Как поднять плотность аккумулятора: Как поднять плотность электролита в аккумуляторе? Как заменить электролит в аккумуляторе? Что такое «плотность аккумулятора»?

Содержание

Как поднять плотность электролита в аккумуляторе? Как заменить электролит в аккумуляторе? Что такое «плотность аккумулятора»?

Аккумуляторные батареи автомобилей созданы не только для пуска двигателя, но и для питания электрических приборов машины в тот момент, когда зажигание выключено. По невнимательности водитель с легкостью может забыть о включенных в автомобиле фарах или работающей магнитоле, громкость которой сведена к нулю. Вернувшись к машине на следующий день, можно обнаружить, что она не заводится, и причина тому севший источник питания. Завести машину при разряженном аккумуляторе можно, но через раз-два экстренные методы запуска двигателя начинают надоедать, и явно возникает необходимость вернуть в рабочее состояние аккумулятор.

«Плотность аккумулятора» или соотношение серной кислоты и воды в электролите

В простонародье распространен такой термин как «плотность аккумулятора». По сути, он является ошибочным, поскольку никто не измеряет плотность непосредственно источника питания. Любой автомобильный любитель скажет, что под понятием «плотность аккумулятора» подразумевается плотность электролита, который залит в батарею. Именно от того какой плотности электролит находится в аккумуляторе, зависит его возможность заряжаться и сохранять накопленную энергию.

Если аккумулятор разрядился по невнимательности водителя или другим причинам, следует попробовать вернуть ему работоспособное состояние при помощи зарядного устройства. Перед тем как заряжать аккумулятор, в него доливают дистиллированную воду, которая могла испариться в процессе работы источника питания. Вода в аккумуляторе смешивается с готовым электролитом, что приводит к понижению его плотности, то есть к уменьшению процентного содержания серной кислоты в итоговом растворе. Через некоторое время плотность электролита в аккумуляторе, из-за постоянного разбавления его дистиллированной водой, снижается, и опускается ниже комфортного уровня. Эксплуатация батареи становится невозможно, и в таких ситуациях возникает необходимость в повышение плотности электролита в аккумуляторе.

Как поднять плотность электролита в аккумуляторе самостоятельно?

Плотность аккумулятора, а если говорить точнее, то электролита в нем, повысить можно довольно просто без обращения к специалистам сервисного центра. Первым делом необходимо провести ряд подготовительных процедур:

  • Подготовьте емкости, которые понадобятся для слива части старого электролита из аккумулятора;
  • Обзаведитесь средствами личной защиты – перчатки, очки, одежда (которую не страшно испортить). Помните: Электролит аккумулятора частично состоит из серной кислоты, которая опасна, и при попадании на кожу способна вызвать ожог, а одежду серьезно испортить;
  • Возьмите инструменты, которые понадобятся, чтобы поднять плотность электролита в аккумуляторе: ареометр, клизма-груша, мерный стакан, воронка;
  • Купите необходимые расходные материалы: дистиллированная воды, аккумуляторная кислота или готовый электролит.

Чтобы поднять плотность электролита в аккумуляторе, придется самостоятельно полностью заменить весь электролит, который уже залит в батарею, на новый раствор. Сделать это довольно просто, если выполнять все по инструкции и соблюдать необходимые меры предосторожности.

Как поменять электролит в аккумуляторе?

Большинство современных аккумуляторов выпускаются разборными, и они предусматривают возможность замены электролита самостоятельно. Неразборные аккумуляторы – большая редкость, и в них нельзя при необходимости отвинтить пробки для удаления старого электролита и заливки нового. При желании можно залить электролит и в неразборную батарею, но для этого необходимо в каждой банке с помощью сверла проделать отверстие. После замены электролита на место отверстий напаивается пластмасса, и аккумулятор вновь становится рабочим.

Сам процесс замены электролита довольно простой, и он состоит из следующих пунктов:

  1. Первым делом необходимо снять аккумулятор с автомобиля и найти подходящее место для замены электролита в нем и зарядки;
  2. Далее необходимо снять защиту с аккумулятора, если она имеется, и открутить пробки с банок;
  3. После этого берем клизму-грушу и вставляем ее конец в одну из банок аккумулятора. Пользуясь данным резиновым прибором, выкачиваем из аккумулятора старый электролит и сливаем его в заранее подготовленную емкость. Внимание: Ни в коем случае не выливайте электролит на землю, если вы выполняете работы на улице;
  4. Выкачав практически весь старый электролит из всех банок, необходимо почистить пластины аккумулятора от его остатков. Сделать это можно с помощью дистиллированной воды, которая не вызовет внутри аккумулятора нежелательные реакции. Для этого дистиллированную воду заливают в каждую банку аккумулятора, после чего его поднимают и трясут. Хорошо удерживайте аккумулятор, чтобы в процессе тряски он не выпал. После этого сливаем получившийся раствор.

Стоит отметить, что некоторые автолюбители рекомендуют для «чистоты» будущего электролита в батарее не только промыть ее дистиллированной водой, но и использовать различные растворы. К примеру, рекомендуется залить в батарею раствор воды с содой и оставить его там на 4 часа. После этого также рекомендуется заливать на час в аккумулятор раствор поваренной соли.

  1. Очистив банки аккумулятора от старого электролита, необходимо залить в него новый. Хорошо, если вы приобрели готовый электролит в магазине, тогда достаточно залить его с помощью воротки до указанных граней в каждую банку. В случае если у вас аккумуляторная кислота и дистиллированная вода, требуется предварительно сделать раствор электролита с плотностью в 1,27-1,28 грамм на сантиметр кубический;
  2. После этого закрываем банки и начинаем процесс зарядки аккумулятора;
  3. Сменив электролит в батарее, необходимо выполнять процесс заряда батареи по циклу «зарядка-разрядка» с силой тока не более 0,1 Ампер до тех пор, пока плотность аккумулятора (плотность электролита) не достигнет рабочих значений. Внимание: Зарядку можно окончить и начать использовать аккумулятор только после того как на концах клемм аккумулятора удастся замерить 14 Вольт.

Если вы решили поменять электролит в аккумуляторе самостоятельно, настоятельно рекомендуем соблюдать все меры предосторожности. Кислотная среда, которой является электролит, вредна не только при попадании на кожу, но и в дыхательные пути. Менять электролит следует исключительно в хорошо проветриваемых помещениях с предельной осторожностью.

Загрузка…

Как повысить плотность аккумулятора! | Статьи компании ООО «KRONVUZ» г Москва

Аккумуляторная батарея автомобиля требует к себе постоянного внимания. Ведь часто случается так, что невозможно запустить стартер после длительного простоя. Особенно, когда длительная зарядка не помогает и батарея разряжается крайне быстро. А это значит, что пришло время

повысить плотность аккумулятора.

Правила безопасности при работе с электролитом

Перед тем как преступать к данной операции, необходимо запомнить следующие правила безопасности:

  1. Необходимо добавлять кислоту в воду, а не наоборот, поскольку эти жидкости имеют разную плотность.
  2. АКБ нельзя переворачивать вверх дном. В этом случае произойдет осыпание пластин и соответственно, к поломке устройства.
  3. Ни в коем случае нельзя доливать концентрированную кислоту в электролит.

Первое, что необходимо сделать, это проверить плотность уже заряженного АКБ. В случае если плотность менее 1,27 – 1,28 г/куб. см, то необходимо начать проверку этого показателя ареометром каждой из банок батареи.

Затем при помощи резиновой груши необходимо аккуратно выкачать старый электролит из банки и залить свежий раствор плотностью 1,39 – 1,40 г/куб. см. Периодически измеряйте плотность и стремитесь к одинаковым значениям во всех банках АКБ.

Для перемешивания электролита, аккумулятор нужно поставить на заряд при малом токе в течение получаса. После этого проведите финальный замер показаний. Такие манипуляции позволят значительно продлить срок эксплуатации данного изделия. Существует несколько способов как можно повысить плотность аккумулятора, рассмотрим способ в автоматическом режиме.

Рисунок 1. Система анализа состояния и мониторинга АКБ производства компании KRONVUZ

Автоматизация процесса проверки плотности аккумулятора

А что делать, если аккумуляторных батарей большое количество и требуется постоянный контроль над их параметрами, особенно, если это вопрос безопасности? Для этого нужна автоматизация, а именно система анализа состояния и мониторинга АКБ.

Данное устройство позволяет обеспечить контроль температуры и напряжения на каждом элементе батареи. Соответственно, не только проводить циклы выравнивания, но и выявлять поврежденные элементы. Система автоматически отключит те элементы, которые уже заряжены во избежание их преждевременного разрушения. А это значит, что срок службы аккумуляторов может быть увеличен в несколько раз.

Таким образом, можно обслуживать большое количество АКБ и значительно продлить их период эксплуатации. А это уже действительно серьезная экономия. И разумеется, обеспечение бесперебойности рабочих процессов на производстве.


Рекомендуем ознакомиться со следующими материалами:

Как повысить плотность электролита: три главных метода

Плотность – важнейшая характеристика электролита. От ее нахождения в пределах нормы напрямую зависит работоспособность аккумулятора. В прошлой статье мы узнали, в чем главная причина падения уровня плотности, а сейчас поговорим о том, как же все-таки решить эту проблему.

Корректирующая жидкость

Этот метод актуален лишь для обслуживаемых аккумуляторов. В случае необслуживаемых АКБ у водителя нет доступа к внутренней части батареи, поэтому придется искать обходные пути.

Если плотность электролита еще не дошла до критического уровня, ситуацию можно исправить с помощью добавления корректирующего электролита. Этот раствор отличается увеличенной концентрацией основного компонента – серной кислоты. Вам необходимо извлечь из банок излишек электролита с недостаточной плотностью и залить вместо него корректирующий раствор. Сделать это можно с помощью обычной груши, постоянно контролируя плотность электролита ареометром.

Зарядное устройство

Этот способ подойдет для всех видов аккумуляторов. Подключив прибор к АКБ (не забывая о полярности), подключите ваше устройство к сети. Для плавного повышения значения плотности можно выбрать силу тока в 10% от емкости аккумулятора.

Полная замена электролита

Если значение плотности опустилось до критического уровня, то первые два способа не сработают. В этом случае следует полностью заменить электролит, предварительно откачав всю старую жидкость из банок.

Магазин «Центр-АКБ» – одно из лучших мест, где можно купить аккумулятор для авто в Нижнем Новгороде. На нашем официальном сайте вы найдете множество полезных статей и полный каталог продукции. А также сможете проконсультироваться со специалистами по вопросам выбора нового аккумулятора. Именно здесь вы найдете автомобильные аккумуляторы Варта, Bosch, Аком, Mutla и многие другие выдающиеся бренды отечественных и зарубежных производителей.

Телефон для связи: +7 (831) 416-13-13

Мы находимся по адресам:

ул. Березовская, д. 96А

ул. Деловая, д. 7к5

проспект Кирова, 12

ул. Русская улица, 5

Как поднять плотность аккумулятора автомобиля?

Вернуться в раздел Познавательный блог

Работоспособность аккумуляторной батареи в автомобиле должна всегда находиться на высшем уровне. Это может подтвердить каждый, кто в мороз столкнулся с проблемой запуска двигателя. Именно аккумуляторная батарея, а вернее её состояние играет решающую роль. Но, к сожалению, на любом автомобиле может произойти ситуация, когда двигатель еле-еле проворачивается, а панель приборов светит тусклым светом. Причина кроется в разряженном аккумуляторе.

Чтобы ответить на вопрос о причине разрядки аккумулятора, стоит задуматься, как давно производилась зарядка? Если недавно, то почему батарея не держит заряд? Бывает и так, что источник питания заряжает, а батарея всё равно не заряжается. Вышеописанные симптомы указывают на слишком низкую плотность электролита. Она отражает долю или количество серной кислоты, которая входит в состав раствора-реагента и должна примерно быть равной 1,27 г/см3. Возможны отклонения на одну-две сотых величины. Но при плотности ниже 0,25 аккумулятор не сможет запустить двигатель. Однако выносить приговор батарее ещё очень рано. Существует несколько способов приведения плотности к нормальным показателям и все они считаются действенными.

Вариант с добавлением дистиллированной воды не рассматривается, так как он применим при снижении уровня электролита, если точно известно, что не хватает именно воды, и утверждение, что кислота не выкипает – неверно. Небольшие отклонения плотности возможно скорректировать, не сливая полностью раствор, но некоторую его часть придётся откачивать спринцовкой. Нужно приобрести готовый электролит нормальной плотности и в каждой банке менять порцию старого электролита на новую. Постепенно плотность подойдёт к нормальному значению.

Если показатель содержания кислоты даже ниже 1,18, то вышеописанная процедура будет длиться долго, поэтому желательно прибегнуть к кардинальному методу – замене электролита. Его можно приготовить самостоятельно, имея под рукой ёмкости и ареометр – специальное устройство для измерения плотности. Удаляется старый электролит из корпуса батареи спринцовкой или через самостоятельно просверленные отверстия снизу. Впоследствии эти отверстия необходимо запаять.

Ещё один способ повысить долю кислоты в растворе – зарядка аккумулятора небольшим током. Дистиллированная вода начнёт постепенно выкипать. Таким образом, составляющая доля серной кислоты будет увеличиваться. Важно не забывать проверять уровень электролита при подобной процедуре. Как видно из примеров даже новичок может реанимировать аккумулятор. Вероятность же положительного исхода зависит от общего состояния АКБ.

Как самостоятельно поднять плотность в аккумуляторе / Сервис Газ Vip

Аккумулятор в автомобиле — это устройство, которое необходимо для запуска транспортного средства и поддержании в работоспособном состоянии систем, зависящих от электричества. Со временем характеристики электролита снижаются, и водитель сталкивается с вопросом, как поднять плотность в аккумуляторе.

Содержание статьи:

  1. Почему падает плотность в аккумуляторе?
  2. Какая плотность электролита должна быть в аккумуляторе?
  3. Как поднять плотность в аккумуляторе самостоятельно?
  4. После зарядки осталась низкая плотность электролита, что делать?
  5. Где установить ГБО в Одессе?

1. Почему падает плотность в аккумуляторе?

Для нормальной работы батареи не нужно допускать разрядку ниже 50% и соблюдать высокие температуры, которые поддерживаются химическими процессами в электродах и электролитах. При недостатке уровень электролита восполняется дистиллированной водой.

Самыми частыми причинами снижения плотности раствора является:

  • Низкая концентрация раствора при добавлении дистиллятора. С каждым таким добавлением, воды будет больше, а электролита меньше. Это чревато испарениями не только воды, но и электрической жидкости.
  • Во время зарядки жидкость может закипать и выпариваться, из-за чего снижается уровень электролита, но при этом повышается его насыщенность. Ионизация свинца и соответствующих веществ происходит сложно, так как количество действующих молекул уменьшается. В конце концов жидкость теряет присущую ей плотность.
  • Низкий заряд батареи.

Иногда зарядить севший аккумулятор не получается. Это признак того, что состояние электролита изменилось. Не знающие водители часто доливают в АКБ дистиллированную воду в больших объемах. И в этом состоит главная ошибка. Если дистиллята будет слишком много, то электролит выкипит, а плотность упадет.

Также причиной снижения плотности может быть глубокий разряд АКБ и его долгий срок хранения без подзарядки.

2. Какая плотность электролита должна быть в аккумуляторе?

Первое на что обращают внимание при первых же признаках неисправностей, это плотность электролита. Рабочая плотность в стартерных батареях должна быть около 1,24-1,30 г/см³. Ее измеряют специальным прибором под названием ареометр.

Когда аккумулятор разрядился, то плотность электролита снижается, а во время зарядки увеличивается. Именно поэтому плотность замеряют только на полностью заряженной батарее.

Важно! Для повышения плотности электролита можно добавлять серный концентрат. Но делается это предельно осторожно, т.к. при завышенной плотности начинают осыпаться пластины и портится АКБ.

3. Как поднять плотность в аккумуляторе самостоятельно?

Если вы решили самостоятельно повысить плотность в аккумуляторе, то в первую очередь соблюдайте правила техники безопасности. В составе электролита присутствует действующая серная кислота и при попадании на кожу, она может разъесть ее.

Чтобы повысить плотность электролита в АКБ можно воспользоваться одним из представленных способов:

  • Полностью заменить электролит на новую жидкость с нормальной концентрацией 1 г/куб. см;
  • Залейте кислоту аккумулятора в электролит;
  • Доведите имеющийся раствор до нужной концентрации. Этого достигают путем добавления серной кислоты и дистиллированной воды. Жидкость заливают до необходимой насыщенности.

Чтобы полностью заменить электролит следуют следующему плану:

  • Откачивают имеющийся раствор и освобождают емкость. Это можно сделать с помощью груши.
  • В каждой емкости АКБ проделывают отверстия для полного слива остатков электролита.
  • Банки и емкости удерживают в наклоне и отмывают остатки старого раствора дистиллированной водой.
  • Чистые батареи приводят в герметичное состояние. Для этого понадобится паяльная лампа и кислотная пластмасса. Ими заделывают сделанные ранее отверстия.
  • Емкости наполняют дистиллятором в нужных пропорциях. Количество воды будет зависеть от общего объема емкости и необходимого количества кислоты. Концентрация должна рассчитываться на диапазон 1,25-1,27 г/куб. см.
  • Емкость хорошо закрывают и встряхивают аккумуляторную батарею без сильного наклона.

Запомните! Для начала в банку заливается разбавляющее вещество — дистиллят. Только потом добавляется кислота. Если не соблюдать порядок, жидкости начнет кипеть.

4. После зарядки осталась низкая плотность электролита, что делать?

Если процедура по повышению плотности электролита была проведена грамотно, то срок эксплуатации АКБ должен увеличиться. Но процедура по повышению плотности электролита не всегда приводит к успеху. Например, это может быть связано с осыпанием пластин.

Даже если после проведения процедуры плотность раствора быстро сокращается и после зарядки не поднимается до нужного показателя, то придется задуматься о покупке новой АКБ.

Чтобы восстановить прежнюю плотность батареи нужно добавить в нее свежий раствор электролита. Плотность электролита поднимет более концентрированный раствор и тем самым улучшатся показатели в аккумуляторе.

Для начала измерьте показания плотности проблемных банок ареометром. Если показания равны или меньше 1,20, то батарее нужна подобная процедура. В обслуживаемых аккумуляторах имеются специальные отверстия, через которые можно долить электролит.

  • Нужно откачать часть старого раствора грушей и добавить в него концентрированный электролит, например, плотностью 1,30.
  • Затем перемешивают раствор в аккумуляторе и снова измеряют плотность.
  • Если по-прежнему есть отклонения, то процедуру повторяют пока плотность не поднимется до нужного уровня.
  • Если плотность слишком сильно поднялась, то снова откачивают часть электролита, но только теперь добавляют воду.

Также можно из аккумулятора сразу откачать весь электролит, а залить в аккумулятор отдельного подготовленный раствор с нужной плотностью.

Периодическая полная зарядка аккумулятора зарядным устройством поможет сохранить его в полной работоспособности.

5. Где установить ГБО в Одессе?

Установить ГБО в Одессе можно в сервисных центрах Сервис Газ. Мы работаем с европейским оборудованием итальянского и польского производства. Все сотрудники имеют большой опыт работы в сфере установки газобаллонного оборудования.

У нас можно не только установить газ на авто, но и сделать полное техническое обслуживание газовых систем, провести ремонт, настройку и замену запчастей, которые уже выходят из строя.

Приезжайте к нам вовремя, чтобы ваше транспортное средство всегда было на ходу.

Рекомендуем посмотреть видео:

 24.11.2020

 (300 просмотров)

Плотность электролита в аккумуляторе зимой: значения, как поднять?

Автомобилю, постоянно находящемуся в использовании, требуется надежный АКБ, который позволит быстро запустить двигатель вне зависимости от внешних факторов. Плотность электролита в аккумуляторе зимой необходимо держать в определенных рамках, чтобы жидкость не замерзла. Данный параметр является основным и оказывает существенное влияние на длительность службы источника питания.

При правильной и своевременной корректировке значений кислотности жидкости можно значительно увеличить срок службы АКБ. Ведь плотность электролита в аккумуляторе зимой и летом должна отличаться, чтобы компенсировать влияние температуры, влажности и других климатических условий на химические процессы.

Что такое плотность электролита и от чего она зависит?

Если говорить простым языком, то плотность — это кислотность жидкости в АКБ. В роли электролита сурьмянистые аккумуляторы используют смесь воды и серной кислоты. Количество последней по отношению к общему объему раствора и называют плотностью. Измеряют ее в граммах на сантиметр кубический (г/см3).

На степень закисленности основное влияние оказывают факторы, способные изменить количество воды в растворе: мороз, жара, влажность. Также на нее влияет степень заряда аккумуляторной батареи. Измерение показателей производятся специальным прибором — ареометром. Процедуру необходимо проводить с полностью заряженным аккумулятором. Особенно это важно делать перед зимой, чтобы выявить проблему заранее и уменьшить риск порчи АКБ, вследствие замерзания воды в ней. Если были выявлены низкие значение, то, скорее всего, проблема кроется в одной из следующих причин:

  • дефект ячейки;
  • обрыв внутренней цепи батарей;
  • глубокий разряд АКБ или одной из его секций.

Почему замерзает аккумулятор?

Все дело в плотности: чем она меньше (воды в растворе больше), тем быстрее замерзнет электролит при понижении температуры. Умеренный климат требует, чтобы этот параметр был в пределах 1,25-1,27 г/см3. Зимой и в северных регионах рекомендуемая плотность увеличивается на 0,01 г/см3.

Многих автолюбителей интересует: «При какой температуре замерзает электролит в аккумуляторе?». Получить ответ на этот вопрос поможет следующая таблица:

 

Плотность электролита при 25°C, г/см³Температура замерзания, °СПлотность электролита при 25°C, г/см³Температура замерзания, °С
1,09-71,22-40
1,1-81,23-42
1,11-91,24-50
1,12-101,25-54
1,13-121,26-58
1,14-141,27-68
1,15-161,28-74
1,16-181,29-68
1,17-201,3-66
1,18-221,31-64
1,19-251,32-57
1,2-281,33-54
1,21-341,4-37

Таблица 1. Плотность электролита в аккумуляторе автомобиля зимой.

Как повысить плотность если она низкая?

Поднимать эту характеристику приходится после неоднократного корректирования уровня жидкости в АКБ дистиллированной водой или в случае нехватки параметра для эксплуатации батареи в зимой. Явным признаком недостаточной концентрации серной кислоты является оледенение ячеек. Что делать если замерз электролит в аккумуляторе? Потребуется отогреть АКБ при комнатной температуре, после чего поставить на зарядку.

Внимание! Замерять плотность нужно только в полностью заряженной аккумуляторной батарее.

Помимо правильно проведенной полной зарядки существует еще такие способы поднятия плотности, как добавление концентрированного (корректирующего) электролита или кислоты.

Для корректировки понадобится:

  • ареометр;
  • мерная емкость;
  • посуда для приготовления смеси;
  • спринцовка;
  • серная кислота или корректирующий электролит;
  • дистиллированная вода.

Процедура проводится следующим образом:

  1. Из ячеек батареи отбирается немного кислотного раствора и измеряются показатели кислотности.
  2. Если надо увеличить плотность — доливается столько же корректирующего электролита, если уменьшить —добавляется дистиллированная вода.
  3. После проведения процедуры со всеми ячейками АКБ ставится на зарядку стационарным устройством для смешивания жидкости.
  4. По окончании зарядки надо подождать не меньше часа, чтобы плотность во всех секциях батареи выровнялась.
  5. Проводится проверка показателей и в случае необходимости процедура повторяется с уменьшением шага разбавления вдвое.

Плотность между ячейками не должна отличаться сильнее, чем на 0,01 г/см3. Если добиться этого не вышло — необходимо провести выравнивающую зарядку малым током.

Что делать, когда плотность ниже 1,18 г/см

3

Чтобы зимой не замерзла вода в аккумуляторе нужно не допускать снижения плотности электролита. Если это значение преодолело критический минимум в 1,18 г/см3, то требуется добавление кислоты. Сама процедура проводится в том же порядке, что был описан ранее, только количество отбираемой и добавляемой жидкости необходимо сократить, чтобы не превысить значение первым доливом.

Важно! При изготовлении электролита нужно вливать кислоту в воду, и ни в коем случае не наоборот.

Что делать если электролит в аккумуляторе замерз, а после отогрева приобрел багровый цвет? К сожалению, такая батарея уже не сможет нормально работать зимой при температуре ниже 5°C. Скорее всего у такого АКБ осыпалась активная масса, что уменьшило рабочую поверхность пластин. Восстановить нормальные показатели у такого АКБ невозможно.

Поддержание количества электролита и его плотности на должном уровне существенно продлевает срок службы батареи, а также ее способность сопротивляться морозу и безпроблемно запускать двигатель автомобиля.

Причины падения плотности электролита в аккумуляторе

Почему плотность электролита падает

Нормальная работа батареи подразумевает постоянную подзарядку и высокотемпературный режим химических процессов на электродах и в электролите. Результатом становится постоянное снижение жидкости в банках АКБ, которая пополняется дистиллированной водой. Среди наиболее распространенных причин снижающих в аккумуляторе плотность раствора:

  1. Не контролируется уровень концентрации раствора в емкостях с электродами после каждого пополнения дистиллятом. С каждым новым разбавлением концентрата снижается доля электролита за счет испарения воды и небольшого количества электролитической жидкости;
  2. Неоднократная зарядка аккумулятора приводит к закипанию раствора и его испарению, что снижает его количество и повышает концентрацию. В этом случае активных молекул для ионизации свинца и его солей становится меньше, соответственно снижается густота жидкости;
  3. Батарея разрядилась.

ВАЖНО: Длительная работа АКБ в режиме сниженной плотности электролита – это дорога к сульфатации пластин и выходе устройства из строя.

Для установления причины низкого заряда батареи производят замеры концентрации раствора в банках АКБ используя ареометр. Оптимальный температурный режим для этой процедуры – от 22 до 25 °С. Плотность электролита может быть выше или ниже нормы. В первом случае повышается вероятность коррозийного разрушения электродов с положительным зарядом. Во втором – опасность подстерегает в холодные периоды года, когда электролитический раствор способен охладиться и затвердеть. Поэтому контроль уровня густоты зимой является первостепенной задачей любого владельца ТС.

Подготовка перед поднятием плотности электролита

Для измерения концентрации электролита в аккумуляторной батарее необходимо, чтобы соблюдались условия:

  1. На АКБ отсутствуют сколы или трещины, корпус абсолютно целый и клеммы без повреждений;
  2. Нормальный уровень жидкости в каждой из банок;
  3. Температурный режим электролитического раствора в диапазоне от 20 до 25°С;
  4. Заряд батареи полный.

При наличии повреждений клемм или корпуса данные могут быть неточными, а причина отсутствия способности выдать нужный разряд для старта ТС совсем не в низкой плотности электролита. Низкий уровень жидкости является более концентрированным, чем его нормальное количество, разбавленное дистиллятом. При низких температурах замеры существенно отличаются от реальных значений в нормальных условиях. В разряженном аккумуляторе густоты раствора всегда ниже, поскольку большинство ионов скопилось на пластинах.

ВАЖНО: Добавление серного концентрата для коррекции плотности электролита должно производиться очень аккуратно, поскольку более высокие показатели способствуют осыпанию пластин и порче АКБ.

Зарядка от генератора автомобиля аккумулятора выполняется не в полном объеме, а всего на 80-90%, что требует подзарядки прибора для измерения концентрации раствора.

В подготовительные работы по поднятию плотности электролита входит:

  • Изъятие АКБ из ТС;
  • Хранение в теплом помещении до приобретения АКБ температуры 20-25 °С;
  • Проверка уровня насыщенности раствора;
  • Зарядка и зачистка клемм по необходимости до пополнения жидкости в банках.

Для определения нормы существуют специальные таблицы, согласно которым эксплуатационный показатель для теплого периода должен быть не ниже 1,27 г/куб. см, а для зимнего – 1,3 г/куб. см.

Поднимаем плотность электролита в АКБ

Для повышения концентрации активного раствора в банках аккумулятора необходимо приготовить:

  • Средства для личной защиты при работе с едкими веществами: старая одежда, защитные очки, респиратор или защитная маска, перчатки резиновые;
  • Мерный стакан;
  • Емкость, в которую будет сливаться старый раствор;
  • Аэрометр с резиновой грушей для откачки имеющейся в банках жидкости;
  • Дрель со сверлом диаметром 3-4 мм;
  • Паяльная лампа или паяльник;
  • Кислотная пластмасса.

Электролит содержит в составе серную кислоту, способную разъесть кожу или одежду, поэтому следует позаботиться о личной защите и постараться все манипуляции делать предельно аккуратно. Повышение плотности раствора достигается несколькими способами:

  • Полной заменой электролита в банках при концентрации ниже 1 г/куб. см;
  • Добавлением аккумуляторной кислоты в раствор;
  • Заливанием дистиллята и серной кислоты до нужного уровня и показателя плотности.

Полная замена электролита

Это является крайней радикальной мерой в случае полной выработки своего ресурса электролитом при снижении его плотности до 1 г/куб. см. Действия осуществляются в следующем порядке:

  1. Аккумуляторная батарея после подготовки подвергается полной откачке раствора из банок с помощью груши;
  2. Перевернув АКБ набок необходимо в дне каждой емкости с электродами просверлить дырки и слить остаток жидкости;
  3. В таком положении нужно продержать прибор и промыть внутренние полости дистиллятом;
  4. Очищенную батарею снова делают герметичной, запаивая кислотной пластмассой, сделанные ранее отверстия дрелью. Для этого пользуются паяльной лампой или паяльником;
  5. В каждую банку заливается нужное количество дистиллята, которое рассчитывается в соотношении от общего объема банки и нужного количества аккумуляторной кислоты для раствора с концентрацией 1,25-1,27 г/куб. см;
  6. Банки хорошо закупориваются, слегка встряхивается батарея без сильного отклонения от вертикали.

ВАЖНО: Первым в банки заливается дистиллят, а после добавляется кислота, в ином случае жидкость вскипит.

Добавление аккумуляторной кислоты

При показателе плотности раствора ниже 1,2 г/куб. см необходимо применять кардинальные меры для повышения значения электролита. Следует приобрести аккумуляторную кислоту, плотность которой составляет 1,84 г/куб. см, и залить тем же способом, что и обычный электролит.

Добавление дистиллята и серной кислоты

Необходимо сначала откачать имеющийся раствор из каждой банки АКБ. Затем залить новую жидкость плотностью 1,25-1,27 г/куб. см. Заполнив банки до отметки «Норма», следует хорошо закрыть крышки и слегка встряхнуть батарею.

ВАЖНО: Запрещается переворачивать вверх дном АКБ. При такой манипуляции могут отколоться кусочки соли свинца с решетки и попасть на соседний электрод, замкнув таким образом банку. После этого поврежденная емкость станет непригодной для эксплуатации.

Замеры концентрации подскажут необходимость повторения процесса замены электролита. Если показатель ниже 1,25 г/куб. см, то следует повторять операцию до тех пор, пока не будет получен нужный результат.

Корректирующая подзарядка АКБ

После замены или манипуляций по повышению плотности электролита в банках батареи устанавливается раствор с отличным друг от друга показателем. Допускается разнос в диапазоне 0,01 г/куб. см. Чтобы выровнять это значение необходимо произвести корректирующую подзарядку. Суть метода заключается в подаче на протяжении 1-2 часов тока при зарядке в 2-3 раза ниже номинального значения.

При отсутствии положительного результата применяются более радикальные способы выравнивания. Применяется зарядка устройствами, оснащенными регуляторами, обеспечивающими стабильное напряжение на входе.

Инструкция восстановления плотности корректирующей подзарядкой:

  1. Заряжается батарея полностью;
  2. В момент достижения максимального заряда при наблюдении кипения электролита сила тока снижается до уровня 1-2 А;
  3. В процессе кипения происходит испарение дистиллята и повышается густота жидкости;
  4. Для каждого отдельного случая время выпаривания может быть разным и иногда достигать 1 сутки;
  5. При снижении плотности ниже 1,25 г/куб. см электролит доливается, концентрация замеряется при остывании прибора до 25 °С;
  6. Производится повторная операция при необходимости.

Единственный недостаток процедуры – большая длительность.

Корректирующий электролит

Под корректирующей смесью понимают электролит, плотность которого составляет 1,4 г/куб. см. Простое добавление такого раствора недопустимо, следует предварительно произвести замеры имеющегося уровня плотности жидкости. Установление причины поможет подобрать наиболее подходящий метод применения корректирующего электролита. Предназначение такого раствора:

  • Скорректировать уровень электролита при вытекании раствора;
  • Поднять уровень плотности жидкости в банке при заливании большего количества, чем нужно, дистиллята.

Порядок использования корректирующего электролита:

  1. С помощью спринцовки или аэрометра откачать из полости банки жидкость;
  2. Заменить откачанный раствор аналогичным объемом корректирующего состава;
  3. Поставить заряжаться аккумулятор на срок от 30 минут до часа;
  4. По окончанию зарядки выдержать прибор в спокойном состоянии часа 2-3;
  5. Провести контрольный замер в каждой из банок;
  6. Повторить процедуру при необходимости.

ВАЖНО: Откачивая электролит необходимо оставлять поверхность пластин покрытыми жидкостью.

Заключение

В заключении хотим отметить, что работа с АКБ и электролитом не проста. Поэтому, если у вас мало опыта в сервисных работах по вашему авто, то лучше всего обратиться в сервис и доверить это дело профессионалам. В любом случае, следите за плотностью электролита для надежной работы АКБ хоть летом, хоть зимой. 

Как мы доберемся до следующего большого прорыва в области аккумуляторных батарей — Quartz

Вы читаете эксклюзивную статью Quartz, доступную всем читателям в течение ограниченного времени. Чтобы разблокировать доступ ко всем Quartz, станьте участником.

Электрические самолеты могут быть будущим авиации. Теоретически они будут намного тише, дешевле и чище, чем те самолеты, которые есть у нас сегодня. Электрические самолеты с дальностью полета 1000 км (620 миль) на одной зарядке могут использоваться сегодня для половины всех рейсов коммерческих самолетов, сокращая глобальные выбросы углерода в авиации примерно на 15%.

То же самое и с электромобилями. Электромобиль — это не просто более чистая версия своего кузена, извергающего загрязнение. По сути, это лучший автомобиль: его электродвигатель мало шумит и молниеносно реагирует на решения водителя. Зарядка электромобиля обходится намного дешевле, чем оплата эквивалентного количества бензина. Электромобили могут быть построены с небольшим количеством движущихся частей, что удешевляет их обслуживание.

Так почему же электромобили уже не повсюду? Это связано с тем, что батареи дороги, поэтому первоначальная стоимость электромобиля намного выше, чем стоимость аналогичной модели с бензиновым двигателем.И если вы не водите много, экономия на бензине не всегда компенсирует более высокие первоначальные затраты. Короче говоря, электромобили по-прежнему не экономичны.

Точно так же современные батареи не обладают достаточной энергией по весу или объему для питания пассажирских самолетов. Нам все еще нужны фундаментальные прорывы в аккумуляторных технологиях, прежде чем это станет реальностью.

Портативные устройства с батарейным питанием изменили нашу жизнь. Но есть еще много вещей, которые могут вывести из строя батареи, если бы только более безопасные, более мощные и энергоемкие батареи могли быть сделаны дешево.Никакой закон физики не исключает их существования.

И все же, несмотря на более чем два века тщательного изучения с момента изобретения первой батареи в 1799 году, ученые до сих пор не до конца понимают многие основы того, что именно происходит внутри этих устройств. Что мы действительно знаем, так это то, что, по сути, есть три проблемы, которые необходимо решить, чтобы батареи снова действительно изменили нашу жизнь: мощность, энергия и безопасность.

Не существует универсальной литий-ионной батареи

Каждая батарея имеет два электрода: катод и анод.Большинство анодов литий-ионных аккумуляторов изготовлены из графита, но катоды изготавливаются из различных материалов, в зависимости от того, для чего будет использоваться аккумулятор. Ниже вы можете увидеть, как различные материалы катода меняют работу типов батарей по шести параметрам.

Проблема питания

В просторечии люди используют термины «энергия» и «мощность» как синонимы, но при разговоре об аккумуляторах важно различать их. Мощность — это скорость, с которой может высвобождаться энергия.

Батарея, достаточно сильная, чтобы запустить и удержать в воздухе коммерческий самолет на расстояние 1000 км, требует большого количества энергии, чтобы высвободиться за очень короткое время, особенно во время взлета. Так что дело не только в накоплении большого количества энергии, но и в способности очень быстро извлекать эту энергию.

Решение проблемы энергоснабжения требует от нас заглянуть в черный ящик коммерческих аккумуляторов. Будет немного занудно, но терпи меня. Новые аккумуляторные технологии часто преувеличиваются, потому что большинство людей не уделяют должного внимания деталям.

Самая современная химия аккумуляторов, которая у нас есть, — это литий-ионные. Большинство экспертов сходятся во мнении, что никакая другая химия не сможет подорвать ионно-литиевый сплав еще по крайней мере еще десять или более лет. Литий-ионный аккумулятор имеет два электрода (катод и анод) с сепаратором (материал, который проводит ионы, но не электроны, предназначен для предотвращения короткого замыкания) в середине и электролит (обычно жидкий) для обеспечения обратного потока ионов лития и вперед между электродами. Когда батарея заряжается, ионы перемещаются от катода к аноду; когда батарея питает что-то, ионы движутся в противоположном направлении.

Представьте себе две буханки нарезанного хлеба. Каждая буханка — это электрод: левый — катод, а правый — анод. Предположим, что катод состоит из пластин никеля, марганца и кобальта (NMC) — одного из лучших в своем классе — и что анод состоит из графита, который по сути представляет собой слоистые листы или пластинки атомов углерода. .

В разряженном состоянии, то есть после того, как энергия была истощена, буханка NMC содержит ионы лития, расположенные между каждым ломтиком. Когда батарея заряжается, каждый ион лития извлекается между пластинами и вынужден проходить через жидкий электролит.Сепаратор действует как контрольно-пропускной пункт, гарантирующий, что только ионы лития проходят через графитовую буханку. При полной зарядке в катодной буханке батареи не останется ионов лития; все они будут аккуратно зажаты между ломтиками графитового хлеба. По мере того, как энергия батареи расходуется, ионы лития возвращаются к катоду, пока на аноде не останется ни одного. Вот тогда и нужно снова зарядить аккумулятор.

Емкость аккумулятора в основном определяется скоростью этого процесса.Но не так-то просто увеличить скорость. Слишком быстрое извлечение ионов лития из катодной буханки может привести к появлению дефектов на ломтиках и, в конечном итоге, к их разрушению. Это одна из причин, почему чем дольше мы пользуемся смартфоном, ноутбуком или электромобилем, тем хуже время автономной работы. Каждая зарядка и разрядка заставляют буханку немного ослабевать.

Над решением проблемы работают разные компании. Одна из идей — заменить слоистые электроды чем-то более прочным.Например, швейцарская компания по производству аккумуляторов Leclanché со 100-летней историей работает над технологией, в которой используется фосфат лития-железа (LFP), который имеет структуру «оливина» в качестве катода, и оксид титаната лития (LTO), который имеет Структура «шпинель», как анод. Эти структуры лучше справляются с потоком ионов лития в материал и из него.

Leclanché в настоящее время использует свои аккумуляторные элементы в автономных складских вилочных погрузчиках, которые можно полностью зарядить за девять минут. Для сравнения: лучший нагнетатель Tesla может зарядить автомобильный аккумулятор Tesla примерно до 50% за 10 минут.Leclanché также внедряет свои батареи в Великобритании для быстрой зарядки электромобилей. Эти батареи находятся на зарядной станции, медленно потребляя небольшое количество энергии в течение длительного периода времени из сети, пока они не будут полностью заряжены. Затем, когда автомобиль стыкуется, аккумуляторы док-станции быстро заряжают аккумулятор автомобиля. Когда машина уезжает, аккумулятор станции снова начинает заряжаться.

Такие попытки, как шоу Лекланше, можно изменить с химическим составом батарей, чтобы увеличить их мощность. Тем не менее, никто еще не построил батарею, достаточно мощную, чтобы быстро доставить энергию, необходимую коммерческому самолету для преодоления гравитации.Стартапы стремятся строить самолеты меньшего размера (вмещающие до 12 человек), которые могли бы летать на относительно менее энергоемких батареях, или электрические гибридные самолеты, где реактивное топливо выполняет тяжелую работу, а батареи — инерцию.

Но на самом деле в этой сфере нет ни одной компании, которая могла бы даже приблизиться к коммерциализации. Кроме того, технический скачок, необходимый для полностью электрического коммерческого самолета, вероятно, займет десятилетия, — говорит Венкат Вишванатан, эксперт по аккумуляторным батареям из Университета Карнеги-Меллона.

Reuters / Alister Doyle

Двухместный электрический самолет, сделанный словенской фирмой Pipistrel, стоит у ангара в аэропорту Осло, Норвегия.

Энергетическая проблема

Tesla Model 3, самая доступная модель компании, стоит от 35 000 долларов. Он работает от батареи на 50 кВтч, что стоит примерно 8750 долларов, или 25% от общей стоимости автомобиля.

Это все еще удивительно доступно по сравнению с тем, что было не так давно. По данным Bloomberg New Energy Finance, средняя мировая стоимость литий-ионных аккумуляторов в 2018 году составляла около 175 долларов за киловатт-час, что ниже почти 1200 долларов за киловатт-час в 2010 году.

Министерство энергетики США подсчитало, что как только стоимость аккумуляторных батарей упадет ниже 125 долларов за кВтч, владение и эксплуатация электромобиля будет дешевле, чем газовый автомобиль в большинстве частей мира. Это не означает, что электромобили победят автомобили с бензиновым двигателем во всех нишах и сферах — например, для грузовиков дальнего следования еще нет электрического решения. Но это переломный момент, когда люди начнут отдавать предпочтение электромобилям просто потому, что в большинстве случаев они будут иметь более экономичный смысл.

Один из способов добиться этого — увеличить удельную энергию батарей — втиснуть больше кВтч в батарейный блок, не снижая его цены. Теоретически это может сделать специалист по производству аккумуляторов, увеличив удельную энергию катода или анода, либо того и другого.

Катод с наибольшей энергоемкостью на пути к коммерческой доступности — это NMC 811 (каждая цифра в номере представляет собой соотношение никеля, марганца и кобальта, соответственно, в смеси). Это еще не идеально. Самая большая проблема заключается в том, что он может выдержать только относительно небольшое количество жизненных циклов заряда-разряда, прежде чем он перестанет работать.Но эксперты прогнозируют, что отраслевые исследования и разработки должны решить проблемы NMC 811 в течение следующих пяти лет. Когда это произойдет, батареи, использующие NMC 811, будут иметь более высокую плотность энергии на 10% или более.

Однако увеличение на 10% — это не так уж и много в общей картине.
И хотя серия инноваций за последние несколько десятилетий подтолкнула энергетическую плотность катодов еще выше, аноды — это то, где открываются самые большие возможности в области плотности энергии.

Графит был и остается доминирующим анодным материалом.Он дешевый, надежный и относительно энергоемкий, особенно по сравнению с современными катодными материалами. Но он довольно слаб, если сравнивать его с другими потенциальными анодными материалами, такими как кремний и литий.

Кремний, например, теоретически намного лучше поглощает ионы лития в виде графита. Вот почему ряд производителей аккумуляторов пытаются добавить кремний вместе с графитом в свои конструкции анодов; Генеральный директор Tesla Илон Маск сказал, что его компания уже делает это в своих литий-ионных батареях.

Большим шагом была бы разработка коммерчески жизнеспособного анода, полностью сделанного из кремния. Но у этого элемента есть черты, которые затрудняют это. Когда графит поглощает ионы лития, его объем не сильно меняется. Однако кремниевый анод по тому же сценарию набухает в четыре раза по сравнению с исходным объемом.

К сожалению, вы не можете просто сделать корпус больше, чтобы приспособиться к этому вздутию, потому что расширение разрушает то, что называется «межфазной границей твердого электролита», или SEI, кремниевого анода.

SEI можно рассматривать как своего рода защитный слой, который анод создает для себя, подобно тому, как железо образует ржавчину, также известную как оксид железа, для защиты от элементов: когда вы оставляете кусок недавно кованое железо снаружи, оно медленно вступает в реакцию с кислородом воздуха, образуя ржавчину. Под слоем ржавчины остальная часть железа не постигает та же участь и, таким образом, сохраняет структурную целостность.

В конце первого заряда батареи электрод образует собственный слой «ржавчины» — SEI, отделяющий неэродированную часть электрода от электролита.SEI предотвращает потребление электрода дополнительными химическими реакциями, гарантируя, что ионы лития могут течь как можно более плавно.

Но с кремниевым анодом SEI ломается каждый раз, когда батарея используется для питания чего-либо, и восстанавливается каждый раз, когда батарея заряжается. И во время каждого цикла зарядки расходуется немного кремния. В конце концов, кремний рассеивается до такой степени, что батарея перестает работать.

За последнее десятилетие несколько стартапов Кремниевой долины работали над решением этой проблемы.Например, подход Sila Nano состоит в том, чтобы заключить атомы кремния в наноразмерную оболочку с большим количеством пустого места внутри. Таким образом, SEI формируется снаружи оболочки, и расширение атомов кремния происходит внутри нее, не разрушая SEI после каждого цикла заряда-разряда. Компания, оцениваемая в 350 миллионов долларов, заявляет, что ее технология будет использоваться в устройствах уже в 2020 году.

Enovix, с другой стороны, применяет особую технологию производства, чтобы подвергнуть 100% кремний анод огромному физическому давлению, заставляя его поглощать меньше ион лития и, таким образом, ограничивает расширение анода и предотвращает разрушение SEI.У компании есть инвестиции от Intel и Qualcomm, и она также ожидает, что к 2020 году ее батареи будут в устройствах.

Эти компромиссы означают, что кремниевый анод не может достичь своей теоретической высокой плотности энергии. Однако обе компании заявляют, что их аноды работают лучше, чем графитовые. Третьи стороны в настоящее время тестируют аккумуляторы обеих фирм.

Tesla

В 2020 году новый Tesla Roadster должен стать первым электромобилем, который может проехать 1000 км (620 миль) на одной зарядке.

Проблема безопасности

Все молекулярные переделки, направленные на накопление большего количества энергии в батареях, могут происходить за счет безопасности. С момента своего изобретения литий-ионный аккумулятор вызывает головные боли из-за того, как часто он воспламеняется. Например, в 1990-х годах канадская компания Moli Energy начала продавать литий-металлические батареи для использования в телефонах. Но в реальном мире его батареи начали воспламеняться, и Moli был вынужден отозвать свой заказ и, в конечном итоге, объявить о банкротстве. (Некоторые из его активов были куплены тайваньской компанией, и она до сих пор продает литий-ионные батареи под торговой маркой E-One Moli Energy.) Совсем недавно смартфоны Samsung Galaxy Note 7, которые были сделаны на современных литий-ионных батареях, начали взрываться в карманах людей. В результате отзыв продукции в 2016 году обошелся южнокорейскому гиганту в 5,3 миллиарда долларов.

Современные литий-ионные батареи по-прежнему сопряжены с рисками, поскольку в них почти всегда используются легковоспламеняющиеся жидкости в качестве электролита. Одна из прискорбных (для нас, людей) причуд природы заключается в том, что жидкости, способные легко переносить ионы, также имеют более низкий порог воспламенения.Одно из решений — использовать твердые электролиты. Но это означает другие компромиссы. Конструкция батареи может легко включать жидкий электролит, который контактирует с каждым битом электродов, что позволяет эффективно переносить ионы. С твердыми телами намного сложнее. Представьте, что вы бросаете пару кубиков в чашку с водой. А теперь представьте, что те же самые кости бросают в чашку с песком. Очевидно, что вода будет касаться гораздо большей площади поверхности игральных костей, чем песок.

До сих пор коммерческое использование литий-ионных батарей с твердыми электролитами ограничивалось приложениями с низким энергопотреблением, такими как датчики, подключенные к Интернету.Усилия по увеличению масштабов твердотельных батарей, то есть не содержащих жидкий электролит, можно в общих чертах разделить на две категории: твердые полимеры при высоких температурах и керамика при комнатной температуре.

Твердые полимеры при высоких температурах

Полимеры представляют собой длинные цепочки молекул, связанных вместе. Они очень распространены в повседневном использовании — например, одноразовые полиэтиленовые пакеты делают из полимеров. Когда некоторые типы полимеров нагреваются, они ведут себя как жидкости, но без воспламеняемости жидких электролитов, используемых в большинстве батарей.Другими словами, они обладают высокой ионной проводимостью, как жидкий электролит, без каких-либо рисков.

Но у них есть ограничения. Они могут работать только при температуре выше 105 ° C (220 ° F), что означает, что они не подходят, например, для смартфонов. Но их можно использовать, например, для хранения энергии от сети в домашних батареях. По крайней мере, две компании — SEEO (США) и Bolloré (Франция) — разрабатывают твердотельные батареи, в которых в качестве электролита используются высокотемпературные полимеры.

Керамика при комнатной температуре

За последнее десятилетие два класса керамики — LLZO (оксид лития, лантана и циркония) и LGPS (литий, германий, сульфид фосфора) — показали почти такие же хорошие проводящие ионы при комнатной температуре. как жидкости.

Toyota, а также стартап из Кремниевой долины QuantumScape (который в прошлом году привлек 100 миллионов долларов от Volkswagen) работают над внедрением керамики в литий-ионные батареи. Включение крупных игроков в пространство указывает на то, что прорыв может быть ближе, чем многие думают.

«Мы очень близки к тому, чтобы увидеть что-то реальное [с использованием керамики] через два или три года», — говорит Вишванатан из Карнеги-Меллона.

Закон о балансе

Аккумуляторы — это уже большой бизнес, и их рынок продолжает расти.Все эти деньги привлекают множество предпринимателей с еще большим количеством идей. Но стартап с батарейками — это трудная ставка — они терпят неудачу даже чаще, чем компании-разработчики программного обеспечения, которые известны своим высоким уровнем отказов. Это потому, что инновации в области материаловедения — это сложно.

На данный момент химики по производству аккумуляторов обнаружили, что, пытаясь улучшить одну характеристику (скажем, плотность энергии), они вынуждены идти на компромисс в отношении другой характеристики (например, безопасности). Такой баланс означает, что прогресс на каждом фронте был медленным и чреват проблемами.

Но если внимательнее присмотреться к проблеме — по мнению Йет-Мин Чанга из Массачусетского технологического института, сегодня в США в три раза больше ученых, занимающихся аккумуляторными батареями, чем всего 10 лет назад, — шансы на успех возрастут. Потенциал аккумуляторов остается огромным, но, учитывая предстоящие задачи, лучше относиться к каждому заявлению о новых аккумуляторах с хорошей долей скептицизма.

Мощный литий-ионный аккумулятор на основе кобальта — Battery University

ПРИМЕЧАНИЕ : Эта статья была помещена в архив .Пожалуйста, прочтите наши новые «Типы литий-ионных аккумуляторов» для получения обновленной версии.


Большинство литий-ионных аккумуляторов для портативных устройств изготовлены на основе кобальта. Система состоит из положительного электрода из оксида кобальта (катода) и угольного графита в отрицательном электроде (аноде). Одним из главных преимуществ кобальтовой батареи является высокая удельная энергия. Длительный срок службы делает этот химический состав привлекательным для мобильных телефонов, ноутбуков и фотоаппаратов.

Широко используемый литий-ионный кобальт имеет недостатки; он предлагает относительно низкий ток разряда.Высокая нагрузка может привести к перегреву упаковки и нарушению ее безопасности. Схема безопасности кобальтовой батареи обычно ограничивается скоростью заряда и разряда около 1С. Это означает, что аккумулятор 18650 емкостью 2400 мАч можно заряжать и разряжать только с максимальным током 2,4 А. Другой недостаток — увеличение внутреннего сопротивления, которое происходит при езде на велосипеде и старении. После 2–3 лет использования аккумулятор часто выходит из строя из-за большого падения напряжения под нагрузкой, вызванного высоким внутренним сопротивлением.Рисунок 1 иллюстрирует кристаллическую структуру оксида кобальта.
Рис. 1. Катодный кристаллический оксид лития-кобальта имеет «слоистую» структуру . Ионы лития показаны связанными с оксидом кобальта. Во время разряда ионы лития перемещаются от катода к аноду. При зарядке поток меняется на противоположный.
В 1996 году ученым удалось использовать оксид лития-марганца в качестве катодного материала.Это вещество образует трехмерную структуру шпинели, которая улучшает поток ионов между электродами. Высокий поток ионов снижает внутреннее сопротивление и увеличивает нагрузочную способность. Сопротивление остается низким при езде на велосипеде, однако батарея стареет, и общий срок службы такой же, как у кобальта. Шпинель обладает высокой термической стабильностью и требует меньше схем безопасности, чем кобальтовая система. Низкое внутреннее сопротивление ячейки является ключом к высокой производительности. Эта характеристика способствует быстрой зарядке и сильноточной разрядке.Литий-ионный аккумулятор на основе шпинели в элементе 18650 может разряжаться при 20-30 А с незначительным тепловыделением. Допускаются короткие односекундные импульсы нагрузки, в два раза превышающие указанный ток. Невозможно предотвратить некоторое перегревание, а температура ячейки не должна превышать 80 ° C.
Рис. 2. Катодный кристаллический оксид лития-марганца
имеет
«трехмерную каркасную структуру».
Эта структура шпинели, которая обычно состоит из алмазов, соединенных в решетку, появляется после первоначального образования.Эта система обеспечивает высокую проводимость, но более низкую плотность энергии.

Шпинельный аккумулятор тоже имеет слабые места. Одним из наиболее существенных недостатков является меньшая емкость по сравнению с системой на основе кобальта. Spinel обеспечивает примерно 1200 мАч в корпусе 18650, что примерно вдвое меньше, чем у кобальтового эквивалента. Несмотря на это, шпинель по-прежнему обеспечивает плотность энергии примерно на 50% выше, чем у эквивалента на основе никеля.
Рисунок 3: Формат ячейки 18650.
Размеры этой часто используемой ячейки: 18 мм в диаметре и 65 мм в длину.

Типы литий-ионных аккумуляторов

Литий-ионные аккумуляторы еще не достигли полной зрелости, и технология постоянно совершенствуется. Анод в современных элементах состоит из смеси графита, а катод — из комбинации лития и других металлов. Следует отметить, что все материалы в батарее имеют теоретическую плотность энергии. Литий-ионный анод хорошо оптимизирован, и в плане конструктивных изменений можно получить незначительные улучшения.Катод, однако, может быть усовершенствован. Поэтому исследования аккумуляторов сосредоточены на материале катода. Другая часть, у которой есть потенциал, — это электролит. Электролит служит реакционной средой между анодом и катодом.

Аккумуляторная промышленность наращивает прирост емкости на 8-10% в год. Ожидается, что эта тенденция сохранится. Это, однако, далеко от закона Мура, который определяет удвоение количества транзисторов на кристалле каждые 18–24 месяца.Перевод этого увеличения на батарею означал бы удвоение емкости каждые два года. Вместо двух лет литий-ионный удвоил свою энергоемкость за 10 лет.

Сегодняшние ионно-литиевые добавки имеют множество «вкусов», и различия в составе в основном связаны с материалом катода. В таблице 1 ниже приведены наиболее часто используемые литий-ионные аккумуляторы на рынке сегодня. Для простоты мы суммируем химический состав в четыре группы: кобальт, марганец, NCM и фосфат.

Химическое название

Материал

Аббревиатура

Краткая форма

Банкноты

Оксид лития-кобальта 1 Также кобальт лития или литий-ион-кобальт)

LiCoO 2
(60% Co)

LCO

Литий-кобальт

Высокая емкость; для мобильного телефона, ноутбука, камеры

Литий
Оксид марганца
1
Также литий-манганат
или литий-ионно-марганцевый

LiMn 2 O 4

LMO

Литий-марганец или шпинель

Самый безопасный; меньшая емкость, чем у литий-кобальта, но высокая удельная мощность и длительный срок службы.

Электроинструменты,
электровелосипедов, электромобили, медицинские, для любителей.

Литий
Фосфат железа
1

LiFePO 4

LFP

Литий-фосфат

Литий-никель-марганцевый оксид кобальта 1 , также оксид лития-марганца-кобальта

LiNiMnCoO 2
(10–20% Co)

NMC

NMC

Литий Никель Кобальт Оксид алюминия 1

LiNiCoAlO 2
9% Co)

NCA

NCA


приобретает все большее значение в системах хранения электроэнергии и энергоснабжения

Титанат лития 2

Li 4 Ti 5 O 12

LTO

Литий-титанат

Таблица 1: Справочные названия литий-ионных аккумуляторов. При необходимости мы будем использовать краткую форму.

1 Материал катода

2 Материал анода

Литий-ионный аккумулятор на основе кобальта впервые появился в 1991 году и был представлен Sony. Этот химический состав аккумуляторов быстро получил признание из-за его высокой плотности энергии. Возможно, из-за более низкой плотности энергии литий-ионный шпинель на основе шпинели стартовал медленнее. Когда он был представлен в 1996 году, мир требовал более длительного времени работы превыше всего. В связи с тем, что многие портативные устройства нуждаются в высоком токе, шпинель теперь находится на переднем крае и пользуется большим спросом.Требования настолько высоки, что производители, производящие эти батареи, не могут удовлетворить их. Это одна из причин, почему так мало рекламы делается для продвижения этого продукта. E-One Moli Energy (Канада) — ведущий производитель литий-ионной шпинели цилиндрической формы. Они специализируются на форматах ячеек 18650 и 26700. Другими крупными игроками на литий-ионных шпинелях являются Sanyo, Panasonic и Sony.


Sony делает упор на никель-кобальтово-марганцевую версию (NCM).Катод включает кобальт, никель и марганец в кристаллическую структуру, которая образует многометаллический оксидный материал, к которому добавлен литий. Производитель предлагает ряд различных продуктов в этом семействе аккумуляторов для пользователей, которым нужна либо высокая плотность энергии, либо высокая нагрузочная способность. Следует отметить, что эти два атрибута не могут быть объединены в одном пакете; между ними есть компромисс. Обратите внимание, что NCM заряжается до 4,10 В на элемент, что на 100 мВ ниже, чем у кобальта и шпинели.Зарядка этой аккумуляторной батареи до 4,20 В на элемент обеспечит более высокую емкость, но срок службы будет сокращен. Вместо обычных 800 циклов, выполняемых в лабораторных условиях, количество циклов будет сокращено примерно до 300.

Новейшим дополнением к семейству литий-ионных аккумуляторов является система A123, в которой нанофосфатные материалы добавляются в катод. Он утверждает, что имеет самую высокую удельную мощность в Вт / кг среди имеющихся в продаже литий-ионных аккумуляторов. Элемент может непрерывно разряжаться до 100% глубины разряда при 35 ° C и выдерживать импульсы разряда до 100 ° C.Система на основе фосфата имеет номинальное напряжение около 3,3 В на элемент, а пиковое напряжение заряда составляет 3,60 В. Это меньше, чем у литий-ионной батареи на основе кобальта, и для батареи потребуется специальное зарядное устройство. Компания Valance Technology была первой, кто начал коммерциализацию литий-ионных аккумуляторов на основе фосфатов, и их элементы продаются под маркой Saphionâ.

На рисунке 4 мы сравниваем плотность энергии (Втч / кг) трех литий-ионных химических соединений и сравниваем их с традиционными свинцово-кислотными, никель-кадмиевыми, никель-металлогидридными.Можно увидеть постепенное улучшение марганца и фосфата по сравнению со старыми технологиями. Кобальт обладает самой высокой плотностью энергии, но термически менее стабилен и не может обеспечивать высокие токи нагрузки.

Рис. 4. Плотность энергии обычных батарей.

Определение плотности энергии и плотности мощности

Плотность энергии (Втч / кг) — это показатель того, сколько энергии может удерживать аккумулятор.Чем выше плотность энергии, тем дольше будет время работы. Литий-ионный с кобальтовыми катодами обеспечивает самую высокую плотность энергии. Типичные области применения — сотовые телефоны, ноутбуки и цифровые фотоаппараты.
Плотность мощности (Вт / кг) указывает, сколько энергии батарея может выдать по запросу. Основное внимание уделяется скачкам мощности, таким как просверливание тяжелой стали, а не времени автономной работы. Литий-ионные продукты на основе марганца и фосфата, а также химические соединения на основе никеля являются одними из лучших. Аккумуляторы с высокой удельной мощностью используются для электроинструментов, медицинских устройств и транспортных систем.

Аналогию между энергией и плотностью мощности можно провести с помощью бутылки с водой. Размер бутылки — это плотность энергии, а отверстие обозначает плотность энергии. Большая бутылка может вместить много воды, в то время как большое отверстие может быстро ее испортить. Лучшая комбинация — большая емкость с широкой горловиной.

Путаница с напряжениями

В течение последних 10 лет номинальное напряжение литий-ионных аккумуляторов составляло 3,60 В / элемент. Это была довольно удобная цифра, потому что она составляла три батареи на основе никеля (1.2 В / элемент), подключенных последовательно. Использование более высоких напряжений в ячейке для литий-ионных аккумуляторов приводит к лучшим показаниям ватт / часов на бумаге и дает маркетинговое преимущество, однако производитель оборудования продолжит предполагать, что в ячейке будет 3,60 В.
Номинальное напряжение литий-ионной батареи рассчитывается, если взять полностью заряженную батарею примерно 4,20 В, полностью разрядить ее примерно до 3,00 В со скоростью 0,5 ° C при измерении среднего напряжения.

Из-за более низкого внутреннего сопротивления среднее напряжение шпинельной системы будет выше, чем у эквивалента на основе кобальта.Чистая шпинель имеет самое низкое внутреннее сопротивление, а номинальное напряжение ячейки составляет 3,80 В. Исключением снова является литий-ионный аккумулятор на основе фосфата. Эта система максимально отличается от обычной литий-ионной системы

.

Увеличенное время автономной работы за счет модерации

Батареи живут дольше при бережном обращении. Высокое напряжение заряда, чрезмерная скорость заряда и экстремальные условия нагрузки отрицательно сказываются на сроке службы батареи. Долговечность часто является прямым результатом воздействия окружающей среды.Следующие рекомендации предлагают способы продления срока службы батареи.

— Время, в течение которого батарея остается на уровне 4,20 / элемент, должно быть как можно короче. Длительное высокое напряжение способствует коррозии, особенно при повышенных температурах. Шпинель менее чувствительна к высокому напряжению.

-3,92 В / элемент — лучший верхний порог напряжения для литий-ионных аккумуляторов на основе кобальта. Доказано, что зарядка аккумуляторов до этого уровня напряжения увеличивает срок службы вдвое. Литий-ионные системы для оборонных приложений используют более низкий порог напряжения.Минус — гораздо меньшая емкость.

-Зарядный ток литий-ионных аккумуляторов должен быть умеренным (0,5 ° C для литий-ионных аккумуляторов на основе кобальта). Более низкий ток заряда сокращает время, в течение которого ячейка находится при 4,20 В. Заряд 0,5С лишь незначительно увеличивает время зарядки по сравнению с 1С, потому что дополнительный заряд будет короче. Сильноточный заряд имеет тенденцию преждевременно подтолкнуть напряжение к пределу напряжения.

— Не разряжайте литий-ионный аккумулятор слишком глубоко. Вместо этого заряжайте его чаще. У литий-ионных аккумуляторов нет проблем с памятью, как у никель-кадмиевых батарей.Для кондиционирования не требуются глубокие разряды.

-Не заряжайте литий-ионные батареи при температуре замерзания или ниже. Несмотря на прием заряда, произойдет необратимое покрытие металлическим литием, что поставит под угрозу безопасность батареи.

Мало того, что литий-ионный аккумулятор работает дольше с более медленной скоростью заряда; также помогает умеренная скорость разряда. На рис. 5 показан срок службы в зависимости от скорости заряда и разряда. Обратите внимание на улучшенные лабораторные характеристики при скорости заряда и разряда 1С по сравнению с 2 и 3С.

Рис. 5. Долговечность литий-ионных аккумуляторов в зависимости от скорости заряда и разряда.
Литий-кобальт обладает самой высокой плотностью энергии. Марганцевые и фосфатные системы в конечном итоге более стабильны и обеспечивают более высокие токи нагрузки, чем кобальтовые.

Эксперты по аккумуляторным батареям соглашаются, что срок службы литий-ионных аккумуляторов сокращается за счет других факторов, кроме скорости заряда и разряда.Несмотря на то, что постепенные улучшения могут быть достигнуты при осторожном использовании, наша среда и необходимые услуги не всегда способствуют оптимальному сроку службы батареи. В этом отношении аккумулятор ведет себя так же, как и мы, люди — мы не всегда можем жить так, чтобы обеспечить максимальный срок службы.

*** Пожалуйста, прочтите комментарии ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта. Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме.Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.

Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected]. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.

или перейти к другому архиву

Какова плотность энергии литий-ионной батареи?

Что такое плотность энергии батареи?

Плотность энергии — это мера того, сколько энергии содержится в батарее по отношению к ее весу.Это измерение обычно выражается в ватт-часах на килограмм (Втч / кг). Ватт-час — это единица измерения электрической энергии, которая эквивалентна потреблению одного ватта за один час.

Плотность мощности — это мера того, насколько быстро может быть доставлена ​​энергия, а не количество доступной накопленной энергии. Плотность энергии часто путают с плотностью мощности, поэтому важно понимать разницу между ними.

Зачем вам аккумулятор с высокой плотностью энергии?

Чтобы лучше понять литий-ионные батареи, вы должны понять, почему высокая плотность энергии является желательной характеристикой батареи.

Аккумулятор с высокой плотностью энергии имеет большее время работы от аккумулятора по сравнению с размером аккумулятора. В качестве альтернативы аккумулятор с высокой плотностью энергии может выдавать такое же количество энергии, но занимает меньшую площадь по сравнению с аккумулятором с более низкой плотностью энергии. Это значительно расширяет возможности аккумуляторных приложений.

При заводских или складских настройках аккумуляторные батареи для вилочных погрузчиков могут весить тысячи фунтов. Легкий аккумулятор для вилочных погрузчиков дает некоторые преимущества с точки зрения безопасности и обслуживания.

Если плотность энергии батареи слишком высока, это может представлять угрозу безопасности. Когда в ячейку упаковано больше активного материала, увеличивается риск теплового события.

Какой тип аккумуляторной батареи имеет самую высокую плотность энергии?

Существует несколько различных типов аккумуляторных батарей с различной плотностью энергии, отражающей их внутренний химический состав.

  • Плотность энергии свинцово-кислотных аккумуляторов составляет 30-50 Втч / кг
  • Плотность энергии никель-кадмиевых батарей составляет 45-80 Втч / кг
  • Плотность энергии никель-металлогидридных батарей составляет 60-120 Втч / кг
  • Плотность энергии литий-ионного аккумулятора составляет 50-260 Втч / кг

Типы литий-ионных батарей и их удельная энергия

Литий-ионные батареи часто объединяются в группу батарей, каждая из которых содержит литий, но их химический состав может сильно различаться и, как следствие, разной производительности.

Большинство типов литий-ионных аккумуляторов имеют аналогичную конструкцию катода с алюминиевой подложкой, угольного или графитового анода с медной подложкой, сепаратора и электролита из литиевой соли в органическом растворителе.

Производители экспериментировали с материалами, из которых изготовлены катод и анод. Они также изменили состав электролита. Эти различия являются причиной того, что литий-ионные батареи различаются по уровню плотности энергии.

Теперь мы рассмотрим самые популярные химические составы литий-ионных аккумуляторов, а также их соответствующие плотности энергии, варианты использования, преимущества и недостатки.

Industry Titans: Литий-титанатные (LTO) батареи

Аккумулятор LTO является одним из старейших типов литий-ионных аккумуляторов и имеет плотность энергии на нижней стороне, как у литий-ионных аккумуляторов, около 50-80 Втч / кг.

В этих батареях титанат лития используется в аноде вместо углерода, что позволяет электронам входить и выходить из анода быстрее, чем в других типах литий-ионных батарей.

Такая конструкция позволяет батареям LTO заряжаться намного быстрее и безопасно выдерживать большие токи, но низкая плотность энергии делает их плохо подходящими для погрузочно-разгрузочного оборудования.

Они, как правило, более дорогие и обычно используются для электромобилей, автомобильных аудиоприложений и мобильных медицинских устройств.

Высокая энергия, высокий риск: литий-кобальтовые батареи (LCO)

Литий-кобальтооксидные батареи

имеют высокую удельную энергию 150-200 Втч / кг. Их катод состоит из оксида кобальта с типичным углеродным анодом со слоистой структурой, которая перемещает ионы лития от анода к катоду и обратно.

Эти типы батарей популярны из-за их высокой плотности энергии и обычно используются в сотовых телефонах, ноутбуках и, в последнее время, в электромобилях.

Кобальт — очень энергоемкий материал, но он может быть дорогим. Поскольку спрос на электромобили возрастает, этот ресурс быстро истощается. Фактически, вскоре мир может столкнуться с нехваткой кобальта.

Кобальт также очень летуч. Литий-кобальтовые батареи не выдерживают больших токов из-за риска перегрева, что представляет собой значительный риск для безопасности.Аккумуляторы LCO имеют более низкую термическую стабильность, что означает, что они очень чувствительны к более высоким рабочим температурам и перезарядке.

Производительность по цене: литий-никель-марганец-кобальт-оксидные батареи (NMC)

Литий-никель-марганцево-кобальтооксидные батареи

также обладают высокой плотностью энергии 150–220 Втч / кг. Они используют кобальт в катоде так же, как батареи LCO, но они также содержат никель и марганец для повышения стабильности.

Аккумуляторы

NMC используются сегодня в большинстве производимых электромобилей, но также используются в медицинских устройствах и электровелосипедах.

Секрет успеха этой батареи заключается в ее хорошо сбалансированном химическом составе; никель, как известно, энергоемкий, но нестабильный, как и кобальт, в то время как марганец более стабилен, но также имеет более низкую плотность энергии. Конкретное соотношение различных элементов варьируется в зависимости от производителя, но добавление никеля обычно предназначено для уменьшения количества дорогостоящего кобальта.

Батареи

NMC могут выдерживать большие токи заряда и больший диапазон температур, чем батареи LCO.Однако, поскольку батарея по-прежнему содержит кобальт, стоимость увеличивается из-за дефицита на рынке.

Доступное, безопасное и надежное: литий-железо-фосфатные батареи (LFP)

Аккумуляторы

LFP обладают высокой плотностью энергии 90–160 Втч / кг. Хотя это меньше, чем у некоторых кобальтовых батарей, он по-прежнему остается одним из самых высоких среди всех типов батарей.

В батареях

LFP используется фосфат железа для катода и графитовый электрод в сочетании с металлической подложкой для анода.

Литий-фосфат железа или LiFePO4 — это природный минерал, недорогой, нетоксичный, обладающий хорошей термической стабильностью и высокой плотностью энергии.

Аккумуляторы

LFP идеально подходят для тяжелого оборудования и промышленных сред, поскольку они способны выдерживать большие нагрузки и широкий диапазон температур. Они появились как новый вариант для вилочных погрузчиков и другого тяжелого электрического оборудования, которое требует высокого уровня надежности и исторически использует свинцово-кислотные батареи.

Литий-ионная батарея Тип

Плотность энергии ( Вт ч / кг)

Плюсы

Минусы

Титанат лития (LTO)

50-80

Долговечность, стабильность

Низкая плотность энергии, дороже

Оксид лития-кобальта (LCO)

150-200

Высокая плотность энергии

Неустойчивый и дорогой

Литий, никель, марганец, кобальт, оксид (NMC)

150-220

Высокая плотность энергии

Безопаснее, чем LCO, но все же относительно нестабильно и дорого

Литий-фосфат железа (LFP)

90–160

Средняя-высокая плотность энергии

Стабильная, долговечная и более высокая удельная энергия

Все типы литий-ионных аккумуляторов уникальны.Крайне важно понимать, какой химический состав литий-ионных аккумуляторов лучше всего подходит для вашего применения.

Если вы ищете лучший аккумулятор для погрузочно-разгрузочного оборудования, литий-железо-фосфатный аккумулятор, вероятно, станет лучшим выбором. Все блоки Flux Power LiFT сконструированы исключительно с элементами LFP, поскольку они обеспечивают наилучший баланс между безопасностью и производительностью.

Новый полимер для увеличения плотности энергии и стабильности литий-ионных батарей

Newswise — УНИВЕРСИТЕТСКИЙ ПАРК, Пенсильвания.- Исследователи из Пенсильванского университета разработали новый метод, который может обеспечить широкое использование анодов на основе кремния, которые позволяют электричеству проникать в устройство, в перезаряжаемых литий-ионных батареях.

Исследование, опубликованное сегодня (6 декабря) в журнале Nature Communications, представляет собой важный шаг вперед для многих технологий, использующих эти батареи, включая электромобили и смартфоны.

«Кремний был определен как многообещающий анодный материал для следующего поколения литий-ионных аккумуляторов», — сказал Дунхай Ван, профессор механической и химической инженерии.«Но исследования показали, что во время езды на велосипеде материал становится очень нестабильным».

Когда батарея завершает свой цикл питания, кремний в аноде батареи значительно расширяется и сжимается, что ограничивает ее потенциал для коммерческого использования.

Эти повторяющиеся изменения объема во время процесса зарядки и разрядки, известные как литиация и делитирование, в конечном итоге приводят к структурным повреждениям внутри элемента. Со временем последствия этой деградации могут способствовать нестабильности, например взрывам, и сокращению срока службы батареи.

Тем не менее, исследователи приняли новую стратегию, которая позволяет силикону сохранять эластичность, которая обеспечивает превосходную передачу энергии, сохраняя при этом непревзойденную целостность электрода батареи.

«Мы обнаружили, что если вы окружите анод на основе кремния подушкой из чрезвычайно эластичного гелевого полимерного электролита (GPE), это позволит кремнию оставаться стабильным, поэтому частицы не будут перемещаться внутри электрода», — сказал Ван. сказал.

По словам Ванга, этот уникальный метод сочетает в себе лучшее из обоих миров.GPE состоит из мягкого эфирного домена, который реагирует на его эластичность, и жесткого циклического домена, который предотвращает чрезмерное набухание полимера.

«Это новый подход, при котором два компонента работают синергетически вместе, чтобы заставить GPE надлежащим образом набухать и сжиматься, сохраняя при этом стабильность кремниевой анодной структуры», — сказал он.

Обойдя проблемы, которые в настоящее время создают кремниевые аноды, по оценкам исследователей, эта работа может увеличить запас энергии в литий-ионных батареях на 20%.

«Это эффективная технология, позволяющая использовать чистый кремний в анодах», — сказал Ван. «Традиционно используется только 5% кремния, поэтому усиливающий эффект материала ограничен. Но при использовании этого метода замена его чистым кремнием значительно увеличит емкость и плотность энергии элемента ».

Как исследователь Центра технологий аккумуляторов и накопителей энергии (BEST) в Пенсильвании, эта работа представляет собой последний вклад Вана в эту область.

«Эта работа, безусловно, является одним из подходов к созданию лучших аккумуляторов для электромобилей или небольшой электроники», — сказал он. «Благодаря объединению кремния и GPE это путь к созданию следующего поколения литий-ионных батарей».

Дополнительные участники проекта включают аспирантов и докторантов в области машиностроения, в том числе Цинцюань Хуан, Цзянсюань Сун, Дайвэй Ван и Шуай Лю, аспирант химии Юэ Гао, а также отраслевых партнеров Ashland Specialty Ingredients, Шуфу Пенг, Кортни Ашер и Алан Голяшевский.

Panasonic увеличивает плотность энергии и сокращает содержание кобальта в новом аккумуляторном элементе 2170 для Tesla — TechCrunch

Производство на заводе Tesla Gigafactory начнется в сентябре

Компания Panasonic разработала новую технологию аккумуляторов для литий-ионных элементов «2170», которые она производит и поставляет для Tesla, изменение, которое улучшает плотность энергии на 5% и снижает содержание дорогостоящего кобальта.

Новые 2170 ячеек с более высокой плотностью энергии будут производиться Panasonic на заводе Tesla в Спарксе, штат Невада, сообщила компания в четверг.Panasonic модернизирует свои линии аккумуляторных элементов, производство которых намечено на сентябрь. Компания управляет 13 линиями на заводе с мощностью производства 35 гигаватт-часов аккумуляторов в год. Президент Panasonic Energy в Северной Америке Аллан Свон заявил, что все 13 линий в конечном итоге будут работать с новой технологией, не указав сроков, когда вся система будет модернизирована.

«Мы собираемся сделать еще один шаг вперед», — сказала Свон в недавнем интервью. «Это довольно интересно с точки зрения Panasonic; Мы стремимся к тому, чтобы не содержать кобальт, и мы стремимся к более энергоемким батареям, что дает нашим клиентам выбор того, как они хотят использовать это.”

Завод, на котором будут производиться эти новые аккумуляторные элементы, известен как Gigafactory 1, что является важным компонентом плана Tesla по увеличению емкости аккумуляторов в мире и снижению стоимости электромобилей. Panasonic был ее самым важным партнером в этом проекте, который, согласно недавнему соглашению, должен продлиться как минимум до 2023 года. Panasonic производит 2170 ячеек на Gigafactory 1, которые Tesla затем использует для изготовления аккумуляторных батарей для Model 3. 2170 ячеек являются также используется в новейшем автомобиле Tesla Model Y.

Вот краткое руководство. Батарея содержит два электрода. С одной стороны есть анод (отрицательный), а с другой — катод (положительный). Электролит находится посередине и действует как курьер, перемещающий ионы между электродами при зарядке и разрядке.

Ячейка с большей плотностью энергии означает, что инженеры придумали способ разместить больше энергии в этом пространстве. Повышение плотности энергии в элементах на 5% должно привести к тому же приросту аккумуляторных батарей Tesla.Итог: у Tesla Model 3 и Model Y может наблюдаться увеличение дальности действия. Снижение содержания кобальта, редкого химического элемента, который является дорогостоящим и влечет за собой социальные и экологические издержки, также может помочь снизить цену на элементы.

Заводы Panasonic в Японии производят цилиндрические литий-ионные элементы «18650», которые используются для питания автомобилей Tesla Model S и Model X. Panasonic уже улучшил 18650 ячеек, что привело к снижению содержания кобальта и повышению плотности энергии.

Panasonic использует катодную химию NCA, или никель-кобальт-алюминий, в своих аккумуляторных элементах. Panasonic не будет раскрывать количество используемого сегодня кобальта или вдаваться в подробности своей технологии. Однако компания заявила, что общее количество кобальта, используемого в цилиндрических автомобильных батареях Panasonic, составляет менее 2% мирового спроса.

NCA использует меньше кобальта, чем NCM. По данным Panasonic, химия катода NCA была усовершенствована для уменьшения содержания кобальта.

Компания стремится к нулевому содержанию кобальта в элементах батарей.Panasonic уже добился этого в своей научно-исследовательской лаборатории. Планируется, что через несколько лет начнется коммерциализация бескобальтовых батарей.

Новый класс катодов, не содержащих кобальта, может повысить удельную энергию литий-ионных аккумуляторов нового поколения

Исследователи из Национальной лаборатории Ок-Ридж разработали новое семейство катодов, способных заменить дорогостоящие катоды на основе кобальта, которые обычно используются в литиевых батареях. -ионовые батареи, которые используются в электромобилях и бытовой электронике.

Новый класс под названием NFA, который обозначает катод на основе никеля, железа и алюминия, является производным никелата лития и может использоваться для изготовления положительного электрода литий-ионной батареи. Эти новые катоды спроектированы так, чтобы обеспечивать быструю зарядку, высокую энергоемкость, экономичность и долговечность.

С ростом производства портативной электроники и электромобилей во всем мире литий-ионные батареи пользуются большим спросом. По словам Илиаса Белхаруака, ученого ORNL, возглавляющего исследования и разработки NFA, к 2030 году ожидается, что на дорогах будет находиться более 100 миллионов электромобилей.Кобальт — это металл, который в настоящее время необходим для катода, который составляет значительную часть стоимости литий-ионной батареи.

Кобальт редко встречается и в основном добывается за границей, что затрудняет приобретение и производство катодов. В результате поиск альтернативного кобальту материала, который можно было бы производить с минимальными затратами, стал приоритетной задачей исследований литий-ионных аккумуляторов.

Ученые ORNL протестировали характеристики катодов класса NFA и определили, что они являются многообещающими заменителями катодов на основе кобальта, как описано в Advanced Materials и Journal of Power Sources . Исследователи использовали нейтронную дифракцию, мёссбауэровскую спектроскопию и другие передовые методы определения характеристик для исследования атомной и микроструктуры, а также электрохимических свойств NFA.

«Наши исследования поведения NFA при зарядке и разрядке показали, что эти катоды подвергаются таким же электрохимическим реакциям, что и катоды на основе кобальта, и обладают достаточно высокой удельной емкостью, чтобы удовлетворить требования к плотности энергии батареи», — сказал Белхаруак.

Хотя исследования класса NFA находятся на начальной стадии, Белхаруак сказал, что предварительные результаты его команды на сегодняшний день показывают, что кобальт может не понадобиться для литий-ионных аккумуляторов следующего поколения.

«Мы разрабатываем катод, который имеет такие же или лучшие электрохимические характеристики, чем катоды на основе кобальта, при этом мы используем более дешевое сырье», — сказал он.

Белхаруак добавил, что не только NFA работает так же хорошо, как катоды на основе кобальта, но и процесс производства катодов NFA может быть интегрирован в существующие глобальные процессы производства катодов.

«Никелат лития давно рассматривается как предпочтительный материал для изготовления катодов, но он страдает внутренней структурной и электрохимической нестабильностью», — сказал он.«В наших исследованиях мы заменили часть никеля на железо и алюминий, чтобы повысить стабильность катода. Железо и алюминий — экономичные, экологичные и экологически чистые материалы ».

Будущие исследования и разработки класса NFA будут включать тестирование материалов в элементах большого формата для проверки результатов лабораторных исследований и дальнейшего изучения пригодности этих катодов для использования в электромобилях.

Дополнительными исследователями статей в журналах являются Нитин Муралидхаран, Рашид Эссели, Рафаэль Херманн, Рухул Амин, Чарл Джафта, Джунже Чжан, Джуэ Лю, Чжицзя Ду, Гарри Мейер, Итан Селф, Джагджит Нанда и Яокаи Бай.

Работа спонсировалась Управлением по энергоэффективности и технологиям производства автомобилей с использованием возобновляемых источников энергии Министерства энергетики США.

ORNL управляется UT-Battelle для Управления науки Министерства энергетики США, крупнейшего спонсора фундаментальных исследований в области физических наук в Соединенных Штатах. Управление науки Министерства энергетики США работает над решением некоторых из самых насущных проблем современности. Для получения дополнительной информации посетите https://energy.gov/science.

Три аккумуляторных технологии, которые могут обеспечить будущее | Saft аккумуляторы

Миру нужно больше энергии, желательно в чистой и возобновляемой форме.Наши стратегии по хранению энергии в настоящее время формируются литий-ионными батареями — передовыми технологиями, — но что мы можем ожидать в ближайшие годы?

Начнем с основ аккумуляторной батареи. Батарея представляет собой блок из одной или нескольких ячеек, каждая из которых имеет положительный электрод (катод), отрицательный электрод (анод), сепаратор и электролит. Использование различных химикатов и материалов для них влияет на свойства батареи — сколько энергии она может хранить и выводить, сколько энергии она может обеспечить или сколько раз она может быть разряжена и перезаряжена (также называемая циклической емкостью).

Производители аккумуляторов постоянно экспериментируют, чтобы найти более дешевые, плотные, легкие и мощные химические продукты. Мы поговорили с директором Saft по исследованиям Патриком Бернардом, который рассказал о трех новых аккумуляторных технологиях с потенциалом преобразования.

ЛИТИЙ-ИОН НОВОГО ПОКОЛЕНИЯ

ЧТО ЭТО?

В литий-ионных (Li-ion) батареях накопление и выделение энергии обеспечивается движением ионов лития от положительного к отрицательному электроду назад и вперед через электролит.В этой технологии положительный электрод действует как исходный источник лития, а отрицательный электрод — как хозяин для лития. Несколько химических элементов объединены под названием литий-ионные батареи в результате десятилетий выбора и оптимизации, близких к совершенству положительных и отрицательных активных материалов. Литированные оксиды металлов или фосфаты являются наиболее распространенным материалом, используемым в качестве настоящих положительных материалов. В качестве отрицательных материалов используются графит, а также оксиды графита / кремния или литированного титана.

Ожидается, что в ближайшие годы литий-ионная технология с учетом реальных материалов и конструкции элементов достигнет предела энергии. Тем не менее, совсем недавние открытия новых семейств разрушительных активных материалов должны раскрыть существующие ограничения. Эти инновационные соединения могут хранить больше лития в положительных и отрицательных электродах и впервые позволят объединить энергию и мощность. Кроме того, с этими новыми соединениями также учитываются дефицит и критичность сырья.

В ЧЕМ ЕГО ПРЕИМУЩЕСТВА?

Сегодня среди всех современных технологий хранения литий-ионные аккумуляторы обеспечивают самый высокий уровень плотности энергии. Такие характеристики, как быстрая зарядка или диапазон рабочих температур (от -50 ° C до 125 ° C), можно точно настроить за счет большого выбора конструкции и химического состава элементов. Кроме того, литий-ионные аккумуляторы обладают дополнительными преимуществами, такими как очень низкий саморазряд и очень долгий срок службы, а также способность к циклическим нагрузкам, обычно тысячи циклов зарядки / разрядки.

КОГДА МОЖНО ЭТОГО ОЖИДАТЬ?

Ожидается, что новое поколение передовых литий-ионных аккумуляторов будет развернуто раньше первого поколения твердотельных аккумуляторов. Они идеально подходят для использования в таких приложениях, как системы хранения энергии для возобновляемых источников энергии и транспорта (морской, железнодорожный, авиационный и внедорожный транспорт), где высокая энергия, высокая мощность и безопасность являются обязательными.

ЛИТИЙ-СЕРНЫЙ

ЧТО ЭТО?

В литий-ионных батареях ионы лития хранятся в активных материалах, действующих как стабильные структуры хозяина во время заряда и разряда.В литий-серных (Li-S) батареях нет никаких структур-хозяев. Во время разряда литиевый анод расходуется, а сера превращается в различные химические соединения; во время зарядки происходит обратный процесс.

В ЧЕМ ЕГО ПРЕИМУЩЕСТВА?

В аккумуляторе Li-S используются очень легкие активные материалы: сера в положительном электроде и металлический литий в качестве отрицательного электрода. Вот почему его теоретическая плотность энергии чрезвычайно высока: в четыре раза больше, чем у литий-ионных аккумуляторов.Это делает его подходящим для авиационной и космической промышленности.

Saft выбрала и отдает предпочтение наиболее перспективной технологии Li-S на основе твердотельного электролита. Этот технический путь обеспечивает очень высокую плотность энергии, длительный срок службы и устраняет основные недостатки Li-S на жидкой основе (ограниченный срок службы, высокий саморазряд и т. Д.).

Кроме того, эта технология дополняет твердотельные литий-ионные аккумуляторы благодаря своей превосходной гравиметрической плотности энергии (+ 30% в Втч / кг).

КОГДА МОЖНО ЭТОГО ОЖИДАТЬ?

Основные технологические барьеры уже преодолены, и уровень зрелости очень быстро приближается к созданию полномасштабных прототипов.

Ожидается, что для приложений, требующих длительного времени автономной работы, эта технология выйдет на рынок сразу после твердотельных литий-ионных аккумуляторов.

ТВЕРДОГО СОСТОЯНИЯ

ЧТО ЭТО?

Твердотельные батареи представляют собой смену парадигмы с точки зрения технологий. В современных литий-ионных батареях ионы перемещаются от одного электрода к другому через жидкий электролит (также называемый ионной проводимостью). В полностью твердотельных батареях жидкий электролит заменен твердым соединением, которое, тем не менее, позволяет ионам лития перемещаться внутри него.Эта концепция далеко не нова, но за последние 10 лет — благодаря интенсивным исследованиям во всем мире — были обнаружены новые семейства твердых электролитов с очень высокой ионной проводимостью, аналогичные жидкому электролиту, что позволило преодолеть этот конкретный технологический барьер.

Сегодня усилия Saft R&D сосредоточены на 2 основных типах материалов: полимеры и неорганические соединения, стремясь к синергии физико-химических свойств, таких как технологичность, стабильность, проводимость…

В ЧЕМ ЕГО ПРЕИМУЩЕСТВА?

Первое огромное преимущество — заметное повышение безопасности на уровне элементов и батарей: твердые электролиты негорючие при нагревании, в отличие от их жидких аналогов.Во-вторых, он позволяет использовать инновационные высоковольтные материалы с большой емкостью, что позволяет создавать более плотные и легкие батареи с более длительным сроком хранения за счет снижения саморазряда. Более того, на системном уровне это принесет дополнительные преимущества, такие как упрощенная механика, а также управление температурой и безопасностью.

Поскольку батареи могут иметь высокое отношение мощности к весу, они могут быть идеальными для использования в электромобилях.

КОГДА МОЖНО ЭТОГО ОЖИДАТЬ?

По мере продолжения технического прогресса на рынке, вероятно, появятся несколько типов полностью твердотельных батарей.Первыми будут твердотельные батареи с анодами на основе графита, обеспечивающие улучшенные энергетические характеристики и безопасность. Со временем, более легкие технологии твердотельных батарей с использованием металлического литиевого анода должны стать коммерчески доступными.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *