится под напряжением.

Датчик перепада давления (DP) , также называемый датчиком перепада давления. Датчики перепада давления измеряют разницу между двумя значениями давления. Преобразователь дифференциального давления преобразует измерения давления в пропорциональный выходной сигнал 4–20 мА или 1–5 В постоянного тока, который используется в качестве входа для контроллера, записывающего устройства, индикатора или аналогичного устройства.

Каков выходной сигнал преобразователя давления?

Датчики давления

обычно доступны с тремя типами электрических выходов: милливольт, усиленное напряжение и 4-20 мА.

В этой статье объясняется, как подключать различные типы датчиков давления в зависимости от их выходного сигнала.

После этого необходимо преобразовать электрическую мощность в технические единицы, такие как фунты на квадратный дюйм или бар.

Ниже приводится сводка результатов и когда их лучше всего использовать.

Датчики выходного давления милливольт

Преобразователи

с выходом в милливольтах обычно являются наиболее экономичными преобразователями давления.

Выход милливольтного преобразователя номинально составляет около 30 мВ.

Фактический выходной сигнал прямо пропорционален входной мощности или возбуждению датчика давления.

Если возбуждение колеблется, выходной сигнал также изменится.

Из-за этой зависимости от уровня возбуждения, регулируемые источники питания рекомендуется использовать с преобразователями милливольт.

Из-за низкого уровня выходного сигнала датчик не следует размещать в среде с электрическими помехами.

Расстояния между датчиком и считывающим прибором также должны быть относительно небольшими.

Преобразователи давления на выходе

Преобразователи выходного напряжения

имеют встроенную систему преобразования сигнала, которая обеспечивает гораздо более высокий выходной сигнал, чем преобразователь милливольт.

Выходной сигнал обычно 0-5 В постоянного тока или 0-10 В постоянного тока.

Хотя это и зависит от модели, выходной сигнал преобразователя обычно не является прямой функцией возбуждения.

Это означает, что нерегулируемых источников питания часто бывает достаточно, если они находятся в пределах указанного диапазона мощности.

Поскольку они имеют более высокий выходной уровень, эти преобразователи не так восприимчивы к электрическим помехам, как преобразователи милливольт, и поэтому могут использоваться в гораздо более промышленных условиях.

Преобразователи давления с выходом 4-20 мА

Датчики этого типа также известны как датчики давления.

Поскольку на сигнал 4–20 мА меньше всего влияют электрические помехи и сопротивление в сигнальных проводах, эти преобразователи лучше всего использовать, когда сигнал должен передаваться на большие расстояния.

Нередко эти преобразователи используются в приложениях, где длина подводящего провода должна составлять 1000 футов или более.

Как выбрать датчик давления

Существует несколько типов датчиков давления для различных применений.

Каждый датчик давления имеет разные аспекты, которые влияют на то, как он работает, и на области применения, для которых датчик давления лучше всего работает.

При выборе датчика давления учитывайте эти 6 критериев:

  1. Применение и тип измерения
  2. Диапазон давления
  3. Технологическая среда
  4. Диапазон температур и среда установки
  5. Точность
  6. Выход

Если вы все еще не знаете, как выбрать датчик давления, свяжитесь с нашими инженерами по продажам.

Sino-Instrument предлагает лучшую цену на преобразователи давления, преобразователи DP и коммуникаторы HART.Sino-Instrument предлагает более 100 видов датчиков давления, интеллектуальные преобразователи давления, преобразователи дифференциального давления. Для измерения давления, измерения перепада давления, измерение расхода.

Сколько стоит датчик давления?

На цену датчика давления влияет ряд факторов.

Самым большим отличием является то, можете ли вы использовать стандартный датчик давления, имеющийся в наличии, или вам нужен датчик давления, изготовленный по индивидуальному заказу.

Цена на датчик давления стандартного типа будет больше всего зависеть от уровня точности, необходимого для вашего приложения.

Чем точнее и обычно дороже датчик давления.

Выберите датчик давления, подходящий для вашего приложения

Sino-Inst предлагает более 20 датчиков давления. Вам доступен широкий выбор датчиков давления .Такие как бесплатные образцы, платные образцы. Sino-Inst — всемирно известный производитель датчиков давления , расположенный в Китае.

Sino-Inst продается через развитую дистрибьюторскую сеть, охватывающую все 30 стран мира. Датчики давления Продукция наиболее популярна в Европе, Юго-Восточной Азии и Среднем Востоке. Вы можете обеспечить безопасность продукции, выбрав ее у сертифицированных поставщиков. Имеет сертификаты ISO9001, ISO14001.

Запросить цену

Датчики давления

| Руководство разработчика

Датчики MEMS

Легко представить пьезорезистивный или емкостной датчик давления в виде большого устройства, такого как электронный компонент со сквозным отверстием или модуль, готовый ввинчиваться в стенку резервуара, но это не всегда так.

Пьезо или емкостный механизм измерения давления также может быть изготовлен на кремнии в виде устройства MEMS (Micro Electro Mechanical System) и упакован как компактное устройство для поверхностного монтажа, размер которого обычно составляет всего около 2-3 мм на каждую сторону.

Устройства

MEMS, которые включают в себя не только датчики давления, но также датчики движения или положения и кремниевые микрофоны, чрезвычайно малы, стабильны и экономичны, обеспечивая расширенные функциональные возможности для оборудования с ограниченным пространством и стоимостью, такого как мобильные телефоны и конечные точки IoT.

MEMS-устройства изготовлены из кремния с использованием процессов легирования и травления. Эти процессы выполняются в масштабе микросхемы, в результате чего получается крошечное устройство, которое можно объединить с электроникой формирования сигнала. Электронная схема может содержать простое усиление для получения аналогового выходного сигнала, а также может включать аналого-цифровое преобразование для генерации цифрового выходного сигнала.

Аналоговый выход может быть выгодным, если сигнал датчика должен обрабатываться полностью в аналоговой области, или если разработчик хочет использовать АЦП с особенно высоким разрешением или точностью, или если микроконтроллер системы-хоста содержит подходящий интегрированный АЦП на -чип.Цифровой датчик может быть спроектирован без необходимости использования внешних компонентов преобразования, что позволяет сэкономить общее количество компонентов.

Возможно, самый простой тип датчика для визуализации — это датчик атмосферного давления. Они могут использоваться для измерения обычного атмосферного давления и используются в ряде приложений, включая определение контекста или внутреннюю навигацию в смартфонах. Обычно это крошечный датчик MEMS.

Обнаружение изменений атмосферного давления позволяет устройству теоретически рассчитать свою высоту над уровнем моря — например, на дороге (для помощи в спутниковой навигации и точного расчета в случае потери спутникового сигнала) или определить, какой уровень здания, в котором находится пользователь, например, на многоэтажной автостоянке, в офисном здании, многоквартирном доме или торговом центре.

Соображения по конструкции

Понимание типов широко используемых датчиков, их принципов работы и режимов использования (абсолютный, манометрический или дифференциальный) может помочь инженерам принять первоначальные решения при выборе наиболее подходящего датчика для конкретного применения.

Используемые материалы и тип конструкции могут иметь важное влияние на такие аспекты, как диапазон измерения, ограничивающие факторы, такие как максимальное выдерживаемое давление, которому может подвергаться датчик, время его стабилизации после пайки и долговременная стабильность в предполагаемых условиях. заявление.

Понимание электрических выходных свойств и схем, необходимых для правильного взаимодействия с главной электронной системой — обычно это система управления на базе микроконтроллера или микропроцессора — может помочь оценить, как выбор датчика давления повлияет на вероятные проблемы электронной интеграции.

Это введение лишь поверхностное представление о технологии датчиков давления. В главе 1.2 будут рассмотрены различные типы чувствительных элементов, которые используются в датчиках давления, как они работают, а также их преимущества и недостатки.Если вы ищете более подробную информацию о чем-либо, обсуждаемом здесь, вы можете ознакомиться с последующими главами этого руководства ниже. Кроме того, если у вас мало времени, полное руководство доступно в виде загружаемого PDF-файла здесь.

Для получения дополнительной информации о других наших сенсорных технологиях посетите нашу страницу сенсоров.

Преобразователь давления: принцип работы, применение и установка

Преобразователи давления — это универсальные устройства, основанные на простом принципе работы.Давление — это основная величина в контрольно-измерительных приборах и управлении, и его также можно использовать для расчета других переменных, таких как уровень и расход. На рынке представлен широкий выбор датчиков давления для приложений с различными потребностями.

Чтобы узнать больше об измерении и калибровке давления, щелкните здесь.

Виды давления

То, как мы измеряем давление в наших производственных процессах, может варьироваться в зависимости от того, какой тип давления вас интересует.Если вы хотите знать только само давление, манометр покажет вам абсолютное или манометрическое давление. Если вы хотите использовать давление для измерения такой переменной, как расход, вам понадобится датчик перепада давления (DP).

Чтобы узнать больше о трех видах давления, прочтите эту статью.

Принцип работы преобразователя давления

Как и другие преобразователи, преобразователь давления состоит из электроники, подключенной к датчику.На рынке мы можем найти преобразователи с датчиками давления многих типов — емкостные, пьезоэлектрические, резонансные кремниевые и другие. В этой статье основное внимание будет уделено емкостному датчику, так как он является наиболее распространенным, хотя это не делает его лучшим.

Таким образом, давление, приложенное к емкостным ячейкам, приведет к изменению емкости датчика. Это изменение повлияет на частоту генератора, и датчик давления обнаружит это изменение. Затем передатчик преобразует эти данные в стандартный выходной сигнал, который мы можем прочитать.

Используя локальную настройку или портативный компьютер, вы можете настроить преобразователь, изменив такую ​​информацию, как единицы измерения, диапазон измерения и выходной сигнал.

Если вы хотите узнать больше об использовании преобразователя давления с коммуникатором HART, щелкните здесь.

Больше, чем просто устройство давления

Преобразователи давления

могут измерять не только давление. Используя различные первичные элементы, вы можете измерять расход с помощью преобразователя дифференциального давления.Вы также можете измерить уровень закрытых и открытых резервуаров. Для этого вы можете использовать преобразователь дифференциального давления с дифференциальным, абсолютным или избыточным давлением.

Сегодня у нас есть другие принципы, которые также или лучше работают для измерения расхода или уровня. Однако вы по-прежнему найдете устройства для измерения давления во многих сегментах, процессах и измерениях.

Установка преобразователя давления

Вы можете установить преобразователь давления во всех сферах применения, но все они требуют разной установки.Например, вы хотите измерить уровень с помощью устройства дифференциального давления. Если у вас открытый резервуар, то вы можете установить прибор на дно резервуара с помощью фланца с заполненной герметичной тарой.

Если вы хотите измерить расход с помощью пито, вы можете установить устройство с помощью одного фланца прямо на пито. Или, если у вас есть паровой расходомер с диафрагмой, вы захотите установить преобразователь удаленно с помощью герметичного резервуара между устройством и технологическим процессом.

При таком большом количестве вариантов самая простая, дешевая и надежная установка будет зависеть от вашего процесса. Если вам нужна помощь в выборе устройства давления, взгляните на нашего интеллектуального помощника по давлению.

Купить манометр в нашем интернет-магазине

Чтобы узнать больше о датчиках давления, свяжитесь с нашими инженерами!

Принцип работы датчика перепада давления

Другая распространенная конструкция электрического датчика давления работает по принципу дифференциальной емкости.В этой конструкции чувствительный элемент представляет собой тугую металлическую диафрагму, расположенную на равном расстоянии между двумя неподвижными металлическими поверхностями, состоящую из трех пластин для дополнительной пары конденсаторов. Электроизолирующая заполняющая жидкость (обычно жидкий силиконовый компаунд) передает движение от изолирующей диафрагмы к чувствительной диафрагме, а также служит эффективным диэлектриком для двух конденсаторов:

Любая разница давлений в ячейке заставляет диафрагму изгибаться в направлении наименьшего давления.Чувствительная диафрагма представляет собой пружинный элемент прецизионного изготовления, а это означает, что ее перемещение является предсказуемой функцией приложенной силы. Приложенная сила в этом случае может быть только функцией перепада давления, действующего на площадь поверхности диафрагмы в соответствии со стандартным уравнением сила-давление-площадь F = PA.

В этом случае у нас есть две силы, вызванные двумя давлениями жидкости, работающими друг против друга, поэтому наше уравнение сила-давление-площадь можно переписать, чтобы описать результирующую силу как функцию от перепада давления (P1 — P2) и площади диафрагмы: F = (P1 — P2) А.Поскольку площадь диафрагмы постоянна, а сила предсказуемо связана со смещением диафрагмы, все, что нам сейчас нужно, чтобы сделать вывод о перепаде давления, — это точно измерить смещение диафрагмы.

Вторичная функция диафрагмы как одной пластины из двух конденсаторов обеспечивает удобный метод измерения смещения. Поскольку емкость между проводниками обратно пропорциональна расстоянию, разделяющему их, емкость на стороне низкого давления увеличится, а емкость на стороне высокого давления уменьшится:

Схема емкостного детектора, подключенная к этой ячейке, использует высокочастотный сигнал возбуждения переменного тока для измерения разницы в емкости между двумя половинами, преобразуя это в сигнал постоянного тока, который в конечном итоге становится сигналом, выводимым прибором, представляющим давление.

Эти датчики давления отличаются высокой точностью, стабильностью и прочностью. Интересная особенность этой конструкции — использование двух изолирующих диафрагм для передачи давления технологической жидкости на одну чувствительную диафрагму через внутреннюю «заполняющую жидкость» — это то, что твердая рама ограничивает движение двух изолирующих диафрагм так, что ни одна из них не может заставить чувствительная диафрагма превышает предел упругости.

Как показано на рисунке, изолирующая диафрагма с более высоким давлением подталкивается к металлической раме, передавая свое движение чувствительной диафрагме через заполняющую жидкость.Если к этой стороне приложить слишком большое давление, изолирующая диафрагма просто «сплющится» о твердый каркас капсулы и перестанет двигаться. Это положительно ограничивает движение изолирующей диафрагмы, так что она не может оказывать больше силы на чувствительную диафрагму, даже если приложено дополнительное давление технологической жидкости. Такое использование изолирующих диафрагм и заполняющей жидкости для передачи движения чувствительной диафрагме, применяемой также в других типах датчиков перепада давления, дает современным приборам дифференциального давления превосходную устойчивость к повреждениям из-за избыточного давления.

Следует отметить, что использование жидкой заполняющей жидкости является ключом к этой конструкции, устойчивой к избыточному давлению. Чтобы чувствительная диафрагма точно преобразовывала приложенное давление в пропорциональную емкость, она не должна контактировать с окружающим ее проводящим металлическим каркасом. Однако, чтобы какая-либо мембрана была защищена от избыточного давления, она должна контактировать с твердым упором обратного хода, чтобы ограничить дальнейший ход. Таким образом, необходимость в бесконтактном (емкостном) и контакте (защита от избыточного давления) исключают друг друга, что делает практически невозможным выполнение обеих функций с помощью одной чувствительной диафрагмы.Использование заполняющей жидкости для передачи давления от изолирующей диафрагмы к чувствительной диафрагме позволяет нам отделить функцию емкостного измерения (чувствительная диафрагма) от функции защиты от избыточного давления (изолирующие диафрагмы), так что каждая диафрагма может быть оптимизирована для отдельной цели.

Классическим примером прибора для измерения давления, основанного на датчике дифференциальной емкости, является датчик дифференциального давления Rosemount модели 1151, показанный в собранном виде на следующей фотографии:

Удалив четыре болта с преобразователя, мы можем снять два фланца с капсулы давления, открывая изолирующие диафрагмы для общего обзора:

На фотографии крупным планом показана конструкция одной из изолирующих диафрагм, которая, в отличие от чувствительной диафрагмы, спроектирована как очень гибкая.Концентрические гофры в металле диафрагмы позволяют ей легко изгибаться под действием приложенного давления, передавая давление технологической жидкости через силиконовую заполняющую жидкость на тугую чувствительную диафрагму внутри ячейки дифференциальной емкости:

Внутри того же дифференциального емкостного датчика (выявленного путем разрезания датчика Rosemount модели 1151 пополам с помощью отрезной пилы) показаны изолирующие диафрагмы, чувствительная диафрагма и порты, соединяющие их вместе:

Здесь левая изолирующая диафрагма лучше видна, чем правая изолирующая диафрагма.На этой фотографии отчетливо виден небольшой зазор между левой изолирующей диафрагмой и внутренней металлической рамой по сравнению с просторной камерой, в которой находится чувствительная диафрагма.

Напомним, что эти внутренние пространства обычно заняты заполняющей жидкостью, предназначенной для передачи давления от изолирующих диафрагм на чувствительную диафрагму. Как упоминалось ранее, твердая металлическая рама ограничивает ход каждой изолирующей диафрагмы таким образом, что изолирующая диафрагма с более высоким давлением «опускается» на металлический каркас до того, как чувствительная диафрагма может быть вытолкнута за пределы своего предела упругости.Таким образом, чувствительная диафрагма защищена от повреждения из-за избыточного давления, поскольку изолирующие диафрагмы просто не могут двигаться дальше.

Датчик дифференциальной емкости по своей сути измеряет разницу в давлении, приложенном между двумя его сторонами. В соответствии с этой функциональностью, этот прибор для измерения давления имеет два порта с резьбой, в которые может подаваться давление жидкости. В следующем разделе этой главы будет подробно рассказано об использовании датчиков дифференциального давления.Вся электронная схема, необходимая для преобразования дифференциальной емкости датчика в электронный сигнал, представляющий давление, размещена в синей конструкции над капсулой и фланцами. Более современной реализацией принципа измерения дифференциального емкостного давления является датчик перепада давления Rosemount модели 3051:

.

Как и все устройства дифференциального давления, этот прибор имеет два порта, через которые давление жидкости может подаваться на датчик.Датчик, в свою очередь, реагирует только на разницу давления между портами.

Конструкция дифференциального емкостного датчика в этом конкретном приборе давления более сложна, поскольку плоскость чувствительной диафрагмы перпендикулярна плоскости двух изолирующих диафрагм. Эта «копланарная» конструкция более компактна, чем датчик старого типа, и, что более важно, она изолирует чувствительную диафрагму от напряжения болта фланца.

Обратите особое внимание на то, что узел датчика не встроен в прочный металлический каркас, как это было в случае с оригинальной конструкцией Rosemount.Вместо этого датчик в сборе относительно изолирован от корпуса и соединен только двумя капиллярными трубками, соединяющими его с изолирующими диафрагмами. Таким образом, напряжения внутри металлической рамы, создаваемые фланцевыми болтами, практически не влияют на датчик.

Вырезанная модель преобразователя DP Rosemount модели 3051S («супермодуль») показывает, как все это выглядит в реальной жизни:

Давление технологической жидкости, приложенное к изолирующей диафрагме (ам), передается для заполнения жидкости внутри капиллярных трубок, передавая давление на туго натянутую диафрагму внутри дифференциального емкостного датчика.Как и в классической конструкции Rosemount модели 1151, мы видим, что заполняющая жидкость выполняет несколько функций:

  • Наполняющая жидкость защищает чувствительную чувствительную диафрагму от контакта с нечистыми или агрессивными технологическими жидкостями
  • Наполняющая жидкость позволяет изолирующим мембранам обеспечивать защиту чувствительной мембраны от избыточного давления
  • Наполняющая жидкость обеспечивает среду с постоянной диэлектрической проницаемостью для функционирования цепи дифференциальной емкости

Преобразователи давления Rosemount серии «супермодуль» имеют ту же компланарную конструкцию, что и более ранние модели 3051, но добавляют новую конструктивную особенность: включение электроники в модуль из нержавеющей стали, а не в окрашенный в синий цвет верхний корпус.Эта функция позволяет значительно уменьшить размер передатчика, если это необходимо для приложений с ограниченным пространством.

Кредиты: Тони Р. Купхальдт — Лицензия Creative Commons Attribution 4.0

Типы датчиков давления

— Руководство

Датчики давления

— это инструменты или устройства, которые преобразуют величину физического давления, оказываемого на датчик, в выходной сигнал, который можно использовать для определения количественного значения давления. Доступно множество различных типов датчиков давления, которые работают одинаково, но основаны на различных базовых технологиях для перевода между давлением и выходным сигналом.В этой статье будут рассмотрены наиболее распространенные типы датчиков давления, описаны принципы работы датчиков давления, рассмотрены общие спецификации, связанные с датчиками давления, и представлены примеры приложений.

Следует отметить одно отличие: датчики давления отличаются от манометров. Манометры по своей конструкции обеспечивают прямое считывание значения давления, называемого манометрическим давлением. Это может быть аналоговый (механический) дисплей с использованием стрелки и градуированной шкалы или прямой цифровой дисплей показаний давления.С другой стороны, датчики давления не обеспечивают непосредственно считываемый выходной сигнал давления, а вместо этого генерируют значение выходного сигнала, которое пропорционально показанию давления, но которое сначала необходимо подготовить и обработать, чтобы преобразовать уровень выходного сигнала в калиброванное считывание давления.

Чтобы узнать больше о других типах датчиков, см. Наши соответствующие руководства, которые охватывают различные типы датчиков или использование датчиков для расширения возможностей Интернета вещей (IoT). Чтобы узнать больше о других устройствах для измерения давления, см. Наши соответствующие руководства по манометрам и цифровым манометрам.

Датчики давления, преобразователи давления и преобразователи давления

Есть несколько общих терминов, связанных с устройствами измерения давления, которые часто используются как взаимозаменяемые. Эти термины — датчики давления, датчики давления и датчики давления. Производители и поставщики этих устройств могут использовать один или несколько из этих терминов для описания своих продуктовых предложений. Как правило, основное различие между этими терминами связано с генерируемым электрическим выходным сигналом и выходным интерфейсом устройства.Имейте в виду, что у разных поставщиков есть различия в том, как классифицируются их устройства.

Один из способов понять разницу между датчиками давления и датчиками давления и датчиками давления состоит в том, что в датчики давления не встроена электроника, обеспечивающая формирование сигнала и усиленный выходной сигнал, в отличие от двух других.

Датчики давления, хотя и используются как общий термин для всех этих трех типов устройств, обычно вырабатывают выходной сигнал в милливольтах.Относительно низкое выходное напряжение в сочетании с потерями сопротивления, которые происходят с проводкой, подразумевает, что длина проводов должна быть небольшой, что ограничивает использование устройств примерно 10-20 футами от электроники, прежде чем возникнут слишком большие потери сигнала. Выходной сигнал будет пропорционален напряжению питания, используемому с датчиком. Так, например, датчик, который генерирует выходной сигнал 10 мВ / В, используемый с источником питания 5 В постоянного тока, будет производить выходной сигнал в диапазоне от 0 до 50 мВ по величине.Милливольтные выходы позволяют инженеру спроектировать преобразование сигнала в соответствии с требованиями приложения и помогают снизить как стоимость, так и размер корпуса датчика. Ограничения этих устройств состоят в том, что необходимо использовать регулируемые источники питания, поскольку выходная мощность на полномасштабном уровне пропорциональна напряжению питания. Кроме того, низкий выходной сигнал означает, что эти устройства менее подходят для использования в электрически зашумленной среде. Иллюстрация полумостовой схемы с выходным напряжением в милливольтах показана на рисунке 1 ниже.

Рисунок 1: Датчик давления с тензометрическим датчиком с использованием моста Уитстона

Изображение предоставлено: https://www.avnet.com/wps/portal/abacus/solutions/technologies/sensors/pressure-sensors/output-signals

Преобразователи давления

генерируют более высокий уровень выходного напряжения или частоты за счет наличия дополнительных встроенных возможностей усиления сигнала для повышения амплитуды выходного сигнала, скажем, до 5 В или 10 В, и частотного выхода до 1-6 кГц. Повышенная мощность сигнала позволяет использовать датчики давления на большем расстоянии от электроники, скажем, в 20 футах.Эти устройства используют более высокий уровень напряжения питания, например 8–28 В постоянного тока. Более высокое выходное напряжение снижает потребление тока, что позволяет использовать датчики давления в приложениях, где оборудование работает от батарей.

В то время как датчики давления и преобразователи давления генерируют выходной сигнал напряжения, датчики давления выдают выходной ток с низким сопротивлением, обычно используемый в качестве аналоговых сигналов 4–20 мА в 2-проводной или 4-проводной конфигурации. Датчики давления обладают хорошей устойчивостью к электрическим помехам (EMI / RFI) и поэтому подходят для приложений, где необходимо передавать сигналы на большие расстояния.Эти устройства не требуют регулируемых источников питания, но более высокий выходной ток и потребляемая мощность делают их непригодными для приложений с батарейным питанием, когда устройства работают при полном или близком к нему давлении.

Для простоты в этой статье мы будем использовать общий термин датчики давления, а не делать четкие представления датчиков давления и датчиков давления.

Терминология по давлению

В этом разделе представлена ​​основная терминология, относящаяся к датчикам давления.

  • Манометрическое давление — это измерение давления относительно давления окружающей среды. Типичным примером этого является использование манометра для измерения давления воздуха в автомобильной шине. Если манометр показывает 35 фунтов на квадратный дюйм, это означает, что давление в шинах на 35 фунтов на квадратный дюйм выше местного давления окружающей среды.
  • Абсолютное давление — это измерение, производимое относительно чистого вакуума, такого как космический вакуум. Этот тип измерения давления важен для применения в аэрокосмической технике, поскольку давление воздуха изменяется с высотой.
  • Дифференциальное давление — это измерение разности давлений между двумя значениями давления, следовательно, измерение того, насколько они отличаются друг от друга, а не их величины относительно атмосферного давления или другого эталонного давления.
  • Вакуумное давление — это измерение давления, значение которого находится в отрицательном направлении по отношению к атмосферному давлению.

На рисунке 2 ниже эти термины показаны на диаграмме, показывающей относительные отношения между каждым из них.

Рисунок 2: Взаимосвязь различных измерений давления

Изображение предоставлено: https://www.engineeringtoolbox.com

Технологии измерения давления

Для измерения давления используются шесть основных датчиков давления. Это:

  • Потенциометрические датчики давления
  • Индуктивные датчики давления
  • Датчики давления емкостные
  • Пьезоэлектрические датчики давления
  • Тензометрические датчики давления
  • Датчики давления с переменным сопротивлением

Потенциометрические датчики давления используют трубку Бурдона, капсулу или сильфон, которые приводят в движение рычаг стеклоочистителя, обеспечивая относительно нормальные измерения давления.

Индуктивные датчики давления используют линейный регулируемый дифференциальный трансформатор (LVDT) для изменения степени индуктивной связи, которая возникает между первичной и вторичной обмотками трансформатора.

Емкостные датчики давления используют диафрагму, которая отклоняется под действием приложенного давления, что приводит к изменению значения емкости, которая затем может быть откалибрована для получения показаний давления.

Пьезоэлектрические датчики давления основаны на способности таких материалов, как керамика или металлизированный кварц, генерировать электрический потенциал, когда материал подвергается механической нагрузке.

Тензометрические датчики давления основаны на измерении изменения сопротивления, которое происходит в таком материале, как кремний, когда он подвергается механическому воздействию, известному как пьезорезистивный эффект.

Датчики давления с переменным сопротивлением используют диафрагму, которая находится в магнитной цепи. Когда к датчику прикладывается давление, отклонение диафрагмы вызывает изменение сопротивления контура, и это изменение можно измерить и использовать в качестве индикатора приложенного давления.

Типы датчиков давления

С помощью датчика давления можно проводить измерения давления для определения диапазона различных значений и различных типов давления в зависимости от того, выполняется ли измерение давления относительно атмосферы, условий вакуума или других эталонных уровней давления. Датчики давления — это инструменты, которые могут быть спроектированы и настроены для определения давления по этим переменным. Датчики абсолютного давления предназначены для измерения давления относительно вакуума, и они разработаны с эталонным вакуумом, заключенным внутри самого датчика.Эти датчики также могут измерять атмосферное давление. Точно так же датчик избыточного давления определяет значения, относящиеся к атмосферному давлению, и часть устройства обычно находится в условиях окружающей среды. Это устройство можно использовать для измерения артериального давления.

Важным аспектом промышленных процессов определения давления является сравнение нескольких уровней давления. Датчики перепада давления используются для этих приложений, которые могут быть сложными из-за наличия как минимум двух различных давлений на одной механической конструкции.Датчики перепада давления имеют относительно сложную конструкцию, потому что они часто необходимы для измерения мельчайших перепадов давления при больших статических давлениях. Принципы трансдукции и механического измерения давления являются общими для большинства стандартных датчиков давления, независимо от их категории как приборы дифференциального, абсолютного или манометрического давления. Ниже мы рассмотрим наиболее распространенный тип датчиков давления.

Датчики барометра-анероида

Барометр-анероид состоит из полого металлического корпуса с гибкими поверхностями сверху и снизу.Каков принцип работы датчика атмосферного давления? Изменения атмосферного давления заставляют этот металлический корпус менять форму, а механические рычаги усиливают деформацию, чтобы обеспечить более заметные результаты. Уровень деформации также можно повысить, изготовив датчик в сильфонной конструкции. Рычаги обычно прикреплены к циферблату со стрелкой, которая переводит деформацию под давлением в масштабированные измерения или на барограф, который регистрирует изменение давления во времени. Датчики-анероидные барометры компактны и долговечны, в их работе не используется жидкость.Однако масса элементов измерения давления ограничивает скорость отклика устройства, что делает его менее эффективным для проектов измерения динамического давления.

Датчики манометра

Манометр — это датчик давления жидкости, имеющий относительно простую конструкцию и более высокий уровень точности, чем у большинства барометров-анероидов. Он выполняет измерения, регистрируя влияние давления на столб жидкости. Наиболее распространенной формой манометра является U-образная модель, в которой давление прикладывается к одной стороне трубки, вытесняя жидкость и вызывая падение уровня жидкости на одном конце и соответствующее повышение на другом.Уровень давления обозначается разницей в высоте между двумя концами трубки, и измерения производятся по шкале, встроенной в устройство.

Точность считывания можно повысить, наклонив одну из ножек манометра. Также можно прикрепить резервуар для жидкости, чтобы сделать уменьшение высоты одной из ножек незначительным. Манометры могут быть эффективными в качестве манометрических датчиков, если одна ветка U-образной трубки выходит в атмосферу, и они могут функционировать как дифференциальные датчики, когда давление прикладывается к обеим ногам.Однако они эффективны только в определенном диапазоне давления и, как и барометры-анероиды, имеют низкую скорость отклика, что неадекватно для измерения динамического давления.

Датчики давления с трубкой Бурдона

Хотя они работают в соответствии с теми же основными принципами, что и анероидные барометры, в трубках Бурдона вместо полой капсулы используется спиральный или С-образный чувствительный элемент. Один конец трубки Бурдона зафиксирован в соединении с давлением, а другой конец закрыт.Каждая трубка имеет эллиптическое поперечное сечение, которое заставляет трубку выпрямляться при приложении большего давления. Инструмент будет продолжать выпрямляться до тех пор, пока давление жидкости не сравняется с упругим сопротивлением трубки. По этой причине разные материалы трубок связаны с разными диапазонами давления. Зубчатый механизм прикреплен к закрытому концу трубки и перемещает указатель по шкале с градуировкой для получения показаний. Устройства с трубкой Бурдона обычно используются в качестве датчиков избыточного давления и дифференциальных датчиков, когда две трубки соединены с одним указателем.Как правило, спиральная трубка более компактна и обеспечивает более надежную работу, чем С-образный чувствительный элемент.

Датчики вакуума

Давление вакуума ниже атмосферного, и его может быть сложно обнаружить механическими методами. Датчики Пирани обычно используются для измерений в диапазоне низкого вакуума. Эти датчики основаны на нагретом проводе, электрическое сопротивление которого зависит от температуры. Когда вакуумное давление увеличивается, конвекция уменьшается, а температура проволоки повышается.Электрическое сопротивление увеличивается пропорционально и калибруется по давлению, чтобы обеспечить эффективное измерение вакуума.

Ионные датчики или датчики с холодным катодом обычно используются для областей применения с более высоким вакуумом. Эти инструменты основаны на нити накала, которая генерирует электронную эмиссию. Электроны переходят на сетку, где они могут сталкиваться с молекулами газа, вызывая их ионизацию. Устройство для сбора заряженных частиц притягивает заряженные ионы, и количество накапливаемых им ионов напрямую соответствует количеству молекул в вакууме, что обеспечивает точное считывание давления в вакууме.

Датчики давления закрытые

Герметичные датчики давления используются, когда необходимо получить измерение давления относительно эталонного значения (например, атмосферного давления на уровне моря), но когда невозможно открыть датчик непосредственно для этого эталонного давления. Например, на подводных транспортных средствах герметичный датчик давления может использоваться для определения глубины транспортного средства путем измерения давления окружающей среды и сравнения его с атмосферным давлением, имеющимся в герметичном устройстве.

Технические характеристики датчика давления

Датчики давления

обычно имеют размер и характеристики, определяемые несколькими общими параметрами, которые показаны ниже. Обратите внимание, что спецификации для этих устройств могут отличаться от производителя к производителю, а также обратите внимание, что характеристики могут отличаться в зависимости от конкретного типа датчика давления, полученного от источника. Базовое понимание этих спецификаций упростит процесс поиска или определения одного из этих датчиков.

  • Тип датчика — отражает тип давления, на которое рассчитан датчик. Это может включать абсолютное давление, сложное давление, дифференциальное давление, манометрическое давление или вакуумное давление.
  • Диапазон рабочего давления — обеспечивает диапазон давлений, в котором датчик может работать и генерировать выходной сигнал.
  • Максимальное давление — абсолютное максимальное значение давления, при котором устройство может надежно работать без повреждения датчика.Превышение максимального давления может привести к отказу устройства или неточному выходному сигналу.
  • Полная шкала — это разница между максимальным давлением, которое может измерять датчик, и нулевым давлением.
  • Тип выхода — описывает общий характер характеристик выходного сигнала датчика давления. Примеры включают аналоговый ток, аналоговое напряжение, частоту или другие форматы.
  • Уровень выходного сигнала — диапазон выходного сигнала, например 0-25 мВ, связанный с датчиком давления в пределах его рабочего диапазона.Для выходных электрических сигналов это обычно будет диапазон милливольт или вольт или диапазон выходного тока в миллиамперах.
  • Точность — мера отклонения между уровнем давления, определенным выходным сигналом датчика, и истинным значением давления. Точность часто выражается в виде диапазона единиц давления +/- (например, фунт / кв. Дюйм или миллибар) или ошибки +/- в процентах. Точность датчиков давления обычно определяется по прямой, наилучшим образом подходящей для значений выходных сигналов, по отношению к различным показаниям приложенного давления.
  • Разрешение — представляет собой наименьшую разницу выходного сигнала, которую может различить датчик.
  • Дрейф — мера постепенного изменения откалиброванного состояния датчика с течением времени.
  • Напряжение питания — величина источника напряжения, необходимого для питания датчика давления, измеряется в вольтах, чаще всего выражается как допустимый диапазон входного напряжения.
  • Диапазон рабочих температур — крайние значения температуры (высокие и низкие), при которых датчик рассчитан на надежную работу и выдачу выходного сигнала.

Применение датчиков давления

Датчики давления

находят широкое применение в ряде рынков, включая медицину, общепромышленность, автомобилестроение, HVAC и энергетику, и это лишь некоторые из них. Важно понимать, что, хотя эти устройства измеряют давление, их можно использовать для выполнения других важных измерений, поскольку существует взаимосвязь между зарегистрированным давлением и значениями этих других параметров.

Некоторые примеры использования датчика давления приведены ниже:

  • В автомобильных тормозных системах датчики давления могут использоваться для обнаружения неисправностей в гидравлических тормозах, которые могут повлиять на их работоспособность.
  • В автомобильных двигателях используются датчики давления для оптимизации топливовоздушной смеси при изменении условий движения и для контроля уровня давления масла в работающем двигателе.
  • Датчики давления в автомобилях могут использоваться для обнаружения столкновений и активации устройств безопасности, таких как подушки безопасности.
  • В аппаратах ИВЛ датчики давления используются для контроля давления кислорода и для помощи в управлении смесью воздуха и кислорода, подаваемой пациенту.
  • Гипербарические камеры используют датчики давления для контроля и управления давлением, прилагаемым во время процесса лечения.
  • Датчики давления используются в устройствах спирометрии, которые измеряют емкость легких пациентов.
  • Автоматизированные системы доставки лекарств, которые вводят лекарство пациенту в виде жидкости для внутривенного вливания, используют датчики давления для доставки нужной дозы в нужное время суток.
  • В системах HVAC датчики давления могут использоваться для контроля состояния воздушных фильтров. Поскольку фильтры забиваются твердыми частицами, перепад давления на фильтре возрастает и может быть обнаружен.
  • Скорость воздушного потока можно контролировать с помощью датчиков давления, поскольку скорость воздушного потока пропорциональна разности давлений.
  • В промышленных процессах датчики давления могут обнаруживать засорение фильтра в технологическом потоке, оценивая разницу между давлением на входе и выходе.
  • Уровни жидкости в резервуаре можно эффективно контролировать с помощью датчиков давления, размещенных на дне резервуара. По мере того, как уровень жидкости в резервуаре уменьшается, давление напора (вызванное весом объема жидкости над датчиком) также уменьшается.Это измерение является прямым индикатором количества жидкости в резервуаре и не зависит от формы резервуара, а зависит исключительно от высоты жидкости. Здесь датчики давления представляют собой альтернативу другим формам датчиков уровня жидкости.
  • Улучшенное местоположение по GPS обеспечивается датчиками давления. Измерение высоты может быть сделано путем определения барометрического давления из-за взаимосвязи между барометрическим давлением и высотой в атмосфере.
  • В высокоэффективных стиральных машинах могут использоваться датчики давления для определения объема воды, который следует добавить для очистки партии грязной одежды, что позволяет максимально эффективно использовать природные ресурсы.
  • Датчики давления используются в носимых устройствах для наблюдения за пациентами и пожилыми людьми в условиях проживания с обслуживанием, определения того, когда могло произойти падение, и уведомления персонала или члена семьи. Измеряя небольшие изменения давления воздуха порядка 2 миллибар, эти датчики могут обнаруживать изменение высоты на расстоянии порядка 10 см.

Сводка

В этой статье представлен обзор датчиков давления, включая их описание, типы, основные характеристики и примеры применения.Для получения информации по другим темам обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, где вы можете найти потенциальные источники поставок для более чем 70 000 различных категорий продуктов и услуг.

Источники:
  1. https://www.avnet.com/
  2. https://www.variohm.com/news-media/technical-blog-archive/working-principle-of-a-pressure-sensor
  3. https://www.hbm.com/
  4. https://www.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *