Поршень двигателя из чего состоит: Устройство поршня

Содержание

Поршень двигателя внутреннего сгорания: устройство, назначение, принцип работы

Поршень – ключевая деталь КШМ цилиндрической формы, которая предназначена для трансформации топливной энергии в механическую работу автомобильного двигателя.

Поршень выполняет ряд важных функций:

  • обеспечивает передачу механических усилий на шатун;
  • отвечает за герметизацию камеры сгорания топлива;
  • обеспечивает своевременный отвод избытка тепла из камеры сгорания

Работа поршня проходит в сложных и во многом опасных условиях – при повышенных температурных режимах и усиленных нагрузках, поэтому особенно важно, чтобы поршни для двигателей отличались эффективностью, надежностью и износостойкостью. Именно поэтому для их производства используются легкие, но сверхпрочные материалы – термостойкие алюминиевые или стальные сплавы. Поршни изготавливаются двумя методами – литьем или штамповкой.

Конструкция поршня

Поршень двигателя имеет достаточно простую конструкцию, которая состоит из следующих деталей:

© Volkswagen AG

  1. Головка поршня ДВС
  2. Поршневой палец
  3. Кольцо стопорное
  4. Бобышка
  5. Шатун
  6. Юбка
  7. Стальная вставка
  8. Компрессионное кольцо первое
  9. Компрессионное кольцо второе
  10. Маслосъемное кольцо

Конструктивные особенности поршня в большинстве случаев зависят от типа двигателя, формы его камеры сгорания и типа топлива, которое используется.

Днище

Днище может иметь различную форму в зависимости от выполняемых им функций – плоскую, вогнутую и выпуклую. Вогнутая форма днища обеспечивает более эффективную работу камеры сгорания, однако это способствует большему образованию отложений при сгорании топлива. Выпуклая форма днища улучшает производительность поршня, но при этом снижает эффективность процесса сгорания топливной смеси в камере.

Поршневые кольца

Ниже днища расположены специальные канавки (борозды) для установки поршневых колец. Расстояние от днища до первого компрессионного кольца носит название огневого пояса.

Поршневые кольца отвечают за надежное соединение цилиндра и поршня. Они обеспечивают надежную герметичность за счет плотного прилегания к стенкам цилиндра, что сопровождается напряженным процессом трения.  Для снижения трения используется моторное масло. Для изготовления поршневых колец применяется чугунный сплав.

Количество поршневых колец, которое может быть установлено в поршне зависит от типа используемого двигателя и его назначения. Зачастую устанавливаются системы с одним маслосъемным кольцом и двумя компрессионными кольцами (первым и вторым).

Маслосъемное кольцо и компрессионные кольца

Маслосъемное кольцо обеспечивает своевременное устранение излишков масла с внутренних стенок цилиндра, а компрессионные кольца –  предотвращают попадания газов в картер.

Компрессионное кольцо, расположенное первым, принимает большую часть инерционных нагрузок при работе поршня.

Для уменьшения нагрузок во многих двигателях в кольцевой канавке устанавливается стальная вставка, увеличивающая прочность и степень сжатия кольца. Кольца компрессионного типа могут быть выполнены в форме трапеции, бочки, конуса, с вырезом.

Маслосъемное кольцо в большинстве случаев оснащено множеством отверстий для дренажа масла, иногда – пружинным расширителем.

Поршневой палец

Это трубчатая деталь, которая отвечает за надежное соединение поршня с шатуном. Изготавливается из стального сплава. При установке поршневого пальца в бобышках, он плотно закрепляется специальными стопорными кольцами.

Поршень, поршневой палец и кольца вместе создают так называемую поршневую группу двигателя.

Юбка

Направляющая часть поршневого устройства, которая может быть выполнена в форме конуса или бочки. Юбка поршня оснащается двумя бобышками для соединения с поршневым пальцем.

Для уменьшения потерь при трении, на поверхность юбки наносится тонкий слой антифрикционного вещества (зачастую используется графит или дисульфид молибдена). Нижняя часть юбки оснащена маслосъемным кольцом.

Обязательный процесс работы поршневого устройства – это его охлаждение, которое может быть осуществлено следующими методами:

  • разбрызгиванием масла через отверстия в шатуне или форсункой;
  • движением масла по змеевику в поршневой головке;
  • подачей масла в область колец через кольцевой канал;
  • масляным туманом

Уплотняющая часть

Уплотняющая часть и днище соединяются в форме головки поршня. В этой части устройства расположены кольца поршня – маслосъемное и компрессионные. Каналы для колец имеют небольшие отверстия, через которые отработанное масло попадает на поршень, а затем стекает в картер двигателя.

В целом поршень двигателя внутреннего сгорания является одной из самых тяжело нагруженных деталей, который подвергается сильным динамическим и одновременно тепловым воздействиям. Это накладывает повышенные требования как к материалам, используемым в производстве поршней, так и к качеству их изготовления.

Как устроен поршень двигателя

Восприятие давления газов, герметизация камеры сгорания, отвод тепла и передача усилий на шатун — это основные функции поршня. Термодинамический процесс происходит именно с помощью поршня двигателя.

Высокое давление, всплески температуры и иные нагрузки — это условия, в которых приходится работать поршню. По этой причине был выбран материал, из которого производят поршень — чаще из алюминиевого сплава, редко из стали.

Производят их через штамповку или литьем под давлением.

Схема поршня двигателя

Конструкция поршня включает в себя «головку» и «юбку», но считается он цельным элементом. Для определенной модели автомобиля поршень будет выглядеть по разному в зависимости  от того какой тип двигателя, форма камеры сгорания и само сгорание. Поршни для бензинового и дизельного двигателя различны. Поршень бензинового двигателя имеет плоскую головку. В ней могут быть быть канавки для открытия клапанов на 100%. Поршни двигателей с простым впрыском топлива немного сложнее. В дизельном двигателе все наоборот, там выполняется непростая камера сгорания, которая создает значительное завихрение и улучшает улучшают условия для смешивания смесей.

У поршня ниже головки проходят определенные и специальные канавки для поршневых колец. Юбка похожа на конус или на простую бочку. При нагреве такая конструкция может пригодиться, потому что может компенсировать температурное расширение. В условиях, когда достигнута нужная температура поршень становится похож на цилиндр. Дисульфид молибдена, графит находится на поршень, чтобы снизить потери на трении. В юбке поршня есть приспособления для крепления поршневого пальца.

 Охлаждается поршень по разному:

 — масляный туман в цилиндре;

 — разбрызгивание масла через отверстие в шатуне;

 — разбрызгивание масла специальной форсункой;

 — впрыскивание масла в определенный кольцевой канал в зоне колец;

 — циркуляция масла по трубчатому змеевику в головке поршня.

 Поршневые кольца соединены со стенками цилиндра. Они сделаны из модифицированного чугуна. Кольца трутся в поршне и являются самыми главными источниками трения. Потери на трение в кольцах доходит до 30% всех потерь в двигателе, обусловленных механикой.

 Число и расположение колец зависит от того, какой двигатель.

Самая часто встречающая схема – 2 компрессионных и 1 маслосъемное кольцо. Компрессионные кольца имеют разные формы — похожи на трапецию, бочку или конус.

 Маслосъемное кольцо справляется с излишками масла с поверхности цилиндра и не дает маслу попасть в камеру сгорания. У кольца много дренажных отверстий. Некоторые конструкции колец имеют пружинный расширитель.

 Соединение поршня с шатуном происходит с помощью поршневого пальца, который имеет трубчатую форму и изготавливается из стали. Как установить поршневой палец? Есть несколько способов. Для начала самы известный способ, это со способностью переворачиваться в бобышках и поршневой головке шатуна во время действия. Чтобы не смещаться его фиксируют стопорными кольцами. Намного редко используется жесткое закрепление концов пальца в поршне или в поршневой головке шатуна.

 Из чего состоит поршневая группа? Из поршня, поршневых колец и пальцев.

 В каталоге запчастей для автомобиля на нашем сайте можно найти все основные элементы двигателя для любого автомобиля ваз или иномарку. На сайте можно посмотреть цены в интернет каталоге, и сделать заказ на поршни двигателя

.

Что такое поршень двигателя автомобиля

Расскажем про автомобильные поршни двигателя внутреннего сгорания — что это такое и основное назначение. Как работают и какие требования к ним.

Что это такое

Поршень — деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра двигателя авто. Нужен для изменения давления газа в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления. Т.е. он передаёт на шатун усилие, возникающее от давления газов и обеспечивает протекание всех тактов рабочего цикла. Он имеет вид перевёрнутого стакана и состоит из днища, головки, направляющей части (юбки).

В бензиновых моторах применяются поршни с плоским днищем из-за простоты изготовления и меньшего нагрева при работе. Хотя на современных авто делают специальные выемки под клапаны. Чтобы при обрыве ремня ГРМ поршни и клапана не встретились и не повлекли серьёзный ремонт.

Днище поршня дизеля делают с выемкой, которая зависит от степени смесеобразования и расположения клапанов, форсунок. При такой форме днища лучше перемешивается воздух с поступающим в цилиндр топливом.


Поршень подвержен действию высоких температур и давлений. Он движется с высокой скоростью внутри цилиндра. Изначально для автомобильных двигателей их отливали из чугуна. С развитием технологий стали использовать алюминий, т.к. давал преимущества: рост оборотов и мощности, меньшие нагрузки на детали, лучшую теплоотдачу.

Мощность современных моторов выросла. Температура и давление в цилиндрах двигателей (особенно дизельных) стали такими, что алюминий подошёл к пределу прочности. Поэтому современные моторы оснащаются стальными поршнями, которые уверенно выдерживают возросшие нагрузки. Они легче алюминиевых за счет более тонких стенок и меньшей компрессионной высоты, т.е. расстояния от днища до оси алюминиевого пальца. А еще стальные поршни не литые, а сборные.

Уменьшение вертикальных габаритов поршня при неизменном блоке цилиндров дает возможность удлинить шатуны. Это позволит снизить боковые нагрузки в паре «поршень-цилиндр», что положительно скажется на расходе топлива и ресурсе двигателя. Или, не меняя шатунов и коленвала, можно укоротить блок цилиндров. Тогда облегчим мотор.

Требования к поршню мотора

  • Поршень, перемещаясь в цилиндре, позволяет расширяться сжатым газам, продукту горения топлива, и совершать механическую работу. Он должен быть устойчивым к высокой температуре, давлению газов и надежно уплотнять канал цилиндра.
  • Отвечать требованиям пары трения с целью минимизировать механические потери и износ.
  • Испытывая нагрузки со стороны камеры сгорания и реакцию от шатуна, должен выдерживать механическое воздействие.
  • Совершая возвратно-поступательное движение с высокой скоростью, должен как можно меньше нагружать кривошипно-шатунный механизм инерционными силами.

Как работает

Топливо, сгорая в надпоршневом пространстве, выделяет огромное количество тепла в каждом цикле работы двигателя. Температура сгоревших газов достигает 2000 градусов. Только часть энергии они передадут движущимся деталям мотора, все остальное в виде тепла нагреет двигатель. То, что останется, вместе с отработанными газами улетит в трубу. Следовательно, если не будем охлаждать поршень, он через некоторое время расплавится. Это важный момент для понимания условий работы поршневой группы.

Повторим известный факт — тепловой поток направлен от более нагретых тел к менее нагретым.


Наиболее нагретым является рабочее тело, или, другими словами, газы в камере сгорания. Тепло будет передано окружающему воздуху – самому холодному. Воздух, омывая радиатор и корпус двигателя, остудит охлаждающую жидкость, блок цилиндров и корпус головки. Остается найти мостик, по которому поршень отдает свое тепло в блок и антифриз. Есть четыре пути.

Первый путь, обеспечивающий наибольший поток, – поршневые кольца. Причем первое кольцо играет главную роль, как расположенное ближе к днищу. Это наиболее короткий путь к охлаждающей жидкости через стенку цилиндра. Кольца одновременно прижаты к поршневым канавкам и стенке цилиндра. Они обеспечивают более 50% теплового потока.

Вторая охлаждающая жидкость в двигателе – масло. Имея доступ к наиболее нагретым местам мотора, масляный туман уносит и отдает в поддон картера значительную часть тепла от самых горячих точек. В случае применения масляных форсунок, направляющих струю на внутреннюю поверхность днища поршня, доля масла в теплообмене может достигать 30 – 40%.

Но нагружая масло функцией теплоносителя, должны позаботиться, чтобы его остудить. Иначе перегретое масло может потерять свойства. Также, чем выше температура масла, тем меньше тепла способно перенести.

Третий путь. Часть тепла отбирает на нагрев свежая топливовоздушная смесь, поступившая в цилиндр. Количество свежей смеси и количество тепла, которое отберет, зависит от режима работы и степени открытия дросселя. Но тепло, полученное при сгорании, также пропорционально заряду. Этот путь охлаждения носит импульсный характер. Отличается скоротечностью и высокоэффективен, т. к. тепло отбирается с той стороны, с которой поршень нагревается.

Следует уделить внимание передаче тепла через поршневые кольца. Если этот путь перекроем, то маловероятно, что двигатель выдержит длительные форсированные режимы. Температура вырастет, материал поршня «поплывет», и двигатель разрушится.


Вспомним про компрессию. Представим, что кольцо не прилегает по всей длине к стенке цилиндра. Тогда сгоревшие газы, прорываясь в щель, создадут барьер, препятствующий передаче тепла от поршня через кольцо в стенку цилиндра. Это, как если бы закрыли часть радиатора и лишили его возможности охлаждаться воздухом.

Более страшна картина, если кольцо не имеет тесного контакта с канавкой. В местах, где газы имеют возможность протекать мимо кольца через канавку, участок поршня лишается возможности охлаждаться. Как результат – прогар и выкрашивание части, прилегающей к месту утечки.

Сколько колец нужно для поршня

С точки зрения механики, чем меньше колец, тем лучше. Чем они уже, тем меньше потери в поршневой группе. При уменьшении их количества и высоты ухудшаются условия охлаждения поршня, увеличивая тепловое сопротивление днище – кольцо – стенка цилиндра. Поэтому выбор конструкции – всегда компромисс.

Поршень двигателя (назначение, устройство, принцип работы)

В цилиндро-поршневой группе (ЦПГ) происходит один из основных процессов, благодаря чему двигатель внутреннего сгорания функционирует: выделение энергии в результате сжигания топливовоздушной смеси, которая впоследствии преобразуется в механическое действие – вращение коленвала. Основной рабочий компонент ЦПГ — поршень. Благодаря ему создаются необходимые для сгорания смеси условия. Поршень — первый компонент, участвующий в преобразовании получаемой энергии.

Поршень двигателя имеет цилиндрическую форму. Располагается он в гильзе цилиндра двигателя, это подвижный элемент – в процессе работы он совершает возвратно-поступательные движения и выполняет две функции.

  1. При поступательном движении поршень уменьшает объем камеры сгорания, сжимая топливную смесь, что необходимо для процесса сгорания (в дизельных моторах воспламенение смеси и вовсе происходит от ее сильного сжатия).
  2. После воспламенения топливовоздушной смеси в камере сгорания резко возрастает давление. Стремясь увеличить объем, оно выталкивает поршень обратно, и он совершает возвратное движение, передающееся через шатун коленвалу.

Что такое поршень двигателя внутреннего сгорания автомобиля?

Устройство детали включает в себя три составляющие:

  1. Днище.
  2. Уплотняющая часть.
  3. Юбка.

Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.

Днище

Днище — основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.

Главный параметр днища — форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.

В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.

В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности  проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.

В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.

Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых — устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.

Уплотняющая часть

Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня — канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать  причиной их разрушения.

Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.

Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 — 6). Наиболее же распространена конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным.

В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.

Вместе с днищем уплотнительная часть формирует головку поршня.

Вас также заинтересует:

Юбка

Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.

Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.

Для фиксации пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.

Типы поршней

В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.

Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.

В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под палец в юбке, на головке имеются специальные проушины.

Достоинство составных поршней — возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.

Материалы изготовления

В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.

Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).

Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.

Но и у элементов составного типа есть недостатки, среди которых:

  • возможность использования только в дизельных двигателях;
  • больший вес по сравнению с литыми алюминиевыми;
  • необходимость использования поршневых колец из жаростойких материалов;
  • более высокая цена;

Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.

Видео: Принцип работы поршня двигателя. Устройство

Что такое поршень — разбираемся вместе

Когда мы садимся за руль автомобиля, поворачиваем ключ в замке зажигания и нажимаем педаль газа, под капотом начинает происходить множество очень сложных механизмов, которые и производят движение. Эти все механизмы нас совсем не интересуют, главное чтобы автомобиль ехал. Но вот когда происходит поломка – мы начинаем ломать голову над тем, в чем же кроется причина и нам приходится осваивать всю необходимую информацию об устройстве и функционировании каждой отдельной детали. Но чтобы не тратить на это время, когда этого времени у Вас не будет, перед тем как садиться за руль, следует хорошо разобраться в особенностях автомобильных деталей.

В частности, сегодня мы поговорим с вами о поршне. Ведь эта деталь является центральной в процессе переработки топливной энергии в тепловую и механическую. Разберемся с Вами, что такое поршень, его назначение, основные требования к нему и особенности его конструкции.

1. Поршень двигателя и его основные характеристики

Мы конечно надеемся, что опытным автомобилистам не нужно долго объяснять, что же такое поршень двигателя. Однако, если среди наших читателей есть «начинающие», то специально для них мы объясним, что поршень является деталью автомобиля, которая преобразует изменения давление газа, пара и жидкости внутри двигателя в механическую силу. Поршень имеет форму цилиндра, внутри которого постоянно совершаются возвратно-поступательные движения, благодаря которым и образуется механическая сила.

Обязанность у этой детали очень ответственная и от того, насколько он хорошо с нею справляется и зависит его эффективность. На самом деле он является наиболее сложной деталью автомобиля, разобраться в особенностях и противоречивых свойствах которой неподготовленному уму довольно трудно. Мало кто знает, но практически ни один автомобильный концерн не занимается самостоятельным изготовлением поршней для своих автомобилей, а заказывают их специально под свои моторы. Усложняет ситуацию для простых автомобилистов и тот факт, что на сегодняшний день существует большое количество разных форм и размеров поршней. Поэтому, обслуживание и ремонт этой детали может всегда проводиться по-разному.

Каким требованиям должен соответствовать надежный поршень?

Поскольку поршень – деталь довольно сложная, то и требований к ней выставляется великое множество. В связи со сложностями производства, изготовителей поршней двигателей не так уж и много, да и стоит эта деталь на авторынке совсем не мало. И так, давайте разберемся, каким требованиям должен соответствовать хороший поршень:

1. Перемещаясь внутри цилиндра, именно поршень двигателя обеспечивает расширение сжатых газов, которые являются продуктом горения топлива. Благодаря этому газы могут выполнять механическую работу – приводить в действие все остальные механизмы автомобиля. Как следствие, основное требование к поршням – возможность сопротивляться высокой температуре при которой проходят все эти процессы, высокому давлению газов и хорошо уплотнять канал цилиндра (иначе он не сможет влиять на давление газов).

2. Поршень не является одиночным устройством, он действует вместе с цилиндром и поршневыми кольцами. Вместе эти детали образуют линейный подшипник скольжения. В связи с этим подшипник обязательно должен отвечать всем требованиям и особенностям пары трения. Если все требования будут учтены с самой высокой точностью, то это не только поможет минимизировать механические потери при сгорании топлива, но и износ всех деталей.

3. Поршень постоянно находится под сильными нагрузками, самыми сильными из которых являются нагрузки от камеры сгорания топлива и реакции от шатуна. Его конструкция обязательно должна учитывать все эти факторы и выдерживать такое сильное механическое воздействие.

4. Не смотря на то, что поршень в процессе работы движется с довольно большой скоростью, он не должен сильно нагружать инерционными силами кривошипно-шатунный механизм автомобиля, иначе это может привести к поломке.

2. Назначение поршней или их функциональные обязанности

Мы уже неоднократно упоминали, что поршень выполняет очень важную роль во всей работе автомобильного двигателя. Так, основное назначение поршней заключается в том, чтобы:

— принимать давления газов из камеры сгорания и передавать эти давления на коленчатый вал двигателя в виде механической силы;

— уплотнять полость цилиндра двигателя, которая находится над поршнем. Таким образом, он предохраняет весь автомобильных механизм от прорыва газов в кратер и от того, чтобы в него проникало смазочное масло.

Причем вторая функция является более важной, поскольку именно благодаря этому поршень сам себе обеспечивает нормальные условия для работы. Даже о том, в каком техническом состоянии находится двигатель специалисты делают вывод только после осмотра поршневой группы и проверки ее уплотняющей способности. Ведь если расход масла превышает 3% от расхода топлива (а происходит это по причине его угара при проникновении в камеру сгорания), то весь автомобильный двигатель необходимо срочно отправлять в ремонт иле же он вообще может быть снят с эксплуатации. Понять, что с Вашим двигателем происходит что-то не то, можно по дымности отработанных газов. Но такого лучше не допускать.

Наверное, читая о том, что поршень и его элементы работают в условиях с очень высокими температурами, Вы удивляетесь, как это устройство само не выходит из строя? Добавим к этому, что кроме сложных температурных условий работу поршня постоянно сопровождают циклические, резко изменяющиеся, нагрузки. При всем этом элементам описываемой детали даже не всегда хватает смазки. Но об этом все конечно же подумали конструкторы и разработчики поршней.

Во-первых, конструируются они с учетом назначение и типа двигателя, на который они будут устанавливаться (стационарный, дизельный, двухтактный, форсированный или транспортный), поэтому для этого используются только самые устойчивые материалы.

Во-вторых, существует несколько путей, благодаря которым осуществляется охлаждение данной детали. Но сначала немного о том, как и куда перетекает тепло (или даже жар) из камеры сгорания. Оно выходит в окружающий холодный воздух, который омывает радиатор и двигатель, а также блок цилиндров. Но какими же путями поршень одает тепло блоку и антифризу?

1. Через поршневые кольца. Самое главное из них – первое, поскольку оно располагается ближе всего к днищу поршня. Так как кольца одновременно прижимаются и к поршневым канавкам и к стенке цилиндра, то благодаря им отдается около 50% всего потока тепла от поршня.

2. Благодаря второй «охлаждающей жидкость», роль которой выполняет моторное масло. Поскольку масло подступает к самым нагретым частям двигателя, то именно ему удается унести в картерный поддон очень большое количество тепла с наиболее разогретых точек. Однако, чтобы масло могло охлаждать поршни, оно также должно охлаждаться, иначе его очень скоро придется менять.

3. Тепло проходит через бобышки в палец, в шатун и в масло. Менее эффективный путь, однако, и он играет свою важную роль.

4. Как не странно, но топливо также помогает охлаждаться поршню и двигателю в целом. Так, когда в камеру сгорания поступает свежая смесь из топлива и воздуха, она перетягивает на себя довольно много тепла, хотя потом отдает его в еще больших количествах. Однако, количество смеси и тепла, которое она сможет поглотить, напрямую зависит от режима работы автомобиля и того, насколько открыт дроссель. Преимущество данного пути заключается в том, что смесь поглощает тепло именно с той стороны, с которой поршень больше всего и нагревается.

Однако, мы немного забежали наперед, поскольку начали говорить о функционировании поршня, не разобравшись до конца в конструктивных особенностях данной детали. Этому и посвятим следующий раздел.

3. Конструкция поршня: все, что необходимо знать о детали обычному автолюбителю

Вообще говорить о поршне в одиночку – все равно, что говоря о хлебе, обсуждать только свойства муки. Более логично ознакомиться со всей поршневой группой двигателя, которая представлена такими деталями:

— непосредственно сам поршень;

— поршневые кольца;

— поршневой палец.

Подобная конструкция поршневой группы является неизменной еще с момента появления самых первых двигателей внутреннего сгорания. Поэтому, данное описание будет общим практически для всех двигателей.

Естественно, самые важные функции выполняет поршень, конструкция которого не меняется вот уже как 150 лет. Если Вы не желаете стать профессиональным механиком, то Вам необходимо знать только о таких важных зонах поршня и их функциональных предназначениях:

1. Днище поршня. Поверхность детали, которая непосредственно обращена к камере сгорания двигателя. Своим профилем днище и определяет нижнюю поверхность этой самой камеры. Зависть эта форма может от: формы камеры сгорания, от ее объема, особенностей подачи в нее топливно-воздушной массы, от расположения клапанов. Бывают случаи, когда на днище имеется углубление за счет которого увеличивается объем камеры сгорания. Но, поскольку подобное является не желательным, то для уменьшения объема камеры приходится применять специальные вытеснители – определенный объем металла, расположенный выше плоскости днища.

2. «Жаровой (огневой) пояс». Таким термином обозначается расстояние, которое пролегает от днища поршня до его первого кольца. Важно знать, что чем меньше расстояние от днища до колец, тем более высокая тепловая нагрузка будет попадать на эти самые элементы, и тем сильнее они будут изнашиваться.

3. Уплотняющий участок. Речь идет о канавках, которые располагаются на боковой поверхности цилиндрообразного поршня. Эти канавки являются непосредственным путем установки колец, которые, в свою очередь, обеспечивают подвижность уплотнения. Также, в канавке для маслосъемного кольца обязательно должно быть отверстие, благодаря которому излишки масла могут выводиться во внутреннюю полость поршня.

Еще одна функция уплотняющего участка – отводить часть тепла от поршня двигателя используя для этого, как мы уже упоминали, поршневые кольца. Однако, для эффективного отвода тепла очень важно, чтобы поршневые кольца плотно прилегали как к канавкам, так и к поверхности цилиндра. Так, торцевой зазор первого компрессионного кольца должен составлять о 0,045 до 0,070 миллиметра, для второго – от 0,035 до 0,06 миллиметра, а для маслосъемного – от 0,025 до 0,005 миллиметра. А вот между кольцами и канавками показатель радиального зазора может составлять от 1,2 до 0,3 миллиметра. Но и эти показатели не являются значительными для человеческого глаза, их можно определить только при помощи специального оборудования.

4. Головка поршня. Это обобщенный участок, который включает в себя уже описанные выше днище и уплотняющую часть.

5. Компрессионная высота поршня. Расстояние, которое рассчитывается от оси поршневого пальца до днища поршня.

6. «Юбка». Нижняя часть поршня. Включает в себя бобышки с отверстиями, в которые устанавливается поршневой палец. Внешняя поверхность этого участка является опорной и направляющей поверхностью для поршня. Благодаря ей обеспечивается правильное соотношение оси поршня и оси цилиндра двигателя. Не менее важную роль играет и боковая поверхность «юбки», благодаря которой к цилиндру передаются поперечные усилия, возникающие периодически в поршневой группе двигателя. А специально для того, чтобы улучшить прорабатываемость поверхности юбки и уменьшить трение, она покрывается специальным защитным покрытием из олова (в основе покрытия может также использоваться графит и дисульфид молибдена. Или же вместо покрытия на юбку могут наноситься канавки специального профиля, которые удерживают масло и создают гидродинамическую силу, препятствующую контакту со стенками цилиндра.

Как и из чего: особенности изготовления автомобильных поршней

Понятно, что для выполнения таких функций, которые выполняет поршень, требуется достаточно «выносливый» металл. Однако, это далеко не сталь. Изготавливают поршни из сплавов алюминия, в состав которого всегда добавляют кремний. Делается это для того, чтобы снизить коэффициент расширения под воздействием высоких температур и увеличить стойкость детали к износу.

Однако, для изготовления поршней могут использовать сплав с разным процентом содержания кремний. К примеру, чаще всего для этой цели используют 13%-кремневые сплавы, которые называют эвтектическими. Есть сплавы и с более высоким содержанием кремния, которые называются заэвтектическими. И чем больше показатель этого процента, тем выше теплопроводные характеристики сплава. Но это не делает такой материал идеальным для изготовления поршней.

Дело в том, что при охлаждении такой материал начинает выделять зерна кремния, размерами от 0,5 до 1 миллиметра. Очевидно, что подобный процесс отражается на литейных и механических свойствах как материала, так и детали, которая из него изготовлена. По этой причине, кроме кремния в подобные сплавы вводят и следующий перечень регулирующих добавок:

— марганец;

— медь;

— никель;

— хром.

Как же изготавливается основная часть автомобильного поршня? Существует даже два способа, благодаря котором можно получить заготовку этой детали. Первый из них предполагает заливку горячего сплава в специальную форму под названием «кокиль». Данный способ является наиболее распространенным. Второй же вариант изготовления заготовки – это горячая штамповка. Но после механической обработки формы, будущий поршень также подвергают различным термическим обработкам, что позволяет повысить твердость металла, прочность и стойкость к износам. Также, подобные процедуры позволяют снять остаточное напряжение в металле.

Не смотря на то, что благодаря использованию кованого металла повышается прочность детали, у них есть и свои недостатки. Подобные изделия обычно изготавливаются в классическом варианте с высокой «юбкой», из-за чего они получаются слишком тяжелыми. Также, подобные изделия не позволяют использовать вместе с ними термокомпенсирующие кольца или же пластины. По причине увеличенного веса такого поршня, увеличивается и его тепловая деформация, как следствие – приходится увеличивать размер зазора между поршнем и цилиндром.

Последствия подобного совсем не порадуют водителя, поскольку ими являются повышенный шум работы двигателя, быстрый износ цилиндров и высокий расход масла. Оправдывает себя использование кованых поршней только в тех случаях, если автомобиль регулярно эксплуатируется на самых придельных режимах.

На сегодняшний день конструкторы и физики направляют все усилия на то, чтобы сделать конструкцию поршней как можно более идеальной и точной. В частности, самые главные тенденции направлены на следующий перечень:

— уменьшение веса детали;

— использование на поршне только «тонких» колец;

— уменьшение компрессионной высоты поршня;

— уменьшение поршневых пальцев и использование в конструкции поршня только самых коротких;

— усовершенствование защитных покрытий и применение их по всех поверхностях детали.

Подобные достижение сегодня можно увидеть на Т-образной конструкции поршней последнего поколения. называют данную конструкцию Т-образной именно благодаря внешнему сходству детали с буквой «Т». Главное отличие таких поршней – уменьшенная высота юбки и площадь ее направляющей части. Изготавливаются такие поршни из заэвтектического сплава, который содержит в себе достаточно большое количество кремния. А изготавливаются они преимущественно путем горячей штамповки.

Однако, какую именно конструкцию поршня двигателя захотят поставить на автомобиль его разработчики будет зависеть от многих факторов. Такому решению всегда предшествует длительный период подсчетов и анализа поведения всех узлов шатунно-поршневой группы под влиянием новой детали. Расчет всех деталей проводится на их самых предельных возможностях их конструкций и тех материалов, из которых они изготовлены. Однако, как это ни печально, но в этом случае производитель не будет переплачивать. Он выберет тот вариант, который как раз «в пору» обеспечивает необходимый ресурс, и не будет тратиться на его повышение.

Как бы там ни было, но обычным автомобилисту приходится разбираться и эксплуатировать то, что уже было установлено на его автомобиль. Надеемся, что наша статья помогла Вам лучше узнать о том, каким образом функционирует и в чем заключается назначение поршней. Желаем Вам, чтобы с этой деталью у Вас никогда не возникало проблем, для чего необходимо обеспечивать ей правильные условия эксплуатации – слишком не «гонять» и вовремя менять моторное масло.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Поршни современных двигателей / Ремонт двигателей

Не будет преувеличением сказать, что поршень — наиболее ответственная и специфичная деталь в современном двигателе. Он должен быть легким и прочным, способным выдерживать значительные механические нагрузки и тепловые удары, а кроме того, обладать высокой износостойкостью рабочих поверхностей, низким трением при минимально возможном зазоре в цилиндре.

Последнее требование особенно важно для хорошей герметичности, возможности избежать прорыва газов из камеры сгорания в картер и поступления масла в обратном направлении. Иными словами — для минимального расхода масла с одновременным отсутствием шума (стука) поршня о стенки.

И это только часть проблем, которые приходится решать при конструировании и производстве поршней для конкретных двигателей. В целом получается, что поршень как бы концентрирует технические новшества, заложенные в конструкцию мотора. Тут можно перефразировать известное выражение древних: «Покажи мне только поршень, и я скажу, что это за двигатель».

Словом, разработка и изготовление современных поршней — задача особая. На Западе их производством давно занимаются не изготовители автомобилей, а специализированные фирмы. У них накоплен необходимый опыт и создана соответствующая техническая база, без чего невозможно получить надежный результат. В мире существует несколько фирм такого рода, но наибольшую известность по праву получила немецкая марка «Мале» (Mahle).

Фирма Mahle существует с 1920 года. Название она получила по фамилии своих основателей — братьев Мале. Затем последовали десятилетия непрерывного совершенствования, развития и роста. Сегодня Mahle — это целая группа специализированных компаний, которая так и именуется — Mahle Group. Так, производством поршней, цилиндров и блоков цилиндров занимается концерн Mahle GmbH, привлекший дочерние и долевые фирмы США, Мексики, Бразилии, Испании, Франции и Южной Кореи. Туда же входят известные фирмы Mondial Piston (Испания) и Konig KG GmbH (Австрия). Помимо этого, в группу Mahle входят компании, производящие детали двигателей, включая поршневые пальцы, клапаны и др., а также фильтры (в том числе известная фирма Knecht).

Фирма Mahle приобрела свою мировую известность в основном успехами в разработке и производстве поршней для двигателей всех типов — от маленьких мотоциклетных до мощных, в десятки тысяч киловатт, судовых дизелей. Особенности конструкции и технологии изготовления поршней, выпускавшихся фирмой Mahle, — это этапы развития не только самой фирмы, но и всего мирового моторостроения. Они интересны для всех любителей техники, но особенно для тех, кто так или иначе связан с ремонтом автомобильных двигателей.

Известно, что поршни автомобильных двигателей изготавливаются из легких алюминиевых сплавов. Однако не все знают, что именно Mahle первой в Европе освоила серийное производство поршней из сплава алюминия с кремнием (1926 г.). При этом специальные поршневые сплавы «Mahle 124» с 11-13% кремния (1933 г.) и «Mahle 138» с 17-19% кремния (1937 г.) стали классическими для производителей поршней и сегодня применяются не менее широко.

В 1935 году Mahle впервые начала выпуск поршней со специальным профилем наружной поверхности: вместо цилиндрической формы поршень приобрел овальную и бочкообразную. Такая конфигурация оптимальна, поскольку в реальных условиях овальный и бочкообразный поршень, нагреваясь неравномерно (температура днища, омываемого горячими газами, существенно больше температуры юбки, охлаждаемой при контакте со стенками цилиндра), принимает форму, близкую к цилиндрической. В то же время небольшое заужение нижней части юбки создает гидродинамический эффект (своего рода подъемную силу) при движении поршня вниз — он как бы всплывает на масляной пленке. Найденные формы позволили уменьшить зазор в цилиндре без опасности заклинивания, снизить шум двигателя и повысить долговечность цилиндропоршневой группы. Они сохранились и у поршней самых современных двигателей. Правда, у них вдобавок появился еще и микрорельеф (микроканавки на наружной поверхности глубиной порядка 5 мкм), создающий дополнительную подъемную силу при движении в цилиндре.

С 1926 года Mahle для компенсации теплового расширения поршней использует биметаллический эффект: стальные терморегулирующие вставки внутри поршня при нагревании препятствуют температурному расширению, позволяя держать малый зазор между поршнем и цилиндром. Эту же задачу решают и пазы в верхней части юбки поршня (в канавке маслосъемного кольца или под ней), которые препятствуют распространению тепла от верхней части поршня, нагретой горячими газами, в юбку. Из-за этого температура стенок юбки уменьшается, что также препятствует тепловому расширению поршня. Описанная комбинированная конструкция — со вставками и пазами — получила название Autothermik и успешно применялась фирмой Mahle с 1930 года для поршней многих автомобильных двигателей.

Схема только с пазами (без стальных вставок) хотя и позволяет несколько уменьшить массу поршня, но заметно уступает схеме Autothermik по тепловому расширению. В настоящее время она применяется редко, в основном на двигателях малого рабочего объема.

С ростом мощности и соответственно нагрузок на поршень от пазов на юбке вообще пришлось отказаться, поскольку они ощутимо ослабляют деталь. Поэтому с 1955 года как на бензиновых, так и на дизельных двигателях широко используется конструкция со стальными вставками без пазов, получившая название Autothermatik. Кстати, поршни такого типа имеют все вазовские двигатели.

Дальнейшее развитие порш-ней — конструкция Duotherm, применяемая в основном на бензиновых двигателях с 1970 года. Здесь «управление» тепловым расширением юбки осуществляется как с помощью биметаллического эффекта, так и расширением верхней части поршня. Вследствие этого схема Duotherm по тепловому расширению лучше предыдущих схем, но несколько уступает по прочности схеме Autothermatik.

В последние годы поршни без стальных вставок и пазов (с «жесткой» юбкой) снова оказались в центре внимания. Автомобильные двигатели последнего поколения, многие из которых имеют алюминиевый блок цилиндров, потребовали облегчения поршней без ухудшения их тепловых, прочностных и других эксплуатационных характеристик. Это оказалось возможным, если перейти на материалы с повышенным содержанием кремния (включая сплав «Mahle 244» с 23-26% кремния). Одновременно были разработаны более эффективные методы получения заготовок поршней, в частности вместо литья под давлением — штамповкой (ковкой) и «жидкой» штамповкой. В результате поршни двигателей последних моделей имеют достаточно простую форму, низкую массу, высокую прочность и износостойкость, обеспечивая при этом минимальный шум двигателя.

Особо следует остановиться на конструкции поршней для дизельных двигателей. Как известно, дизель характеризуется очень высокой степенью сжатия (до 22-24 против 9-10 у бензинового двигателя) и соответственно большими силовыми и тепловыми нагрузками на детали, включая поршень. Его совершенствование опять-таки хорошо иллюстрируется цепочкой разработок фирмы Mahle.

Еще в 1931 году Mahle впервые применила чугунную вставку канавки для верхнего кольца, что позволило заметно увеличить ресурс дизельного двигателя. Эта конструкция с успехом применяется и по сей день, хотя с 1974 года (а особенно в последнее время) для упрочнения верхней канавки все чаще применяют износостойкие покрытия.

Обычно такое покрытие имеет толщину 40 — 120 мкм и делается по всему днищу поршня с «заходом» в канавку верхнего кольца, одновременно защищая края днища поршня от перегрева. Покрытие представляет собой так называемое твердое анодирование, то есть термохимическое преобразование верхнего слоя алюминиевого сплава в твердую керамику (окись алюминия Al2O3). Кстати, подобное покрытие, но меньшей толщины (обычно 10 — 15 мкм), используют и на поршнях высокофорсированных бензиновых двигателей с наддувом. Здесь помимо уменьшения износа верхней канавки ставится цель защиты днища поршня от разрушения детонацией.

В поршнях современных дизелей с наддувом нередко применяют так называемое внутреннее охлаждение, которое уменьшает температуру днища на 30-80°С. Оно состоит в подаче масла из системы смазки через форсунку во внутреннюю кольцевую полость поршня, расположенную около пояса поршневых колец. Очевидно, что изготовление поршня с подобным кольцевым отверстием требует специальной технологии.

Кроме этих особенностей, в последних конструкциях автомобильных дизелей с непосредственным впрыском топлива в цилиндр, отличающихся очень высокой нагрузкой на поршень, появилась и другая особенность. В бобышках поршня здесь устанавливают бронзовые втулки в отверстия для поршневого пальца, а сам палец делают волнистым с плавным уменьшением диаметра на 10-40 мкм вблизи краев отверстий поршня и шатуна. Такие решения обеспечивают долговечность соединения поршня с пальцем там, где традиционные конструкции и материалы уже не работают.

Среди достижений фирмы, касающихся дизелей, нельзя не отметить поршни с армированием керамическими волокнами типа Liquostatik, а также поршни типа Ferrotherm, состоящие из двух частей — уплотняющей и направляющей. На подходе и другие новинки.

Большинство поршней традиционно покрывается тонким (порядка 5 мкм) слоем свинца, олова или цинка. Покрытие препятствует задиру юбки на нерасчетных режимах, например при запуске и прогреве, когда условия смазки ухудшены. В последние годы на юбку поршней стали наносить покрытие типа Grafal, которое представляет собой графит со специальным наполнителем, обеспечивающим прочное сцепление со стенкой юбки. Покрытие имеет толщину 15-30 мкм и существенно влияет на износостойкость поршня.

Для V-образных двигателей с алюминиевыми блоками цилиндров и их поршней фирма разработала специальные технологии и материалы. Так, поршни имеют покрытие типа Ferrostan (1975 г.), представляющее собой слой железа толщиной 12-20 мкм, покрытый сверху тонким (1-2 мкм) слоем олова. Блок цилиндров отливают по специальной технологии Silumal из алюминиевого сплава «Mahle 147» (17% кремния, 4% меди) с осаждением повышенного количества кремния вблизи цилиндров. После обработки поверхность цилиндров травят соляной кислотой, при этом алюминий «уходит» с поверхности и там остается чистый кремний. Таким образом, пара материалов в двигателях с такими блоками цилиндров как бы обратна привычной: «железный» поршень работает в «алюминиевом» цилиндре. Этим достигается исключительная износостойкость пары (в комплекте с хромированными поршневыми кольцами), а также низкий уровень шума из-за очень малого зазора в цилиндре (порядка 0,01 мм). Такие блоки теперь применяют самые именитые фирмы (V8 — «Мерседес», «Ауди», «Порше»; V12 — «Мерседес» и БМВ).

Следует упомянуть также успехи Mahle в создании специальных износостойких покрытий цилиндров, в частности Chromal (1951) и Nikasil (1967). Chromal — это хромовое покрытие толщиной 0,06-0,08 мм, осаждаемое электрохимическим способом на алюминиевый цилиндр. Nikasil состоит из никеля с включением мелких (размером около 3 мкм) частиц карбида кремния; такое покрытие имеет наивысшую износостойкость. Это определило использование алюминиевых гильз цилиндров с покрытием Nikasil для двигателей гоночных автомобилей.

Здесь уместно заметить, что Mahle — основной производитель поршней и гильз цилиндров для автомобилей «Формулы 1» (F1). Подавляющее большинство команд, включая Феррари, Вильямс — Рено, Бенеттон-Рено, МакЛарен — Мерседес и другие, использует именно эти комплектующие. Поршень двигателя F1 должен оставаться работоспособным при частоте вращения до 17000 мин-1, поэтому он отличается предельно низкой массой и малой высотой, изготавливается «жидкой» штамповкой и имеет, как правило, внутреннее охлаждение, причем на последних модификациях используют только два поршневых кольца.

Сегодня фирма Mahle выпускает поршневые группы (комплекты «поршень — поршневые кольца — поршневой палец») для подавляющего большинства моделей и модификаций автомобилей европейского производства. Перечень марок впечатляет: «Мерседес», БМВ, «Фольксваген», «Ауди», «Опель», «Рено», «Пежо», «Ситроен», «Фиат» и многие другие. Эта продукция Mahle идет как для конвейерной сборки, так и в запасные части. Достаточно велика номенклатура поршней и для двигателей японских машин. Не забыты российские потребители: фирмой Mahle освоены и уже продаются на нашем рынке поршневые группы и кольца для двигателей ВАЗ и ГАЗ.

Несмотря на огромную массу выпускаемых деталей (в последние годы к ним прибавились поршневые кольца и подшипники коленчатых валов), фирма выполняет и индивидуальные заказы. Например, здесь могут изготовить поршни для новых двигателей в единичных количествах. Имея серьезную исследовательскую, конструкторскую и производственную базу, Mahle может спроектировать и сделать поршень для любого двигателя, удовлетворяющий всем необходимым требованиям, будь то низкий расход топлива и масла, малый выброс токсичных веществ с выхлопными газами, невысокий шум, максимально возможные мощность и долговечность двигателя. При этом будут выбраны оптимальные сочетания материала, конструкции, геометрии и покрытий поршня, необходимые для выполнения поставленных условий.

Интересно, что у фирмы можно заказать и любые поршни, которые когда-либо изготавливались фирмой Mahle: со времени ее основания сохраняются все формы для отливки.

Поршень ДВС функции,конструкция,виды,применение

Поршень двс

Поршень одна из важных деталей двигателя внутреннего сгорания благодаря которой передается энергия на шатун. В этой статье поговорим про устройство поршня узнаем его назначения и рассмотрим его фото.

Поршень двc на первый взгляд имеет простую конструкцию. Тем не менее не все так просто инженеры постоянно работают над облегчением поршня и увеличением его прочности. Другими словами стараются найти золотую середину. Найти золотую середину бывает не просто, так как поршень постоянно эксплуатируется в экстремальных условиях при высоких температурах и повышенных инерционных нагрузках. Под действием энергии топливно-воздушной смеси поршень отправляется в НМТ ( нижнюю мертвую точку). Поршень в свою очередь передает энергию на коленвал через шатун с которым поршень связан через поршневой палец.

Основные функции поршня двс:

1) Отвод излишков тепла.

2) Благодаря поршню камера сгорания становится герметичной.

3) Передача энергии на коленвал через шатун.

Если сказать кратко задача поршня передать энергию газов на коленвал чтобы последний преобразовал ее в механическую энергию.

Устройство

В последнее время поршень двс изготавливают из алюминия так как этот материал лёгкий и прочный.

Поршни бывают литые и кованные. Литые поршни изготавливаются литьём под давлением. Кованные поршни изготавливают методом штамповки из алюминиевого сплава с небольшим добавлением кремния 15%. Что увеличивает их прочность и износостойкость.

Обсудим основные детали поршня, более подробно устройство поршня можно рассмотреть на схеме.

Днище

Днище поршня может иметь 5 разных видов поверхностей у каждого типа свои преимущества и недостатки.

Плоское. Такой тип поверхности используется довольно часто. Недостаток поршня такого типа, в том что при обрыве ремня поршни гнут клапана.

Вогнутое. Обеспечивает более эффективную работу камеры сгорания. Тем не менее способствует большему образованию отложений при сгорании топлива.

OLYMPUS DIGITAL CAMERA

Выпуклое. Улучшает производительность поршня, но при этом понижает эффективность сгорания топлива.

С циковками. Предотвращают столкновение поршней с клапанами за счёт специальных углублений называемых циковками. Из-за канавок может быть небольшая потеря мощности.

С лужей.Такой тип поршней также оснащен канавками только большего размера. Цель таких поршней понизить степень сжатия. Например они отлично подходят для турбокомпрессора.

Компрессионные кольца

Обычно в двc устанавливается 2 компрессионных кольца и одно маслосъемное. Поршневые кольца изготавливаются из высокопрочного чугуна. Расстояние от днища поршня до первого кольца носит огневой пояс. Функция поршневых колец состоит в том, чтобы поршень плотно прилегал к цилиндру. Для уменьшения трения используется моторное масло.

Одно из важных предназначений поршневых колец заключается в препятствии попадания газов из камеры сгорания в картер. Благодаря добавлению хрома, молибдена, никеля или вольфрама прочность и термостойкость поршневых колец значительно повышается. При износе поршневых колец ресурс поршня понижается.

Маслосъемное кольцо

Маслосъемные кольца служат для того чтобы отводить излишки масла. Маслосъемные кольца обладают дренажными отверстиями.

Юбка

Юбка поршня и есть его тело служит направляющей. Благодаря специальным добавкам в сплав юбка поршня обладает высокой стойкостью к расширению.

Поршневой палец

Поршневой палец соединяет поршень с шатуном. Благодаря стопорному кольцу достигается их прочное соединение.

Ответы на частые вопросы

Для чего в днище поршня дизельного двигателя делают выемку ?

Выемка в поршнях дизельного двигателя называется вихревой камерой( камерой сгорания). Топливо перемешиваясь с воздухом в вихревой камере сгорает более эффективно и быстро.

Температура поршня двс ?

Кратковременно при работе двс поршень может нагреться до 2000 градусов и более. В целом температура поршня при работе может достигать 200 градусов.

Как продлить срок службы поршней ?

Для того чтобы продлить срок службы поршней двс необходимо во время менять масло. Лучше даже немного раньше срока как советуют многие водители.

norfin arcticthe hermitage st petersberg

Все, что вы когда-либо хотели знать о поршнях — Характеристика — Автомобиль и водитель

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Кусочки алюминия внутри вашего двигателя живут в огненном аду. При полностью открытой дроссельной заслонке и 6000 об / мин поршень бензинового двигателя каждые 0,02 секунды подвергается воздействию силы почти 10 тонн, поскольку повторяющиеся взрывы нагревают металл до температуры более 600 градусов по Фаренгейту.

В наши дни этот цилиндрический Аид жарче и интенсивнее, чем когда-либо, а с поршнями, вероятно, станет только хуже. По мере того, как автопроизводители стремятся к повышению эффективности, производители поршней готовятся к будущему, в котором самые мощные безнаддувные бензиновые двигатели вырабатывают 175 лошадиных сил на литр по сравнению со 130 сегодня. С турбонаддувом и увеличенной мощностью возникают еще более жесткие условия. За последнее десятилетие рабочие температуры поршней поднялись на 120 градусов, а пиковое давление в цилиндрах увеличилось с 1500 фунтов на квадратный дюйм до 2200.

Поршень рассказывает историю двигателя, в котором он находится. Заводная головка может показывать отверстие, количество клапанов и то, впрыскивается ли топливо непосредственно в цилиндр. Однако конструкция и технология поршня также могут многое сказать о более широких тенденциях и проблемах, стоящих перед автомобильной промышленностью. Чтобы придумать изречение: как автомобиль едет, так и двигатель; и как двигатель едет, так и поршень. Стремясь повысить экономию топлива и снизить уровень выбросов, автопроизводители требуют более легких поршней с меньшим коэффициентом трения, способных выдерживать более жесткие условия эксплуатации.Именно эти три проблемы — долговечность, трение и масса — отнимают рабочие дни поставщиков поршней.

Во многих отношениях развитие бензиновых двигателей идет по пути, проложенному дизелями 15 лет назад. Чтобы компенсировать 50-процентное увеличение пикового давления в цилиндре, некоторые алюминиевые поршни теперь имеют железную или стальную вставку для поддержки верхнего кольца. Самым горячим бензиновым двигателям скоро потребуется охлаждающий канал или закрытый канал на нижней стороне головки, который более эффективно отводит тепло, чем современный метод простого распыления масла на нижнюю часть поршня.Сквиртеры выстреливают маслом в небольшое отверстие в нижней части поршня, которое питает галерею. Однако эту, казалось бы, простую технологию нелегко изготовить. Создание полого канала означает отливку поршня в виде двух частей и их соединение посредством трения или лазерной сварки.

На поршни приходится не менее 60 процентов трения двигателя, и улучшения здесь напрямую влияют на расход топлива. Снижающие трение пластыри, пропитанные графитом, нанесенные трафаретной печатью на юбку, теперь стали почти универсальными.Поставщик поршней Federal-Mogul экспериментирует с конической поверхностью масляного кольца, которая позволяет уменьшить натяжение кольца без увеличения расхода масла. Более низкое трение кольца может разблокировать до 0,15 лошадиных сил на цилиндр.

Автопроизводители также жаждут новых покрытий, снижающих трение между деталями, которые трутся или вращаются друг о друга. Твердое и скользкое алмазоподобное покрытие, или DLC, перспективно для гильз цилиндров, поршневых колец и пальцев на запястье, где оно может устранить необходимость в подшипниках между пальцем и шатуном.Но это дорого и мало применяется в современных автомобилях.

«[Производители] часто обсуждают DLC, но вопрос о том, попадут ли они в серийные автомобили или нет, — говорит Йоахим Вагенбласт, старший директор по разработке продукции немецкого поставщика автозапчастей Mahle.

Все более сложное компьютерное моделирование и более точные методы производства также позволяют создавать более сложные формы. В дополнение к чашам, куполам и углублениям клапана, необходимым для зазора и достижения определенной степени сжатия, асимметричные юбки имеют меньшую и более жесткую область на упорной стороне поршня, чтобы уменьшить трение и концентрацию напряжений.Переверните поршень, и вы увидите конические стенки толщиной чуть более 0,1 дюйма. Более тонкие стенки требуют более жесткого контроля допусков, которые уже измеряются в микронах или тысячных долях миллиметра.

Более тонкие стены также требуют лучшего понимания теплового расширения объекта, который иногда должен нагреваться ниже нуля до нескольких сотен градусов за считанные секунды. Металл в вашем двигателе не расширяется равномерно при нагревании, поэтому для оптимизации допусков требуется опыт проектирования и возможности точной обработки для создания небольших эксцентриситетов в деталях.

«Все, что мы делаем, не бывает прямым или круглым», — говорит Кери Вестбрук, директор по проектированию и технологиям Federal-Mogul. «Мы всегда вносим какую-то компенсацию».

Поршни дизельных двигателей претерпевают собственную эволюцию, поскольку пиковое давление в цилиндрах возрастает до 3600 фунтов на квадратный дюйм. Mahle и Federal-Mogul прогнозируют переход от литого алюминия к поршням из кованой стали. Сталь плотнее алюминия, но в три раза прочнее, что делает поршень более устойчивым к более высоким давлениям и температурам без увеличения веса.

Сталь позволяет заметно изменить геометрию за счет уменьшения высоты сжатия поршня, определяемой как расстояние от центра пальца запястья до вершины заводной головки. На эту площадь приходится 80 процентов веса поршня, поэтому чем короче, тем легче. Важно то, что меньшая высота сжатия приводит не только к усадке поршней. Это также позволяет сделать блок двигателя короче и легче, так как высота палубы уменьшается.

Mahle производит стальные поршни для передовых турбодизелей, таких как четырехкратный призер Ле-Мана Audi R18 TDI и двигатель Mazda LMP2 Skyactiv-D.Компания начнет поставки своих первых стальных поршней для легкового серийного дизельного двигателя, 1,5-литрового четырехцилиндрового двигателя Renault, в конце этого года.

Неизменная актуальность двигателя внутреннего сгорания обусловлена ​​непрерывной эволюцией его компонентов. Поршни не сексуальны. Они не такие модные, как литий-ионные батареи, такие сложные, как трансмиссия с двойным сцеплением, и не такие интересные, как дифференциал с векторизацией крутящего момента. Тем не менее, после более чем столетия автомобильного прогресса поршни возвратно-поступательного действия продолжают вырабатывать большую часть энергии, которая движет нами.

1. Феррари F136

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Ferrari 458 Italia (на фото) , 458 Spider

Тип двигателя: DOHC V-8

Рабочий объем: 274 куб. Дюймов, 4497 ​​куб.

Удельная мощность: 125,0 л.с. / л.

Макс.скорость двигателя: 9000 об / мин

Диаметр отверстия: 3.70 дюйм

Вес: 2,1 фунта

2. Ford Fox

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Ford Fiesta (на рисунке) , Focus

Тип двигателя: рядный трехцилиндровый с турбонаддувом DOHC

Рабочий объем: 61 куб. Дюйм, 999 куб.

Конкретный вывод: 123.1 л.с. / л

Макс.скорость двигателя: 6500 об / мин

Диаметр цилиндра: 2,83 дюйма

Вес: 1,5 фунта

3. Cummins ISB 6,7

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Ram Heavy Duty (показан)

Тип двигателя: дизельный рядный шестицилиндровый с турбонаддувом

Рабочий объем: 408 куб. Дюймов, 6690 куб.

Конкретный вывод: 55.3 л.с. / л

Макс.скорость двигателя: 3200 об / мин

Диаметр цилиндра: 4,21 дюйма

Вес: 8,9 фунта

4. Ford Coyote

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Ford F-150, Mustang (на фото)

Тип двигателя: DOHC V-8

Рабочий объем: 302 куб. Дюйма, 4951 куб.

Конкретный вывод: от до 84.8 л.с. / л

Макс.скорость двигателя: 7000 об / мин

Диаметр цилиндра: 3,63 дюйма

Вес: 2,4 фунта

5. Fiat Fire 1.4L Turbo

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Dodge Dart; Fiat 500 Abarth (на рисунке) , 500L, 500 Turbo

Тип двигателя: рядный четырехцилиндровый SOHC с турбонаддувом

Рабочий объем: 83 куб. Дюйма, 1368 куб.

Конкретный вывод: от до 117.0 л.с. / л

Макс.скорость двигателя: 6500 об / мин

Диаметр цилиндра: 2,83 дюйма

Вес: 1,5 фунта

6. Cummins ISX15

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: большегрузные автомобили (показан International Prostar)

Тип двигателя: дизельный рядный шестицилиндровый SOHC с турбонаддувом

Рабочий объем: 912 куб. Дюймов, 14 948 куб.

Конкретный вывод: от до 40.1 л.с. / л

Макс.скорость двигателя: 2000 об / мин

Диаметр цилиндра: 5,39 дюйма

Вес: 26,4 фунта

7. Chrysler LA-Series Magnum V-10

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Dodge Viper (показан)

Тип двигателя: толкатель V-10

Рабочий объем: 512 куб. Дюймов, 8382 куб.

Конкретный вывод: 76.4 л.с. / л

Макс.скорость двигателя: 6400 об / мин

Диаметр цилиндра: 4,06 дюйма

Вес: 2,8 фунта

8. Ford EcoBoost 3.5L

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Ford Expedition, Explorer Sport, F-150 (показан) , Taurus SHO, Transit; Линкольн МКС, МКТ, Навигатор

Тип двигателя: с двойным турбонаддувом DOHC V-6

Рабочий объем: 213 куб. Дюймов, 3496 куб.

Конкретный вывод: от до 105.8 л.с. / л

Макс.скорость двигателя: 6500 об / мин

Диаметр цилиндра: 3,64 дюйма

Вес: 2,6 фунта

9. Toyota 2AR-FE

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Scion TC (показан) ; Тойота Камри, РАВ4

Тип двигателя: DOHC рядный четырехцилиндровый

Рабочий объем: 152 куб. Дюйма, 2494 куб.

Конкретный вывод: от до 72.2 л.с. / л

Макс.скорость двигателя: 6500 об / мин

Диаметр цилиндра: 3,54 дюйма

Вес: 2,5 фунта

10. Цепная пила Stihl MS441

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: MS441 Цепная пила C-M Magnum (на рисунке) , MS441 Цепная пила C-MQ Magnum

Тип двигателя: двухтактный одноцилиндровый

Рабочий объем: 4 куб. Дюйма, 71 куб.

Конкретный вывод: 79.7 л.с. / л

Макс.скорость двигателя: 13500 об / мин

Диаметр цилиндра: 1,97 дюйма

Вес: 0,4 ​​фунта

11. Chrysler Hellcat 6.2L

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Применения: Dodge Challenger SRT Hellcat

Тип двигателя: толкатель V-8 с наддувом

Рабочий объем: 376 куб. Дюймов, 6166 куб.

Конкретный вывод: 114.7 л.с. / л

Макс.скорость двигателя: 6200 об / мин

Диаметр цилиндра: 4,09 дюйма

Вес: 3,0 фунта

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

По мере увеличения нагрузки на поршни возрастают и требования к шатунам. Более высокое давление сгорания приводит к большим нагрузкам на стержни, соединяющие поршни с кривошипом.За редким исключением экзотических деталей из титана, шатуны обычно либо изготавливаются из порошковой стали, сжимаются и нагреваются в форме, либо выковываются из стальной заготовки для более эффективных применений. Главный технологический сдвиг — это треснувшие крышки шатунов как для металлических, так и для кованых шатунов. Раньше шток и крышка кривошипа изготавливались как отдельные детали. Стержни с треснувшими крышками выходят из формы как единая деталь в форме гаечного ключа. Конец шатунной шейки протравливается, а затем с помощью пресса защелкивается надвое.Полученная неровная поверхность улучшает выравнивание; обеспечивает более надежное соединение крышки со стержнем; и позволяет получить более тонкий и легкий узел шатуна.

РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ

Неметаллические поршни: Керамика и композиты отличаются меньшим тепловым расширением, меньшим весом и большей прочностью и жесткостью по сравнению с алюминием.В 1980-х годах Mercedes-Benz использовал грант правительства Германии для создания двигателя 190E с поршнями из углеродного композита, который без проблем пробегал 15 000 миль. Несмотря на то, что технология хороша, производство было ограничивающим фактором. Исследование НАСА, проведенное в 1990 году, показало, что изготовление одного поршня из углеродно-углеродной заготовки стоило 2000 долларов. Альтернативой был трудоемкий процесс ручной укладки.

Роторы Ванкеля: Хорошо, хорошо, мы знаем, что это не возвратно-поступательный поршень, но чугунный треугольный ротор является аналогом поршня двигателя Ванкеля, потому что он преобразует энергию сгорания в крутящий момент.Поскольку на горизонте нет новой Mazda RX, наша единственная надежда на роторное возрождение, похоже, — это Audi, которая дразнила нас расширителем диапазона типа Ванкеля в своей гибридной концепции Audi A1 e-tron 2010 года.

Овальные поршни: В то время, когда двухтактные двигатели для мотоциклов были нормой, Honda представила четырехтактный двигатель на Мировом Гран-при мотоциклов в 1979 году. Это один из самых странных двигателей в истории. Байк Honda NR500 GP был оснащен двигателем V-4 с V-образным вырезом под углом 100 градусов, овальными цилиндрами с восемью клапанами на каждом и двумя шатунами на поршень.Герметизация овальных поршней оказалась сложной задачей (первоначально компания Соитиро Хонда поставляла поршневые кольца для Toyota), но это было одной из наименьших проблем команды. Мотоциклы регулярно снимались с гонок World GP и иногда не попадали в квалификацию. В течение трех лет Honda вернулась к традиционному двухтактному гоночному двигателю.

Двигатели с оппозитными поршнями : Дизельный двухтактный двигатель с оппозитными поршнями и оппозитными цилиндрами (OPOC) EcoMotors обеспечивает повышение эффективности на целых 15 процентов по сравнению с обычным двигателем с воспламенением от сжатия.Поместив камеру сгорания между двумя поршнями, компания устранила головки цилиндров и клапанный механизм, которые являются источниками значительных потерь тепла и трения. Двигатель OPOC с меньшим количеством деталей также должен быть дешевле и легче, если он не окажется на полке с фантастическим карбюратором Fish.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

Что такое поршень? Как топливо превращается в сырую энергию в двигателе

Поршень является неотъемлемой частью двигателя внутреннего сгорания , который играет ключевую роль в преобразовании топлива, которое вы используете для заправки автомобиля, в энергию для движения вперед.

Это движущийся компонент, который используется для передачи усилия от газа, который расширяется в цилиндрах, на коленчатый вал для вращения колес.

Они необходимы для преобразования линейного движения в цилиндрах в круговое движение, которое может приводить в движение колеса.

Получить расценки на ремонт двигателя

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания в вашем автомобиле получает энергию за счет сжигания бензина или дизельного топлива. Газы, образующиеся при сжигании топлива при высоких температурах, используются для привода поршней и последующей передачи энергии для вращения колес вашего автомобиля.

Поршень представляет собой толстую металлическую пластину, сжимающую газ внутри цилиндров.

Пластина имеет диаметр, равный ширине цилиндров, поэтому воздух или топливо не могут выходить по бокам.

Он завершает цикл, начиная с верхней части цилиндра, когда открывается клапан для заполнения цилиндра воздухом и топливом.

Затем поршень прижимается вниз для сжатия смеси воздуха и топлива. Важно сжать смесь до того, как она воспламенится, так как это придает взрыву большую мощность и позволяет более эффективно использовать топливо.

Свеча зажигания создает искру, чтобы воспламенить топливо и вызвать взрыв. Сила взрыва перемещает поршень, и выпускной клапан открывается, позволяя сгоревшему топливу и дыму покинуть цилиндр.

При движении поршня вверх и вниз верхняя часть шатуна также перемещается вверх и вниз. Нижняя часть шатуна не зафиксирована в положении, которое позволяет ему двигаться круговым, а не линейным движением. Это круговое движение и будет использоваться для поворота колес.

Этот процесс повторяется снова и снова на высокой скорости в течение всего времени, пока ваш двигатель включен.

Получить расценки на ремонт двигателя

Точность и чистая энергия

Таким образом, легко увидеть, насколько поршень абсолютно необходим для внутренней работы вашего автомобиля.Без поршня не было бы способа превратить сырую энергию, содержащуюся в бензине или дизельном топливе, в силу, способную вращать колеса и вести ваш автомобиль вперед.

Все о двигателе / ​​моторе

Поршень и цилиндр | машиностроение

Поршень и цилиндр , в машиностроении, цилиндр скольжения с закрытой головкой (поршнем), который возвратно-поступательно перемещается в цилиндрической камере немного большего размера (цилиндре) под действием давления жидкости или против него, как в двигателе или насос.Цилиндр паровой машины ( qv ) закрыт пластинами с обоих концов, с возможностью прохождения штоком поршня, жестко прикрепленного к поршню, через одну из торцевых крышек с помощью сальника и набивки. коробка (паронепроницаемое соединение).

поршень и цилиндр

Поршни и цилиндры автомобильного двигателя.

© Thomas Sztanek / Shutterstock.com

Подробнее по этой теме

Бензиновый двигатель

: Двигатели поршневые

Большинство бензиновых двигателей относятся к поршнево-поршневому типу.Основными элементами поршнево-цилиндрового двигателя являются …

Цилиндр двигателя внутреннего сгорания закрыт на одном конце пластиной, называемой головкой, и открыт на другом конце, чтобы обеспечить свободное колебание шатуна, который соединяет поршень с коленчатым валом. Головка блока цилиндров содержит свечи зажигания в двигателях с искровым зажиганием (бензиновых) и обычно топливную форсунку в двигателях с воспламенением от сжатия (дизельных); на большинстве двигателей клапаны, контролирующие подачу свежих топливовоздушных смесей и отвод сгоревшего топлива, также расположены в головке.

На большинстве двигателей цилиндры представляют собой гладко обработанные отверстия в основном конструктивном элементе двигателя, известном как блок, который обычно изготавливается из чугуна или алюминия. На некоторых двигателях цилиндры имеют гильзы (гильзы), которые можно заменить в случае их износа. В алюминиевых блоках используются вкладыши из центробежного чугуна, которые помещаются в форму при литье алюминия; Эти вкладыши не подлежат замене, но их можно расточить.

Поршни обычно снабжены поршневыми кольцами.Это круглые металлические кольца, которые входят в канавки на стенках поршня и обеспечивают плотную посадку поршня внутри цилиндра. Они помогают обеспечить уплотнение для предотвращения утечки сжатых газов вокруг поршня и предотвращения попадания смазочного масла в камеру сгорания.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Важной характеристикой двигателя внутреннего сгорания является степень сжатия, определяемая как общий объем камеры сгорания с полностью выдвинутым поршнем (максимальный объем), деленный на общий объем с полностью сжатым поршнем (минимальный объем).Фактическая степень сжатия на практике несколько меньше. Более высокая степень сжатия обычно обеспечивает лучшую производительность двигателя, но для этого требуется топливо с лучшими антидетонационными характеристиками.

Тесно связана со степенью сжатия характеристика, известная как смещение — то есть изменение объема (измеряемого в кубических дюймах или кубических сантиметрах) камеры сгорания, которое происходит при перемещении поршня из одного крайнего положения в другое. . Смещение связано с номинальной мощностью двигателя.

Поршни двигателя — обзор

3.2 Силовые агрегаты, работающие на природном газе с поршневыми двигателями

Поршневые или поршневые двигатели имеют долгую историю в производстве электроэнергии. Некоторые из самых первых угольных электростанций, построенных в 19 веке, использовали паровые поршневые двигатели для привода генераторов. Современные поршневые двигатели используются в основном на транспорте. Малогабаритные двигатели используются в отечественных транспортных средствах, а более крупные — в грузовых автомобилях, локомотивах и кораблях. Эквивалентные двигатели могут быть адаптированы для рынка производства электроэнергии.Что касается выходной мощности, размеры могут варьироваться от 0,5 кВт до 65 МВт.

Есть две основные категории поршневых двигателей, подходящих для выработки электроэнергии, двигатели с искровым зажиганием и двигатели с воспламенением от сжатия, но только первая из них может работать на природном газе. Двигатели с воспламенением от сжатия обычно работают на дизельном топливе. Также существуют разные циклы, в которых может работать поршневой двигатель. Два наиболее распространенных — это двухтактный и четырехтактный двигатель. Двигатели, использующие оба типа цикла, могут работать на природном газе.

Еще одна переменная — это отношение воздуха к топливу в камере сгорания (цилиндре) двигателя. Некоторые работают с примерно стехиометрическим соотношением кислорода из воздуха и топлива, так что кислорода достаточно для сгорания всего топлива. Такие двигатели относят к двигателям с богатым горением. Эти двигатели, как правило, работают при высоких температурах сгорания, что может приводить к образованию относительно высоких уровней оксидов азота, а также других загрязняющих веществ. Альтернативой является двигатель, работающий на обедненной смеси, в котором гораздо больше воздуха (и кислорода), чем требуется для сгорания.Избыточный воздух приводит к более низким температурам сгорания в цилиндрах двигателя и снижению уровня загрязняющих веществ в выхлопных газах двигателя. В нормальных условиях двигатель с обогащенным газом обычно обеспечивает более высокий КПД, чем двигатель с обедненным газом. Однако современная конструкция двигателей, работающих на обедненной смеси, позволяет им достигать столь же высокого уровня эффективности при сохранении более низких уровней выбросов.

Как и в случае паротурбинных установок, работающих на природном газе, основным экологическим фактором является NO x .Двигатели с интенсивным сгоранием, работающие на природном газе, обычно требуют какой-либо системы каталитического восстановления для удаления NO x и приведения уровня выбросов в пределах местных норм. Некоторые двигатели, работающие на обедненной смеси, могут соответствовать экологическим нормам без необходимости в дополнительных системах контроля выбросов. Двигатели также производят углекислый газ, но маловероятно, что применение технологии улавливания углерода в поршневых двигателях будет экономически эффективным, за исключением самых крупных установок.

Поршневые двигатели, работающие на природном газе, доступны мощностью от 0,5 кВт до примерно 6 МВт. Для электростанций большего размера обычно требуется несколько двигателей. Хотя могут быть построены более крупные поршневые двигатели, они обычно работают на тяжелой нефти в качестве топлива, а не на природном газе. Скорость поршневого двигателя зависит от его размера. Двигатели, работающие на природном газе, могут быть либо высокоскоростными двигателями (1000–3000 об / мин), которые доступны мощностью от 0,5 кВт до 6 МВт, либо среднеоборотными двигателями (275–1000 об / мин), которые обычно начинаются с мощности 1 МВт.Более крупные двигатели с меньшей частотой вращения обычно более надежны и обычно выбираются для непрерывной работы. Там, где требуется прерывистая работа, часто будут выбираться более компактные высокоскоростные двигатели, потому что они, как правило, дешевле, хотя и менее надежны.

Использование двигателей, работающих на природном газе, для выработки электроэнергии разнообразно. Многие из них используются для приложений распределенной генерации, где они поставляют электроэнергию непосредственно местным потребителям. Некоторые из этих двигателей используются в режиме когенерации, в котором отработанное тепло двигателя используется для нагрева воды.Это может привести к очень высокой общей эффективности. Еще одно распространенное применение — резервная сеть, когда системы спроектированы таким образом, что они запускаются, как только происходит отключение сетевого питания. Двигатели, работающие на природном газе, также могут использоваться в сочетании с возобновляемыми источниками энергии, такими как энергия ветра или солнечная энергия, в приложениях типа микросетей, где они также используются в качестве резервного источника питания.

Что такое поршень и как он работает?

Автомобильные двигатели — это сложные звери с сотнями движущихся частей.

Одна из самых узнаваемых деталей по названию — это поршень.

Хотя вы слышали о его важности, вы, вероятно, не можете объяснить, что он делает, верно?

Давайте рассмотрим роль поршня в двигателе автомобиля и выясним, что с ними может пойти не так.

Что такое поршень?

Поршень — это металлический компонент, который движется внутри цилиндра, как таран.

Кромка поршня снабжена кольцами, которые плотно прилегают к стенке цилиндра.

Изготовленный из литого алюминия или чугуна, поршень прикреплен к коленчатому валу с помощью шатуна и поворачивается на шатуне с помощью поршневого пальца.

На каждый цилиндр двигателя приходится по одному поршню.

Когда поршень перемещается в цилиндре вверх и вниз, шатун заставляет коленчатый вал вращаться.

Эта постоянная двухтактная сила преобразуется в мощность для всех функций вашего автомобиля, от вращения генератора переменного тока и насоса гидроусилителя руля до передачи крутящего момента на ведущие колеса.

Что делает поршень?

В любом двигателе внутреннего сгорания (кстати, это все автомобильные двигатели) поршень выполняет четыре роли в каждом цикле.

  • Сначала, когда поршень опускается, он втягивает воздух и топливо в цилиндр или камеру сгорания.
  • Во-вторых, на подъеме он сжимает воздух и топливо в цилиндре, поэтому при воспламенении он взрывается.
  • В-третьих, свеча зажигания воспламеняет топливовоздушную смесь, и сила отбрасывает поршень обратно вниз.
  • В-четвертых, поршень возвращается в верхнюю часть цилиндра, вытесняя сгоревшие газы (выхлопные газы) из цилиндра.
  • Затем цикл повторяется снова и снова, сотни или тысячи раз в минуту.

Что может пойти не так?

Как вы понимаете, поршень должен быть чрезвычайно прочным, чтобы выдерживать всю эту энергию.

Тем не менее, могут возникать проблемы, которые могут быть незначительными и раздражающими или серьезными и катастрофическими.

Удар поршня

Когда поршень изношен и может качаться из стороны в сторону вместо вертикального перемещения, нижний край поршня или юбка контактирует со стенкой цилиндра.

Это признак износа поршня.

Burning Oil

Это серьезная проблема для старых автомобилей.

Двигатель, сжигающий масло, является очевидным признаком того, что поршневые кольца не герметизируют цилиндр и масло попадает в камеру сгорания.

Сломанный шатун

Шатун может оторваться от поршня или коленчатого вала из-за дефекта, неправильного обращения или отсутствия смазки.

Обычно это заканчивается снятием остальной части двигателя.

Свободный поршневой палец

Дребезжание от двигателя может означать, что поршневой палец или палец на запястье имеют чрезмерный люфт в месте соединения с поршнем.

Сгоревший поршень

Неправильная топливовоздушная смесь может быть крайне вредной для здоровья внутри двигателя, даже вызывая расплавление верхней части поршня из-за высоких температур!

Можно ли заменить поршень?

Хорошая новость заключается в том, что поршень можно заменить в большинстве автомобилей, если не поврежден сам блок цилиндров.

И почти в каждом случае замену требует не только один поршень, но и полная перестройка двигателя.

Для многих марок и моделей замена двигателя столь же рентабельна, как и ремонт двигателя из-за проблем с поршнем.

Вы можете ожидать, что ремонт будет стоить от 3100 до 7400 долларов для среднего двигателя и вдвое больше, если это дизельный двигатель.

Если вы считаете, что у вас проблемы с поршнем, важно, чтобы ваш двигатель проверил квалифицированный механик.

Вы можете легко это сделать, выполнив поиск и заказав качественного местного механика на AutoGuru!

Основы поршневого двигателя

— AOPA

Это не двигатель отцовского Oldsmobile

Марк Э. Кук

По сравнению с автомобильными или мотоциклетными двигателями поршневые двигатели самолетов более просты и, как некоторые говорят, примитивны. Тем не менее, пока вы учитесь летать, этот старый дрожащий шумоглушитель перед брандмауэром таит в себе и тайну, и неизвестность. Что там происходит? Будет ли он продолжать движение, пока я пересечу эту линию гребня?

Вероятно, вы много слышите о авиационных двигателях, которые находятся на одном уровне в пищевой цепи от обычных газонокосилок или садовых тракторов, и это правда, если не считать самых грубых упрощений.Силовые установки самолетов — это, за исключением нескольких повстанцев, упрощенные, с воздушным охлаждением, горизонтально расположенные четырехтактные устройства внутреннего сгорания с низкими рабочими скоростями и низкой удельной мощностью. Если бы вам пришлось описать автомобильный эквивалент, наиболее близкий к среднему авиационному, вы бы указали на почтенный двигатель Volkswagen Beetle.

Как и в случае с народным автомобилем, в подавляющем большинстве поршневых авиационных двигателей, используемых сегодня, используется цикл Отто, изобретенный Николаусом Августом Отто в 1876 году. Эти двигатели, также называемые четырехтактными или четырехтактными, содержат цилиндр, в который вставлен поршень. ; Поршень воздействует на коленчатый вал через шатун.Коленчатый вал, который в большинстве самолетов прикреплен болтами непосредственно к гребному винту, преобразует линейные (назад и вперед) движения поршня во вращательную работу.

В схеме цикла Отто есть четыре различных цикла, различающихся ходами поршня внутри цилиндра. При первом такте поршень движется вниз, втягивая топливо и воздух через кошмар домовладельца по водопроводу в камеру сгорания внутри цилиндра. Во втором такте поршень поднимается в канале ствола, сжимая эту смесь.Топливо в простом виде не отличается особой летучестью — то есть не загорится ни при малейшей провокации. Но в сжатом виде будет. Типичные авиационные двигатели пытаются сжать эту топливно-воздушную смесь в 6,5-8,5 раза; это называется степенью сжатия. Степень сжатия фактически измеряется путем определения объема всего цилиндра с поршнем в нижней части ВМТ хода (нижняя мертвая точка) до объема с поршнем в верхней части ВМТ хода (верхняя мертвая точка).Общий объем всех цилиндров, измеренный при НМТ, называется смещением. Таким образом, 1,6-литровый двигатель в вашем автомобиле имеет рабочий объем 1,6 литра (около 96 кубических дюймов), а Lycoming O-235 имеет рабочий объем около 235 кубических дюймов.

После того, как поршень сжал смесь, свеча зажигания (или две в авиационных приложениях) зажигает смесь. Возникающий в результате взрыв толкает поршень в сторону НМТ и называется рабочим ходом. При последнем движении вверх по стволу поршень выталкивает отработанные газы через выхлопную систему в небо.

Движение впускных и выхлопных газов в цилиндр и из него регулируется клапанами в форме тюльпана, расположенными в верхней части головки цилиндров. Клапаны, в свою очередь, активируются короткими коромыслами через длинные толкатели (вы найдете их над коленчатым валом на большинстве Lycoming и ниже на Continentals). Распределительный вал, в основном стальной стержень с яйцевидными выступами по длине, приводит в действие толкатели через толкатели размером с пленочную банку (или гидравлические регуляторы зазора) в корпусе двигателя, непосредственно примыкающем к распределительному валу и коромыслам на клапанной стороне толкателей .

Чтобы лучше понять компоновку оборудования, давайте посмотрим на Lycoming O-235, используемый в Cessna 152; другие распространенные типы, такие как Continental O-200 в Cessna 150 и другие версии силовых установок обеих марок, имеют одинаковую базовую компоновку. Между прочим, эти номера моделей что-то означают. О означает «против»; ряды цилиндров расположены на 180 градусов друг от друга или плоские, как у двигателя Beetle. (Умные инженеры иногда называют эти 180-градусные V-образные двигатели, но что они знают?) Следующее число — это общий объем двигателя в кубических дюймах, округленный до ближайшего 0 или 5.Буква I в префиксе означает впрыск топлива. Для Continentals приставка TS означает «с турбонаддувом» или «с турбонаддувом», а для Lycomings вы найдете приставку T. Наличие буквы G в приставке указывает на редукторный двигатель, у которого винт вращается медленнее, чем сам двигатель; Однако подавляющее большинство популярных двигателей имеют прямой привод. Эти приставки являются аддитивными, так что GTSIO-520 — это двигатель объемом 520 кубических дюймов с турбонаддувом и оппозитным двигателем. Суффиксы к смещению обозначают вариации типа.Lycoming O-235-C2A — это, например, 115-сильный вариант двигателя, а O-235-F2A — на 10 лошадиных сил больше.

Вот и цифры. Проще говоря, двигатель внутреннего сгорания вырабатывает энергию, преобразовывая тепло в движение. Тепло происходит от сжигания топлива (в сочетании с большим количеством воздуха, обычно в соотношении 15: 1). Поскольку они имеют воздушное охлаждение, в цилиндрах используются тонкие ребра — в отличие от Cadillac 1959 года — чтобы способствовать передаче тепла, производимого в процессе сгорания, воздушному потоку, направляемому вокруг них через капот и металлические перегородки вокруг цилиндров.

Цилиндр состоит из литой алюминиевой головки, которая постоянно — по крайней мере, для пилота — соединена со стальным стволом, на который можно наносить покрытие или обрабатывать с помощью любого количества процессов.

Если вы сравните средний авиадвигатель с новейшими двигателями из Германии, Японии или Детройта, вы будете сильно разочарованы. Вы не найдете высокотехнологичного электронного впрыска топлива, верхних распределительных валов, сверхвысоких скоростей или приемлемой для инженеров высокой удельной мощности.Но двигатели рассчитаны на длительную работу на максимальной номинальной мощности; 2000 часов в автомобиле — это 110 000 миль, и автомобиль потребляет в среднем около 20 процентов мощности. Подумайте об этом, когда пересекаете следующую линию гребня во время поездки по пересеченной местности.

Что такое поршневые кольца? И что они делают? : Блог AMSOIL

В какой-то момент каждый подающий надежды редуктор или любопытный автомобилист спрашивает: что такое поршневые кольца? А что делают поршневые кольца?

Проще говоря, поршневые кольца образуют уплотнение между поршнем и стенкой цилиндра , которое предотвращает попадание сжатых продуктов сгорания в масляный картер.Они также регулируют расход масла , предотвращая попадание избыточного масла в камеру сгорания и сгорания. Правильно функционирующие кольца жизненно важны для максимальной мощности и эффективности двигателя.

Давайте углубимся.

Для чего нужны поршневые кольца?

Большинство стандартных автомобильных поршней имеют три кольца, как показано здесь на этом новом автомобильном поршне.

Верхнее кольцо и второе кольцо обеспечивают плотное прижатие к стенке цилиндра и герметизацию камеры сгорания, удерживая дымовые газы внутри и масло наружу.

Масло Кольцо соскребает масло со стенок цилиндра на пути вниз по цилиндру, оседая обратно в масляный поддон. Поскольку очень тонкая масляная пленка смазывает поверхность раздела кольцо / стенка цилиндра, некоторое количество масла может гореть во время сгорания — это нормально. Однако то, что составляет «нормальный» расход масла, зависит от двигателя.

Когда хорошие поршневые кольца выходят из строя

Изношенные кольца могут привести к образованию зазора между поверхностью кольца и стенкой цилиндра.Во время сгорания сжатые газы, которые приводят поршень в движение вниз по цилиндру и вращают коленчатый вал, могут продувать поршень и перемещаться по стенке цилиндра в масляный поддон, забирая с собой мощность и эффективность. Прорыв также загрязняет моторное масло, снижая его производительность и срок службы.

Застрявшие кольца могут привести к тому же сценарию. Чрезвычайно горячие газы сгорания могут разрушать масло, образуя нагар в кольцевых канавках. Побочные продукты бензина также могут образовывать отложения.Тяжелые отложения приводят к тому, что кольца застревают в канавках, а не выступают над поршнем, позволяя образоваться зазору между кольцом и стенкой цилиндра, что вызывает прорыв и расход масла.

Синий дым, резкий запуск и потеря мощности

Негативные последствия неисправных поршневых колец часто легко заметить. Чрезмерный расход масла может привести к выходу синего дыма из выхлопной трубы, особенно при запуске, прежде чем двигатель нагреется и кольца в цилиндре расширились.Сжигание масла также означает, что вам нужно будет чаще доливать масло.

Изношенные или застрявшие кольца также могут привести к тяжелому запуску и снижению мощности .

Когда двигатель вращается, поршень сжимает топливно-воздушную смесь перед сгоранием. Однако плохие кольца позволяют части топлива / воздуха выходить из камеры сгорания, эффективно снижая компрессию двигателя и затрудняя запуск двигателя. Когда он работает, пониженная компрессия лишает двигатель мощности.

На изображении выше верхнее кольцо застряло в канавке, на что указывает тот факт, что оно не выступает над поршнем. Застрявшие поршневые кольца снижают мощность двигателя и позволяют газам сгорания попадать в масляный картер, загрязняя масло.

Поршневые кольца на изображении выше свободны в своих канавках и работают нормально

Профилактика — лучшая практика

Предотвращение износа и заклинивания колец жизненно важно для максимального увеличения мощности, эффективности и срока службы вашего двигателя.Все начинается с использования высококачественного синтетического масла, такого как AMSOIL Signature Series Synthetic Motor Oil, которое борется с износом и выдерживает экстремальные температуры, сохраняя поршни в чистоте.

Если вы подозреваете, что кольца изношены или застряли, подумайте о том, чтобы использовать масло самой высокой вязкости, рекомендованное производителем оригинального оборудования (OEM). Некоторые производители оригинального оборудования рекомендуют диапазон вязкости в зависимости от вашего климата (например, 5W-20, когда холодно, 10W-30, когда температура выше 0 ° F). Использование наивысшей рекомендованной вязкости может помочь закрыть зазор между кольцами и стенкой цилиндра. .

Вы также можете попробовать освободить застрявшие кольца с помощью качественной промывки двигателя или присадки к топливу, предназначенной для очистки от отложений, например, AMSOIL Engine and Transmission Flush или AMSOIL P.i.® Performance Improver.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *