Как смазывается коленвал: Как масло распределяется по двигателю

Содержание

Как масло распределяется по двигателю

Задача моторного масла — смазывать вращающиеся компоненты двигателя. Для этого масло должно распределяться под давлением. Оно проходит по каналам через весь двигатель и потом попадает в маслосборник — поддон в нижней части двигателя, оснащенный сливной пробкой.

Масляный фильтр и фильтрующий элемент

Насос

Чтобы увеличить давление масла, двигатель оснащают насосом. Большинство насосов — это комплект механизмов, которые втягивают масло под низким давлением и сжимают его. В процессе, давление масла повышается и проходит через камеру, оснащенную пружинным клапаном.

Масляный фильтр

Из насоса масло попадает в масляный фильтр и проходит через фильтрующий материал в масляные каналы внутри двигателя. Масляный фильтр также оснащен клапаном, который не допускает падения давления в случае засорения фильтра.

Маслосборник двигателя

Подшипники

Пройдя фильтр, масло попадает в пространство между подшипниками и смазывает шейку коленчатого вала. Подшипники — это обычные металлические муфты, которые охватывают вращающиеся компоненты двигателя. Основные подшипники находятся на коленвале, а подшипники шатуна — на кривошипах.

В узком пространстве между подшипниками и движущимися поверхностями коленчатого вала образуется тонкий слой масла, чтобы металлические детали не соприкасались друг с другом. Если давление масла не превышает допустимые значения, а рабочая температура находится в допустимых пределах, то масло обеспечивает защиту и продлевает срок службы деталей.

Маслосборник

Кулачковый вал

Некоторое количество масла выталкивается по бокам подшипников и стекает в маслосборник. Если просвет слишком большой — 0,1 мм и больше, давление в верхней части двигателя начинает падать. Если загорелась лампочка низкого уровня масла, или вы слышите глухой стук в районе впускного клапана сверху двигателя — это признак того, что в верхнюю часть двигателя поступает недостаточное количество масла.

Коленвал и кулачковый вал

Большая часть масла смазывает коленвал, остальная часть — кулачковый вал и коромысла клапанов. От оснащения автомобиля верхним распредвалом или толкателями зависит движение масла в двигателе:

  1. Оснащен толкателями. Масло под давлением выталкивается в кулачки для подъема клапана. Кулачки выкачивают масло через полые штоки толкателя клапана и смазывают коромысла клапана.
  2. Оснащен верхним распредвалом. Масло поступает в распредвал и смазывает точки соприкосновения распредвала со штоками клапанов.

Поршневые кольца цилиндров

Поршневые кольца цилиндров

Во многих конструкциях шатунов предусмотрено небольшое отверстие, через которое масло разбрызгивается на цилиндр и смазывает контактную поверхность поршневого кольца цилиндра. Специальные кольца внизу комплекта поршневых колец удаляют избыточное количество масла и возвращают его в маслосборник.

После смазки распредвала и связанных с ним деталей, масло самотеком поступает в маслосборник, после чего все повторяется заново.

Коленчатый вал и масляные каналы в нем (Часть 3).

Коленчатый вал и масляные каналы в нем (Часть 3).

Подробности

В прошлых статьях (часть1 и часть 2) мы подробно разобрали конструкции и разновидности коленчатых валов. Теперь настало время разобраться, как происходит смазка шеек вала. О самой системе смазке мы поговорим отдельно, а сейчас разберем только то, как происходит подача смазки к коренным и шатунным шейкам.

В блоке цилиндров постели коленчатого вала к каждой коренной шейки подходят масляные каналы. Через отверстие во вкладыше (подшипнике) масло под давлением подается в зазор между коренной шейкой вала и вкладышем, образовывая масляный клин.

Внутри коленчатого вала проходят масляные каналы, через которые масло попадает от коренных шеек к шатунным. Сам канал в большинстве случаев стараются сдвинуть от вершины шейки и зачастую делают на нем радиусную фаску, которую потом отполировывают.

Теперь разберем наиболее популярные схемы смазки коленчатого вала. Наиболее распространенной является следующая схема:

  1. В коренной шейке сверлится сквозное отверстие. В шатунной сверление происходит под наклоном до попадания в сквозное отверстие (масляный канал) коренной шейки. Данная схема расположения масляных каналов в коленчатом валу позволяет обеспечить непрерывное поступление масла к шатунным шейкам при установке нижних вкладышей без канавки. Как правило, на коленвалах рядных двигателей поступление масла к шатунным шейкам индивидуально, то есть от одной коренной шейки смазывается одна шатунная. Таким образом, получается, что одна коренная шейка остается без масляного отвода, на ней устанавливаются упорные полукольца и оба вкладыша могут не иметь проточки.
  2. Не менее популярной схемой смазки является схема с косым сверлением от шатунной шейки к коренной. Для непрерывной подачи масла с таким расположением масляных каналов необходимо чтобы оба вкладыша (верхний и нижний) имели проточку. Однако существуют двигатели, в которых коренные подшипники подвержены большим нагрузкам, поэтому нижний вкладыш у них ставят без проточки. В таком случае подача масла к шатунной шейке получается прерывистой. Для продления ресурса шатунных подшипников приходится очень точно подбирать расположение масляного отверстия на шейке. Расположение отверстия подбирается в зависимости от того, в каком положении находится коленчатый вал и когда подача масла для него жизненно необходима.
  3. Такая схема косого сверления от шатунной шейки к коренной часто применима на коленчатых валах V – образных двигателей. Отличие состоит лишь в том, что от одной коренной шейки смазываются две шатунные.

  4. В отличие от двух предыдущих схем, эта уже менее популярна. Суть здесь такова, в шатунной и коренной шейке сверлятся сквозные масляные каналы, затем косым сверлением они соединяются. Минусом данной схемы является то, что при ее реализации приходится дополнительно ставить заглушки, одну или две. Рядом с заглушкой образовывается непроточный участок, то есть, в нем нет циркуляции. В итоге это место является замечательном грязесборником. Еще сравнительно недавно это считалось плюсом, так как происходила дополнительная центробежная очистка масла. В настоящее время с появлением современных масляных фильтров, с тонкой очисткой, эта необходимость отпала. И в итоге эта стало настоящей бедой, так как грязь вычистить с этих мест достаточно проблематично, а при самостоятельном отрыве и попадании в масляный канал, она может его закупорить и привести к масляному голоданию. А так как эта грязь содержит твердые частицы, она может повредить поверхность вкладышей и шеек коленвала.

Существуют и другие схемы смазки, они не получили должного распространения и являются скорее индивидуальными схемами для отдельных марок. Например:

  • на некоторых двигателях HONDA подвод масла происходит от крышек коренных подшипников выполненных как одно целое.
  • на четырех цилиндровых двигателях NISSAN подача масла к шатунным шейкам происходит только от второй и четвертой коренной шейки.
  • на двигателях ALFA ROMEO можно встретить схему, где масляные каналы подведены лишь к первой, третей и пятой коренным шейкам. От них отходят каналы к шатунным. Вторая и четвертая коренная шейка получают смазку через шатунные.
  • иногда можно встретить на двигателях MAZDA шатунные шейки с дополнительным смазочным отверстием.

Коленчатый вал в процессе работы подвержен циклическим нагрузкам, поэтому большое значение здесь имеет усталостная прочность. Максимально уязвимые места на коленчатом валу, где могут появиться трещины – это на щеке между шатунной и коренной шейкой. В этом месте она ослаблена проходящим внутри масляным каналом.

Как правило, коленчатый вал за исключением масляных каналов внутри не имеет полостей, но в современных двигателях для облегчения веса все чаще стали использоваться полые коленчатые валы. В таких валах полости внутри имеют сложное строение позволяющее огибать масляные каналы. Такие валы легче на 25-30%, что позволяет снизить нагрузку на подшипники. Но в то же время такие валы более подвержены деформации.

В следующей статье мы с вами поговорим о хвостовике и заднем фланце коленвала.

Как смазывается коленвал на 2 тактном двигателе

В двухтактных двигателях все рабочие циклы (процессы впуска топливной смеси, выпуска отработанных газов, продувки) происходят в течении одного оборота коленвала (а не двух, как в четырёхтактных) за два (а не четыре) основных такта. У двухтактных двигателей отсутствуют клапаны (как в четырехтактных ДВС), их роль выполняет сам пoршень, который в процессе перемещения то закрывает, то открывает впускные, выпускные и продувочные окна. Поэтому двухтактный двигатель более прост в конструкции.

Мощность

двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего в 2 раза числа рабочих тактов. Однако неполное использование хода поршня двухтактного двигателя для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на продувку приводят практически к увеличению мощности только на 60 – 70%.

Итак, рассмотрим конструкцию двухтактного ДВС, показанную на рисунке 1:

Двухтактный двигатель состоит из картера, в который на подшипниках с двух сторон установлен коленчатый вал и цилиндр.

Смазка всех трущихся поверхностей и подшипников внутри двухтактных двигателей происходит за счёт топливной смеси, – смеси бензина и масла в определённой пропорции. Из рисунка 1 видно, что топливная смесь (желтый цвет) попадает и в кривошипную камеру двухтактного двигателя (полость, где закреплен и вращается коленчатый вал), и в цилиндр. Смазки там нигде нет, а если бы и была, то смылась бы топливной смесью. Вот по этой причине масло и добавляют в определенной пропорции к бензину. Тип масла используется специальный, именно для двухтактных двигателей. Оно должно быть способно выдерживать высокие температуры и, сгорая вместе с топливом, оставлять минимум зольных отложений, то есть нагара.

Теперь о принципе работы. Весь рабочий цикл в двухтактных двигателях осуществляется за два такта.

1. Такт сжатия – двухтактный двигатель

Пoршень двухтактного двигателя поднимается от НМТ поршня (в таком положении он находится на рис. 2) к ВМТ поршня (положение поршня на рис.3), перекрывая сначала продувочное 2, а затем выпускное 3 окна цилиндра двухтактного двигателя. После закрытия поршнем выпускного отверстия в цилиндре начинается сжатие ранее поступившего в него топливной смеси. Одновременно в кривошипной камере 1 вследствие ее герметичности и после того как пoршень перекрывает продувочные окна 2, под поршнем создается разряжение, под действием которого из карбюратора через впускное окно и открывающийся клапан поступает горючая смесь в кривошипную камеру двухтактного двигателя.

2. Такт рабочего хода – двухтактный двигатель

При положении поршня около ВМТ сжатая рабочая смесь (1 на рис. 3) воспламеняется электрической искрой от свечи, после этого температура и давление смеси резко подскакивают. Под действием теплового расширения газов поршень двухтактного двигателя опускается к НМТ, в это время расширяющиеся газы сгоревшей смеси совершают полезную работу, толкая поршень. В это же время, опускаясь, пoршень создает высокое давление в кривошипной камере двухтактного двигателя (сжимая топливо-воздушную смесь в ней). Под действием давления клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор и затем в карбюратор.

Когда поршень двухтактного двигателя дойдет до выпускного отверстия (1 на рис. 4), оно откроется и таким образом выйдут отработавшие газы в выпускную систему, давление в цилиндре понизится. При дальнейшем перемещении пoршень открывает продувочное (впускное) окно (1 на рис. 5) и горючая смесь, сжатая в кривошипной камере, поступает по каналу (2 на рис. 5), заполняя цилиндр и одновременно продувая его от остатков отработавших газов.

Далее цикл повторяется.

Немного о принципе зажигания. Так как топливной смеси нужно время для воспламенения, искра на свече появляется чуть раньше, чем пoршень достигает ВМТ. В идеале, чем быстрей движения поршня, тем раньше должно быть зажигание, потому что пoршень от момента искры быстрее доходит до ВМТ. Существуют механические и электронные устройства, меняющие угол зажигания в зависимости от оборотов двигателя.

У большинства скутеров до 2000 г.в. таких систем не было и угол опережения зажигания был установлен в расчете на оптимальные обороты. На некоторых же скутерах, например Honda DioZX AF35, установлен электронный коммутатор с динамическим опережением, то есть с опережением, зависящим от оборотов коленвала. С ним расширяющаяся горючая смесь совершает работу с максимальной полезной отдачей, и двигатель развивает больше мощности.

Преимущества и недостатки двух- и четырехтактных двигателей.

1. Меньший вес. Пример: 15 л.с. Двухтактный 36 кг четырёхтактный 45 кг.

2. Цена. Четырёхтактные двигатели сложнее в производстве, состоят из большего количества деталей, поэтому всегда дороже двухтактников.

3. Удобство перевозки двухтактника. Можно возить в любом положении, перед началом эксплуатации не требует отвешивания. Т.е. достал из багажника, поставил, завел, поехал.

4. Двухтактный двигатель живее реагирует на ручку газа. В четырёхтактных для совершения полного рабочего цикла поршню необходимо сделать 2 полных оборота в то время как в двухтактных только один. Частый вопрос: А правда ли что четырёхтактный 15 л.с. бежит быстрее чем такой же двухтактный? Ответ: нет не правда. У обоих этих двигателей мощность на валу 15 л.с. При прочих равных условиях почему один двигатель должен ехать быстрее второго?

1. Больший расход топлива. Напомним, примерный расход можно высчитать по формуле: для двухтактного 300 грамм на одну лошадинную силу, для четырёхтактного 200 грамм.

2. Шумность. На максимальных оборотах двухтактные двигатели как правило работают немного громче четырёхтактных.

3. Комфорт. Четырёхтактные двигатели не так вибрируют на малых оборотах (Касается только двухцилинровых двигателей. Одноцилиндровые и двух и четырёхтактные вибрируют примерно одинаково) и не так дымят как двухтактные.

4. Долговечность. Довольно спорный пункт. Бытует мнение, что двухтактные двигатели менее долговечны. С одной стороны это понятно, потому как масло для смазки трущихся элементов двигателя подается вместе с бензином, а значит работает не так эффективно в отличие от четырёхтактных двигателей где трущиеся элементы буквально плавают в масле. Но с другой стороны четырёхтактный двигатель по конструкции намного сложнее конкурента, состоит иззначительно большего числа деталей, а золотой принцип механики «Чем проще тем надежнее» еще никто не отменял.

Какой же двигатель выбрать?

Взвесь все за и против изложенные выше и сделай выбор самостоятельно. Однозначного ответа на вопрос: какой из двигателей лучше ты не найдешь ни в одной из книг ни на одном из форумов. И у тех и у других типов двигателей есть свои поклонники.

Смазка деталей двигателя нужна для уменьшения трения между ними (а значит, уменьшения износа) и отвода тепла. Смазка деталей в двигателях внутреннего сгорания осуществляется моторными маслами. Тонкая масляная пленка между трущимися деталями отделяет их друг от друга. Нехватка масла в каком-либо месте может стать причиной местного перегрева, задира и даже сваривания деталей между собой.

Двухтактный двигатель с системой раздельной смазки: 1 – масляный бак; 2 – карбюратор; 3 -разделитель троса «газа»; 4 – ручка «газа»; 5 – трос управления подачей масла; 6 – плунжерный насос-дозатор; 7 – шланг, подводящий масло во впускной патрубок.
Схема привода масляного насоса двухтактного двигателя.

Моторные масла должны обладать стойкостью к воздействию высоких температур в сочетании с малой вязкостью при низких температурах, что важно для уверенного пуска холодного двигателя. Кроме того, моторные масла не должны при сгорании образовывать нагар и быть агрессивными по отношению к резиновым уплотнениям и деталям из пластмасс. Для смазки деталей двигателей скутеров применяются минеральные (получаемые из нефти путем перегонки), синтетические и полусинтетические масла. У синтетических масел нефтяная основа отсутствует, за счет эффективных антифрикционных присадок повышается (по сравнению с минеральными маслами) срок службы двигателя, облегчается его пуск при низких температурах. Полусинтетические масла представляют собой смесь высококачественных нефтяных и синтетических базовых компонентов.

Смазка двухтактных двигателей

Наиболее просто осуществляется смазка трущихся деталей двухтактного двигателя – предварительным смешиванием в баке определенного количества масла с топливом (в пропорции 1:25-1:50). Эта смесь циркулирует через кривошипную камеру, смазывая маслом, находящимся в виде мелких капель в топливо-воздушной смеси, подшипники коленчатого вала, шатуна и зеркало цилиндра, по которому движется поршень. Затем капли масла сгорают в цилиндре вместе с рабочей смесью.

Масляный насос двухтактного двигателя со снятой крышкой (стрелкой показан приводной вал).

Распределительный вал (или два вала) приводится во вращение от коленчатого вала цепью или зубчатым ремнем, в приводе используются натяжитель и успокоитель цепи или ремня.

Мощности современных серийных 50-кубовых скутеров доходят до 5,5-7,5 л. с. при массе 80-90 кг. Такой удельной мощностью обладали в 60-х годах 125-150-кубо-вые дорожные мотоциклы и мотороллеры, которые разгонялись до 70-90 км/ч.

Расположение узлов системы смазки на двухтактном двигателе: 1 – масляный насос; 2 – впускной патрубок; 3 – карбюратор.

До середины 80-х годов такой способ смазки был самым распространенным в двухтактных двигателях. Количество масла, примешиваемого к топливу, выбиралось, исходя из потребности для режима максимальной мощности, в то время как это количество масла для малых нагрузок было слишком большим, и мотор дымил. Данную проблему стало возможно частично решить при использовании так называемой системы раздельной смазки, устанавливаемой на все современные скутеры с двухтактными двигателями. В этой системе насос нагнетает масло из отдельного бачка во впускной патрубок в нужном количестве. В таких системах подача масла на малых нагрузках доводится до соотношения 1 : 200, что снижает дымность выхлопа, уменьшает общий расход масла и уровень образования нагара в камере сгорания.

В системе раздельной смазки применяется насос плунжерного типа. Он приводится в действие от левой шейки коленчатого вала посредством червячной передачи. Масло находится в специальном бачке, который устанавливается выше насоса и поступает к нему самотеком. Индикаторная лампа на панели приборов загорается, если в бачке остается мало масла. Количество подаваемого во впускной патрубок масла зависит от частоты вращения коленчатого вала. В некоторых конструкциях имеется еще одна регулировка его производительности – от положения ручки «газа», для чего насос соединен с ней отдельным тросом (скутеры «Хонда»).

У скутеров итальянской фирмы «Априлия» с системой впрыска топлива для двухтактного двигателя Ditech (подробнее об этой системе рассказано ниже) масляный насос имеет электронное управление, позволяющее точно соотносить подачу масла с нагрузкой на двигатель. На холостом ходу достаточно подавать лишь одну каплю масла каждые 5 мин работы.

Смазка четырехтактных двигателей

В системах смазки этих двигателей обязательно присутствует механический масляный насос, расположенный внутри картера. Кроме насоса, система смазки содержит масляный фильтр, клапаны (обратный и редукционный) и магистрали в виде каналов (трубок и сверлений в деталях). Наиболее распространены масляные насосы шестеренного типа с внутренним или наружным зацеплением шестерен. Вал насоса или непосредственно ведущая шестерня приводятся во вращение от коленчатого вала двигателя.

Система смазки четырехтактного двигателя с «мокрым» картером: 1 – поддон картера; 2 – маслозабор-ник; 3 – масляный насос; 4 – масляный фильтр; 5 – предохранительный клапан.

После пуска двигателя насос через маслозаборный канал всасывает масло из поддона, который расположен в нижней части картера. Затем масло захватывается зубьями шестерен и нагнетается к выходной полости. Далее под избыточным давлением оно подается по каналам картера к подшипникам коленчатого вала и деталям ГРМ.

В четырехтактных двигателях используются три способа подачи масла к трущимся поверхностям: под давлением, разбрызгиванием и самотеком. Большинство пар трения смазывается под давлением. Поршню и его пальцу обычно хватает масла, разбрызгиваемого из отверстий нижней головки шатуна или отдельной форсунки, направленной на зеркало цилиндра. Некоторые пары трения смазываются масляным туманом, который образуется при разбрызгивании капель масла движущимися деталями кривошипно-шатунного механизма. И, наконец, еще одна группа деталей смазывается маслом, стекающим по особым каналам и желобам. Картер (поддон картера) обычно является масляным резервуаром (так называемый мокрый картер). Смазав все подвижные детали, масло стекает обратно в поддон, а затем вновь и вновь повторяет свой путь.

Система смазки четырехтактного двигателя с сухим картером.

Некоторые скутеры имеют систему смазки с сухим картером. То есть у них в картере много масла не собирается, а стекающее масло сразу откачивается одной из секций насоса в отдельный масляный бачок, откуда другой секцией насоса под давлением подается к поверхностям трения. Бачок обычно располагается в передней части скутера.

В двигателе воздушного охлаждения масло может нагреваться до высоких температур. Чтобы оно не перегрелось и не утратило смазывающих свойств, в систему смазки обычно встраивают радиатор, который обычно выносят под переднюю облицовку скутера, соединяя с системой смазки гибкими шлангами. Уровень масла в четырехтактных двигателях контролируют при помощи щупа (с метками минимального и максимального уровня) или через специальное контрольное отверстие либо через прозрачный «глазок». Работа двигателя с пониженным уровнем масла недопустима. При снижении уровня масла его следует долить, а если это происходит слишком часто, стоит задуматься о ремонте мотора.

Шестеренный масляный насос с внутренним зацеплением шестерен.

Масло в процессе работы загрязняется продуктами износа деталей двигателя и частицами сажи, проникшими в кривошипную камеру через зазор между поршнем и цилиндром. Для улавливания этих частиц служит масляный фильтр, размещенный в нагнетательной магистрали. В двигателях скутеров он сменный и выполнен из гофрированного картона. Такую конструкцию еще называют бумажным фильтром картриджного типа. В фильтре обычно предусматривают перепускной клапан. При нормальных условиях эксплуатации этот клапан закрыт, но, если фильтр загрязнится до такой степени, что перестанет пропускать масло, клапан откроется и пустит масло в обход фильтра. Естественно, очищаться оно не будет, но хотя бы продолжит поступать к деталям двигателя. В любом случае повышенный износ лучше, чем заклинивание мотора из-за масляного голодания. Некоторые двигатели оборудованы и клапаном-ограничителем давления масла.

Несмотря на более высокую цену, полусинтетические и синтетические масла находят все более широкое применение на скутерах. Моторные масла для двухтактных и четырехтактных двигателей различаются по своему составу.

от Воскресенье, 23 Января 2011. Опубликовано в Ремонт двухтактного скутера Просмотров 12434

Опорные подшипники коленвала, шатун. Эти детали несут основную нагрузку, и любой серьезный ремонт обязательно связан с их заменой.

Износ опорного подшипникиа к/вала. Радиальный люфт.

Он гудел, стонал и плакал, но его не меняли. Тогда вместе с коленвалом он начал разбивать посадочное гнездо. Результат: замена картера или его сложный ремонт.

На вопрос, что долговечнее: вкладыш, покрытый мягким сплавом или стальной каленый шарикоподшипник, даже многие инженеры ответят: конечно, мол, подшипник. Неверно. Во вкладышах (подшипнике скольжения) всегда присутствует давление масла, что подается маслонасосом и вал работает не по поверхности скольжения, он лежит на масляной подушке, он обернут маслом. Во время работы он всплывает и вообще не касается металлической поверхности. Шарик (или ролик) подшипника поставлен в неизмеримо более жесткие условия. Он катится в бензино-масляной эмульсии. Он едва смазан. Удары от смен нагрузок, собственная инерция шариков и сепаратора, нагрузки, передаваемые шатуном все это сваливается на голову бедного шарика. Он начинает греться. Нагреваясь, он интенсивно выпаривает масло с беговой дорожки, и. греется еще сильнее. На оборотах, близких к максимальным, он вообще перестает смазываться. Центробежная сила срывает маслопленку, а сам подшипник переходит в высшую стадию нагрузки к его разрушению подключается насосный эффект самих шариков. Каждый из них (шариков) при 7000-7500 оборотах начинает работать, как лопасть центробежного насоса.

При этом шарики-лопасти обезжиривают беговую дорожку. Подшипник начинает гореть. Только прессовая посадка в гнездо картера кое-как спасает положение дюралевый картер отбирает часть тепла. Во время разборки на подшипниках, работавших с перекрутом, обнаруживаются цвета побежалости явный знак перегрузки по оборотам.

Бочка обыкновенная. Результат резких ударных нагрузок и хронического перегрева.

Кроме рассмотренного перекрута, на долговечность влияет манера езды. Резкое открытие заслонки и дергание ручки газа сообщает опорным подшипникам резкое ускорение. Но шарики, имея собственную массу, момент инерции и будучи обременены тяжелым сепаратором, не могут мгновенно покатиться. Они и не катятся. В момент очень резкого ускорения вала они скользят и сунутся, как полозья санок по беговой дорожке, вызывая взаимный износ: шарик-дорожка. Нижний подшипник шатуна работает примерно в тех же условиях, хотя насосный эффект на нем, в общем-то, не проявляется.

А как же спортивные моторы? Ударные нагрузки для них обычны! Они не идут они бросаются в обороты! Они тянут, ревут, они прыгают и скачут. Конечно, да, да. Но у них крайне короткая жизнь! Она измеряется не десятками тысяч километров пробега, а часами. Кроме того, это дорогие движки с усложненной системой смазки, питания. В их конструкциях пытаются свести до минимума те недостатки двухтактника, о которых мы говорим. В них используют иные конструктивные подходы, иные, дорогие материалы. Вот, опять вопрос о деньгах.

Можно ли сделать вечный двигатель? Теоретически нет. Практически да! Этот движок мог бы попеременно использовать энергию солнца, ветра, глубинное тепло земли, энергию морского прибоя. Приводя в действие домашнюю циркулярку, он бы легко окупился за 300-400 лет. Вот мы и замкнули квадрат, стороны которого: долговечность, стоимость, практичность, целесообразность.

Вывод: на каждую модель скутера и микромотоцикла есть инструкция, а в ней рекомендованная конструктором средняя эксплуатационная скорость. Не пренебрегайте рекомендацией! Не смыкайте ручку газа! На уклонах, спусках, перекрестках присбросьте газ! Дайте отдохнуть всему мотору, а подшипникам хорошо смазаться.

Цилиндро-поршневая группа. От точности и чистоты обработки цилиндра зависит его долговечность. Не зря поверхность цилиндра зовут зеркалом. Не совсем точно. Возьмите лупу 1:6, рассмотрите металл, и вы увидите в нем поры. Пористая поверхность-губка позволяет удерживать масло. Из доступных материалов только чугун имеет такую структуру. Не всегда без инструмента (особенно на малых кубатурах) можно определить на глаз состояние цилиндра. Даже при идеально чистой поверхности, цилиндр может нуждаться в ремонте. И ослабленная компрессия (при новых кольцах и поршне) это подтверждает. Причина: бочка бочкообразное увеличение диаметра в зоне перекладки поршня. После расточки под новый ремонтный поршень, цилиндр хонингуют, специальным приспособлением хоном, снимают мельчайшие следы резца, повышают чистоту поверхности. Какой должна быть разница в диаметрах цилиндр-поршень, зазор? Нужен микрометр. Измерение с точностью до 1 сотой мм. А если без него? Без него: для кубатур до 125 см3: сухой поршень падает, проходя через цилиндр, смазанный моторным маслом, зависает и требует некоторого усилия или потряхивания для перемещения.

На максимальных оборотах и в перекрутке центробежная сила и насосный эффект обезжиривают рабочую поверхность подшипника. Стрелки – направление выброса смазки.

Расточные работы выполняют, как правило, на высокоточных координатно-расточных станках (точность обработки +/- 0,01 мм). Но хороший мастер может сделать расточку и на токарном станке (если станок моложе 50 лет). Почему же наш цилиндр начинает нуждаться в ре-монтных операциях, как он доходит до жизни такой?

Рассмотрим его функции. Первая его задача энергию расширившихся газов передать через шатун на маховик коленвала. Вторая быть надежной направляющей для поршня, который (как и все узлы механических, да и социальных, систем) стремится уйти от оси нагрузок. Эта неразрывная пара находится в постоянном конфликте: цилиндр удерживает поршень, который (особенно в момент перекладки) старается изменить траекторию своего движения. (Будь он живым существом, то давно бы отвязался и убежал из этого пекла!). Но цилиндр это его рамки, его клетка не позволяет так поступить. А тут еще шатун подключается! На возрастающих оборотах (при традиционном вращении вала по солнцу) он своей инерцией все сильнее и сильнее начинает прижимать поршень к выхлопному окну, где и без того жарко. В таких условиях износ пары (поршень-цилиндр) неизбежен, обязателен и неотвратим. Иной вопрос: как свести его к минимуму. Только грамотная езда, умение слушать мотор, давать ему отдых (даже на трассе кросса!) и применение качественных масел смогут многократно продлить жизнь вашего двухтактника.

Вспомните, как после пробега в 2-3 тыс. км работали ваши Карпаты, ваш Ковровец, как звучал их мотор. Ну да, шелест, хрип и лязг. Если за пределами видимости, то сразу не понять то ли это сосед со двора выехал, то ли старая колхозная жатка двинула травы на лугах косить. Причина этого металл-рока вибрация. Заметим сразу, что полностью сбалансировать одноцилиндровый движок невозможно. Но значительно уменьшить пагубную разрушительную роль вибрации вполне по плечу любому конструктору. Дело не только в разумном балансе коленвала это явная, видимая задача. Масса цилиндра его собственный вес, его соотношение к весу поршень+палец имеет колоссальную роль! Об этом никто никогда не упоминал, а мы обсудим. Обратите внимание на цилиндр Honda Dio полтинника. Стенка цилиндра в палец толщиной! Почему? Может, цилиндрик рассчитан на 10-12 расточек? А, может, в Японии излишки металла надо куда-то списать? Нет. Цилиндр тяжелая наковальня, поршень легкий молоток. Мы блокируем вибрацию! Благодаря этому, аппаратик Dio мягкий и спокойный, не зря занял место в группе машин всех времен и народов. И старушки не плюются и не крестятся в испуге, когда рядом проезжает наша деликатная хондочка. А теперь сравните алюминиевую рубашку с тоненькой впрессованной гильзой вчерашняя радость нашего мотопрома. Да там, бывало, ребра охлаждения срезало и рвало вибрацией! А почему такое производили? Совершенно ошибочно предполагать, что в тех КБ сидели вчерашние двоечники и недоумки. Но одно из правил работы всех систем (включая социальную), об этом мы уже упомянули, гласит: все системы инерционны, они не любят резких ускорений, изменений и стремятся уйти от возникших нагрузок. В этом смысле все мы (люди) вполне солидарны с поршнем и коленвалом.

И еще два слова о цилиндре. Тяжелый цилиндр жесткая конструкция. Он стойко переносит все температурные потуги к деформации. А когда эта деформация происходит? Внезапная остановка в дороге переход из напряженного режима в состояние покоя. Преодоление брода и глубоких луж, когда резкое охлаждение скручивает и корежит все тело нашего работяги-цилиндра. Избегайте таких ситуаций! До трогания прогрев (1,5-2 мин.), перед глушением холостые (2-3 мин.).

Поршень. Это, прежде всего, материал. В двухтактниках (не водяного, а массового, воздушного охлаждения) поршень испытывает огромные тепловые нагрузки. По этой причине главное не как он сделан, хотя это тоже важно, а из чего он сделан. Алюминиевые сплавы, идущие на изготовление поршней, неоднородны по составу. Лучшие из них те, что имеют меньший коэффициент линейного расширения. Поршни, сформованные из таких материалов, не клинят, не разбухают в пределах нормативных нагревов. Определить уровень качества поршня в магазине на глаз невозможно. К тому же, параллельно росту спроса на любой товар, следует рост уровня фальсификации, крепнет и совершенствуется индустрия подделок. И если расточник, ремонтируя цилиндр, не ошибся, а новый поршень прихватывает уменьшите нагрузку, добавьте масло в бензин (15 граммов на 1 литр), и избегая тяжелых дорог, сделайте обкатку более мягкой.

В перегретом цилиндре произошел прихват (Б). При этом верхнее кольцо сместилось влево к А, а в точке Б завальцевалось в канавке. Резкое ослабление компрессии (утечка по штриховке). Появляется звон и шелест. Необходимо немедленно снять цилиндр, вернуть кольцам подвижность!

Компрессионные кольца. Главные качества колец износостойкость и упругость. И если уровень износостойкости мы не можем определить без нужной оснастки, то нужную упругость вполне. Сожмите кольцо в руке между большим и указательным пальцем, замыкая стык.

Вы должны почувствовать мягкую (пропорциональную, резиновую) упругость от начала до конца всего хода. Слишком жесткое деревянное кольцо плохо прирабатывается, изнашивает цилиндр и оно склонно к залеганию в поршневой канавке.

В работе кольца, выполняя свою уплотнительную роль, скользят (если масло не выгорает) и трутся о стенки цилиндра. Чтобы уменьшить взаимное трение, подбирают разноструктурные пары металлов. В нашем случае это чугун (цилиндр). Он, как мы заметили, имеет губчатую микроповерхность для удержания масла и сталь (кольцо). Хрестоматийная схема, рабочая, испытанная со времен Даймлера. Но наши отставные мотопромовцы, как всегда, оказались впереди планеты всей! Тут вам и стальные ци- линдры, и чугунные кольца, и прочие гениальные выпады. Принимай, Родина, к такой-то дате наш ширпотребовский вал! Бедные Карпаты, несчастные Мински, как вас изувечили эти энергичные дядьки!

Толщина компрессорного кольца. Чрезвычайно важный показатель! Тонкое кольцо уменьшает возвратно-поступательную массу кривошипного механизма. Имея собственный малый вес, а, значит, и малую инерцию, способно уплотнять цилиндр даже в начинающей, зреющей бочке. Но даже не это главное. Главное то, что тонкое кольцо не вибрирует! А значит, не разбивает поршневые канавки, не ломается и не поет в цилиндре дурным голосом. А какое кольцо быстрее износится? Вопрос непростой, спорный, и никто пока не дал на него определенного ответа. На спортивных моторах, как правило, стоит только одно и очень тонкое кольцо. А его, принятая всюду, толщина для повседневных, (не спортивных) машин обычно не превышает 1-1,4 мм.

Тюнинг. Очень нехорошее слово. Не произносите его в присутствии детей и женщин. Торговцы запчастями охотно пользуются им, получая солидный приработок. Тюнинговка двигателя, да еще, как правило, неграмотная шаг к тому, чтобы погубить его. Вспомните Буратино. Разжился он пятью золотыми монетками, а лиса Алиса и мерзопакостный кот Базилио тут как тут к тюнингу его склоняют. Закопай, мол, свои денежки, а назавтра вырастет их целый мешок. Мнение мое, конечно же, субъективно, может, я и не прав. Но на всякий случай советую скутеристу-Буратино запастись прочным мешком. В него можно будет сложить изувеченный двигатель, чтобы отнести его в ремонт.

ВНИМАНИЕ! Чтобы заказать необходимые запчасти или тюнинг для Вашего скутера, отправьте на мейл Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript письмо со списком необходимых деталей, либо оставьте сообщение в комментариях под статьей, либо сообщение на нашем форуме в разделе Покупка запчастей. Я в самое кратчайшее время свяжусь с Вами и расскажу все подробности. В сообщении обязательно укажите название модели, объем двигателя и год выпуска скутера, чтобы избежать ошибок при подборе деталей.

Мы привозим из Германии и США любые оригинальные и неоригинальные детали и аксессуары для европейских скутеров Aprilia, Gilera, Piaggio и Vespa, тюнинг и экипировку, резину и многое другое из более чем 30 каталогов. Для уточнения деталей заказа можно позвонить по тел. в Петербурге +7 (921) 309 00 99, Александр.

Как смазывается коленвал на 2 тактном двигателе

Двигатели внутреннего сгорания построены по одному принципу – энергия сгорания топлива превращается в кинетическую энергия вращения коленвала . Существуют два типа моторов – двухтактные и четырехтактные. Оба обладают своими преимуществами и недостатками, попробуем разобраться в чем отличия.

Схема устройства двухтактного двигателя

Принцип работы ДВС

Рабочий цикл двухтактного двигателя состоит из впуска и выпуска происходящего за один оборот коленчатого вала, тогда как 4-х тактный имеет следующие циклы — впуск, сжатие, рабочий ход, выпуск. И протекают они за два оборота маховика . В двигателе с 4 тактами впуск и выпуск осуществляются в виде разных процессов, в двухтактнике они совмещены со сжатием топливной смеси и расширением рабочих газов. Принцип действия двухтактного двигателя:

  1. Первый такт – сжатие. Происходит движение поршня от нижней мертвой точки, при этом вначале закрывается продувочное окно. Отработанные выхлопные газы выводятся через выпускное отверстие. В этот момент в кривошипной камере под днищем поршня образуется область разрежения, куда поступает обогащенная топливная смесь из карбюратора (инжектора). Эта порция свежего воздуха выталкивает остатки выхлопных газов в выпускной коллектор . В момент наивысшего положения поршня происходит воспламенение смеси от свечи зажигания .
  2. Второй такт – рабочий ход или расширение. Температура и давление газов в камере сгорания резко увеличивается, под его действием поршень начинает движение к нижней мертвой точке, совершая полезную работу. Повышенное давление в кривошипной камере перекрывает впускной клапан, препятствуя попаданию отработанных газов в карбюратор. Через систему выпускных окон отработавшие газы уходят в глушитель , а через продувочное окно начинает поступать свежая горючая смесь в камеру сгорания. В самой нижней точке действие второго такта заканчивается и процесс повторяется.

Двухтактный дизельный двигатель работает по такому же принципу, только у него отсутствует свеча зажигания, а воспламенение топлива происходит от сжатия. Поэтому степень сжатия в дизельных двс намного выше бензиновых.

Особенности мотора с двумя тактами

Двухтактный двигатель совершает полный цикл за один оборот коленвала, это позволяет получить большую удельную литровую мощность чем у 4-х тактного движка при тех же оборотах двигателя. Однако, кпд двухтактника будет ниже из-за несовершенства механизма фаз газораспределения, неизбежных потерь топливной смеси в процессе продувки и неполного рабочего хода поршня.

Двухтактный двигатель сильно греется, потому что во время работы высвобождается большая тепловая энергия. Иногда может потребоваться дополнительное охлаждение. В мотоциклах редко используются двухтактные моторы с большим количеством цилиндров, чаще всего применяется одноцилиндровый мотор с воздушным охлаждением.

При работе по двухтактному циклу поршень совершает меньше движений за один такт, а нагрузка вспомогательных газораспределительных, смазочных и охлаждающих систем на коленвал ниже или отсутствует совсем. Поэтому износ поршневой группы у них будет ниже. Если для легкой техники это не является решающим фактором, то тихоходный двухтактный дизельный двигатель может иметь в несколько раз больший ресурс, чем все остальные двс. Поэтому они нашли широкое распространение в тепловозах, генераторах, судовых двигателях.

Двухтактный бензиновый двигатель быстрее набирает обороты максимальной мощности. Этим активно пользуются мотоспортсмены, особенно в кроссовых дисциплинах, когда необходим мгновенный отклик на рукоятку газа. Кроме того, он проще в обслуживании, дешевле и легче четырехтактного.

Расход топлива у двухтактника будет выше на 25-30 %, шумность и вибрации тоже. Двигатель невозможно вписать в жесткие экологические нормы, даже если использовать инжекторные системы впуска и наддув. Большой расход воздуха требует применения специальных воздушных фильтров.

Система смазки и приготовление топлива

Работа двухтактного двигателя требует эффективной смазки движущихся узлов. Централизованная раздельная система смазки с масляным насосом, как у четырехтактных двигателей, здесь отсутствует, поэтому масло добавляется в бензин в соотношении 1:25 – 1:50. Полученный состав, находясь в поршневой и кривошипно-шатунной камере, смазывает подшипники шатуна, стенки цилиндра и поршневые кольца. При воспламенении воздушной смеси масло сгорает и удаляется вместе с выхлопными газами.

Моторное масло должно быть специальное — для двухтактного двигателя, обычно оно имеет маркировку 2Т на канистре. Использование обычного автомобильного масла недопустимо по ряду причин:

  • Масло для двухтактных двигателей обязано обладать хорошей растворимостью в бензине;
  • Обладает прекрасными смазывающими свойствами, улучшая работу двигателя и уменьшая трение;
  • Защита от коррозии трущихся деталей поршневой группы;
  • Двухтактное масло должно сгорать без остатка, не образовывая нагар и сажу. Высокая зольность обычного масла приводит к закоксовыванию поршневых колец.

Подачу смазки в двухтактный двигатель можно осуществить двумя способами. Первый и самый простой – смешивать с топливом в нужной пропорции. Второй – это раздельная система смазки двухтактного двигателя, когда состав из топлива и масла готовится непосредственно перед попаданием внутрь в специальном патрубке. В этом случае устанавливается отдельный бачок для масла, а его подача осуществляется с помощью специального плунжерного насоса.

Эта система получила широкое распространение на современных мотоциклах и скутерах. Кроме удобства использования (теперь не нужно доливать масло в бак на глаз каждую заправку), происходит серьезная экономия масла, потому что впрыск его зависит от оборотов двигателя. На холостых оборотах пропорция масла может составлять всего 1:200.

Тюнинг двухтактного двигателя

Любой двухтактный мотор имеет возможности для форсировки. Увеличение мощности при таком же объеме оправдано в спорте, а в повседневной эксплуатации двигатель становится эластичнее и экономичнее. Основные способы доработки:

  1. Увеличить диаметр выпускного отверстия и обеспечить его максимально продолжительное время открытия. Это позволяет выпустить максимальное количество газов. Таким образом повышаются тяговые возможности двигателя и его крутящий момент.
  2. Обеспечить эффективную продувку. Для этого можно увеличить диаметр впускного окна, тогда горючая смесь не будет задерживаться в картере и обеспечится своевременный впрыск в камеру сгорания.
  3. Применение на карбюраторе вихревого диффузора, который за то же время подает большее количество топливной смеси. Вместе с ним целесообразно применение воздушного фильтра нулевого сопротивления.
  4. Установка резонатора выпуска, расчет которого произведен под конкретный объем двигателя. Такое устройство возвращает часть топливной смеси назад в цилиндр через выпускное отверстие.
  5. Доработка шатунно-поршневой группы, ее облегчение и тщательная балансировка. Клапана и каналы должны быть притерты и не иметь заусенец (задиров), тормозящие и завихряющие потоки. Это уменьшает наполняемость цилиндра и снижает мощность.
  6. Применение инжекторных систем впрыска и регулирование фазами газораспределения. Это позволяет точнее дозировать количество подаваемого топлива и уменьшить потери горючей смеси во время продувки цилиндра.
  7. Установка систем наддува. Обычно это компрессорные нагнетатели, а на двухтактный дизельный двигатель может быть установлен традиционный турбокомпрессор. С его помощью увеличивается количество поступаемого в цилиндры воздуха, соответственно и количество горючего может быть увеличено.

Эксплуатация и причины поломки двигателей

Чаще всего двухтактные моторы встречаются в мототехнике, лодочных двигателях, газонокосилках, цепных пилах и прочих устройствах, где требуется применение легкого и надежного двигателя. Тем не менее, даже такой простой по конструкции движок может выйти из строя из-за нарушения правил эксплуатации.

  • Низкое качество бензина. Плохое топливо часто приводит к появлению детонации. Чаще всего это заметно на невысоких оборотах при подгазовках. Возникающие ударные нагрузки приводят к поломке перегородок поршней, чрезмерным нагрузкам на подшипники коленвала. Детонация может возникать из-за перегрева двигателя, нагара на поршне и бедной смеси.
  • Низкое качество деталей, из которых собран мотор. Особенно это актуально для китайских производителей, часто допускающих брак в производстве комплектующих. Это приводит к раннему выходу из строя поршня, коленчатого вала, цилиндра и прочих деталей, а затем и капитальному ремонту. Обычно помогает оценить состояние поршневой простой замер компрессии.
  • Низкокачественное моторное масло. Топливомасляная смесь для двухтактных двигателей имеет очень важное значение. Именно от его качества будет зависеть как мягко работает мотор, чистота выхлопа, отсутствие перегрева и лишних шумов. Плохое масло приводит к образованию слоя нагара на поршне, в коренных и шатунных подшипниках, к задирам на стенках цилиндра и юбке поршня, проходное сечение глушителя уменьшается из-за нагара. Масла для двухтактных двигателей следует применять синтетические или полусинтетические, использование минералки нежелательно.
  • Перегрев на двухтактном двигателе воздушного охлаждения не редкость. К этому приводит длительная работа с полностью открытым дросселем, или неисправность системы охлаждения. Перегрев может быть кратковременным, когда наблюдается потеря мощности и максимальных оборотов, после снижения нагрузки и охлаждения двигателя все приходит в норму. Клин возникает вследствие очень сильного перегрева, когда тепловой зазор между поршнем и цилиндром уменьшается настолько, что силы трения намертво прихватывают их между собой. После него требуется ремонт ЦПГ.
  • Карбюратор не настроен. Топливная смесь получается слишком бедной или очень богатой. Езда на переобогащенной смеси чревата высоким расходом топлива, потерей мощности и образованию нагара. Бедная смесь может вызывать детонацию и снижение максимальной мощности двигателя.

Чтобы продлить срок службы и отсрочить капремонт, следует провести правильную обкатку двухтактного лодочного или мотоциклетного мотора. Для этого пропорция масла смешиваемого с бензином должна быть немного выше установленной для нормальной эксплуатации. На такой смеси дать двигателю поработать в режиме неполной мощности несколько часов, что эквивалентно 500-1000 км пробега для скутера и мотоцикла.

Все же из-за токсичности выхлопа двухтактные двигатели постепенно вытесняются современными четырехтактными. Они продолжают использоваться только там, где требуется высокая удельная мощность при минимальной массе и простоте конструкции – мототехника, бензопилы и триммеры, модели самолетов и многое другое.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Простейший двухтактный двигатель Цикл работы двухтактного двигателя

Двухтактный двигатель наиболее прост с технической точки зрения: в нем поршень выполняет работу распределительного органа. На поверхности цилиндра двигателя выполнено несколько отверстий. Их называет окнами, и они принципиальны для двухтактного цикла. Предназначение впускных и выпускных каналов достаточно очевидно — впускное окно позволяет топливовоздушной смеси попасть в двигатель для последующего сгорания, а выпускное окно обеспечивает отвод полученных в результате сгорания газов из двигателя. Продувочный канал служит для обеспечения перетекания из кривошипной камеры, в которую она поступила ранее, в камеру сгорания, где происходит сгорание. Здесь возникает вопрос, почему смесь поступает в пространство картера под поршнем, а не непосредственно в камеру сгорания над поршнем. Чтобы понять это, следует отметить, что в двухтактном двигателе кривошипная камера выполняет важную второстепенную роль, являясь своего рода насосом для смеси.

 Она образует собой герметичную камеру, закрытую сверху поршнем, из чего следует, что объем этой камеры, а, следовательно, и давление внутри нее, изменяется, поскольку поршень перемешается возвратно-поступательно в цилиндре (по мере того как поршень двигается вверх, объем увеличивается, и давление падает ниже атмосферного, создается разрежение; наоборот, при движении поршня вниз объем уменьшается, и давление становится выше атмосферного).

Впускное окно на стенке цилиндра большую часть времени закрыто юбкой поршня, оно открывается, когда поршень приближается к верхней точке своего хода. Созданное разрежение всасывает свежий заряд смеси в кривошипную камеру, затем, по мере того как поршень движется вниз и создает давление в кривошипной камере, эта смесь вытесняется в камеру сгорания через продувочный канал.

Данная конструкция, в которой поршень играет роль распределительного органа по очевидным причинам, является самой простой разно¬видностью двухтактного двигателя, число перемеoающихся частей в ней не значительно. Во многих отношениях это является значительным преимуществом, однако оставляет желать лучшего с точки зрения эффективности (КПД). В свое время почти во всех двухтактных двигателях поршень выполнял роль органа распределения, но в современных конструкциях эта функция отводится более сложным и эффективным устройствам

Улучшенные конструкции двухтактного двигателя

Влияние на течение газа Одна из причин неэффективности выше-описанного двухтактного двигателя-неполная очистка от отработавших газов. Оставаясь в цилиндре, они мешают проникновению всего объема свежей смеси, и, следовательно, снижают мощность. Также существует связанная с этим проблема: свежая смесь из окна продувочного канала поступает прямо в выпускной канал, и, как было упомянуто ранее, чтобы это минимизировать, окно продувочного канала направляет смесь вверх.

Дефлекторная продувка

Поршни с дефлектором

Эффективность очистки и топливная экономичность могут быть улучшены за счет создания более эффективного течения газа внутри цилиндра. На ранней стадии усовершенствование двухтактных двигателей было достигнуто за счет придания днищу поршня особой формы для отклонения смеси от впускного канала к головке цилиндра — данная конструкция получила название поршня с дефлектором». Однако использование поршней с дефлектором на двухтактных двигателях было непродолжительным в связи с проблемами расширения поршня. Тепловыделение в камере сгорания двухтактного двигателя обычно выше, чем у четырехтактного, потому что сгорание происходит вдвое чаше, кроме того, головка, верхняя часть цилиндра и поршня являются наиболее нагретыми частями двигателя. Это приводит к проблемам, связанным с тепловым расширением поршня. Фактически, поршню при изготовлении придается такая форма, чтобы он слегка отличался от окружности и был конусным кверху (овало-бочкообразный профиль), таким образом, когда он расширяется при изменении температуры, он становится круглыми и цилиндрическим. Добавление несимметричного металлического выступа в виде дефлектора на днище поршня, изменяет характеристики его рас¬ширения (если поршень будет чрезмерно расширяться в неправильном направлении, его может заклинить в цилиндре), а также приводит к его утяжелению со смещением массы от оси симметрии. Этот недостаток стал намного более очевидным по мере того, как двигатели усовершенствовались для работы при более высоких скоростях вращения.

Типы продувок двухтактного двигателя

Петлевая продувка

Поскольку у поршня с дефлектором слишком много недостатков, а плоское или слегка скругленное днище  поршня не сильно влияет не движение поступающей смеси или вытекающих отработавших газов, был необходим другой вариант. Он был разработан в ЗО-х годах XX века доктором Е. Шнурле, который его изобрел и запатентовал (хотя, по общему признанию, он первоначально спроектировал его для двухтактного дизельного двигателя). Продувочные окна расположены напротив друг друга на стенке цилиндра и направлены под углом вверх и назад. Таким образом, поступающая смесь наталкивается на заднюю стенку цилиндра и отклоняется вверх, затем, образуя наверху петлю, падает на отработавшие газы и способствует их вытеснению через выпускное окно. Следовательно, хорошая продувка цилиндра может быть получена подбором расположения продувочных окон. Необходимо тщательно прорабатывать форму и размер каналов. Если сделать канал слишком широким,поршневое кольцо, минуя его,может попасть в окно и заклинить, тем самым вызывая поломку. Поэтому размер и форма окон выполняется так, чтобы гарантировать безударный проход колеи мимо окон, а некоторые широкие окна соединены в середине перемычкой, служащей опорой для колец. В качестве еще одного варианта можно предложить использование большего числа окон меньших размеров.

На данный момент существует множество вариантов расположения, численности и размеров окон, сыгравших большую роль в увеличении мощности двухтактных двигателей. Некоторые двигатели снабжены продувочным и окнами, служащими для единственной цели — улучшения продувки, они открываются незадолго до открытия главных продувочных окон, которые подают большую часть свежей смеси. Но пока это всё. что можно сделать для улучшения газообмена без использования дорогих в производстве деталей. Чтобы продолжать улучшать характеристики, необходимо более точно управлять фазой наполнения.

Лепестковый клапан Suzuki Lets TW Схема работы лепесткового клапана

Лепестковые клапана

В любой конструкции двухтактного двигателя улучшение КПД и топливной экономичности означает, что двигатель должен работать более эффективно, это требует сгорания максимального количества топлива (следовательно, получения максимальной мощности) на каждом рабочем такте двигателя. Остается проблема сложного удаления всего объема отработавшего газа и заполнения цилиндра максимальным объемом свежей смеси. До тех пор, пока процессы газообмена совершенствуются в рамках двигателя с поршнем в роли органа распределения, нельзя гарантировать полную очистку от отработавших газов, остающихся в цилиндре, при этом нельзя увеличить объем поступающей свежей смеси, чтобы способствовать вытеснению отработавших газов. Решением может служить заполнение кривошипной камеры большим количеством смеси за счет увеличения ее объема, но на практике это приводит к менее эффективной продувке. Увеличение эффективности продувки требует уменьшения объема кривошипной камеры и, таким образом, ограничения пространства, предназнеченного для заполнения смесью. Так что компромисс уже найден, и следует искать другие способы улучшения характеристик. В двухтактном двигателе, в котором роль органа газораспределения отведена поршню, часть топливовоздушной смеси, поданной в кривошипную камеру, неизбежно будет потеряна по мере того, как поршень начинает двигаться вниз в процессе сгорания. Эта смесь вытесняется обратно во впускное окно и, таким образом, теряется. Необходим более эффективный способ управления поступающей смесью. Предотвратить потери смеси можно путем использования лепесткового или дискового (золотникового) клапана или их комбинации.

Лепестковый клапан состоит из металлического корпуса клапанов и закрепленного на его поверхности седла с уплотнением из синтетического каучука. Два или более лепестковых клапана закреплены на корпусе клапанов, при нормальных атмосферных условиях эти лепестки закрыты. Кроме того, для ограничения перемещения лепестка установлены ограничительные пластины по одной на каждый лепесток клапана, служащие для предотвращения его поломки. Тонкие лепестки клапана обычно изготавливаются из гибкой (пружинной) стали, хотя все более популярными становятся экзотические материалы на основе фенольной смолы или стеклотекстолита.

Клапан открывается за счет изгиба лепестков до ограничительных пластин, которые спроектированы таким образом, что открываются, как только появляется положительный перепад давления между атмосферой и кривошипной камерой; это происходит, когда движущийся вверх поршень создает разрежение в картере, Когда смесь подана в кривошипную камеру, и поршень начинает двигаться вниз, давление внутри картера возрастает до уровня атмосферного, и лепестки прижимаются, закрывая клапан. Таким образом, подается максимальное количество смеси, и предотвращаются любые обратные выбросы. Дополнительная масса смеси более полно заполняет цилиндр, и продувка происходит более эффективно. Сначала лепестковые клапана были приспособлены для использования на существующих двигателях с поршнем в роли органа газораспределения, это привело к существенному улучшению эффективности двигателей. В отдельных случаях производители выбирали комбинацию двух конструкций: одной — когда двигатель с поршнем в роли органа газораспределения. дополненный лепестковым клапаном для продолжения процесса наполнения через дополнительные каналы в кривошипной камере после того, как поршень перекроет основной канал, если уровень давления в картере двигателя позволяет это. В другой конструкции на поверхности юбки поршня выполнялись окна, чтобы окончательно избавиться от контроля, который поршень имеет над каналами; в таком случае они открываются и закрываются исключительно под воздействием лепесткового клапана. Развитие этой идеи означало, что клапан и впускной канал могут быть перенесены из цилиндра в кривошипную камеру. Устрашающие предостережения, что на лепестках клапана образуются трещины и лепестки могут попасть внутрь двигателя, оказались в значительной степени необоснованными. Перемещение впускного канала предоставляет ряд преимуществ, главное из которых связано с тем. что течение газа в полость картера становится более свободным.и,следовательно, большее количество смеси может поступить в кривошипную камеру. Этому до некоторой степени способствует импульс (скорость и вес) поступающей смеси. При переносе впускного канала из цилиндра можно продолжать повышать эффективность путем смешения продувочного окна (окон) в оптимальное для продувки положение. Безусловно, за последние годы основное расположение лепестковых клапанов было подвергнуто тщательному исследованию, и появились сложные конструкции. содержащие двухступенчатые лепестки и многолепестковые корпуса клапанов. Последние разработки в области лепестковых клапанов связаны с материалами, используемыми для лепестков, и с расположением и размером лепестков.

Принцип действия дискового клапана

Дисковые клапана (золотниковое распределение)

Дисковый клапан состоит из тонкого стального диска, закрепленного на коленчатому валу шпонкой

 или шлицами таким образом, что они вращаются вместе, Он располагается снаружи впускного окна между карбюратором и крыш¬кой картера так. чтобы в нормальном состоянии канал перекрывался диском, Чтобы произошло наполнение в нужной области цикла двигателя, из диска вырезается сектор. При вращении коленчатого вала и дискового клапана впускное окно открывается в момент, когда вырезанный сектор проходит мимо канала, позволяя смеси проникнуть непосредственно в кривошипную камеру. Затем канал перекрывается диском, предотвращая обратный выброс смеси в карбюратор по мере того, как поршень начинает двигаться вниз.

К очевидным преимуществам использования дискового клапана можно причислить более точное управление началом и концом процесса участок, или сектор, диска минует канал), и продолжительностью процесса наполнения (то есть величиной вырезанного участка диска, пропорциональной времени открытия канала). Также дисковый клапан допускает применение впускного канала большого диаметра и гарантирует беспрепятственный проход смеси, попадающей в кривошипную камеру. В отличие от лепесткового клапана с достаточно большим корпусом клапанов, дисковый клапан не создает никаких преград во впускном канале, и поэтому газообмен в двигателе улучшается. Другое преимущество дискового клапана проявляется на спортивных мотоциклах — это время, за которое его можно заменить для подбора рабочих характеристик двигателя под различные трассы. Главным недостатком дискового клапана являются технические трудности, требующие маленьких производственных допусков и отсутствие приспособляемости, то есть неспособность клапана реагировать на изменение потребностей двигателя подобно лепестковому клапану. Кроме того, все дисковые клапана уязвимы в отношении попадания мусора, поступающего в двигатель с воздухом (мелкие частицы и пыль оседают на уплотняющих канавках и царапают диск). Несмотря на это. на практике дисковые клапана работают очень хорошо и обычно способствуют значительному приросту мощности на низких частотах вращения двигателя по сравнению с обычным двигателем с поршнем в роли органа газораспределения.

Совместное использование лепестковых и дисковых клапанов

Неспособность дискового клапана реагировать на изменение потребностей двигателя навела некоторых производителей на мысль — использовать комбинацию дискового и лепесткового клапана для получения высокой эластичности двигателя. Поэтому.когда этого требуют условия, давление в картере двигателя закрывает лепестковый клапан, таким образом, закрывая впускной канал со стороны кривошипной камеры, даже несмотря на то, что вырезанный участок (сектор) диска все еще может открывать впускной канал со стороны карбюратора.

Использование щеки коленвала в качестве дискового клапана

Интересный вариант дискового клапана использовался в течение нескольких лет на ряде двигателей мотороллеров Vespa. Вместо применения отдельного клапанного устройства для выполнения его роли производители использовали стандартный коленчатый вал. Плоскость правой щеки маховика обработана с очень высокой точностью так, что при вращении коленвала зазор между ней и картером составляет несколько тысячных долей дюйма. Впускной канал находится прямо над маховиком (на этих двигателях цилиндр располагается горизонтально) и, таким образом,прикрывается краем маховика, Путем механической обработки выемки в части маховика можно в заданной точке цикла двигателя открыть канал аналогично тому, как это происходит при использовании традиционного дискового клапана. Хотя получаемый впускной канал оказывается менее прямым, чем мог бы быть, на практике эта система работает очень хорошо. В результате двигатель вырабатывает полезную мощность в широком диапазоне частот вращения двигателя, и по прежнему остается технически простым.

Расположение выпускного окна

во многих отношениях системы впуска и выпуска на двухтактном двигателе очень тесно связаны. В предшествующих параграфах мы обсудили способы подвода смеси и отвода отработавших газов из цилиндра. За эти годы проектировщики и испытатели обнаружили, что фазы выпуска могут иметь столь же существенное влияние на характеристики двигателя, как и фазы впуска. Фазы выпуска определяются высотой выпускного окна в стенке цилиндра, то есть когда оно закрывается и открывается поршнем по мере того, как он перемешается в цилиндре вверх и вниз. Конечно, как и во всех других случаях, нет одного единственного положения, которое охватывало бы все режимы двигателя. Во- первых, это зависит оттого, для чего двигатель должен использоваться, во-вторых, как этот двигатель используется. Например, для одного и того же двигателя оптимальная высота выпускного окна различна при низких и при высоких частотах вращения двигателя, а при углубленном рассмотрении можно сказать, что то же относится и к размерам канала, и непосредственно к размерам выпускной трубы. В результате на производстве разработаны различные системы с изменяющимися при работе двигателя характеристиками выпускных систем для соответствия изменяющимся частотам врашения. Такие системы появились у Yamaha (YPVS), Honda (АТАС). Kawasaki (KIPS), Suzuki (SAPC), Cagiva (CTS) и Aprilia (RAVE). Ниже описываются системы Yamaha , Kawasaki и Honda .

Системе с мощностным клепаном Yamaha — YPVS

В основе этой системы лежит непосредственно мощностной клапан, который по существу является роторным клапаном, установленным в гильзе цилиндра так, чтобы его нижняя кромка соответствовала верхней кромке выпускного окна. На низких частотах вращения двигателя клапан находится в закрытом положении, ограничивая эффективную высоту окна: это улучшает характеристики на низких и средних режимах Когда частота вращения двигателя достигает заданного уровня, клапан открывается, увеличивая эффективную высоту окна, что способствует улучшению характеристик на высоких скоростях. Положение мощностного клапана контролирует серводвигатель при помощи троса и шкива. Блок управления YPVSi-получает данные об угле открытия клапана от потенциометра на серводвигателе и данные о частоте вращения двигателя от блока управления зажиганием; эти данные используются для выработки правильного сигнала к механизму привода серводвигателя (см. рис. 1.86). Замечание: На внедорожных мотоциклах компании Yamaha используется несколько отличная версия системы из-за малой мощности аккумулятора: мощностной клапан приводится в действие от центробежного механизма, установленного на коленчатом валу.

Комплексная система мощностных клапанов Kawasaki — KIPS

Система Kawasaki имеет механический привод от установленного на коленчатом валу центробежного (шарикового) регулятора, Вертикальная тяга соединяет механизм привода с тягой управления мощностным клапаном, установленным в гильзе цилиндра. Два таких мощностных клапана расположены во вспомогательных каналах с обеих сторон от главного впускного окна и связаны с тягой привода посредством шестерни и зубчатой рейки. По мере того, как тяга привода перемещается «из стороны в сторону», клапана вращаются, открывая и закрывая вспомогательные каналы в цилиндре и камере резонатора, расположенной с левой стороны двигателя. Система рассчитана так, чтобы при низкой частоте вращения вспомогательные каналы были закрыты клапанами для обеспечения кратковременного открытия канала. Левый клапан открывает камеру резонатора покидающим отработавшим газам, таким образом увеличивая объем расширительной камеры. При высокой частоте вращения клапана поворачиваются, чтобы открыть оба вспомогательных канала и увеличить продолжительность открытия канала, следовательно, обеспечить большую пиковую мощность. Камера резонатора закрывается клапаном с левой стороны, снижая общий объем выпускной системы. Система KIPS обеспечивает улучшение характеристик на низких и средних частотах вращения за счет уменьшения высоты канала и большего объема выпускной системы а при высоких частотах вращения — за счет увеличения высоты выпускного окна и меньшего объема системы выпуска. В дальнейшем система была усовершенствована за счет введения промежуточной шестерни между тягой привода и одним из клапанов, обеспечивающей вращение клапанов во встречных направлениях, а также добавления плоского мощностного клапана на передней кромке выпускного окна. На моделях большего объема запуск и работа на низких частотах вращения была улучшены за счет добавления соплового профиля в верхней части клапанов.

Камера усиления крутящего момента с автоматическим управлением Honda — АТАС

Система, применяемая на моделях фирмы Honda , имеет привод от автоматического центробежного регуляторе, установленного на коленчатом валу. Механизм, состоящий из рейки и валика, передает усилие от регулятора к клапану АТАС, установленному в гильзе цилиндра. Камера HERP (Резонансная Энергетическая Труба Honda ) открывается клапаном АТАС при низких частотах вращения двигателя и закрывается при высоких.

Система впрыска топлива

Судя по всему, очевидным методом решения всех проблем, связанных с наполнением камеры сгорания двухтактного двигателя топливом и воздухом, не говоря уже о проблемах высокого расхода горючего и вредных выбросов, является использование системы впрыска топлива. Однако, если топливо не подводится непосредственно в камеру сгорания, все еще остаются характерные проблемы с фазой наполнения и эффективностью двигателя. Проблема, связанная с непосредственным впрыском топлива в камеру сгорания, заключается в том. что топливо может быть подано только после того, как впускные окна будут закрыты, следовательно, остается мало времени для распыливания и полного перемешивания топлива с воздухом, находящимся в цилиндре (который поступает из кривошипной камеры, как в традиционных двухтактных двигателях). Это порождает другую проблему, так как давление внутри камеры сгорания после закрытия выпускного окна велико, и она быстро нарастает, следовательно, топливо должно подаваться при еще более высоком давлении, иначе оно просто не будет истекать из форсунки. Это требует довольно крупногабаритного топливного насоса, что влечет за собой проблемы связанные с увеличением веса, габаритов и стоимости. Aprilia решила эти проблемы, применив систему, называемую DITECH, основанную на конструкции австралийской компании, Peugeot и Kymmco разработали подобную систему. Форсунка в начале цикла двигателя подает струю топлива в отдельную закрытую вспомогательную камеру, содержащую сжатый воздух (подаваемый либо от отдельного компрессора, либо по каналу с обратным клапаном от цилиндра]. После того, как выпускное окно закрывается, вспомогательная камера сообщается с камерой сгорания через клапан или сопло, и смесь подается непосредственно к свече зажигания. Aprilia претендует на снижение вредных выбросов на 80 %, достигаемое за счет снижения не 60 % расхода масла и на 50 % расхода горючего, кроме того, скорость скутера с такой системой на 15 % выше скорости такого же скутера со стандартным карбюратором.

Главное преимущество применения непосредственного впрыска в том. что по сравнению с обыкновенным двухтактным двигателем исчезает необходимость предварительного перемешивания топлива с маслом для смазки двигателя. Смазка улучшается, поскольку масло не смывается топливом с подшипников и, следовательно, требуется меньшее количество масла, в результате чего снижается токсичность. Сгорание топлива также улучшается, а нагарообразование на поршнях, поршневых кольцах и в выпускной системе снижается. Воздух по-прежнему подается через кривошипную камеру (его расход определяется дроссельной заслонкой, связанной с ручкой газа мотоцикла) Это означает, что масло все еще сгорает в цилиндре, и смазка и смазка не столь эффективна, как хотелось бы. Однако результаты независимых испытаний говорят сами за себя. Все, что теперь необходимо-обеспечить подвод воздуха, минуя кривошипную камеру.

На сегодняшний день существуют два типа двигателей:

Возможности и преимущества двухтактных

Теоретически мощность двигателя данного типа, при одинаковых размерах цилиндра и скорости вращения вала, в два раза выше, чем у 4х-тактного благодаря увеличению числа рабочих циклов. Но в связи с неполным использованием хода поршня при расширении, худшее освобождение цилиндра от выхлопных газов и частичной затраты мощности на продувку приводят к увеличению мощности двигателя лишь на 60-70 процентов.

Для смазки подшипников и трущихся поверхностей двухтактного двигателя используется топливная смесь , в которую подмешивают немного масла. Смесь топлива с маслом попадает как в кривошипную камеру, так и в цилиндр. В этих узлах смазки нигде нет, так как она бы все равно смылась топливной смесью. Именно поэтому масло добавляют к бензину в определенной пропорции. Для этого используется специальный тип масла, предназначенный специально для двухтактных двигателей. Такое масло способно выдерживать высокую температуру, а при сгорании с топливом оставлять после себя наименьшее количество зольных отложений.

Рассмотрим принцип работы. Полный рабочий цикл в двухтактном двигателе внутреннего сгорания происходит за два такта:

Сжатие. Поршень двигается из положения нижней мертвой точки в положение к верхней, при этом закрывает сначала продувочное, а потом выпускное окно. После этого в цилиндре происходит сжатие поступившей в него раннее топливной смеси. Вместе с этим в кривошипной камере под поршнем, после перекрывания продувочного окна, создается разряженное пространство. Под действием этого разряжения через впускное окно в кривошипную камеру из карбюратора попадает горючая смесь.

Рабочий ход. Когда поршень установлен в положении верхней точки, сжатая топливная смесь поджигается от свечи электрическим разрядом, в результате чего давление и температура газов резко увеличивается. Под действием этого расширения поршень двигается в положение нижней мертвой точки — расширившийся газ осуществляет полезную работу. При этом, опускаясь вниз, он образует большое давление в кривошипной камере, закрывающее клапан. После закрытия клапана газы не могут повторно попасть во впускной коллектор и карбюратор.

При достижении поршнем выпускного окна, оно откроется и начинается выпуск выхлопных газов, давление их в цилиндре снижается. Двигаясь дальше, поршень открывает продувочное окно, и сжатые горючие газы в кривошипной камере проходит по каналу в цилиндр, продувая его от остатка газов. После этого цикл повторяется заново.

Стоит сказать пару слов о зажигании. В связи с тем, что топливу для воспламенения необходимо время, разряд на свече зажигания должен появиться раньше, чем поршень дойдет до верхней точки, поэтому, чем быстрее двигается поршень, тем раньше должна быть искра. Бывают электронные и механические устройства, способные изменять угол зажигания, изменяющейся при разных частотах вращения.

Существуют двигатели двухтактные и четырёхтактные. Если говорить иными словами, то один такт — это движение поршня вверх и вниз, но при этом совершается два такта за один оборот коленвала. Рабочим ходом поршня принято называть такт, при котором происходит отдача поршню энергии газов и сгорания топлива для совершения полезной работы.

  • Особенности двухтактных двигателей
    • Система смазки
    • Основные свойства

    Стоит понимать и тот факт, что при похожих принципах действия двухтактные и четырёхтактные моторы все же отличаются друг от друга.

    Особенности двухтактных двигателей

    Рабочий цикл любого двигателя состоит из следующих стадий.

    В двухтактном двигателе такой цикл работы совершается за один оборот коленвала, а в четырёхтактном — за два. Рабочий цикл двухтактного двигателя условно состоит из совмещённого впуска смеси, сжатия и рабочего хода, которые происходят не в отдельных тактах (как в четырёхтактном).

    При сжатии поршень поднимается из нижней мёртвой точки в верхнюю. В двигателе вместо привычных клапанов конструктивно реализованы специальные окна. При передвижении поршня вверх вначале перекрывается продувочное окно, через которое смесь попадает в цилиндр, а после этого происходит перекрытие выпускного окна, через которое отработавшие газы покидают цилиндр.

    Сжатие рабочей смеси происходит, когда оба окна перекрыты. В кривошипной камере параллельно образуется разрежение. Благодаря этому происходит втягивание последующей порции смеси из карбюратора. После этого поршень приближается к верхней мёртвой точке, сжатую смесь воспламеняет искра свечи зажигания, и образуются газы, которые расширяются и проталкивают поршень вниз. Энергия передаётся от поршня на коленвал и начинается его вращение.

    Пока рабочий ход совершается поршнем, в кривошипной камере увеличивается давление. Это приводит к сжатию рабочей смеси, оказавшейся там в период предыдущего такта. После достижения зоны выпускного окна поверхностью поршня оно открывается, и в систему выпуска выводятся отработавшие газы.

    После этого поршень открывает продувочное окно аналогичным образом и смесь, находившаяся в кривошипной камере под давлением, попадает через него в цилиндр, вытесняя остаток отработавших газов. После этого пространство над поршнем заполняется этой смесью. После достижения нижней мёртвой точки поршнем цикл работы двигателя двухтактного повторяется вновь.

    Система смазки

    Двухтактные двигатели могут не иметь отдельного решения для систем смазки. Такие моторы смазываются благодаря смешиванию масла и бензина в необходимой пропорции (1:25 или 1:50). Подобная смесь является не только совокупностью бензина и воздуха, туда ещё и включены частицы масла.

    Нужно всего лишь вспомнить, как работает двухтактный двигатель, и станет понятно, что циркуляция такой смеси в поршневой и кривошипной камерах позволит реализовать смазку нагруженных частей двигателя внутреннего сгорания (стенок цилиндра, подшипников коленчатого вала, шатунных подшипников и прочих). В тот период, когда топливная смесь сгорает, смазка выгорает одновременно с ней. После этого цилиндр продувается.

    Топливо и смазочный материал смешиваются двумя способами.

    Первая схема более сложная. Она предполагает не только наличие бачка для масла и магистрали, по которой оно будет подаваться, но ещё и насоса плунжерного вида. Именно благодаря подобной конструкции масло будет подаваться дозировано и учитывать количество смеси воздуха и бензина.

    Если в подробности не вдаваться, то можно отметить, что большую производительность насос будет выдавать в зависимости от того, насколько рукоятка газа выкручена. Чем газ выкручен сильнее, тем больше горючего подаётся. А это значит, что и подача смазки будет увеличенной. На двухтактном двигателе раздельная система смазки позволяет сбалансировать точнее соотношение бензина и масла. Это приводит к тому, что двигатель меньше коксуется и дымит, расход масла уменьшается.

    В двигателе четырёхтактном масло поступает под давлением к нагруженным деталям, и по специальным каналам происходит его циркуляция. В камеру сгорания смазка практически не поступает. Горит в цилиндрах только топливно-воздушная смесь.

    В двухтактных двигателях внутреннего сгорания сгорают не только воздух и топливо, но и сам смазочный материал. Из этого ясно, что к маслам требования будут отличаться. Масло после сгорания должно оставлять в цилиндрах минимальное количество нагара, свои свойства сохранять на протяжении долгого времени, с горючим перемешиваться хорошо.

    Двухтактное масло является отдельной смазочной жидкостью для двигателей внутреннего сгорания. Эти смазки отличаются от остальных своими свойствами. Как уже отмечалось, к двухтактным маслам предъявляются особые требования.

    Для бензиновых 2-тактных двигателей масла обязательно должны обладать следующими качествами.

    Если система смазки раздельная, то необходимо, чтобы масло оставалось текучим и хорошо прокачивалось. Если учитывать сферу применения и специфику 2-тактных двигателей, которые служат моторами для скутеров и мопедов, двигателями на газонокосилках, лодочными моторами и прочими, то предъявляются отдельные требования и к токсичности материала.

    Если смазочный материал попадёт на почву, то для окружающей среды он должен быть максимально безопасным, а при попадании в воду он должен разлагаться очень быстро.

    Подобные масла должны соответствовать стандартам TC-W3 и 2 Т. Очень часто от аналогов их можно отличить по цвету, так как их дополнительно окрашивают. В основном они имеют синий цвет. Даже при смешивании с бензином его видно хорошо.

    Согласно стандарту 2 Т, подобные смазочные материалы применяются в двигателях с охлаждением воздушным начиная от газонокосилок и бензопил и заканчивая мотоциклами (лёгкими). А вот для применения в подвесных моторах с водяным охлаждением и гидроциклах рассчитаны масла стандарта TC-W3.

    Существуют масла маловязкие для зимней эксплуатации. Смазочные материалы могут иметь такую основу:

    Рекомендации и советы по выбору

    Можно заметить, что на современном рынке есть большой ассортимент масел для моторов лодочных и прочих 2-тактных. Можно встретить и готовые продукты, в которых масло уже разбавлено и готово к применению. Для этого его вливают в канистру к горючему, хорошо перемешивают и заливают в бак техники.

    По свойствам и цене продукты могут сильно отличаться. Синтетическое масло дороже минерального. Именно из-за этого при покупке возникают сложности. Стоит отметить, что в первую очередь необходимо ориентироваться при выборе на ту информацию, которую указывает производитель двигателя.

    Если говориться, что заливать в технику следует масло стандарта TC-W3, то подойдёт любое, которое этому стандарту соответствует. В этом случае не играет роли, что это синтетика или минералка. Нужно выбирать бренды с хорошей репутацией и остерегаться подделок.

    Если в инструкции по применению прописаны отдельно рекомендации по маслам, то категорически запрещено вливать другие виды смазочных материалов.

    Всё дело в том, что изначально двигатель рассчитан только на работу с указанным материалом, и если вы начнёте применять иные смазки, то это быстро приведёт к выходу агрегата из рабочего состояния. Простая техника, особенно произведённая в СССР, может успешно работать на МС-20. А вот импортный мотор может закоксоваться и перестать работать уже через несколько часов.

    Категорически запрещается вливать в двигатели двухтактные дизельные или автомобильные бензиновые масла, а уж тем более, «отработку». В подобных смазках большое количество присадок, при сгорании они образуют много золы. Стоит учесть, что, если вы будете игнорировать все эти правила, то вскоре поломается не только импортная, но и отечественная техника, которая отличается своей выносливостью.

    Применение на практике

    Из всего вышесказанного стоит отметить, что выбирать двухтактное масло необходимо ответственно. Основной задачей перед тем, как влить в мотор смазку, является изучение инструкции по эксплуатации. Если производитель разрешает применять различное масло, то можно заливать минералку или более дорогую синтетику.

    Перед вливанием убедитесь, что смазочный материал соответствует рекомендуемым стандартам. На практике разница между синтетикой и минералкой будет незначительной. Но всё же на синтетике мотор может немного лучше заводиться, а на высоких оборотах меньше изнашиваться. В камере сгорания может быть меньшее количество нагара и кокса.

    Но если в инструкции указано, что стоит вливать только определённую синтетику, то уже ни в коем случае нельзя применять минералку, даже если оно такого же стандарта. В такой ситуации по ряду важных параметров минеральное масло всё равно не подойдёт. А всё из-за того, что смазочная система мотора на применение масел с минеральной основой не рассчитана.

    В масла добавляют разнообразные присадки, именно поэтому двухтактные и четырёхтактные отличаются друг от друга. Кроме основных компонентов в масла двухтактные входит растворитель. Именно благодаря ему возрастает смешиваемость топлива и масла, облегчается прокачка и распыление. Но при высоких температурах растворители (20%) отрицательно влияют на смазывающие свойства. Присадки увеличивают вязкость, поэтому следует выбирать продукт с большим коэффициентом вязкости — такое масло качественнее.

    Кроме растворителя в двухтактном масле содержатся такие вещества:

    Основные свойства

    Функциями смазочных материалов являются:

    При правильном выборе и использовании смазочного средства двигатель будет служить максимально долго.

    Полезные материалы

    Сегодня двухтактные двигатели перестают устанавливать на мопеды и скутеры, они почти не используются на мотоциклах кроме некоторых моделей мопедов. По какой же причине еще пару лет назад двухтактные двигатели были основным типом моторов скутеров?

    Основой причиной этого можно назвать стремление развитых стран к сокращению выброса выхлопных газов в атмосферу. В тех же странах, в основном, это европейские государства, стремятся и к экономии топлива, а более экономичные это четырех тактные двигатели. Ну, и стремление к новаторству тоже способствует внедрению новых двигателей.

    Мощность пятидесятикубового четрырехтактного двигателя ничтожна, в сравнении с двухтактным. Разгоняется очень вяло, скутер плохо реагирует на сигнал газа, с некоторым опозданием. Этим объясняется привычка китайцев скрывать увеличенную кубатуру четырехтактых скутеров и выдавать их за двухтактные двигатели. Все просто — таким образом, они компенсируют нехватку мощности без лишних затрат. Японцы пошли по другому пути, объем цилиндра они указывают правильно, а ситуацию с мощностью они решают, применяя дорогостоящие технологии, то есть, японские четирехтактные скутеры, объемом 50 кубов, имеют нормальную скорость и динамику.

    Ясно, что для данного случая, двухтактный двигатель более рационален и экономичен. Большинство скутеров, используемых у нас, это японские модели прошлых лет, в основном, они двухтактные. Как пример, можно назвать такие скутеры, как Suzuki Sepia, Honda Dio, Yamaha Jog, Suzuki Address, Honda Lead.

    Каждый владелец подобных скутеров должен знать, что из себя представляет их двигатель. Рассмотрим принцип работы стандартного двухтактного двигателя и его строение. Для разных моделей, принцип работы не сильно отличается, поэтому рассматривать каждую модель нет смысла.

    Описание и конструкция двухтактного двигателя

    1 — бак для масла; 2 — карбюратор; 3 — разделитель тросика «газа»; 4 — ручка «газ»; 5 — тросик регулятора подачи масла; 6 — насос-дозатор; 7 — впускной масляный патрубок.

    Схема, приведенная выше, используется в хондах. Ручка газа одновременно управляет и маслонасосом. Бензин подается при помощи бензонасоса, так как, в отличие от ямах и сузуки, бензобак расположен под ногами водителя. Поршень размещен внутри цилиндра, а свеча находится в головке цилиндра. Сгорая, смесь толкает поршень вниз, а он шатуном вращает коленвал. Эти аппараты просты в обслуживании и ремонте.

    Принцип работы двухтактного двигателя

    Теперь взглянем на эти процессы детальнее. На рис. 1 показана работа двухтактного двигателя. Желтым цветом показано топливо — бензин с маслом.

    В двигателях этого типа, смазка рабочих частей — поршня и целиндра, осуществляется топливной смесью, т. е. бензином смешанным с маслом.

    В скутерах установлен отдельный бачок для масла, а его количество регулируется маслонасосом. Топливная смесь, перед сгоранием смазывает камеру сгорания, а отдельного масла, как в четырех тактном двигателе, не предусмотрено. Масло сжигается вместе с бензином, поэтому должно иметь следующие параметры: хорошо смазывать все детали, хорошо гореть, не оставлять нагара после сгорания. Последнее требование наиболее важно, плохое масло приводит к образованию нагара в цилиндре и снижает его мощность.

    На рис. 2 поршень расположен в «нижней мертвой точке сокращенно НМТ».

    В этом положении нет давления в камере сгорания, а клапан открытый. Затем, поршень двигается вверх и закрывает впускной клапан, а потом и выпускной.

    При достижении поршнем «верхней мертвой точки ВМТ» (см. рис. 2), в цилиндре сжимается горючая смесь.

    Плюсы и минусы двухтактного двигателя

    Теперь перейдем к плюсам и минусам двухтактных двигателей в сравнении с четырехтактными.

    Плюсы двухтактного двигателя:

    Минусы двухтактного двигателя:

    Есть как преимущества, так и недостатки, но факт есть факт, и, внедряя четырехтактные двигатели в 50-ти кубовые скутеры, производители делают свою продукцию дороже, и лишают покупателей динамических возможностей, которые предоставляют мощные двухтактные двигатели.

    Все сказанное актуально только для двигателей с маленькой камерой сгорания, до пятидесяти кубических сантиметров, для моделей свыше ста кубических сантиметров, установка четырехтактного двигателя более рациональна. Это стало ясно в 80-х годах, и почти всю кубатуру начали комплектовать четырехтактниками. Но для полтинников это увеличивает только долговечность, а насладиться динамикой и скоростью можно будет только в моделях класса спорт, в которых установлены двухтактные двигатели.

    Видео: Схема работы двухтактного двигателя

    Похожие материалы

    • Где отремонтировать ходовку Ауди в Одессе?
    • Автомобили Ягуар — ошеломительное наследие
    • Проверка работы форсунок
    • Тюнинг выхлопной системы Рендж Ровера Вог
    • Kia Ceed. Обзор авто
    • Рекомендации по выбору автомобильных покрышек
    • Зимняя резина. В чем её отличие от летней?
    • Автомобиль Skoda, история создания
    • Качественное моторное масло для авто
    • Что нужно учесть при ремонте глушителя

Дополнительная смазка коленвала 2х тактного мотора.

Двухтактные  спортивные  моторы  с  принудительной  смазкой  подаваемой  в  подшипники  а  не  только  в  полость  картера  —  совсем  не  новость.  Для  высокофорсированных  моторов  смысл  есть.

Пример :

«Раздельная смазка Судзуки.»

В  некоторых  случаях — смазка  может  подаваться  и  бех  насоса…  Почему  бы  и  нет ?

Кстати — одна  из  модификаций  мотора  от  мотоцикла  Минск —  имела  коренные  подшипники  отгороженные  от  кривошипной  камеры  сальниками.  Левый  смазывался  из  коробки  передач  естественным  разбрызгиванием  масла.  А  к  правому — масло  подводилось  через  особый  маслянный  канал — тоже  из  коробки.  Всё  вполне  себе  работало.  ( Кривошип  смазывался  маслом  добавленным  в  бензин ).

Нужно  ли  усложнять  систему  смазки  Бурана ?
Я  не  знаю.  Сомневаюсь  что  эффект  будет  значителен.
Вреда — однако  не  предвижу.

А  вот  с  изофлексом  на  Ротаксах  593 — 793  и  подобных —  всё  не  очень  гладко…

Мы  от  изофлекса  —  избавились.
На  Ротаксе 593 ( на  носу ) — поставили  сперва  сальники — отгораживающие  кривошипную  камеру — потом  подшипники  — открытые  наружу.  К  мотору  герметично  пристыкован  самодельный  редуктор.  Ванна  трансмиссионного  масла  — общая  для  редуктора  и  выходных  подшипников  мотора.

Около 50  часов — жалоб  на  подшипники  нет.

Но  есть  и  ложка  дёгтя.  Редуктор  вырабатывает  стружку.  Она  тусуется  в  масле  и  соответственно  и  в  подшипники  попадает…

Надо  было  наверно  предусмотреть  мембрану из  материала  типа  нетканой  синтетической  ткани.
Чтобы  мембрана  закрывала  подшипник  и  позволяла  фильтроваться  маслу  —  не  допуская  в  подшипник  стружку.
Думаю  ресурс  подшипника  увеличится  однозначно.

Вид  носка коленвала  мотора  без  установленного  редуктора :
( видна  центрирующая  втулка  для  редуктора )


«Rotax  593  переходные  детали  для  редуктора»

Так  это  выглядит  по  родному :


«выходной  вал Р 593»

На  следующем  фото — полость  для  изофлекса  и  родное  расположение  подшипников :


«изофлекс»

На  Изофлекс — многие  жалуются…
По  неким  причинам  он  не  обеспечивает  должной  смазки  и  бывают  преждевременные  выходы  подшипников  из  строя…

Ктото  сверлит  каналы  из  картера…
Но  при  наличии  рядом  редуктора —  мы  сделали  смазку  из  общей  ванны.

Правда  самодельный  редуктор  не  очень  радует.
ИМХО — слабоваты  шестерни  для  мощного  мотора.
Стружки  больше  чем  у  Ротакса ( и  больше  чем  нам  хотелось  бы… )

Правда — говорят  в  редукторе  снегоходов  Линкс — стружки  тоже  не  мало  образуется…

А  ещё — у  нас  резиновый  демпфер  в  масле  разрушается…
Знаю  что  не  правильно.
Такой  редуктор  купили  готовый…
Думаем  на  что  поменять…

Лучше  не  только  редуктор  —  но  и  мотор.
Хочется — мощнее — примерно  в полтора  раза.
Заглядываемся  на  роторный  мотор  от  Мазды…
Но  это  совсем  другая  история…

Про  наш  мотор ( и  редуктор ) :

http://www.reaa.ru/cgi-bin/yabb/YaBB.pl?num=1287187070/0

Смазка подшипников коленчатого вала компрессора

Система – смазка – компрессор

Система смазки компрессора – комбинированная. Шатунная шейка коленчатого вала, пальцы прицепных шатунов и поршневые пальцы смазываются под давлением от масляного насоса, остальные детали – разбрызгиванием масла. [1]

Система смазки компрессора смешанная – под давлением и разбрызгиванием при сухом картере. Масло для смазки подается из масляной магистрали двигателя через отверстие в задней крышке 15 компрессора. Под давлением смазываются шатунные подшипники и поршневые пальцы, остальные трущиеся поверхности и шариковые подшипники коленчатого вала смазываются разбрызгиванием. Из компрессора масло сливается в картер двигателя. [2]

Система смазки компрессора принудительная. Охлаждение жидкостное, жидкость поступает в полость Б блока цилиндров компрессора из системы охлаждения двигателя. [3]

Система смазки компрессора должна быть простой и обладать повышенной надежностью, так как нарушение смазки приводит к износу и даже к выходу из строя компрессора. [4]

Система смазки компрессора – смешанная. Масло после шестеренчатого насоса под давлением 1 – 1 5 ати подается по сверлениям вала и шатуна на смазку подшипников и поршневого пальца. Масляный насос через зубчатую передачу приводится в движение от вала компрессора. Рабочая поверхность цилиндра и поршень смазываются маслом, разбрызгиваемым нижними головками шатунов. На всасывающем штуцере масляного насоса установлена металлическая сетка, препятствующая попаданию в масляный насос механических примесей. Масло дополнительно очищается в пластинчатом фильтре типа Куно, установленном на напорном маслопроводе. [5]

Система смазки компрессора – смешанная. Цилиндр смазывается в результате барботажа масла в картере. Подшипники, пальцы, сальник смазываются маслом, поступающим после шестеренчатого насоса, привод которого осуществляется от коленчатого вала. [6]

Система смазки компрессора принудительная. [7]

Система смазки компрессора должна быть простой и надежной, так как ее нарушение приводит к износу и даже к выходу из строя компрессора. В компрессоре смазывают все трущиеся поверхности: поршень в цилиндре, палец в головке шатуна, крейцкопф в параллелях, кривошипную шейку вала в головке шатуна, вал в коренных подшипниках, уплотнение штока – сальник. В крейцкопфных компрессорах имеются две самостоятельные системы смазки: 1) цилиндра и сальника; 2) кривошипно-ша-тунного механизма. Насосные элементы расположены вокруг вертикального вала, на который насажены два профилированных диска. Диски спрофилированы так, что при каждом обороте вала золотник делает один двойной ход, а плунжер – два хода. [8]

Система смазки компрессора комбинированная. Для очистки масла, поступающего в масляный насос, в картере компрессора установлен сетчатый фильтр, а для контроля давления в системе смазки имеется манометр. Для устранения колебаний его стрелки перед манометром выполнено отверстие диаметром 0 5 мм и установлен разобщительный краник. Нормальное положение краника – закрытое. Заправку масла в корпус компрессора производят через отверстие, в которое ввернута пробка с масло-указателем, а слив масла из корпуса – через отверстие, закрываемое пробкой. Уровень масла проверяют маслоуказателем при завернутом его положении. [10]

Система смазки компрессора герметичная, принудительная, находится под давлением всасывания фреона. Она состоит из вертикального маслобака сварной конструкции, напорного блока и трубопроводов. В напорный блок входят рабочий 17 и резервный 16 электромаслонасосы, электроподогреватель 15 и маслоохладитель 14, смонтированные на общей раме, крепящейся к фундаментной подушке. Компрессор с мультипликатором соединяются зубчатой муфтой, мультипликатор с электродвигателем – упругой. [11]

Система смазки компрессора смешанная, с сухим картером. Масло для смазки подается из масляной магистрали двигателя через отверстие в задней крышке / 5 компрессора. Под давлением смазываются шатунные подшипники is поршневые пальцы, остальные трущиеся поверхности и шариковые подшипники коленчатого вала смазываются разбрызгиванием. Из компрессора масло сливается з картер двигателя. [13]

Система смазки компрессора предназначена для смазки механизмов компрессора, редуктора и привода лубрикатора. [14]

Система смазки компрессора состоит из бака для масла, двух шестеренных насосов ( основного и резервного), маслоохладителя и маслоподогревателя, фильтра, трубопроводов с арматурой. [15]

Для обеспечения непрерывной смазки компрессора в картере необходимо постоянно поддерживать определенное количество масла. Уровень масла нормальный, если он немного ниже или выше середины визуального указателя уровня ( 72).

Для смазки холодильных компрессоров необходимо применять только масло хорошего качества. Холодильное масло вырабатывают из высокосортного минерального масла. Оно не содержит парафина, но в нем есть присадки, которые уменьшают пенообразование. При изготовлении масла из него удаляют влагу и посторонние примеси. После того как сосуд с маслом был открыт, его необходимо снова плотно закрыть, чтобы влага и грязь не попали в масло. Вязкость масла должна соответствовать расчетной для определенного температурного уровня. Завод-изготовитель указывает величину вязкости для каждого случая использования оборудования, и для получения наилучших результатов необходимо следовать его рекомендациям.

Существуют два основных способа смазки компрессора: смазка разбрызгиванием и принудительная смазка. Почти во всех компрессорах применяют комбинацию этих двух способов. Смазка разбрызгиванием является простейшим способом смазки компрессора. Масло в картере разбрызгивается на движущиеся части вращающимся коленчатым валом. Таким образом масло попадает на стенки цилиндров и поверхности подшипников. Способ смазки компрессора разбрызгиванием удовлетворителен для компрессоров, работающих при малых скоростях. Однако этот способ перестал отвечать требованиям, когда были сконструированы большие современные высокоскоростные компрессоры, в которых температура подшипников и трущихся поверхностей более высокая. Смазочное масло не только уменьшает трение между движущимися частями, но и отводит некоторую часть тепла трения.

Почти во всех современных холодильных компрессорах применяется принудительная смазка. Существует несколько видов принудительной смазки. В малых компрессорах производительностью до 2,2 кВт масло подается принудительно к требуемым точкам по нарезным каналам. В компрессорах производительностью более 2,2 кВт используют другую систему смазки. Смазка компрессора обеспечивается шестеренчатым масляным насосом. Насос, монтируемый на корпусе заднего подшипника ( 73), работает от приводного вала, который вставлен в отверстие в торце коленчатого вала. Масло подается с помощью масляного насоса ( 74) через отверстия в коленчатом валу к подшипникам компрессора и шатунам. Пружинный шаровой обратный клапан служит ограничителем давления, позволяя байпасировать масло в картер компрессора, если давление его становится выше заданной величины.

В связи с тем что отверстие всасывания насоса непосредственно связано с картером компрессора, давление масла на входе насоса всегда равно давлению в картере, а давление масла на выходе насоса — суммарному давлению в картере и масла в насосе. Поэтому давление масла нетто равно давлению на выходе насоса минус давление в картере. Когда компрессор работает при давлении всасывания ниже атмосферного, давление в картере должно быть прибавлено к давлению на выходе насоса для определения давления нетто в масляном насосе.

При нормальной эксплуатации компрессора давление масла нетто колеблется в зависимости от его размера, температуры и вязкости масла, а также от величины зазора в подшипниках компрессора. Давление масла нетто от 0,22 до 0,28 МПа является нормальным, но требуемая смазка обеспечивается и при давлениях около 0,07 МПа. Байпасный клапан устанавливают для предотвращения повышения давления масла нетто более чем до 0,42 МПа.

Шестерни масляного насоса могут вращаться в любом направлении. Реверс вращения шестерен осуществляется с помощью фрикционной пластины, которая изменяет направление входа масла в насос и выхода из него. Однако после длительной работы насоса реверсирующая фрикционная пластина изнашивается, появляются коррозия, пленка или шероховатость, в результате чего прекращается реверсирование работы насоса. Если по какой-либо причине электрические соединения двигателя установки, компрессор которой работал в течение определенного времени, были повреждены, то после ремонта этих соединений необходимо сохранить первоначальное направление вращения двигателя.

Наличие в картере компрессора жидкого хладагента может существенно влиять на работу масляного насоса. Бурное пено- образование при пуске является причиной уноса масла из картера, в результате чего давление масла снижается до возврата некоторого его количества в картер. Если жидкий хладагент или масло, насыщенное хладагентом, всасывается в масляный насос, то образовавшийся пар хладагента может быть причиной значительных колебаний и возможно даже снижения давления масла. Давление в картере может отличаться от давления всасывания, так как жидкий хладагент повышает давление в картере на короткие периоды времени. Поэтому штуцер низкого давления реле контроля смазки должен всегда быть присоединен к картеру.

Стенки цилиндров и поршней, поршневые пальцы, распределительные шестерни смазываются разбрызгиванием.
Для сообщения картера двигателя с атмосферой служит сапун. У автомобилей вентиляция картера принудительная.

Система смазки двигателя комбинированная: к смазываемым поверхностям масло подается под давлением и разбрызгиванием. Под давлением смазываются коренные и шатунные

Остальные детали смазываются разбрызгиванием. В систему смазки входят: приемник масляного насоса, перепускной клапан 3, центрифуга 4, термометр 8, манометр

Для заправки густыми смазками предусмотрен пневматический нагнетатель 12. В числе оборудования маслозаправщика имеется компрессор 10 производительностью 0,5 м3/мин, давлением до 7 кГ/см2, генератор 11 постоянного тока для питания нагревательных элементов.

. в отдельных случаях системы принудительной централизованной смазки. . а также подкачки пневматических шин предусматривается компрессор типа О-39А. .

Система смазки двигателя комбинированная: к смазываемым поверхностям масло подается под давлением и разбрызгиванием. Под давлением смазываются коренные и .

Шатун крейцкопфного компрессора соединяет коленчатый вал с ползуном (крейцкопфом), бескрейцкопфного — непосредственно с поршнем (через поршневой палец). Шатуны представляют собой стержни фигурного сечения с верхней и нижней головками.


Рис. 23. Шатуны:
а — штампованный с косым разъемом, б — штампованный с одной разъемной головкой, в — точеный с отъемной нижней головкой

Шатуны выковываются из стали и выполняются различными по конструкции (рис. 23). Кривошипная головка шатуна — разъемная. Подшипник кривошипной головки называется мотылевым. Он имеет чугунные вкладыши, залитые баббитом.

Для лучшего сцепления баббита с телом шатуна или вкладыша на их внутренней поверхности делают специальные канавки в форме «ласточкиного хвоста», покрываемые перед заливкой слоем полуды. Залитый в подшипник баббит сначала обрабатывают на расточном станке, а затем тщательно пришабривают по краске к шейке вала. Разъемная головка шатуна стягивается шатунными болтами, являющимися деталями первостепенной важности для безопасной работы компрессора.

В плоскости разъема вкладышей мотылевого подшипника помещаются прокладки, регулируя толщину которых изменяют величину масляного зазора подшипника.

В шатунах с отъемной нижней головкой с помощью прокладок между головкой и телом шатуна можно регулировать величину вредного пространства компрессора. В шатунах с косым разъемом нижней головки применяют сменные тонкостенные вкладыши.

В верхние головки шатунов запрессовывают втулки, к которым подается принудительная смазка.

Коленчатый (или коренной) вал — одна из самых ответственных частей компрессора. Коленчатый вал имеет коренные и шатунные шейки и удлиненный конец с конусом и резьбой для крепления маховика. Шатунные шейки называют также мотылевыми. Шейки валов шлифованные. Переход от образующей шейки к щеке (галтель) выполняют в виде плавной кривой.

Через коренные подшипники коленчатый вал передает усилия от движущихся частей компрессора на раму. На мотылевых шейках коленчатого вала крепятся шатуны. С помощью коленчатого вала, колена которого вместе с шатунами образуют шатунно-кривошипный механизм, вращательное движение двигателя преобразуется в возвратно-поступательное движение поршней. Число колен вала кратно числу цилиндров компрессора.

Коленчатые валы выковывают или штампуют из стали с последующей обточкой и шлифовкой на станках. В щеках и шейкам коленчатых валов высверлены каналы с выходом на поверхность, по которым подается смазочное масло.

Уравновешивание сил инерции движущихся масс компрессора частично осуществляется противовесами, закрепляемыми на щеках коленчатого вала. Во время работы коленчатый вал испытывает переменные напряжения изгиба, среза и кручения, поэтому его делают из высококачественной стали. Для компрессоров малой и средней производительности применяют роликовые и шариковые подшипники качения.

Подшипники скольжения используют в основном в крупных компрессорных машинах. Они состоят из корпуса, крышки и вкладышей. Регулируют зазор вкладышей набором прокладок.

Маховик облегчает работу двигателя, запасая энергию в моменты нахождения поршня в среднем положении и отдавая ее при выходе поршня к крайним положениям (мертвым точкам). Маховики крупных горизонтальных компрессоров часто изготавливают как одно целое с ротором синхронного электродвигателя.

Маховики вертикальных компрессоров в случае ременной передачи от двигателя к компрессору служат одновременно и приводными шкивами.

При использовании клиновых ремней в маховиках протачивают соответствующие пазы.

Крейцкопф (ползун) соединяет прямолинейно двигающийся шток с шатуном, совершающим сложное движение. Шток поршня крепится через стальной палец к ползуну. Для регулирования вредного пространства служат специальные гайки.

Коренной шатунный подшипник — коленчатый вал

Коренной шатунный подшипник — коленчатый вал

Cтраница 3

Масло под давлением подается к коренным и шатунным подшипникам коленчатого вала, к подшипникам и опорам распределительного и промежуточного валов, валикам привода распределителя зажигания и масляного насоса и к толкателям. Для смазки втулок коромысел масло подается пульсирующими порциями, а к остальным деталям — самотеком и разбрызгиванием.  [31]

Под давлением дизеля ЯМЗ-236 смазываются: коренные и шатунные подшипники коленчатого вала, поршневые пальцы, подшипники распределительного вала и его упорный фланец, ось промежуточной шестерни, толкатели и втулки коромысел клапанов. Все остальные трущиеся детали смазываются способом разбрызгивания масла. Фильтр грубой и тонкой очистки находится с левой стороны в передней части дизеля. Двухсекционный шестеренчатый масляный насос закреплен в передней части дизеля внутри картера.  [33]

Основными неисправностями кривошипно-шатунного механизма являются износы коренных и шатунных подшипников коленчатого вала, шеек вала, поршневых пальцев и отверстий для них в бобышках поршней, поршней и гильз цилиндров, поломка поршневых колец или потеря ими подвижности, ослабление креплений.  [34]

Ввиду незначительной разницы в ресурсах вкладышей коренных и шатунных подшипников коленчатого вала и поршневых колец их замену целесообразно совместить и производить на пробеге 150 тыс. км. При этом необходимо использовать эксплуатационные вкладыши.  [35]

Наиболее опасны в двигателе стуки в коренных и шатунных подшипниках коленчатого вала.  [37]

В двигателе АЗЛК-412 под давлением смазываются: коренные и шатунные подшипники коленчатого вала, подшипники распределительного вала, оси коромысел клапанов, кулачки и упорный фланец распределительного вала, шестерни привода масляного насоса и прерывателя-распределителя, ведомая звездочка и втулочно-роликовая цепь привода распределительного вала.  [38]

В рассмотренной системе смазки под давлением смазываются коренные и шатунные подшипники коленчатого вала, подшипники распределительного вала, опоры промежуточного валика привода прерывателя-распределителя и валика масляного насоса, а также толкатели и втулки коромысел. Все остальные поверхности деталей двигателя смазываются за счет подачи масла самотеком или разбрызгиванием.  [40]

Смазка детандера — комбинированная: под давлением смазываются коренные и шатунные подшипники коленчатого вала, подшипники верхней головки шатуна и опорная вставка; трущиеся поверхности поршня и крейцкопфа смазываются разбрызгиванием, а детали механизма распределения — капельным способом.  [41]

Так как А510, то одновременная замена вкладышей коренных и шатунных подшипников коленчатого вала на пробеге 97 6 тыс. км экономически целесообразна.  [42]

Таким образом, масло под давлением поступает к коренным и шатунным подшипникам коленчатого вала, кривошип-но-шатунному механизму компрессора, упорному фланцу распределительного вала и к втулкам коромысел. Остальные трущиеся детали смазываются разбрызгиванием.  [43]

Антифрикционные сплавы широко применяют в автомобилестроении для заливки вкладышей коренных и шатунных подшипников коленчатых валов двигателей, опорных втулок распределительных валов, шатунных вкладышей коленчатых валов компрессоров и других целей. В качестве антифрикционных сплавов применяют баббиты, свинцовистые бронзы и другие сплавы.  [44]

Под давлением масло подается к основным нагруженным деталям: коренным и шатунным подшипникам коленчатого вала, к подшипникам распределительного вала, толкателям.  [45]

Страницы:      1    2    3    4    5

Как коленчатые валы влияют на вашу производительность: все, что вам нужно знать — Совет недели — Lube Talk

Заказчик недавно спросил, вызвала ли смазка выход из строя коленчатого вала?

Как большинство из вас могло бы подозревать, ответ на вопрос, скорее всего, был «нет», потому что правильно изготовленные смазочные материалы не вызывают сбоев. Однако вопрос заставил меня задуматься, действительно ли мы разбираемся в коленчатых валах?

Не столько то, что они делают, сколько другие вопросы, такие как, как они сделаны, из чего они сделаны, ключи к дизайну и многое другое?

Итак, в этой статье мы подробнее рассмотрим коленчатый вал — что это такое, как он работает и как правильно обслуживать его, чтобы поддерживать высокую производительность труда.

Определение

Коленчатый вал — это механическая часть, способная преобразовывать возвратно-поступательное движение (линейное) во вращательное (круговое) движение. Чаще всего они встречаются в поршневом двигателе, таком как автомобильный или компрессор
, хотя в последнем «кривошип» используется для преобразования вращательного движения в линейное.

Коленчатый вал состоит из кривошипных шейек, на которых закреплен нижний конец шатуна поршня. Эта шейка обычно отделена от шатуна подшипником скольжения.Цапфы кривошипа обычно выравниваются по трем направлениям: в линию, «V» или радиально, и это диктуется применением или потребностями.

Коленчатый вал имеет линейную ось, вокруг которой он вращается. Во время вращения возникает боковая нагрузка, которая в значительной степени поддерживается, и это достигается за счет основных подшипников, которые также имеют «плоскую» конструкцию. Количество основных подшипников, поддерживающих цилиндр, обычно превышает количество поддерживаемых поршней, например, рядный шестицилиндровый двигатель может иметь от пяти до семи основных подшипников.

Коленчатые валы имеют противовесы, обеспечивающие балансировку двигателя во время вращения. Они залиты в блок и могут быть отрегулированы с помощью болтов на деталях при изменении конструкции нагрузки / осевого усилия.

Строительство

Коленчатые валы обычно кованые или литые и обычно состоят из одной детали. Кованые коленчатые валы наиболее распространены в современных двигателях и компрессорах с использованием различных микросталевых сплавов. Коленчатые валы можно шлифовать, чтобы удалить излишки материала или отрегулировать конструкцию двигателя.Большинство коленчатых валов подвергаются индукционной закалке или азотированию, выбор зависит от требований применения и соображений стоимости.

Напряжение коленчатого вала

Знаете ли вы, что если вы попытаетесь вручную повернуть коленчатый вал с противоположной стороны, ничего не произойдет? Однако, если вы уроните одну из них с высоты трех или четырех футов, коленчатый вал часто расколется на две или три части. Это почему?

На коленчатый вал действуют две основные силы; сгибание и скручивание.Изгиб наиболее распространен в центральном и конечном положениях и регулируется конструкцией, количеством и расположением коренных подшипников. Скручивание происходит на каждой шейке шатуна и обеспечивается боковым перемещением шатуна и шейки. Это лучшее управление благодаря конструкции шейки, шатунных подшипников и регуляторов частоты вращения двигателя. В правильно спроектированном и эксплуатируемом двигателе изгибающее напряжение меньше двух сил.

Смазка коленчатого вала

Правильному смазыванию коленчатого вала способствует подача смазочного материала в зону нагрузки как в режиме смазки разбрызгиванием, так и в режиме смазки под давлением.Брызги возникают из-за турбулентного движения коленчатого вала и уровня масла в картере.

Смазка под давлением обеспечивается масляным насосом, подающим смазку в отверстия и проходы, предварительно просверленные в оси коленчатого вала и шейках.

Типы масел, используемых для смазки коленчатого вала, обычно представляют собой циркулирующие масла с ингибитором ржавчины и окисления или моторные масла, содержащие присадки, улучшающие индекс вязкости, противоизносные присадки и ингибиторы окисления. В этом случае трансмиссионные масла обычно не используются.

Заключение

Почему коленчатый вал, представленный во введении, вышел из строя?

Скорее всего, это не имело ничего общего с маслом, а было связано с чрезмерным напряжением скручивания, которое, в свою очередь, скорее всего, было результатом механических, эксплуатационных и / или конструктивных проблем. Однако только глубокий анализ первопричин отказов сможет определить истинную причину.

Надеюсь, этот совет был полезен, и если у вас есть вопросы, оставьте комментарий в разделе ниже!

Система смазки двигателя внутреннего сгорания.

Вы ездите на своей машине каждый день — было бы неплохо узнать, как это работает? А общее описание принципа работы двигателя внутреннего сгорания находится на сайте «www.howstuffworks.com». Трибология горения тут написан движок. Будут обрабатываться следующие детали:

Смазка система, цилиндр, поршень, поршневые кольца, кулачки / распределительный вал и шатунный подшипник.

Система смазки
Система смазки двигателя предназначена для подачи чистого масла в правильная температура и давление для каждой части двигателя.Масло всасывает поддон в насос, являющийся сердцем системы, чем проходит через масляный фильтр, и давление подается на коренные подшипники и манометр давления масла. Из коренных подшипников масло проходит через отверстия для подачи в просверленные каналы в коленчатом валу и на шатуне подшипники шатуна. Стенки цилиндров и подшипники поршневых пальцев смазываются масляной струей, распыляемой вращающимся коленчатым валом.Избыток соскребается нижним кольцом поршня. Кровоток или приток из главный питающий канал питает каждый подшипник распределительного вала. Еще одно кровотечение цепь привода ГРМ или шестерни на приводе распределительного вала. Затем излишки масла стекают. обратно в отстойник, где тепло распространяется в окружающий воздух.

Подшипники скольжения
Если шейки коленчатого вала изнашиваются, в двигателе будет пониженное давление масла. и полить маслом всю внутреннюю часть двигателя.Чрезмерный всплеск будет Вероятно, это приведет к выходу из строя колец и из-за того, что двигатель будет использовать масло. Изношенные подшипники Поверхности можно восстановить, просто заменив вкладыши подшипников. В хорошем Износ подшипников поддерживаемых двигателей наступает сразу после холодного пуска, потому что масляная пленка между подшипником и валом небольшая или отсутствует. На момент, когда в системе циркулирует достаточное количество масла, гидродинамический смазка проявляется и останавливает прогрессирование износа подшипников.

Кольца поршневые — цилиндр
Поршневые кольца обеспечивают скользящее уплотнение, предотвращающее утечку топлива / воздуха. смесь и выхлоп из камеры сгорания в масляный картер во время сжатие и горение. Во-вторых, они удерживают масло в поддоне от утечки. в зону горения, где он сгорит и потеряется. Большинство автомобилей, которые «сжигать масло» и нужно добавлять кварту каждые 1000 миль, чтобы сжигать его потому что кольца больше не закрываются должным образом.

Между поршневыми кольцами и стенкой цилиндра двигателя в хорошем состоянии преобладает гидродинамическая смазка, необходимая для минимального трения и носить. В верхней и нижней мертвой точке, где поршень останавливается для перенаправления, толщина пленки становится минимальной, и может существовать смешанная смазка.

Для обеспечения хорошей передачи головки от поршня к цилиндру оптимальная герметичность и минимум подгорания масла, желательна минимальная толщина пленки.Минимальная толщина пленки поддерживается за счет так называемого маслосъемного кольца. Этот кольцо расположено за поршневыми кольцами, так что излишки масла соскребает прямо вниз к поддону. Осталась масляная пленка на цилиндре стенка при прохождении этого кольца доступна для смазки следующих звенеть. Этот процесс повторяется для следующих друг за другом звонков. По ходу вверх первое компрессионное кольцо смазывается маслом, оставшимся на цилиндре стена во время удара вниз.

Утечка топливовоздушной смеси и выхлопных газов из камеры сгорания в масляный поддон приводит к ухудшению качества масла. По этой причине, несмотря на частое пополнение масла, замена масла останется незаменимой или даже станет больше существенный.

Кулачки и последователи .

>>

Коленчатый вал и смазка

КОЛЕНЧАТЫЙ ВАЛ И СМАЗКА

Будь то Коленчатый вал имеет прочную конструкцию (рис.4-19) или полой конструкции (рис. 4-20), коренные шейки, шейки шатуна и перемычки на большинстве валов просверлены каналы для смазочного масла. Две другие вариации в внутреннее устройство масляных каналов коленчатых валов показано на рисунке. 4-22. Исследование этих двух

Рисунок 4-22. Примеры Устройство маслопровода коленчатого вала.

Рисунок 4-21.Коленчатый вал со съемными противовесами.

масло расположение проходов даст вам представление о той роли, которую играет коленчатый вал. смазка двигателя. В системе, показанной на виде A на рис. 4-22, каждый просверлен маслопровод от шейки коренного подшипника до шатуна журнал. Масляные каналы попарно пересекают друг друга таким образом что два масляных отверстия для каждой шейки находятся на противоположных сторонах шейки. Эти отверстия совмещены по оси с масляными канавками вкладышей подшипников. когда снаряды на месте.Так как масляная канавка в подшипнике проходит не менее На полпути вокруг подшипника часть канавки всегда будет совмещена с хотя бы одно из отверстий.

В устройство масляного канала показано на виде B на рис. 4-22 (вал показан на рис. 4-19) проход просверливают прямо по диаметру каждого коренная и шатунная шейка. Один диагональный проход просверливается от за пределами перемычки коленчатого вала к центру следующей главной шейки.В диагональный канал соединяет масляные каналы в двух смежных шатунах журналы и основные журналы. Внешний конец диагонального прохода заглушен.

Смазка масло под давлением попадает в коренной подшипник и продавливается по диагонали проход для смазки шатунного подшипника. Оттуда он течет просверленный шатун для смазки поршневого пальца и охлаждения поршня.

В двигатели, в которых используются механизмы маслопровода коленчатого вала, такие как Как уже говорилось, в шатунах просверлены отверстия для подачи смазочного масла к поршневые пальцы и поршень.(См. Рис. 4-17.) Не на всех двигателях просверлены отверстия. шатуны. В некоторых двигателях V-образного типа через просверленные каналы масло подается в коренные и шатунные подшипники, но масло для смазки и охлаждения поршневой узел может питаться от центробежной силы или от отдельного источника линий. Варианты систем смазки двигателя обсуждаются далее в главе. 8.

Что такое смазка Straight-Shot

Смазка является источником жизненной силы любого высокопроизводительного двигателя.Это особенно верно для вращающегося узла, который поглощает давление сгорания в несколько тысяч фунтов и преобразует его из возвратно-поступательного движения во вращательное движение для приведения в движение транспортного средства. В этих суровых условиях большую роль играет прямая смазка. Вот почему.

Коренные подшипники и шатунные подшипники должны постоянно снабжаться свежим чистым моторным маслом для правильной работы. Меньшее означает мгновенный катастрофический отказ двигателя. Производители двигателей прилагают значительные усилия для обеспечения стабильной подачи холодного неаэрированного моторного масла на штоки и сеть высокопроизводительных или гоночных двигателей.

Поддержание гоночного двигателя в рабочем состоянии требует соответствующей смазки! Шатуны и коренные подшипники, некоторые из наиболее нагруженных компонентов двигателя, не могут жить без надлежащего давления масла даже на короткое время.

Отличительной чертой всех послепродажных высокопроизводительных и гоночных блоков цилиндров является приоритетная основная система смазки. Основная система приоритета обеспечивает прямой масляный канал от главного масляного канала к каждому коренному подшипнику. Это гарантирует, что коренные подшипники, а затем и стержневые подшипники будут смазаны до того, как произойдет какое-либо смазывание верхней части.После того, как сеть смазана надлежащим образом, через дополнительные каналы в коленчатом валу масло направляется к подшипникам штока, где происходит реальное горение. Вот здесь и проявляется преимущество смазки при прямом выстреле.

В том же смысле, что приоритетная основная смазка обеспечивает прямую подачу масла в сеть, прямая смазка коленчатого вала обеспечивает прямую подачу масла из магистрали в подшипники штока, поэтому они никогда не испытывают недостатка масла. Так было не всегда. В пятидесятые и шестидесятые годы гонщики считали, что просверливание дополнительного отверстия прямо в шейках коренных подшипников лучше смазывает подшипники, но они забыли о стержневых подшипниках.Вероятно, это произошло из-за ошибочных усилий по устранению проблемы смазки, вызванной неправильными зазорами, масляными насосами большого объема или подшипниками, которые изначально не были рассчитаны на нагрузку в гоночных условиях. Это вызвало всевозможные проблемы нижнего уровня.

Сварочный стержень, проходящий через шейки, показывает прямой путь от основной шейки до шейки стержня.

По словам Майка Скина из K1 Technologies, «более высокие обороты двигателя выявили недостатки в практике поперечного сверления коленчатых валов из-за повышенных центробежных сил, которые масло должно преодолевать, чтобы достичь подшипников штока.”

Эта модификация особо не повлияла на нормальные обороты двигателя, но было быстро обнаружено, что более высокие обороты двигателя заставляли кривошип с перфорированным отверстием фактически центрифугировать масло с поверхности смазки главной шейки, не давая ему свободно течь к шейкам штока. Ранние масляные насосы не создавали достаточного давления, чтобы преодолеть эффект центрифуги, и стержневой подшипник страдал от последствий. Отказы шатунов и коленчатого вала были быстро объяснены этой проблемой, однако некоторые производители все еще применяли шатуны для поперечного сверления даже в семидесятых годах, и, что еще хуже, некоторые люди все еще верят в эту идею.

Ранее в кривошипах с поперечным отверстием использовались питающие отверстия, просверленные полностью через коренные шейки, а в некоторых случаях также и в шейках штока. Угловой проход просверливается от шатуна к основному прямо по средней линии кривошипа. При более высоких оборотах двигателя масло центрифугируется к внешней части главной шейки, насос не может создать давление, достаточное для заполнения централизованного прохода к шейке штока. Повышенное давление масла и больший объем не могут справиться с центробежным эффектом, и подшипники штока выйдут из строя из-за недостаточной смазки именно там, где это больше всего необходимо.Майк Скин сказал нам, что «во всех высокопроизводительных двигателях должен использоваться коленчатый вал с прямой смазкой».

На этом виде показано, как каждая основная цапфа питает соседнюю цапфу стержня по обе стороны от нее.

Современные высокопроизводительные и гоночные коленчатые валы используют стратегию «прямой смазки». Подшипники штока получают смазку под полным давлением через прямой канал от сети непосредственно к шейкам штанги, а основные шейки не имеют поперечных отверстий. На прилагаемой фотографии показано, как это работает, если вставить кусок сварочного стержня через проход от основной шейки к шейке стержня.Масляный канал представляет собой прямой проход, и, поскольку кривошип не имеет поперечных отверстий, масло вынуждено следовать по прямому пути к шейкам штока.

Если вы изобразите шток и коренные шейки с торца, вы можете связать поток масла с тем, где синхронизируются каналы. Когда ход кривошипа установлен на двенадцать часов, масло поступает в коренной подшипник между шестью и девятью часами в зависимости от размера шейки и длины хода. Масляный канал прямого выстрела смещен от центра и направлен непосредственно на ход штока.Он выходит примерно за два часа до точки максимальной загрузки. Следовательно, частота вращения двигателя не оказывает отрицательного влияния на подачу масла к шейке штока, и штоки получают такую ​​же жизненно важную смазку, как и сеть.

Масло подается к каждой из основных шейек через проходы в блоке. После смазки магистрали давление масла направляется через прямую смазку на каждую шейку штока.

Изготовители двигателей Sharp всегда используют трюк со сварочным стержнем, чтобы проверить прямолинейные смазочные каналы на каждом коленчатом валу, который они используют.Все коленчатые валы K1 Technologies имеют прямую смазку, но хорошей практикой в ​​двигателестроении является проверка и повторная очистка всех каналов с помощью щетки для масляных каналов с жесткой щетиной. Это гарантирует безошибочную сборку системы смазки. Оглядываясь назад, вы видите, что приоритетная основная смазка и прямая смазка — это две отдельные функции, разработанные для совместной работы, чтобы обеспечить идеальную смазочную среду для оптимальной смазки двигателя. Майк Скин подтверждает это: «Коленчатые валы, спроектированные с прямой смазкой, обеспечивают адекватную смазку подшипников штока без использования системы смазки с сухим картером под высоким давлением.”

Коленчатый вал поддерживается очень тонкой пленкой масла на подшипниках типа баббит, подобных этим. Незначительное количество масляной пленки требует идеального давления масла, чтобы шатун выжил.

Многие производители двигателей начинают отказываться от более узких зазоров. Это означает, что минимальная масляная пленка на шейках шатунов должна иметь полное давление позади себя, чтобы поддерживать полную смазку при поглощаемых ею сильных толчках. Они также переходят на синтетику и более легкие масла, для чего требуется оптимальная целостность масляной пленки на каждой шейке стержня.Прямая смазка — это решение, которое доступно для всех современных коленчатых валов, например, от K1 Technologies.

Как работает коленчатый вал — Все подробности

При сгорании топлива поршень выстреливает прямо вниз по цилиндру, работа коленчатого вала заключается в преобразовании этого поступательного движения во вращение — в основном путем поворота и толкания поршня вверх по цилиндру.

Терминология коленчатого вала достаточно специализирована, поэтому мы начнем с названия нескольких частей.А журнал это часть вала, которая вращается внутри подшипника. Как видно из вышесказанного, на коленчатом валу бывают два типа шейки — шеек. Коренные шейки образуют ось вращения коленчатого вала, а Шатунные шейки закреплены на концах шатунов, доходящих до поршней.

Для большей путаницы шейки шатуна сокращенно обозначаются шатунными шейками и также обычно называются шатунными шейками. шатун , или же штифты головные .Цапфы стержней соединены с главными шейками с помощью полотна .

Расстояние между центром коренной шейки и центром пальца коленчатого вала называется радиус шатуна , также называемый ход кривошипа . Это измерение определяет диапазон хода поршня при вращении коленчатого вала — это расстояние сверху вниз известно как ход . Ход поршня будет в два раза больше радиуса кривошипа.

Задний конец коленчатого вала выходит за пределы картера и заканчивается Фланец маховика .Этот прецизионно обработанный фланец прикреплен болтами к маховик , большая масса которого помогает сгладить пульсацию поршней, срабатывающих в разное время. Через маховик вращение передается через трансмиссию и главную передачу на колеса. В АКПП коленчатый вал прикручен к коронная шестерня , несущий гидротрансформатор, передавая привод на автоматическую коробку передач. В основном это мощность двигателя, и мощность передается туда, где она необходима: гребные винты для лодок и самолетов, индукционные катушки для генераторов и опорные колеса в автомобиле.

Передний конец коленчатого вала, иногда называемый носиком, представляет собой вал, выходящий за пределы картера. Этот вал будет заблокирован с зубчатой ​​передачей, которая приводит в движение клапанный механизм через зубчатый ремень или цепь [или в высокотехнологичных приложениях, зубчатых передачах], и шкив, который передает мощность через приводной ремень на такие аксессуары, как генератор переменного тока и водяной насос. .

Детали коленчатого вала

Основные журналы

Коренные шейки или просто главные шейки зажимаются в блоке двигателя, и двигатель вращается вокруг этих шейек.Все шейки коленчатого вала будут обработаны идеально гладкими и круглыми и часто закалены. вкладыш подшипника буду сидеть. Подшипник мягче, чем шейка, и его можно заменять по мере износа, и он спроектирован так, чтобы поглощать небольшое количество загрязнений, если таковые имеются, чтобы не повредить коленчатый вал. А крышка коренного подшипника затем прикручивается к шейке болтами и затягивается с точным крутящим моментом.

[Схема главной цапфы с подшипниками и отверстиями]

Цепи движутся по масляной пленке, которая вдавливается в пространство между шейкой и подшипником через отверстие в седле коленчатого вала и соответствующее отверстие во вкладыше подшипника.При правильном давлении масла и подаче масла шейка и подшипник не должны соприкасаться.

Шатунные шейки

Шатунные шейки смещены от оси вращения и прикреплены к большие концы шатунов поршней. Как ни странно, их также часто называют шатун или же Шатунные шейки . Подача масла под давлением проходит через наклонный масляный канал, просверленный от основной шейки.

В некоторых шатунах просверлен масляный канал, позволяющий распылять масло на стенку цилиндра. В этом случае опорные подшипники шатуна будут иметь канавку для подачи масла в шатун.

Смазка коленчатого вала

Контакт металл-металл — враг эффективного двигателя, поэтому и главные шейки, и шейки стержней движутся по масляной пленке, которая находится на поверхности подшипника.

Подать масло к коренному подшипнику скольжения легко: масляные каналы от блока цилиндров ведут к каждому седлу коленчатого вала, а соответствующее отверстие в корпусе подшипника позволяет этому маслу достигать шейки.

Подшипники шейки шатуна требуют такой же смазки, но они вращаются вокруг коленчатого вала со смещением. Для подачи масла к этим подшипникам масляные каналы проходят внутри коленчатого вала — через основную шейку, по диагонали через перемычку и через отверстия в шейках шатунов. Канавка в подшипнике коренной тяги позволяет маслу непрерывно продавливаться по каналу к шейкам шатунов, чему способствует выброс наружу центробежной силой вращающегося коленчатого вала.

Зазоры между шейками и подшипниками являются основным источником давления масла в двигателе.Если зазоры слишком велики, масло вытекает свободно, а давление не поддерживается. Слишком малые зазоры вызовут высокое давление масла и риск контакта металла с металлом. Поэтому очень важно измерять зазор между подшипниками и шейками при ремонте двигателя.

Противовесы

Коленчатый вал подвержен сильным вращающим силам, а масса шатуна и поршня, движущиеся вверх и вниз, оказывает значительную силу.Противовесы отлиты как часть коленчатого вала, чтобы уравновесить эти силы. Эти противовесы обеспечивают более плавную работу двигателя и более высокие обороты.

Коленчатый вал балансируется на заводе. В этом процессе прикрепляется маховик, и весь узел вращается на машине, которая измеряет, где он не сбалансирован. Балансировочные отверстия просверлены в противовесах для уменьшения веса. Если необходимо добавить вес, просверливается отверстие, которое затем заполняется хэви-металлом или меллори.Это повторяется до тех пор, пока коленчатый вал не будет сбалансирован.

Упорные шайбы коленчатого вала

В какой-то момент по его длине будут установлены две или более упорных шайб, чтобы предотвратить продольное перемещение коленчатого вала. На изображенном коленчатом вале с обеих сторон центральной шейки имеются упорные шайбы. Эти упорные шайбы устанавливаются между обработанными поверхностями перемычки и седла коленчатого вала, поддерживая заданный небольшой зазор и сводя к минимуму величину бокового движения, доступного для коленчатого вала.Расстояние, на которое коленчатый вал может перемещаться из конца в конец, называется его осевым люфтом, и допустимый диапазон будет указан в руководствах по обслуживанию.

В некоторых двигателях эти упорные шайбы являются частью коренных подшипников, в других, как правило, более старых типов, используются отдельные шайбы.

Основные сальники

Оба конца коленчатого вала выходят за пределы картера, поэтому необходимо предусмотреть какой-либо метод предотвращения утечки масла через эти отверстия. Это работа двух основных масляных уплотнений, одного спереди и одного сзади.

задний главный сальник устанавливается между задней главной шейкой и маховиком. Обычно это манжетное уплотнение из синтетического каучука. Прокладка вдавливается в выемку между блоком цилиндров и масляным поддоном. Уплотнение имеет фасонную кромку, которая плотно прижимается к коленчатому валу пружиной, называемой подвязкой.

Неисправное масляное уплотнение является серьезной проблемой, поскольку оно находится рядом с главными шейками, которые получают и нуждаются в хорошей подаче масла под давлением. В сочетании с вращением коленчатого вала это приводит к быстрой потере моторного масла из-за любого нарушения сальника.

сальник передний похож на задний, хотя его выход из строя менее катастрофичен, и к нему легче получить доступ. Передний сальник будет за шкивами и шестерней привода ГРМ.

Сальник сам по себе является дешевой деталью, но для доступа к нему требуется много труда по снятию трансмиссии, сцепления, маховика и, возможно, коленчатого вала. Поэтому рекомендуется заменять сальники каждый раз, когда двигатель разбирается и детали доступны.

Схемы коленчатого вала

Базовый коленчатый вал, показанный выше, от рядного 4-цилиндрового двигателя.Другие конструкции коленчатого вала будут зависеть от компоновки двигателя. Более подробно эта тема освещена в статье о компоновке двигателя. Но следует отметить, что в двигателях V-образной формы и W два шатуна могут иметь общую шейку штока. Ниже показаны некоторые типовые схемы коленчатого вала.

Коленчатый вал V6

Коленчатый вал V6 является в некотором роде специализированным, потому что он требует, чтобы шейки шатуна были разделены для поддержания равномерного интервала зажигания. Это требует, чтобы цапфы стержней были расколоты или растопырены в так называемом шплинт или же цапфа разъемная дизайн.

Неисправности

Коленчатый вал, будучи очень прочным, является надежным компонентом, и поломки коленчатого вала редки, если только двигатель не работает в экстремальных условиях.

Изношенные журналы

Без достаточного давления масла шейки коленчатого вала будут контактировать с опорными поверхностями, постепенно увеличивая зазор и ухудшая давление масла. В крайнем случае это может привести к разрушению подшипников и серьезному повреждению двигателя.Если цапфы изношены ниже пределов допустимых значений или уже не имеют идеально круглой формы, их необходимо отшлифовать, как описано ниже.

Усталость

Постоянные силы, действующие на коленчатый вал, могут привести к усталостным трещинам, обычно обнаруживаемым на галтеле, где шейки соединяются со стенкой. Ровный радиус этого галтеля имеет решающее значение для предотвращения слабых мест, ведущих к усталостным трещинам. Коленчатый вал можно проверить на наличие трещин с помощью магнитное флюсирование .

Модификации и апгрейды

Шлифовка коленчатого вала

Журналы изнашиваются со временем. У них может образоваться шероховатая поверхность, они могут стать некруглыми или заостренными. В этих случаях их поверхность можно восстановить с помощью процесса, называемого шлифовкой коленчатого вала. Когда коленчатый вал заточен, его шейки будут уменьшены в диаметре и, следовательно, увеличены в размерах, поэтому потребуется установка более толстых подшипников.

Коленчатые валы Stroker

Объем цилиндра можно увеличить, перемещая поршни на более длинный ход.Ход двигателя определяется радиусом кривошипа, который представляет собой расстояние между шейками шатуна и коренными шейками. Коленчатый вал с большим радиусом кривошипа будет производить более длинный ход и больший объем цилиндра — это известно как коленчатый вал с ходовым механизмом. При установке строкера потребуются более короткие шатуны. В противном случае поршни могут перемещаться в цилиндре слишком высоко, вызывая неприемлемо более высокое сжатие или удар о крышу цилиндра.

Коленчатые валы

Stroker для часто модифицируемых двигателей продаются в комплекте с более короткими шатунами и поршнями.Строкер-комплект для двигателя Mazda MX5 Miata 1.8L может преобразовать его в двигатель 2L по цене около 5500 долларов.

Офсетное шлифование

Альтернативой установке коленчатого вала с ходовым механизмом является шлифовка шейки шатуна до меньшего размера со смещением — таким образом, центр шейки перемещается от осевой линии коленчатого вала. Это проиллюстрировано выше.

Видно, что при перемещении центра шейки штока радиус кривошипа был увеличен, что привело к увеличению хода.Это специальная обработка, и достигаемое увеличение хода будет зависеть от толщины шейки.

Как делается коленчатый вал

В большинстве серийных двигателей используется чугунный коленчатый вал, который изготавливается путем заливки расплавленного чугуна в форму. Кованые коленчатые валы используются в некоторых высокопроизводительных двигателях. Кованый коленчатый вал изготавливается путем нагревания стального блока до докрасна, а затем с использованием чрезвычайно высокого давления для придания ему формы.

После ковки или литья коленчатого вала его шейки и опорные поверхности обрабатываются идеально гладкими.Просверливаются масляные каналы или масляные каналы. Серийные двигатели, как правило, оставляют перемычки с их первоначальной черновой отделкой, но высокопроизводительные двигатели обрабатывают каждую часть коленчатого вала, чтобы уменьшить сопротивление масла.

Шейки должны быть тверже, чем их подшипники, чтобы износ заменялся на подшипниках, а не на коленчатом валу, который должен служить в течение всего срока службы двигателя. Производственный процесс будет включать упрочнение этих участков посредством азотирования или термообработки.

Коленчатые валы с исключительно высокими характеристиками и нестандартными характеристиками изготавливаются из блока твердого материала, в результате чего получается коленчатый вал в виде заготовки. Производство одноразового коленчатого вала с помощью этого процесса будет стоить как минимум около 3000 долларов, поэтому он предназначен для соревнований, гонок и восстановления.

Смазочные характеристики шатуна и главного подшипника в различных условиях эксплуатации двигателя | Китайский журнал машиностроения

Метод и формулировка

Орбиты оси шейки всех подшипников рассчитываются динамическим методом при анализе смазки всех шатунных или коренных подшипников [32].{3} \ frac {\ partial p} {\ partial y}} \ right) = 6 \ eta R_ \ text {b} \ left ({u \ frac {\ partial h} {\ partial \ theta} + 2R_ \ текст {b} \ frac {\ partial h} {\ partial t}} \ right), $$

(1)

где p — давление масляной пленки, h — толщина масляной пленки, η — динамическая вязкость смазочного масла, u = u j + u b , u j — скорость поверхности шейки, а u j = R j ω j , R j — радиус шейки, ω j — угловая скорость шейки, u b — скорость опорной поверхности, а u b = R b ω b , R b — радиус подшипника, ω b — угловая скорость подшипника.

Уравнение Рейнольдса решается методом конечных разностей.

Толщина масляной пленки [34]

$$ h = c + e \ cos (\ theta — \ psi) + \ delta, $$

(2)

где c — радиальный зазор подшипника, e — эксцентрическое расстояние шейки подшипника, ψ — угол наклона подшипника, δ — изменение толщины масляной пленки, вызванное упругой деформацией втулки. поверхность подшипника под давлением масляной пленки, а упругая деформация поверхности втулки подшипника под давлением масляной пленки рассчитывается методом матрицы податливости.

Уравнение равновесия нагрузки

Если влияние инерции масляной пленки не учитывается, движение осей шейки подшипника соответствует второму закону Ньютона, то есть

$$ \ varvec {P} + \ varvec { F} = m _ {\ text {j}} \ frac {{{\ text {d}} \ varvec {v}}} {{{\ text {d}} t}}, $$

(3)

, где P — вектор нагрузки подшипника, F — результирующий вектор силы масляной пленки подшипника, v — вектор скорости осей шейки.{3}}} {12 \ eta} \ cdot \ left. {\ frac {\ partial p} {\ partial y}} \ right | _ {y = L} \ cdot R_ \ text {b} \ text {d} \ theta}. $$

Общий расход Q смазочного масла при конечной утечке тогда определяется как

$$ Q = \ left | {Q_ {1}} \ right | + \ влево | {Q_ {2}} \ right |. {2 \ pi} {\ left ({\ frac {h} {2} \ frac {\ partial p} {{R_ \ text {j} \ partial \ theta}} + \ frac {u \ eta} {h}} \ right) R_ \ text {j} \ text {d} \ theta \ text {d} y}}.{720} {(F_ \ text {j}) _ {i} u} /720.$$

(6)

Результаты и обсуждение

Орбиты осей шейки, максимальное давление масляной пленки, минимальная толщина масляной пленки, расход утечки на конце и коэффициенты трения шатунного подшипника и коренного подшипника № 2 в рабочем цикле двигателя при полной нагрузке двигателя при 1200 об / мин и 3200 об / мин показаны на рисунках 5, 6, 7, 8, 9, 10, 11, 12, 13, 14. В разных условиях работы двигателя есть большие различия в смазочных характеристиках подшипников, и есть очевидные различия в изменениях и числовых значениях орбит осей шейки, максимальных давлениях масляной пленки, минимальной толщине масляной пленки, расходах конечных утечек и коэффициентах трения подшипников в рабочем цикле двигателя.

Рисунок 5

Орбита оси шейки шатунного подшипника

Рисунок 6

Орбита оси шейки коренного подшипника № 2

Рисунок 7

Максимальное давление масляной пленки шатунного подшипника

Рисунок 8

Максимальное давление масляной пленки коренного подшипника № 2

Рисунок 9

Минимальная толщина масляной пленки шатунного подшипника

Рисунок 10

Минимальная толщина масляной пленки коренного подшипника № 2

Рисунок 11

Расход утечки на конце шатунного подшипника

Рисунок 12

Расход конечной утечки №2 коренных подшипника

Рисунок 13

Коэффициент трения шатунного подшипника

Рисунок 14

Коэффициент трения коренного подшипника № 2

Максимальное давление масляной пленки, минимальная толщина масляной пленки и средние потери мощности на трение шатунного подшипника и всех коренных подшипников в рабочем цикле двигателя при полной нагрузке двигателя и при 1200, 1600, 1800, 2000, 2200, 2400, 2800 и 3200 об / мин соответственно показаны в таблицах 4, 5, 6.

Таблица 4 Максимальные давления пленки шатунного подшипника и коренных подшипников при полной нагрузке и различной скорости Таблица 5 Минимальная толщина пленки шатунного подшипника и коренных подшипников при полной нагрузке и различной частоте вращения Таблица 6 Средние потери мощности на трение шатунного подшипника и коренных подшипников при полной нагрузке и различной частоте вращения

При одинаковой нагрузке на двигатель максимальное давление масляной пленки шатунного подшипника в рабочем цикле двигателя обычно снижается с увеличением частоты вращения двигателя, а максимальное давление масляной пленки (372.52 МПа) шатунного подшипника при 1200 об / мин в 4,02 раза больше, чем (92,74 МПа) при 3200 об / мин, что показывает, что максимальное давление масляной пленки шатунного подшипника при более низких оборотах двигателя заметно больше, чем тот, который работает на более высоких оборотах двигателя при той же нагрузке на двигатель. Основная причина, по которой максимальное давление масляной пленки шатунного подшипника при более низких оборотах двигателя больше, чем при более высоких оборотах двигателя при той же нагрузке двигателя, заключается в том, что при одинаковой нагрузке на двигатель максимальная нагрузка на шатун составляет уменьшается в основном с увеличением оборотов двигателя, а максимальная нагрузка на шатун при 1200 об / мин заметно больше, чем при 3200 об / мин.

При одинаковой нагрузке на двигатель изменения максимального давления масляной пленки всех коренных подшипников в рабочем цикле двигателя отличаются друг от друга при изменении частоты вращения двигателя. Максимальное давление масляной пленки коренных подшипников № 1 и № 5 не претерпевает явных изменений при разных оборотах двигателя, максимальное давление масляной пленки коренных подшипников № 2 и № 4 больше при более низких оборотах двигателя, а максимальное давление. Давление масляной пленки коренных подшипников № 3 выше при более высоких оборотах двигателя.

При одинаковой нагрузке на двигатель минимальная толщина масляной пленки шатунного подшипника и всех коренных подшипников в рабочем цикле двигателя не меняются одинаково при изменении частоты вращения двигателя. Минимальная толщина масляной пленки шатунного подшипника и всех коренных подшипников в рабочем цикле двигателя при более высоких оборотах двигателя (3200 об / мин), как правило, меньше в дополнение к индивидуальным обстоятельствам.

При одинаковой нагрузке на двигатель средние потери мощности на трение шатунного подшипника и всех коренных подшипников увеличиваются с увеличением частоты вращения двигателя, а средние потери мощности на трение в шатунном подшипнике и всех коренных подшипниках являются наибольшими при более высокая частота вращения двигателя (3200 об / мин).

Максимальное давление масляной пленки, минимальная толщина масляной пленки и средние потери мощности на трение шатунного подшипника и всех коренных подшипников в рабочем цикле двигателя при 2200 об / мин при 20%, 40%, 60%, 80% и полном Нагрузки на двигатель приведены в таблицах 7, 8, 9.

Таблица 7 Максимальное давление пленки шатунного подшипника и коренных подшипников при 2200 об / мин и различных процентах нагрузки Таблица 8 Минимальная толщина пленки шатунного подшипника и коренных подшипников при 2200 об / мин и разном проценте нагрузки Таблица 9 Средние потери мощности на трение шатунного подшипника и коренных подшипников при 2200 об / мин и разном проценте нагрузки

При одинаковых оборотах двигателя максимальное давление масляной пленки шатунного подшипника и всех основных подшипников в рабочем цикле двигателя обычно увеличивается с увеличением нагрузки на двигатель, но максимальное значение максимального давления масляной пленки No.3 коренной подшипник появляется при меньшей нагрузке двигателя (40%).

При одинаковых оборотах двигателя минимальная толщина масляной пленки шатунного подшипника уменьшается с увеличением нагрузки двигателя, а максимальное значение появляется при полной нагрузке двигателя (100%). Минимальная толщина масляной пленки всех коренных подшипников не изменяется одинаково при изменении нагрузки двигателя, минимальные значения минимальной толщины масляной пленки коренных подшипников №№ 1, 4, 5 появляются при полной нагрузке двигателя (100 %), а также минимальные значения минимальной толщины масляной пленки №№.2, 3 коренных подшипника появляются при меньшей нагрузке на двигатель.

При одинаковых оборотах двигателя средние потери мощности на трение шатунного подшипника и всех коренных подшипников в рабочем цикле двигателя, очевидно, не меняются с изменением нагрузки двигателя. Средние потери мощности на трение шатунного подшипника и всех коренных подшипников в рабочем цикле двигателя обычно немного увеличиваются с увеличением нагрузки двигателя в дополнение к отдельным нагрузкам двигателя.

Кроме того, соответствующие сравнения между характеристиками смазки шатунного подшипника и одним из основных подшипников при одинаковых рабочих условиях двигателя (показаны в таблицах 4, 5, 6, 7, 8, 9) показывают, что максимальное количество масла Давление пленки шатунного подшипника в рабочем цикле двигателя больше, чем у всех коренных подшипников, минимальная толщина масляной пленки шатунного подшипника в рабочем цикле двигателя меньше, чем у всех коренных подшипников, а средняя сила трения потери шатунного подшипника в рабочем цикле двигателя меньше, чем у всех коренных подшипников.Кроме того, существует соответствующая разница между характеристиками смазки (максимальное давление масляной пленки, минимальная толщина масляной пленки и средняя потеря мощности на трение в рабочем цикле двигателя) всех основных подшипников друг друга при одинаковых условиях работы двигателя, а некоторая разница больше .

Смазка коленчатого вала — высокопроизводительные среды

В предыдущей статье, посвященной масляным отверстиям, которые необходимы в коленчатых валах, автор кратко описал один из методов, с помощью которых масло передается на шатунные шейки с целью смазки большого конца шатуна и его подшипников.В статье обсуждалось, как масло, достигнув коренного подшипника, должно проходить через коленчатый вал через масляные отверстия к шатунной шейке. В этой статье мы кратко коснулись сверления под сложным углом и осевого сверления, но не упомянули метод смазки шатунов, который используется в течение многих десятилетий, но который в последние годы стал основным в Формуле-1 и становится все более популярным. широко используется в других местах.

Концепция «коленчатого вала с носовой подачей» не нова, она используется в некоторых серийных двигателях и успешно применяется в двигателе Rolls-Royce Merlin.Идея проста; масло закачивается в один конец коленчатого вала (обычно называемый «носовым» концом, отсюда и название), и давление в масляной системе заставляет его двигаться вдоль коленчатого вала через непрерывный канал. Эта галерея может принимать разные формы, но во многих таких коленчатых валах используются угловые отверстия, которые входят в щеки перемычки под углом на стороне шатунной шейки и продолжаются до центральной линии коленчатого вала, где они встречаются с отверстием от соседнего шатунного шатуна.

Возникает ощущение, что давление масла в контуре смазки кривошипа можно поддерживать на более низком уровне, чем при питании коленчатого вала через коренной подшипник, благодаря тому, что нет центробежных сил, которые нужно преодолевать для перемещения масло сначала по направлению к осевой линии коленчатого вала, и никакие силы вязкости в коренном подшипнике не препятствуют потоку масла в масляное отверстие.При более низком давлении масла в контуре смазки кривошипа можно получить ряд преимуществ с точки зрения снижения трения от различных источников.

Однако мы должны учитывать и другие факторы, принимая решение о промасливании этим методом. Мы должны быть уверены в том, что, учитывая наше новое более низкое давление в масляном контуре и тот факт, что мы смазываем каждую шатунную шейку из одного источника, мы можем обеспечить достаточный поток к кривошипу, так что самый дальний штифт от входа масла в коленчатый вал получает достаточный поток для удовлетворения потребностей в смазке.Потери давления в галереях могут быть значительными, и их необходимо учитывать в этом отношении. Учитывая это беспокойство, нам также необходимо решить, будем ли мы продолжать смазывать коренные подшипники через главный масляный канал или через поток, который мы обеспечили через коленчатый вал. У каждого решения есть свои достоинства и недостатки. На прилагаемом изображении коленчатого вала V10 Formula One нет следов масляных отверстий на диаметрах коренных подшипников.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *