Двигатель внутреннего возгорания как работает: #читайдома: 8 нестыдных вопросов про то, как работает двигатель внутреннего сгорания

Содержание

Как устроен и как работает двигатель внутреннего сгорания?

Двигатель внутреннего сгорания, или ДВС – это наиболее распространённый тип двигателя, который можно встретить на автомобилях. Невзирая на тот факт, что двигатель внутреннего сгорания в современных автомобилях состоит из множества частей, его принцип работы предельно прост. Давайте подробнее рассмотрим, что же такое ДВС, и как он функционирует в автомобиле.

ДВС что это?

Двигатель внутреннего сгорания – это вид теплового двигателя, в котором преобразовывается часть химической энергии, получаемой при сгорании топлива, в механическую, приводящую механизмы в движение.

ДВС разделяются на категории по рабочим циклам: двух- и четырёхтактные. Также их различают по способу приготовления топливно-воздушной смеси: с внешним (инжекторы и карбюраторы) и внутренним (дизельные агрегаты) смесеобразованием. В зависимости от того, как в двигателях преобразовывается энергия, их разделяют на поршневые, реактивные, турбинные и комбинированные.

Основные механизмы двигателя внутреннего сгорания

Двигатель внутреннего сгорания состоит из огромного количества элементов. Но есть основные, которые характеризуют его производительность. Давайте рассмотрим строение ДВС и основных его механизмов.

1. Цилиндр – это самая важная часть силового агрегата. Автомобильные двигатели, как правило, имеют четыре и более цилиндров, вплоть до шестнадцати на серийных суперкарах. Расположение цилиндров в таких двигателях может находиться в одном из трёх порядков: линейно, V-образно и оппозитно.

2. Свеча зажигания генерирует искру, которая воспламеняет топливно-воздушную смесь. Благодаря этому и происходит процесс сгорания. Чтобы двигатель работал «как часы», искра должна подаваться точно в положенное время.

3. Клапаны впуска и выпуска также функционируют только в определённые моменты. Один открывается, когда нужно впустить очередную порцию топлива, другой, когда нужно выпустить отработанные газы. Оба клапана крепко закрыты, когда в двигателе происходят такты сжатия и сгорания. Это обеспечивает необходимую полную герметичность.

4. Поршень представляет собой металлическую деталь, которая имеет форму цилиндра. Движение поршня осуществляется вверх-вниз внутри цилиндра.

5. Поршневые кольца служат уплотнителями скольжения внешней кромки поршня и внутренней поверхности цилиндра. Их использование обусловлено двумя целями:

• Они не дают попадать горючей смеси в картер ДВС из камеры сгорания в моменты сжатия и рабочего такта.

• Они не дают попасть маслу из картера в камеру сгорания, ведь там оно может воспламениться. Многие автомобили, которые сжигают масло, оборудованы старыми двигателями, и их поршневые кольца уже не обеспечивают должного уплотнения.

6. Шатун служит соединительным элементом между поршнем и коленчатым валом.

7. Коленчатый вал преобразует поступательные движения поршней во вращательные.

8. Картер располагается вокруг коленчатого вала. В его нижней части (поддоне) собирается определённое количество масла.

Это интересно!

Самые мощные в мире ДВС выпускает фирма Wartsila. Они предназначены для кораблей. Их мощность достигает 110 000 л.с., что равно 80 мВт.

Принцип работы двигателя внутреннего сгорания

В предыдущих разделах мы рассмотрели назначение и устройство ДВС. Как вы уже поняли, каждый такой двигатель имеет поршни и цилиндры, внутри которых тепловая энергия преобразуется в механическую. Это, в свою очередь, заставляет автомобиль двигаться. Данный процесс повторяется с поразительной частотой – по несколько раз в секунду. Благодаря этому, коленчатый вал, который выходит из двигателя, непрерывно вращается.

Рассмотрим подробнее принцип работы двигателя внутреннего сгорания. Смесь топлива и воздуха попадает в камеру сгорания через впускной клапан. Далее она компрессируется и воспламеняется искрой от свечи зажигания. Когда топливо сгорает, в камере образуется очень высокая температура, которая приводит к появлению избыточного давления в цилиндре. Это заставляет двигаться поршень к «мёртвой точке». Он таким образом совершает один рабочий ход. Когда поршень двигается вниз, он посредством шатуна вращает коленчатый вал. Затем, двигаясь от нижней мёртвой точки к верхней, выталкивает отработанный материал в виде газов через клапан выпуска далее в выхлопную систему машины.

Такт – это процесс, происходящий в цилиндре за один ход поршня. Совокупность таких тактов, которые повторяются в строгой последовательности и за определённый период – это рабочий цикл ДВС.

Впуск

Впускной такт является первым. Он начинается с верхней мёртвой точки поршня. Он движется вниз, всасывая в цилиндр смесь из топлива и воздуха. Этот такт происходит, когда клапан впуска открыт. Кстати, существуют двигатели, у которых присутствует несколько впускных клапанов. Их технические характеристики существенно влияют на мощность ДВС. В некоторых двигателях можно регулировать время нахождения впускных клапанов открытыми. Это регулируется нажатием на педаль газа. Благодаря такой системе количество всасываемого топлива увеличивается, а после его возгорания существенно возрастает и мощность силового агрегата. Автомобиль в таком случае может существенно ускориться.

Сжатие

Вторым рабочим тактом двигателя внутреннего сгорания является сжатие. По достижении поршнем нижней мертвой точки, он поднимается вверх. За счёт этого попавшая в цилиндр смесь во время первого такта сжимается. Топливно-воздушная смесь сжимается до размеров камеры сгорания. Это то самое свободное место между верхними частями цилиндра и поршня, который находится в своей верхней мертвой точке. Клапаны в момент этого такта плотно закрыты. Чем герметичнее образованное пространство, тем более качественное сжатие получается. Очень важно, какое состояние у поршня, его колец и цилиндра. Если где-то присутствуют зазоры, то о хорошем сжатии речи быть не может, а, следовательно, и мощность силового агрегата будет существенно ниже. По величине сжатия определяется то, насколько изношен силовой агрегат.

Рабочий ход

Этот третий по счёту такт начинается с верхней мёртвой точки. И такое название он получил не случайно. Именно во время этого такта в двигателе происходят те процессы, которые двигают автомобиль. В этом такте подключается система зажигания. Она отвечает за поджог воздушно-топливной смеси, сжатой в камере сгорания. Принцип работы ДВС в этом такте весьма прост – свеча системы дает искру. После возгорания топлива происходит микровзрыв. После этого оно резко увеличивается в объёме, заставляя поршень резко двигаться вниз. Клапаны в этом такте находятся в закрытом состоянии, как и в предыдущем.

Выпуск

Заключительный такт работы двигателя внутреннего сгорания – выпуск. После рабочего такта поршнем достигается нижняя мёртвая точка, а затем открывается выпускной клапан. После этого поршень движется вверх, и через этот клапан выбрасывает отработанные газы из цилиндра. Это процесс вентиляции. От того, насколько чётко работают клапан, зависит степень сжатия в камере сгорания, полное удаление отработанных материалов и нужное количество воздушно-топливной смеси.

После этого такта всё начинается заново. А за счёт чего вращается коленвал? Дело в том, что не вся энергия уходит на движение автомобиля. Часть энергии раскручивает маховик, который под действием инерционных сил раскручивает коленчатый вал ДВС, перемещая поршень в нерабочие такты.

А знаете ли вы? Дизельный двигатель тяжелее, чем бензиновый, из-за более высокого механического напряжения. Поэтому конструкторы используют более массивные элементы. Зато ресурс таких двигателей выше бензиновых аналогов. Кроме того, дизельные автомобили возгораются значительно реже бензиновых, так как дизель нелетучий.

Достоинства и недостатки

Мы с вами узнали, что представляет из себя двигатель внутреннего сгорания, а также каково его устройство и принцип работы. В заключение разберём его основные преимущества и недостатки.

Преимущества ДВС:

1. Возможность длительного передвижения на полном баке.

2. Небольшой вес и объём бака.

3. Автономность.

4. Универсальность.

5. Умеренная стоимость.

6. Компактные размеры.

7. Быстрый старт.

8. Возможность использования нескольких видов топлива.

Недостатки ДВС:

1. Слабый эксплуатационный КПД.

2. Сильная загрязняемость окружающей среды.

3. Обязательное наличие коробки переключения передач.

4. Отсутствие режима рекуперации энергии.

5. Большую часть времени работает с недогрузом.

6. Очень шумный.

7. Высокая скорость вращения коленчатого вала.

8. Небольшой ресурс.

Интересный факт! Самый маленький двигатель спроектирован в Кембридже. Его габариты составляют 5*15*3 мм, а его мощность 11,2 Вт. Частота вращения коленвала составляет 50 000 об/мин.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Принцип работы двигателя внутреннего сгорания: дизель, бензин

Несмотря на постоянно появляющуюся информацию об изобретении новых, современных, более экономичных и экологичных, видов силовых агрегатов, двигатель внутреннего сгорания еще долго не сдаст свои позиции основной «рабочей лошадки» мирового автопрома.  Вот уже более сотни лет именно двигатель внутреннего сгорания работает, приводя в движение миллионы как легковых, так и грузовых автомобилей по всему миру

Уникальное изобретение

Если задать в поисковик вопрос о том, кто является изобретателем ДВС, можно получить добрый десяток имен. Действительно, на заре автомобилестроение над созданием практичного мотора бились десятки пытливых умов. И не столь важно, кто оформил патент первым, а кто опоздал на пару месяцев. Главное – результат вышел на славу.

Компактный, простой в конструкции но в то же время обладающий хорошим КПД, ДВС оставил далеко позади остальных «конкурентов»  в праве именоваться двигателем прогресса нового столетия.

Что такое двигатель внутреннего сгорания

Предназначение любого теплового силового агрегата – превратить энергию топлива в полезную механическую работу. В ДВС сгорают жидкие или газообразные углеводороды: бензин, дизельное топливо или природный газ. 

Как это происходит? В специальных «отверстиях» в корпусе (цилиндрах) расположены поршни – металлические «стаканы». Днище детали ориентировано вверх, а снизу, через кривошипно-шатунный механизм, она соединена с коленвалом.

Герметичность достигается поршневыми кольцами, не допускающими проникновение газов между стенками цилиндра и поршнем.

Все двигатели внутреннего сгорания имеют одинаковые этапы работы:

  • впуска;
  • сжатия;
  • горение;
  • расширения;
  • выпуска.

Для того, чтобы разобраться в процессе, стоит рассмотреть  как работает бензиновый двигатель – самый распространенный в автомобилях.

Как работает бензиновый двигатель

Перемещение поршня в цилиндре ограничивается двумя крайними положениями – верхней и нижней мертвыми точками (ВМТ и НМТ).

Первый такт начинается с того, что при движении поршня вниз открывается впускной клапан, в который подается приготовленная карбюратором (вариант – в инжекторе) воздушно-бензиновая смесь.

Во время обратного хода  топливо сжимается, а когда снова начинается движение вниз, смесь зажигается высоковольтной искрой. Взрыв отталкивает поршень вниз, в результате чего проворачивается коленвал.  

Во время последнего такта отработавшиеся газы удаляются через открывшийся выпускной клапан.

Такой двигатель называют четырехтактных – по числу перемещений. Автомобильный двигатель работает непрерывно, поэтому содержит как минимум четыре цилиндра. Вспомогательные ходы в одних обеспечиваются рабочими тактами в других.  

Как открываются клапаны

Для обеспечения процесса важно точное открывание и закрывание впускных и выпускных клапанов. За эту работу отвечает газораспределительный механизм.

Через шкив ГРМ «синхронизирован» с  коленвалом, что позволяет открывать каналы в нужные такты (при определенном положении поршней).

При вращении кулачок распредвала давит на коромысло, которое открывает клапан. Когда кулачок проворачивается, отверстие закрывается с помощью пружины.

Особенности дизеля

Аналогичные такты имеет и дизельный двигатель, единственное различие которого в том, как работает воспламенение. Здесь топливо и воздух подаются отдельно. Именно последний при сжатии выделяет тепло, воспламеняющее горючее. 

Все для ремонта и обслуживаия бензиновых и дизельных двигателей ищитена страницах fortunaavto.com.ua!

Двигатель внутреннего сгорания — Что такое Двигатель внутреннего сгорания?

Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

По сравнению с паромашинной установкой двигатель внутреннего сгорания характеризуется следующими признаками:

  • принципиально проще (нет парокотельного агрегата),

  • компактнее,

  • легче,

  • экономичнее,

  • требует газообразное и жидкое топливо лучшего качества.

Типы двигателей внутреннего сгорания


По назначению:

  • транспортные, 

  • стационарные, 

  • специальные.

По роду применяемого топлива:

  • легкие жидкие (бензин, газ), 

  • тяжелые жидкие (дизельное топливо, судовые мазуты).

По способу образования горючей смеси:

  • внешнее (карбюратор),

  • внутреннее (в цилиндре ДВС).

По способу воспламенения:

  • с принудительным зажиганием, 

  • с воспламенением от сжатия, 

  • калоризаторные.

По расположению цилиндров:

  • рядные, 

  • вертикальные, 

  • оппозитные с одним и с двумя коленвалами, 

  • V-образные с верхним и нижним расположением коленвала, 

  • VR-образные и W-образные, 

  • однорядные и двухрядные звездообразные, 

  • Н-образные, 

  • двухрядные с параллельными коленвалами, 

  • «двойной веер», 

  • ромбовидные, 

  • трехлучевые и др.

Поршневой двигатель — это двигатель, у которого камера сгорания находится в цилиндре, где тепловая энергия топлива превращается в механическую энергию, а механическая из поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.

Бензиновый двигатель — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. 

Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. 

В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. 

В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания. 

Т.к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

Газовый двигатель — двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях

Роторно-поршневой двигатель — двигатель, конструкция которого предложена изобретателем Ванкелем в начале ХХ века. 

Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. 

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. 

За 1 оборот двигатель выполняет 3 полных рабочих цикла, что эквивалентно работе 6-цилиндрового поршневого двигателя.

Как работает двигатель?

Важно ли понимать устройство двигателя для обычного пользователя автомобиля? Это как минимум необходимо для правильной эксплуатации мотора. Например, знаете ли вы про 9-цилиндровый мотор БМВ или что такое объем двигателя? За пять минут расскажем просто обо всем важном.

Виды моторов

Двигатель внутреннего сгорания представляет собой достаточно сложную конструкцию. Существуют двух- и четырехтактные двигатели. Наиболее распространены 4-тактные моторы в автомобилях и мотоциклах. Двухтактники также могут применяться в транспорте, но чаще их используют для некоторых видов водных и даже воздушных судов. Двухтактные моторы устанавливают в мотокосах, бензопилах и прочем строительном бензоинструменте.

Конструкторы успели придумать такое множество агрегатов, попадающих под определение ДВС. Мы будем рассматривать наиболее привычные варианты. Рассмотрим 4-тактный мотор. Чтобы понять порядок и принципы его работы, разберемся, из чего он состоит:

  • цилиндры, в которых располагаются поршни;
  • коленчатый вал;
  • газораспределительный механизм.

К этому добавим системы зажигания, подачи топлива и отвода отработанных газов, а также смазки и охлаждения двигателя.

Основные подходы к классификации силовых установок:

  1. По количеству цилиндров.
  2. По расположению цилиндров.
  3. По виду топлива.

1. Цилиндров чаще всего бывает от одного до шести. Более мощные автомобили могут использовать, например, 8, 12 или 16 цилиндров.

2. В рядном двигателе цилиндры на коленчатом валу располагаются один за другим в ряд. Увеличить мощность двигателя без существенного изменения размеров можно путем удвоения количества цилиндров. При этом один ряд поршней располагается относительно второго ряда под углом 90 градусов. Такой тип двигателя называется V-образным. Существует еще и оппозитный тип мотора, когда два ряда поршней располагаются под углом 180 градусов. Такие двигатели, например, применяются в автомобилях Subaru. За счет особенностей расположения цилиндров автомобиль получает более низкий центр тяжести и вибрацию при работе, а также минимальную высоту капота.

3. ДВС может работать на бензине и дизтопливе. Отличие заключается в том, что в бензиновом моторе топливо подается смешанное с воздухом и зажигается с помощью искры от свечи. У дизельного мотора топливо и воздух подаются раздельно, воспламенение происходит от высокой температуры сжатого газа. Вместо бензина в двигателе со смешанным топливом может использоваться газ, например, метан.

В одной модели автомобиля часто используется целая линейка двигателей с разными характеристиками на выбор покупателя. Например, в популярной BMW 5-й серии (Е60) может использоваться рядный 4-цилиндровый дизельный двигатель (M47), рядный 6-цилиндровый турбодизель (М57) или мощный 10-цилиндровый бензиновый V-образник (S85).

А вот 9-цилиндровый двигатель БМВ ставили на самолеты, и располагались цилиндры относительно друг друга в виде звезды.

Порядок работы двигателя

Вернемся к двух- и четырехтактным двигателям. Конструкции двухтактных моторов могут сильно различаться и быть как проще, так и намного сложнее четырехтактных собратьев. За счет меньшего количества оборотов мощность двухтактников выше, но экономичность хуже. Маленькие по размерам и мощности моторы не требуют сложной системы охлаждения, масло для смазки добавляется непосредственно с топливом в камеру сгорания.

Один такт – это движение поршня внутри цилиндра вверх или вниз. Работа 4-тактного мотора состоит из:

  • впуска;
  • сжатия;
  • рабочего хода;
  • выпуска.

У двухтактной силовой установки впуск происходит во время сжатия (первый такт), а рабочий ход совмещен с выпуском отработанных газов (второй такт).

Теперь подробнее о четырехтактном процессе.

В цилиндре находится поршень, который с помощью шатуна крепится к коленвалу. Сверху цилиндра находятся впускные и выпускные клапаны, а также свеча. Внутренний объем всех цилиндров составляет так называемый объем двигателя.

Поршень может находиться в верхней точке цилиндра (верхняя мертвая точка), нижней (нижняя мертвая точка) или перемещаться между ними.

В первом такте открывается впускной клапан и поршень опускается. Таким образом, цилиндр наполняется либо смесью топлива и воздуха, либо только воздухом (для дизельного мотора).

Во втором такте поршень идет вверх, сжимая содержимое и параллельно увеличивая его давление и температуру. В конце такта свеча зажигания создает искру, в результате чего происходит детонация топливной смеси в бензиновом двигателе. В дизельном же свеча не используется, а топливо подается в последний момент такта, которое возгорается за счет высокого давления и температуры воздуха.

В третьем и основном такте работы мотора высвобождаемая от взрыва энергия двигает поршень вниз. Именно в этот момент создается сила, которая заставляет коленчатый вал вращаться, а от него вращается и маховик двигателя.

На четвертом такте поршень поднимается к верхней мертвой точке при открытом выпускном клапане. При этом удаляются отработанные газы. Далее цикл из четырех тактов повторяется.

Если в двигателе используется несколько цилиндров, движение их поршней управляется газораспределительным механизмом таким образом, чтобы цилиндры одновременно находились на разных тактах. Систем управления газораспределением существует несколько − от механических распредвалов до электронных процессоров.

Все движимые детали обязательно должны охлаждаться и смазываться. Температура в момент детонации достигает нескольких тысяч градусов. Охлаждение, как правило, производится с помощью жидкости, которая отбирает тепло у деталей двигателя. Далее жидкость сама должна охладиться и снова вернуться в мотор. Превышение допустимых температур может привести к практически моментальному разрушению силовой установки.

В легковых автомобилях количество оборотов коленвала может достигать восьми тысяч в минуту. Для минимизации механического износа система смазки должна работать идеально. Поэтому важно следить за уровнем моторного масла и работоспособностью масляного насоса. Системы смазки и охлаждения могут страдать из-за загрязнения, что ведет к сужению или перекрытию каналов движения жидкостей.

Как работает двигатель внутреннего сгорания [простым языком]

Что такое цилиндры, турбонаддув, как расшифровывать характеристики двигателя без технической документации

Двигатель внутреннего сгорания работает за счет сжигания бензина и дизельного топлива. Независимо от вида топлива, на котором работает движок, принципы его работы, термины и названия запчастей одинаковы.

Как работает?

Принцип работы двигателя внутреннего сгорания похож на принцип работы насоса: на одном конце в него втягивается воздух и воспламеняется (внутреннее сгорание), затем, через выхлопную трубу вытесняются отработанные (выхлопные) газы. Движок преобразует энергию сгорания в механическую энергию для движения машины.  Детальная работа «сердца машины» разобрана здесь, а в этой статье обсудим из чего состоит мотор машины и как устроен.

Для описания размера и мощности мотора автомобиля пользуются устоявшимися терминами и маркерами. Правда, не разобравшись в каждом, не сообразишь, что они означают.  Если не до конца понимаете, что собой представляет 1,8-литровый, 4-цилиндровый, V-образный двигатель на 20 клапанов и с турбонаддувом эта статья для вас.

Что означает «1,8-литровый»?

Значение «1,8-литровый», «2-х литровый», «3-х литровый» указывает на объем движка. Объем двигателя влияет на объем воздуха, который тот может переработать в течение одного цикла. Эта величина обычно отображается в литрах или в кубических сантиметрах, в зависимости от производителя, но измерение в сантиметрах встречается крайне редко.

Чем больший объем мотора, тем больше он производит энергии. Больше энергии — больше расход топлива. Правда, инженеры автоконцернов пытаются сломать этот стереотип. О том, как им это удается, читайте в статье журнала Zap-Online.ru: «Топ 10 улучшений в конструкции мотора автомобиля».

Характеристика «4-цилиндровый» означает количество цилиндров в движке

Цилиндром называют камеру двигателя цилиндрической формы, в которой смешиваются и сгорают воздух, и топливо. Каждая такая камера считается одним цилиндром. Чем больше цилиндров, тем больше мощность автомобиля и расход топлива. Для экономии топлива, некоторые современные 8-цилиндровые движки разработаны так, чтобы цилиндры оставались закрытыми, когда их работа не принципиально важна. Эта технология применена в последних моделях Mercedes. На светофоре движок будет работать на холостом ходу, отключив 6 цилиндров и оставив в работе 2, чтобы машина не заглохла. Движок будет смешивать топливо и воздух в двух цилиндрах вместо восьми, перекрыв подачу бензина или солярки в ненужные.

Также будет и на загородной трассе, где водитель, включив круиз-контроль, двигается с одной скоростью до 90 км/ч.

V-образный или рядный двигатель означает угол расположения цилиндров друг к другу — это называется конфигурация мотора

У автомобильных моторов бывают разные конфигурации: разные расположения цилиндров по отношению друг к другу. Размещение цилиндров в один ряд создает «линию» двигателя: 4-рядный– 4 цилиндра в линию, или 6-рядный — 6 цилиндров и т.д. —это общая и простая конфигурация классической силовой установки внутреннего сгорания.

Когда цилиндры расположены противоположно друг другу в угловых блоках, они имеют вид латинской буквы «V». Цифра, следующая за этим символом, опять-таки, обозначает количество цилиндров в одном ряду, например: V-4, V-6, V-8 и т.д.

Три блока цилиндров располагают в форме латинской буквы «W». По количеству цилиндров в одном ряду различают движки W-8, W-12 или W-16. От конфигурации цилиндров зависит физический размер движка и то, как ровно он работает. V – образная форма облегчает ход цилиндров, т.к. сила тяжести распределяется под наклоном, а не вертикально, как на обычных автомобильных моторах. Все эти разработки стали результатом тщательнейших испытаний, которые привели к совершенствованию внутреннего КПД (коэффициента полезного действия) мотора и к его экономичности.

Клапаны

Воздух входит в цилиндры и выходит из них через клапаны, работающие по принципу работы клапанов сердца. Раньше цилиндры имели только два клапана: один для воздуха, который поступает в цилиндр, второй — для выхода отработанных газов. Современные двигатели имеют по три, четыре и даже пять клапанов в каждом цилиндре, что более эффективно перемещает воздух по двигателю, увеличивает мощность автомобиля и сокращает расход топлива. Обычно автопроизводители сообщают общее число клапанов в движке. Разделите это число на количество цилиндров и узнаете, сколько клапанов в каждом из них.

Наддув и турбонаддув

Нагнетание воздуха в двигатель под давлением называется «принудительная индукция». Нагнетанием воздуха можно резко увеличить мощность автомобиля. Наддув работает на ременном приводе от мотора автомобиля и разработан, чтобы немедленно давать дополнительную мощность, когда отработанный газ выходит из движка. Турбонаддув приводится в действие выхлопными газами и требует меньших затрат мощности самого двигателя, что делает его более экономным, чем просто наддув. При этом у турбонаддува реакция на дроссель гораздо медленнее. Еще есть электрический турбонаддув, о нем подробно писали здесь, различия с классическим незначительные. Хотя при увеличении скорости наддувом и турбонаддувом сжигается больше топлива — они позволяют маленьким экономным моторам показывать те же результаты, что и их более большие собратья.  

Остались вопросы по терминологии принципам работы мотора автомобиля? Задавайте их в комментариях, будем рады ответить.

 

Альтернативные силовые установки для транспортных средств

Двигатели внутреннего сгорания (ДВС) уже почти 200 лет служат человечеству. Однако их широкое использование оборачивается целым рядом экологических и ресурсных проблем. 26% всех выбросов антропогенных парниковых газов вызваны сжиганием ископаемого топлива. При этом более 90% топлива,  используемого для автомобилей, судов, локомотивов и самолетов, получено из нефти. При сгорании нефтепродуктов в атмосферу выделяются крайне вредные окись углерода, двуокись углерода, углеводороды, окислы азота и другие компоненты. Загрязнение воздуха выступает причиной каждой девятой смерти в мире и признано одним из крупнейших вызовов в области здравоохранения и окружающей среды. В ряде развитых стран принимаются активные меры по постепенному переводу транспорта с ДВС и расширению использования альтернативных источников топлива. Так, Германия приняла закон о запрете продажи новых автомобилей с ДВС с 2030 г. Страна планирует к 2050 г. сократить автомобильные выхлопы до нуля. Аналогичные инициативы обсуждаются в других странах ЕС, США, Индии.
Более активное использование современных альтернативных силовых установок позволит снизить объем вредных выбросов в атмосферу Земли, сократить расходы на содержание транспортных средств и увеличить их КПД. Разработка таких технологий даст возможность странам, испытывающим дефицит традиционного топлива, уменьшить свою энергетическую зависимость. Ниже рассмотрены перспективные технологии новых типов двигателей для автомобилей, работающих на альтернативном топливе: водородные и метанольные топливные элементы для электромобилей, а также двигатели внутреннего сгорания на диметиловом эфире.

Версия для печати: 

ВОДОРОДНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ ДЛЯ ЭЛЕКТРОМОБИЛЕЙ

Использование водорода в качестве топлива возможно в транпортных средствах как с ДВС, так и с водородными топивными элементами. Однако традиционные поршневые ДВС приспособить к работе на водороде и сложно, и дорого (стоимость эксплуатации и обслуживания такой водородной силовой установки примерно в 100 раз выше, чем у обычного двигателя внутреннего сгорания).

Альтернативные вариантом являются топливные элементы (ТЭ), преобразующие химическую энергию топлива в тепло и постоянный электрический ток, питающий электродвигатель или системы бортового питания транспортного средства. ТЭ представляет собой непрерывно перезаряжаемую батарею из двух покрытых катализатором электродов, между которыми находится электролит. Через один электрод подается водород, через другой — чистый кислород или кислород из воздуха, к которым постоянно добавляются химическое топливо и окислитель. Соединение водорода с кислородом обычно происходит внутри пористой полимерной мембраны. 
Водородные ТЭ намного более экологичны, эффективны (их КПД составляет 45%, современного автомобильного ДВС — 35%), надежны, способны работать при низких температурах, при этом менее габаритны. Они могут  применяться в качестве силовых установок в гибридных автомобилях, а в электромобилях — в качестве суперконденсаторов. 



 

Эффекты

  Экологичность: при сгорании водорода в двигателе образуется практически только вода

 Распределенное энергоснабжение: водород в виде неиспользованного электричестваможно применять для питания домашней электросети

 Возможное сокращение общего объема потребления нефти в секторе автомобильных перевозок на 40% к 2050 г.

Оценки рынка

70 тыс. в год 

к 2027 г. составит выпуск новых водородных автомобилей в мире 

Драйверы и барьеры

  Удобство использования автомобильной техники на ТЭ (не требуют перезарядки, моментально поставляют электроэнергию, выработка энергии ТЭ не зависит от времени суток, погодных условий и др.)

 В перспективе открытие более дешевых и эффективных катализаторов для получения водорода позволит значительно снизить стоимость производства водородных ТЭ

 Высокие затраты на выработку водорода: от $4 до $12 за килограмм в разных странах (бензин-галлоновая эквивалентная стоимость составляет от $1,60 до $4,80)

 Отсутствие автомобильной инфраструктуры

 Сложность в эксплуатации: уязвимость к ударным нагрузкам и сотрясениям, взрывоопасность, при низких температурах ТЭ требуют внешнего подогрева из-за замерзающей воды

 Отсутствие единых стандартов безопасности, хранения, транспортировки, распределения и применения водородных ТЭ






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



МЕТАНОЛЬНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ

Метанол — высококачественное моторное топливо для ДВС — хорошо зарекомендовал себя и как энергоноситель в ТЭ, используемых в портативной электронике, транспортных приложениях, а также в электромобилях. В ТЭ метанол расщепляется при взаимодействии с атмосферным кислородом (воздухом), в результате этой реакции возникает электрический ток и образуется вода в качестве побочного продукта. 

В настоящее время разрабатываются технологии получения метанола из природного газа (минуя синтез-газ) посредством гидрирования из промышленных выбросов углекислого газа (в долгосрочной перспективе его научатся извлекать прямо из окружающего воздуха). Также ведутся разработки по производству биометанола из биомассы (лигноцеллюлозы), что послужит толчком к массовому распространению метанольных ТЭ.  



 

Эффекты

  Сокращение выбросов углекислого газа более чем на 70% при расщеплении биометанола в ТЭ

  Электромобили нового типа могут проезжать до 800 км на одном заряде батареи с применением метанольных ТЭ

Оценки рынка

40 млн ед. 

к 2020 г. составит объем рынка автотранспортных средств, работающих на метанольных ТЭ (благодаря чему на 104 млн т будут сокращены выбросы углекислого газа по сравнению с объемом выбросов от автомобилей на бензиновом ДВС)

Драйверы и барьеры

 Экологичность: метанол менее биологически опасен, чем нефтепродукты

 Возможность использования существующей транспортной инфраструктуры для заправки транспортного средства

  Простота эксплуатации: в частности, метанол не улетучивается при транспортировке

 Возможно создание технологии производства биометанола в промышленных масштабах, что увеличит его использование в ТЭ

 Высокая себестоимость производства метанола с помощью существующих технологий

 Используемые в качестве катализаторов в ТЭ драгоценные металлы (платиноиды) значительно повышают рыночную стоимость установок и вырабатываемой ими энергии






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



ДВИГАТЕЛИ НА ДИМЕТИЛОВОМ ЭФИРЕ 

Серьезным конкурентом традиционным видам ископаемого и синтетического топлива и основной альтернативой дизелю может стать диметиловый эфир (ДМЭ). В сравнении с дизельным топливом эфир лучше горит и более экологичен (не содержит серы, в течение суток полностью разлагается в атмосфере на воду и углекислый газ). Это в целом более чистое топливо, некоррозионноактивное, нетоксичное, не вызывает мутаций, в том числе канцерогенного характера. 

Сегодня ДМЭ производится из переработанного угля, природного газа, биомассы, бытовых и промышленных отходов. Также разрабатывается синтетическое биотопливо второго поколения (BioDME), которое может быть изготовлено из лигноцеллюлозной биомассы. Преобразовать дизельный двигатель в ДМЭ-двигатель можно без больших затрат, что будет стимулировать массовое распространение технологии. 





 

Эффекты

    Значительное сокращение уровня вредных выбросов с отработавшими газами: оксидов азота в 3-4 раза, углеводородных соединений — в 3 раза, угарного газа — в 5 раз, при практически бездымной работе двигателя во всех режимах

 Повышение экономичности ДВС (до 5%) и его КПД по сравнению с работой на дизельном топливе

 Оптимизация расходов на производство и транспортировку топлива (сократятся в 10 раз относительно показателей сжиженного природного газа)

 Легкое преобразование ДМЭ в бензин, характеризующийся высокой стабильностью и повышенным экологическим качеством, минимальным содержанием нежелательных примесей (отсутствие серы, незначительное содержание бензола (0,1% при норме 1%), непредельных углеводородов (~1%))

 Создание дополнительных рабочих мест в добывающей промышленности благодаря развитию производства диметилового эфира из ископаемого сырья (природный газ, уголь) 

Оценки рынка

$9,7  млрд

к 2020 г. достигнет объем глобального рынка ДМЭ (среднегодовые темпы роста 16-19% в 2015-2020 гг.)

Драйверы и барьеры

 Ужесточение экологических стандартов

 Наличие соответствующей инфраструктуры: применение ДМЭ не требует серьезной конструкционной доработки дизельных двигателей и установки специальных фильтров. Использование ДМЭ на автомобилях с ДВС возможно даже при 30%-м его содержании в топливе без трансформации систем питания и зажигания двигателя.

 Масштабная сырьевая база: сырьем для производства ДМЭ является природный газ, доказанные запасы которого в России по состоянию на 2015 г. остаются крупнейшими в мире.

  Ряд нерешенных проблем с хранением ДМЭ

  Сравнительно высокая рыночная цена ДМЭ относительно других видов топлива

 При производстве ДМЭ затрачивается существенно больший объем сырьевого газа, чем для других топливных продуктов с эквивалентной теплотворной способностью

  При меньшей в 1,5 раза полноте сгорания по сравнению с дизельным топливом увеличивается расход ДМЭ в 1,5–1,6 раза

  ДМЭ является наркотическим галлюциногенным веществом






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 


Как работает двигатель внутреннего сгорания — Mafin Media

Ко всем статьям

Читатели Mafin Media уже знакомы с типами двигателей внутреннего сгорания (ДВС) и запросто отличат VR-образную «шестерку» от рядной «четверки» и вспомнят о недостатках и преимуществах роторно-поршневого двигателя. В новом материале расскажем простыми словами, как устроено «автомобильное сердце».

Механические самоходные транспортные средства активно разрабатывались еще в XVIII веке. Но именно в 1880-х годах немецкие конструкторы Готтлиб Даймлер и Карл Бенц установили первые бензиновые двигатели на мотоцикл и трехколесную коляску. Самоходный экипаж Бенца приводился в движение одноцилиндровым мотором мощностью 1,5 л. с. (традиционно мощность принято измерять в лошадиных силах и киловаттах). За почти полтора столетия «самоходной» истории принцип работы ДВС кардинально не изменился: колеса приводятся в движение механической энергией, получаемой благодаря сгоранию топливно-воздушной смеси внутри двигателя.

«Коктейль» для двигателя

Топливно-воздушная смесь — это «коктейль» из собственно топлива и воздуха. Для бензинового двигателя рабочее соотношение в среднем составляет 1 к 15, то есть 1 единица топлива и 15 единиц воздуха. Если добавить больше горючего (обогатить смесь), пострадает экономичность, если меньше (обеднить) — мощность. Со слишком обедненной или обогащенной смесью мотор вообще может отказываться заводиться.

Готовиться смесь может по-разному. В устаревших карбюраторных двигателях горючее «готовится» в отдельном механизме авто — карбюраторе. После смешивания воздуха с топливом смесь подается в двигатель и там сгорает. У карбюраторных моторов много минусов, а их ремонтопригодность сегодня уже не так востребованна. Поэтому самые популярные системы подачи топлива — инжекторные (от англ. inject — впрыскивать). В зависимости от конструкции мотора топливо подается либо во впускной коллектор — трубопровод, через который авто получает воздух из окружающей среды, — либо напрямую в цилиндры. Подобные решения сложнее, но позволяют экономить топливо и снижать количество вредных выбросов в атмосферу. Основная деталь инжекторного впрыска — форсунка. Именно она впрыскивает топливо:.

Компоненты двигателя: где и как сгорает смесь

Самое важное происходит в корпусе двигателя, который объединяет блок цилиндров (слева на фото) и головку блока цилиндров (справа на фото).

Блок цилиндров содержит полые внутри цилиндрические трубки, в которых размещаются поршни.

Головка блока цилиндров (ГБЦ) монтируется на блок цилиндров и образует герметичные (т. е. непроницаемые для посторонних жидкостей и газов) камеры сгорания.

Внутри камеры сгорания устанавливаются поршни — детали цилиндрической формы, совершающие возвратно-поступательные движения под действием сгорания смеси.

Поршни — часть кривошипно-шатунного механизма (КВШ), комплекса деталей, который преобразует движения поршня во вращение коленчатого вала. Последний и двигает колеса автомобиля. Так выглядит КВШ вместе с поршнями двигателя:

В головке блока цилиндров находятся упомянутые выше форсунки — вместе со свечами зажигания (в бензиновом моторе) и клапанами. Свечи зажигания производят электрическую искру, предназначенную для воспламенения топливно-воздушной смеси.

! — Если автомобиль оснащен непосредственным впрыском топлива (в камеру сгорания), форсунки находятся в ГБЦ, а если впрыск распределительный — форсунки установлены во впускном коллекторе вблизи впускных клапанов.

Клапаны относятся к механизму газораспределения и внешне напоминают большие гвозди:

Такая форма дана им неслучайно: нижней, выпуклой частью они закрывают и открывают впускные и выпускные отверстия в камере сгорания, поочередно впуская подготовленную топливно-воздушную смесь или воздух и выпуская отработанные газы. Соответственно, в зависимости от своей роли клапаны бывают впускными и выпускными.

Обычно на один цилиндр приходится от двух до четырех клапанов. За то, чтобы «доступ» в камеру сгорания открывался вовремя, и отвечает механизм газораспределения (ГРМ), в который выходят клапаны. В зависимости от мотора ГРМ приводится в действие ремнем или цепью.

Рассмотрим цилиндр в разрезе:

Четыре такта

Любой двигатель функционирует согласно циклу, состоящему из нескольких тактов, то есть ходов (движений) поршня. Большинство автомобильных моторов — четырехтактные.

Рассмотрим такты бензинового двигателя:

  1. Впуск: открывается впускной клапан, в камеру сгорания попадает топливно-воздушная смесь, а поршень идет вниз.
  2. Сжатие: оба клапана закрыты, поршень идет вверх, сжимая и нагревая смесь.
  3. Рабочий ход: оба клапана закрыты, под действием электрической искры от свечи зажигания сжатая и разогретая топливно-воздушная смесь воспламеняется, образовавшиеся при этом газы толкают поршень вниз.
  4. Выпуск: выпускной клапан открыт, поршень идет вверх, выталкивая отработанные газы в сторону выхлопной трубы.

После этого цикл повторяется. У дизельного двигателя вместо свечи установлена форсунка, и смесь воспламеняется не при помощи искры, а от сжатия — впрыска дизельного топлива через форсунку под большим давлением. Впускной клапан при этом подает в камеру сгорания только воздух. Кстати, в некоторых современных бензиновых моторах форсунка тоже впрыскивает топливо непосредственно в цилиндр.

А как запускается первый такт?

Каждый автомобиль обладает набором бортовой электроники — проводов, аккумулятора, стартера и т. д. Аккумулятор за время поездок накапливает достаточно энергии, чтобы при помощи специального механизма — стартера — раскрутить коленвал и завести мотор.

И что дальше?

Мощность от двигателя к колесам передается с помощью коробки передач, редуктора и приводных валов. Если мотор соединить с колесами напрямую, автомобиль после запуска начнет движение на одной-единственной передаче, с небольшой скоростью, а после торможения сразу заглохнет. Об этих передачах и о типах коробок (автоматах, вариаторах, механиках и т. д.) Mafin Media расскажет в следующем материале.

Как на самом деле работает двигатель внутреннего сгорания?

Ежегодно около 222 миллионов человек в США ездят на самых разных транспортных средствах. Почти все эти автомобили оснащены двигателем внутреннего сгорания. Однако недавний опрос AA показал, что только 10% водителей могут в общих чертах описать, как работает двигатель внутреннего сгорания.

Если вы только что осознали, что не входите в число этих 10%, не волнуйтесь, мы составили краткое описание удивительного процесса, с помощью которого ваша машина действительно движется.

Основы

Горение, также известное как горение, является основным химическим процессом высвобождения энергии из топливно-воздушной смеси. В двигателе внутреннего сгорания воспламенение и сгорание топлива происходит внутри самого двигателя.

Затем двигатель частично преобразует энергию сгорания в работу. Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал. В конечном счете, это движение приводит в движение колеса автомобиля через систему шестерен трансмиссии.

Различные типы двигателей внутреннего сгорания

Двумя наиболее распространенными типами двигателей внутреннего сгорания являются бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Эти двигатели специально разработаны для работы как с бензином, так и с дизельным двигателем, поэтому использование неправильного топлива в вашем автомобиле может привести к значительному повреждению двигателя.

В двигателе с искровым зажиганием топливо смешивается с воздухом, а затем вводится в цилиндр во время процесса впуска.После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание. Расширение дымовых газов толкает поршень во время рабочего хода.

В дизельном двигателе только воздух всасывается в двигатель, а затем сжимается. Затем дизельные двигатели распыляют топливо в горячий сжатый воздух с подходящей дозированной скоростью, вызывая его возгорание.

Большинство двигателей внутреннего сгорания представляют собой четырехтактные двигатели, что означает, что для завершения цикла требуется четыре хода поршня.Цикл двигателя состоит из четырех различных процессов. Это впуск, сжатие, сгорание, рабочий такт и выпуск.

Разработка двигателя внутреннего сгорания

Двигатель внутреннего сгорания стал результатом ряда постепенных изменений в установленных патентах, а не одним значительным усовершенствованием. Первый коммерчески успешный двигатель внутреннего сгорания был создан Этьеном Ленуаром около 1860 года.

Эксперименты Ленуара с электричеством привели его к разработке первого двигателя внутреннего сгорания, который сжигал смесь угольного газа и воздуха, воспламеняемую системой зажигания «прыгающей искрой» катушки Румкорфа.

То, что мы можем считать первым современным двигателем внутреннего сгорания, было создано в 1876 году Николаусом Отто. Двигатель Отто — это большой стационарный одноцилиндровый четырехтактный двигатель внутреннего сгорания. Двигатели первоначально использовались для стационарных установок, поскольку Отто не интересовался транспортом, и в конечном итоге были разработаны для транспортных средств Готлибом Даймлером.

Отто фактически основал свой двигатель на коммерческом двигателе внутреннего сгорания на жидком топливе 1872 года, изобретенном американцем Джорджем Брайтоном.

В то время как двигатели внутреннего сгорания чаще всего ассоциируются с транспортными средствами, термин двигатель внутреннего сгорания также может применяться к пушкам, ракетам или вообще ко всему, что использует мощность взрыва для генерирования энергии или импульса.

В последние годы преобладанию бензина и дизельного топлива в качестве основного топлива для двигателей транспортных средств бросили вызов более экологичные виды топлива, такие как биодизель, биоэтанол, водород и этил-трет-бутиловый эфир (ЭТБЭ). Многие производители автомобилей также производят гибридные автомобили, которые работают на смеси традиционного топлива и электроэнергии, или, в случае таких компаний, как Tesla, полностью электрические автомобили

.

Научитесь водить машину в Неваде сегодня!

Северо-западная автошкола и школа дорожного движения предоставляют жителям Лас-Вегаса уроки вождения и дорожного движения под руководством опытных инструкторов.Все наши инструкторы по вождению прошли проверку биографических данных. Каждый автомобиль одобрен DMV по безопасности, и каждый член семьи Northwest стремится предоставить отличные инструкции по обучению водителей и управлению ими.

На Northwest вы можете рассчитывать найти выдающиеся классы, как в кампусе, так и за рулем, которые увлекательны, наполнены фактами, занимательны и нацелены на успех.

Мы не скрываем этого, мы уверены, что Northwest предлагает лучшие уроки вождения в Лас-Вегасе, независимо от вашего возраста и происхождения.Мы гордимся тем, что 98% наших студентов сдают экзамен с первого раза. Позвоните нам по телефону (702) 403-1592 , чтобы начать свое приключение с одним из наших опытных инструкторов.

Автор:

Рич Генрих

Мастер-инструктор, Почетный

Двигатель внутреннего сгорания — обзор

1 Введение

Спрос на энергию растет из-за роста населения, технического прогресса и урбанизации.К 2100 году мировой спрос на энергию, по прогнозам, будет в пять раз больше, чем сегодня [1,2]. Мы также наблюдаем постоянную тенденцию к росту цен на энергоносители. Государственные учреждения и исследователи ищут различные варианты заполнения надвигающегося энергетического разрыва, вызванного увеличением спроса на душу населения, ростом населения и необходимостью ограничивать выбросы парниковых газов (ПГ) из традиционных источников энергии. Среди этих вариантов биомасса уникальна тем, что основана на углероде и дает топливо, сопоставимое с ископаемым топливом [3].Использование ресурсов биомассы для производства энергии уже стало очень значительным: в настоящее время биомасса обеспечивает примерно 13% мировых поставок первичной энергии и более 75% возобновляемых источников энергии в мире [4,5]. Действительно, по оценкам, к 2050 году биоэнергетика может составлять 25–33% мирового энергоснабжения [4]. В недавнем отчете Мирового энергетического совета прогнозируется, что нынешнее расширение будет продолжаться в течение нескольких десятилетий [6]. Дальнейшее внедрение биомассы потребует эффективных маршрутов конверсии и избежания конкуренции с пищевыми продуктами и клетчаткой [7,8].

Пиролиз может преобразовывать биомассу из различных источников, включая сельскохозяйственные и лесные отходы, в жидкие, твердые и газообразные формы. Все три выходные фракции потенциально могут использоваться в качестве топлива (либо непосредственно, либо после модернизации) в различных типах первичных двигателей для транспорта, выработки электроэнергии, комбинированного производства тепла и электроэнергии (ТЭЦ) или комбинированного охлаждения тепла и электроэнергии (CCHP). Пиролизная жидкость (PL) перспективна для использования в двигателях внутреннего и внешнего сгорания, особенно в двигателях внутреннего сгорания (IC) с воспламенением от сжатия (CI).Твердый полукокс используется для обогрева, совместного сжигания на угольных установках, а также в качестве удобрения и кондиционера почвы, благодаря чему он также обеспечивает некоторое связывание атмосферного углерода. Уголь также может быть использован для производства синтез-газа методами газификации [2]. Пиролизный газ (PG) может использоваться в газовых котлах, газовых турбинах, двигателях с искровым зажиганием (SI) или двухтопливных двигателях. Недавние отчеты подчеркнули возможности производства экологически безопасного топлива для двигателей внутреннего сгорания путем пиролиза биомассы [9,10]. Более того, Углеродный трест Великобритании определил пиролиз биомассы как интересный вариант обеспечения будущего транспортного топлива [11].

Двигатели внутреннего сгорания, особенно двигатели CI, широко используются во всем мире для различных энергетических услуг, таких как транспорт, судоходство, рыболовные суда, ирригация, производство электроэнергии, ТЭЦ и КТЭЦ. Скорее всего, они будут оставаться популярными в течение десятилетий благодаря их высокой эффективности (как при полной, так и при частичной нагрузке) и вариациям в масштабе (от очень малых до очень больших), высокой удельной мощности, низким капитальным вложениям и эксплуатационным расходам, а также топливу. гибкость [12]. В 2005 году общий расчетный объем выбросов парниковых газов в мире составил 44 153 МтCO 2 экв.из которых 66,5% были связаны с услугами в сфере энергетики. Доля транспорта, электроэнергии и тепла составляла только 39,2% (от общего объема выбросов) и 59% (от общего объема выбросов, связанных с энергетикой) [13], при этом в основном двигатели внутреннего сгорания (включая газовые турбины) и паровые турбины выступали в качестве первичных двигателей. Поэтому очень большое сокращение выбросов парниковых газов возможно за счет замены ископаемого топлива, предназначенного для двигателей внутреннего сгорания, возобновляемыми альтернативами, такими как топливо пиролиза биомассы.

Несмотря на то, что было проведено несколько обзоров методов конверсии пиролиза, вариаций параметров и продуктов [14–20], относительно немногие из них были посвящены применению топлива для пиролиза [21,22].Chiaramontia et al. [22] рассмотрели использование быстрых PL в двигателях внутреннего и внешнего сгорания для выработки электроэнергии, но не охватили использование PG в двигателях внутреннего сгорания. Пиролиз биомассы и его применение все еще находятся на ранних стадиях разработки [8,23]. Для ускорения прогресса важно консолидировать и распространять результаты передовых исследований. Таким образом, цель этого обзора — представить текущее состояние и будущие перспективы исследований и разработок PL и PG в качестве альтернативных видов топлива в двигателях внутреннего сгорания в интересах исследователей, занимающихся производством и повышением качества пиролизного топлива.Это исследование также заинтересует тех, кто занимается тестированием и разработкой двигателей, включая производителей двигателей и компонентов. Конкретные цели заключаются в том, чтобы (i) описать основные методы пиролиза и типы реакторов, используемых для производства этого топлива; (ii) рассмотреть свойства PL по сравнению со стандартным ископаемым дизельным топливом; (iii) проанализировать технический опыт работы с двигателями CI, работающими на сырой нефти и модернизированном PL, по сравнению со стандартным дизельным топливом; (iv) рассмотреть техническую осуществимость использования PG в двигателях с двойным топливом (и двигателях с двойным топливом); и (v) проанализировать методы повышения градации PL и оценить улучшенные свойства PL по сравнению с сырой PL.Также будут обсуждаться модификации двигателей внутреннего сгорания для использования с пиролизным топливом.

Двигатели внутреннего сгорания — обзор

2.1 Введение

Двигатели внутреннего сгорания (ДВС) и реактивные двигатели являются важными силовыми установками для гражданского и военного применения. Эти двигатели — это машины, которые преобразуют тепло, выделяемое при сгорании, в механическую или кинетическую энергию. В настоящее время ДВС и реактивные двигатели по-прежнему работают на ископаемом топливе и в основном полагаются на него. Растущая озабоченность по поводу экологической и энергетической безопасности привлекает внимание к альтернативным видам топлива (AFs).Существует два типа ДВС, а именно двигатели с искровым зажиганием (SI) и двигатели с воспламенением от сжатия (CI), обычно соответствующие бензиновым двигателям и дизельным двигателям. Двигатели SI широко используются в качестве источников энергии для легковых автомобилей и мотоциклов, в то время как двигатели CI в основном используются для грузовиков, кораблей и внедорожников из-за их более высокой энергоэффективности и удельной мощности по сравнению с бензиновыми двигателями [1].

Преобладающие АФ, задействованные в ДВС, охватывают широкий спектр нетрадиционных видов топлива, включая биотопливо, полученное из биомассы, сжиженного нефтяного газа (СНГ), преобразования угля в жидкие углеводороды (CtL) и водорода (H 2 ).Биотопливо считается более чистым, чем обычное топливо для ДВС, с точки зрения выбросов вредных газообразных веществ и твердых частиц (ТЧ) [2,3]. Хотя все еще существуют некоторые технологические барьеры при использовании H 2 в ДВС, H 2 по-прежнему является одним из перспективных видов топлива для будущих двигателей, о котором будет кратко рассказано в разделе 2.2. LPG и CtL обычно получают из ископаемого топлива [4], и они обычно классифицируются как альтернативные виды топлива, но не как биотопливо. В этой главе основное внимание уделяется технологии и производству биотоплива, а сжиженный нефтяной газ и CtL также вскоре будут представлены в разделе 2.2.

Биотопливо, которое в настоящее время применяется в транспортных средствах во всем мире, — это биодизель и биоспирт [5]. Биодизель — это кислородсодержащее топливо на основе сложных эфиров, состоящее из длинноцепочечных жирных кислот, полученных из растительных масел (как пищевых, так и несъедобных) или животных жиров, и оно невзрывоопасно, биоразлагаемое, негорючее, возобновляемое и нетоксичное. Его можно использовать в дизельном двигателе в качестве альтернативы дизельному топливу без существенной модификации двигателя с такими же или лучшими характеристиками по сравнению с обычным дизельным топливом [6–8].С другой стороны, биоспирты производятся из ряда сельскохозяйственных культур, таких как картофель, сахарный тростник, зерна, кукуруза, сорго и т. Д. Этанол и бутанол являются наиболее часто используемыми альтернативными видами топлива в ДВС [9]. Таким образом, биодизель используется для замены дизельного топлива в двигателях CI, тогда как биоспирты используются для смешивания с бензином в двигателях SI. Сообщается, что сжигание биодизеля может привести к заметному снижению выбросов ТЧ из-за присутствия атомов кислорода и более полному сгоранию [10,11].

Пластинки графена выглядят более искаженными и имеют более длинные разделительные расстояния.Кроме того, выбросы NO x немного увеличиваются, в то время как выбросы углеводородов (HC) и оксида углерода (CO) уменьшаются по сравнению со сжиганием нефтяного дизельного топлива. Это можно объяснить более высокой температурой камеры сгорания при сжигании биодизеля. Биобутанол и обычные смеси дизельного топлива, по-видимому, способны эффективно снижать выбросы ТЧ, а выбросы NO x немного ниже, чем при сжигании чистого дизельного топлива. Более высокий уровень смешивания может привести к большему снижению. Аналогичная тенденция наблюдается и при использовании топлива, смешанного с биоэтанолом.Тенденция выбросов углеводородов диаметрально противоположна выбросам NO x . Однако влияние биоспиртов на выбросы CO все еще остается спорным и требует дальнейшего объяснения [12–14].

Реактивные двигатели можно разделить на четыре типа: турбореактивные двигатели, турбовентиляторные двигатели, турбовальные двигатели и турбовинтовые двигатели, работающие на реактивном топливе со строгими стандартами [15]. Альтернативные виды топлива для реактивных двигателей получают из ископаемых источников, таких как уголь и природный газ, экологически чистого сырья растений или животных или других потенциальных углеводородных материалов.Как правило, альтернативные реактивные топлива получают с использованием следующих методов: газификация биомассы, синтез с использованием процесса Фишера-Тропша (F-T) и гидрообработка растительных масел и жиров (гидрообработанные сложные эфиры и жирные кислоты) [16]. Синтез F-T, который был предложен и разработан Францем Фишером и Гансом Тропшем в 1925 г. [17], включает ряд химических реакций и позволяет преобразовывать синтез-газ (CO и H 2 ) в жидкие углеводороды. Sasol и Shell поставляют коммерчески доступные виды топлива F-T по всему миру.Sasol производит топливо F-T с помощью процесса преобразования угля в жидкость (CtL), а Shell — с помощью процесса преобразования газа в жидкость (GtL).

Большинство альтернативных видов топлива содержат большую долю изопарафинов и нормальных парафинов, не содержат ароматических углеводородов и серы. Более высокое содержание парафинов в альтернативных видах топлива приводит к более высокому содержанию C и H и, следовательно, к более высокому уровню выбросов CO 2 и H 2 O. Для большинства альтернативных видов топлива можно найти сокращение выбросов CO примерно на 20%. Нет существенной разницы в выбросах NO x , поскольку образование NO x обычно является тепловым.Выбросы SOx напрямую связаны с содержанием серы в топливе. Ароматические углеводороды являются важными предшественниками сажи. Предыдущие экспериментальные работы показали, что сжигание альтернативных видов топлива может снизить образование сажи на 60–95%, особенно при более низкой мощности [18].

Эта глава демонстрирует классификацию альтернативных видов топлива и знакомит с их характеристиками выбросов по сравнению с обычными видами топлива. Во-первых, альтернативные виды топлива для ДВС и реактивных двигателей будут обсуждаться в разделах 2 и 3, где будут рассмотрены пути производства топлива и сырье.Далее, выбросы газообразных и твердых частиц (ТЧ) от ДВС, работающих на альтернативных видах топлива, будут объяснены в разделах 4 и 5. Наконец, характеристики выбросов газообразных и ТЧ реактивных двигателей будут рассмотрены в разделах 6 и 7.

Современный двигатель внутреннего сгорания

Современный двигатель внутреннего сгорания

Джоаб Камарена


7 декабря 2015 г.

Представлено как курсовая работа для Ph340, Стэнфордский университет, осень 2015 г.

Введение

Двигатель внутреннего сгорания (ДВС) — вот что движет большинство автомобилей сегодня и существует уже много лет.ICE имеет подвергся многочисленным изменениям исключительно с целью улучшения выходная мощность и минимизация потерь энергии. Как работает процесс что есть впуск через отверстия портов, который толкает поршень вниз начало его цикла сжатия и декомпрессии, с энергией от этого передается на коленчатый вал, позволяя движение автомобиль. Более распространенный двигатель внутреннего сгорания основан на четырех ход поршня для завершения своего цикла и высвобождения энергии для перемещения транспортное средство.[1-3]

Как это работает

В этом цикле четыре этапа: 1) прием, 2) компрессия, 3) сгорание и рабочий ход, и, наконец, 4) выхлоп (Рисунок 1). Вот как это работает:

  1. Впуск: Топливо-воздушная смесь входит в цилиндр, когда поршень опускается и впускной открывается.

  2. Сжатие: При закрытии на впуске топливно-воздушная смесь увеличивается по давлению и температура, поскольку поршень сжимает газ, перемещая вверх.

  3. Горение и удар: Энергия высвобождается в результате реакции горения, вызванной зажигание свечи зажигания, воспламеняющей топливно-воздушную смесь и доводит до высокой температуры. По мере увеличения смеси по температуре и давлению он давит на поршень, следовательно, вызывая рабочий ход, который вращает коленчатый вал.

  4. Выхлоп: Побочные продукты, образующиеся затем реакция горения выпускается через выхлоп трубы, и цикл повторяется, когда впускное отверстие открывается и выпускается клапан закрывается.[2,3]

Энергетический анализ

Хотя это обычно используемый двигатель в транспортных средствах сегодня это не значит, что он самый эффективный. Горение неэффективность измеряет часть энергии, которая не используется из топливо. Установлено, что тепловые потери теплоносителя и тепловые потери энергии выхлопных газов являются самыми большими источниками тепловых потерь, что способствует отсутствию оборота энергии. Постоянно утверждается, что Второй закон Термодинамика не позволяет всем двигателям достигать максимальной температуры. эффективность, но это не означает, что мы не можем улучшить коэффициент конверсии энергии.Постоянные инновации и модернизация внутреннего сгорания двигатель позволили улучшить преобразование энергии топлива. [4]

Заключение

Зная, как работает двигатель внутреннего сгорания и в чем заключается его неэффективность, правильная технология и дизайн двигатель внутреннего сгорания позволит нам лучше использовать энергию в топливе. Хотя цены на газ постоянно колеблются, наиболее вероятной тенденцией в будущем будет повышение цен на газ, что только заставит двигаться к разработке высокоэффективных автомобилей сильнее.Это возможно даже при постоянном диалоге о отказ от ископаемого топлива и последствия изменения климата, что, наряду с нашим нынешним технологическим бумом мы больше не будем полагаться на двигатель внутреннего сгорания для транспортных средств будущего.

© Жоаб Камарена. Автор дает разрешение копировать, распространять и демонстрировать эту работу в неизменном виде, с ссылка на автора, только в некоммерческих целях. Все остальные права, в том числе коммерческие, принадлежат автору.

Список литературы

[1] J. R. Clarke et al. , «Индукционный двигатель» Система и метод », Патент США 4860709, 29 августа 89 г.

[2] Д. К. Джанколи, Физика: принципы с Приложения, 7-е изд. (Addison-Wesley, 2013), стр. 421.

[3] Б. Кроу, «Внутренний Двигатель внутреннего сгорания, Physics 240, Стэнфордский университет, осень 2012 г.

[4] М. Баглионе, М.Дьюти и Г. Панноне, «Автомобиль». Методология системного энергетического анализа и инструмент для определения транспортного средства Подсистема энергоснабжения и спроса », Технический документ SAE 2007-01-0398, г. 16 апреля 07.

Как работают автомобильные двигатели? — Сейчас по всей стране

Несмотря на относительно простое управление, автомобили на самом деле являются очень сложными машинами. Автомобилям для работы требуется топливо, но что на самом деле с ним делает двигатель?

В общем, стандартный двигатель внутреннего сгорания — который сегодня имеет большинство транспортных средств, работающих на топливе, — использует воздух в сочетании с бензином для выработки энергии.[1] Конечно, все становится сложнее.

Компоненты двигателя

Прежде чем углубляться в то, как работает двигатель автомобиля, он поможет изучить его основную анатомию (что также важно, если вам нужно выполнить какое-либо техническое обслуживание автомобиля). Взгляните на схему двигателя автомобиля ниже, затем просмотрите список основных компонентов двигателя и их функции:

  • Блок двигателя: Обычно он сделан из железа или алюминия, в блоке двигателя находится большинство деталей, обеспечивающих работу двигателя, включая цилиндры, поршни, коленчатый вал и распределительный вал.[2] (Если вы открываете капот, на блоке двигателя обычно устанавливается генератор переменного тока.)
  • Головка блока цилиндров: В головку блока цилиндров входят компоненты, управляющие потоком всасываемого воздуха и выхлопных газов, такие как клапаны и распределительные валы. [2]
  • Коленчатый вал: Коленчатый вал преобразует движение поршней вверх и вниз в соответствующее круговое движение. Он прикреплен к поршням через шатун [2].
  • Шатуны: Шатун прикрепляет коленчатый вал к поршням.Он вращается на каждом конце, что дает ему возможность перемещаться вместе с обоими компонентами. [3]
  • Поршни: Поршни движутся вверх и вниз внутри цилиндра, передавая энергию коленчатому валу, который, в свою очередь, приводит транспортное средство в движение. Поршневые кольца, расположенные внутри поршней, помогают герметизировать края цилиндра и уменьшают трение во время движения. [2], [3]
  • Свечи зажигания: Свечи зажигания вызывают возгорание, создавая искру, воспламеняющую поступающую смесь воздуха и топлива.[3]
  • Топливные форсунки : Топливные форсунки снабжают двигатель топливом. В процессе он превращает топливо в крошечные, похожие на туман частицы, так что его легче сжечь двигателем. [4]
  • Клапаны: В двигателе есть два типа клапанов: впускные и выпускные. Первый пропускает воздух и газ в двигатель; последний выпускает выхлопные газы. [3]
  • Распределительный вал: Распределительный вал контролирует открытие и закрытие клапанов.Для этого он преобразует круговое движение коленчатого вала в движение вверх и вниз, которое открывает и закрывает клапаны. [2]
  • Ремень или цепь привода ГРМ: Ремень или цепь привода ГРМ проходят между распределительным валом и коленчатым валом, чтобы обеспечить синхронную работу [2].

Процесс четырехтактного двигателя

Большинство двигателей внутреннего сгорания работают по четырехступенчатому циклу. Эти шаги формально называются ходами по отношению к четырем движениям, которые поршень совершает для завершения каждого цикла.Такты происходят в следующем порядке: впуск, сжатие, сгорание, выпуск.

При каждом такте поршень движется вверх или вниз в цилиндре, перемещаясь вместе с впуском воздуха и топлива или выпуском выхлопных газов. Вот обзор того, как работает этот процесс [1]:

1. Ход всасывания

Во время такта впуска поршень смещается вниз, в то время как впускной клапан открывается, пропуская поток бензина и воздуха. Как только поршень достигает основания цилиндра, клапаны закрываются, герметизируя бензиново-воздушную смесь.(Стоит отметить, что в некоторых современных автомобилях бензин впрыскивается позже во время такта сжатия.)

2. Ход сжатия

В этот момент поршень движется назад вверх, чтобы сжимать газ и воздух к верхней части цилиндра. Выталкивание этой смеси в более ограниченное пространство подготавливает ее к воспламенению в такте сгорания.

3. Ход горения

Также известный как рабочий ход, ход сгорания — это то, что действительно создает мощность вашего двигателя и заставляет автомобиль двигаться.Здесь свеча зажигания загорается, чтобы зажечь газ. Возникающее тепло и расширяющийся газ заставляют поршень опускаться обратно в цилиндр.

4. Ход выпуска

Когда поршень достигает дна цилиндра, выпускной клапан открывается, так что поршень может откачивать отработанные газы из двигателя. Оттуда газы попадают в выхлопную систему и покидают автомобиль. Наконец, выпускной клапан закрывается, и четырехтактный цикл повторяется.

Автомобильные двигатели различных типов

Хотя все двигатели внутреннего сгорания обычно работают одинаково, существует несколько различных типов двигателей.При обсуждении двигателей, которые чаще всего используются в личных транспортных средствах, различия в основном связаны с расположением цилиндров. Например, цилиндры рядных двигателей расположены прямо, в то время как в двигателях V-образного типа цилиндры разделены на две группы и образуют V-образную форму. Другие двигатели будут регулировать определенные механизмы, такие как фазы газораспределения или количество воздуха, добавляемого в четырехтактный цикл, для повышения эффективности или мощности. [1]

Знание того, как работает автомобильный двигатель, может оказаться полезным, когда пришло время покупать следующий автомобиль, особенно если вы получаете его от частного лица, а не от дилера.Узнайте, как купить машину у частного продавца.

[1] «Вот как работает двигатель вашего автомобиля» (17 апреля 2019 г.)

[2] «Car Engine Parts» (по состоянию на 24 сентября 2020 г.)

[3] «Как работают автомобильные двигатели» (по состоянию на 24 сентября 2020 г.)

[4] «Как работают системы впрыска топлива» (по состоянию на 24 сентября 2020 г.)

Как работает двигатель?

Вы уже знаете, что завести машину так же просто, как повернуть ключ, но задумывались ли вы, что на самом деле происходит под капотом?

Когда вашему телу нужно топливо, вы кормите его пищей.Когда вашему автомобилю требуется топливо, вы «кормите» его бензином. Точно так же, как ваше тело преобразует пищу в энергию, автомобильный двигатель преобразует газ в движение. Некоторые новые автомобили, известные как гибриды, также используют электричество от аккумуляторов для движения автомобиля.

Процесс преобразования бензина в движение называется «внутренним сгоранием». Двигатели внутреннего сгорания используют небольшие контролируемые взрывы для выработки энергии, необходимой для перемещения вашего автомобиля во все места, куда ему нужно ехать.

Если вы создаете взрыв в крошечном замкнутом пространстве, таком как поршень в двигателе, огромное количество энергии выделяется в виде расширяющегося газа.Типичный автомобильный двигатель производит такие взрывы сотни раз в минуту. Двигатель использует энергию для приведения в движение вашего автомобиля.

Взрывы заставляют поршни двигателя двигаться. Когда энергия первого взрыва почти иссякает, происходит еще один взрыв. Это заставляет поршни снова двигаться. Цикл повторяется снова и снова, давая автомобилю мощность, необходимую для движения.

В автомобильных двигателях используется четырехтактный цикл сгорания. Четыре такта — это впуск, сжатие, сгорание и выпуск.Удары повторяются снова и снова, генерируя энергию. Давайте подробнее рассмотрим, что происходит на каждой фазе цикла сгорания.

Впускной: Во время впускного цикла впускной клапан открывается, и поршень движется вниз. Цикл начинается с подачи воздуха и газа в двигатель.

Сжатие: В начале цикла сжатия поршень перемещается вверх и выталкивает воздух и газ в меньшее пространство. Меньшее пространство означает более мощный взрыв.

Сгорание: Затем свеча зажигания создает искру, которая воспламеняет и взрывает газ. Сила взрыва заставляет поршень снова опускаться.

Выхлоп: Во время последней части цикла выпускной клапан открывается, чтобы выпустить отработанный газ, образовавшийся в результате взрыва. Этот газ перемещается в каталитический нейтрализатор, где он очищается, а затем через глушитель, прежде чем он выходит из автомобиля через выхлопную трубу.

Как работает двигатель внутреннего сгорания?

Наиболее массово производимые двигатели внутреннего сгорания (ДВС) в автомобилях работают на 4-тактной системе с тактом впуска, тактом сжатия, сгоранием, которое вызывает быстрое расширение газов, и рабочий такт с поршнем, движущимся на высоких скоростях вниз цилиндр.

Поршень соединен — ​​достаточно предсказуемо — с шатуном или шатуном, который приводит в движение коленчатый вал. Чтобы сгладить импульсы, за двигателем установлен маховик, который действует как накопитель энергии.

Есть поворотная конструкция, но только Mazda придерживалась ее, и она не получила широкого распространения, в основном из-за проблем с надежностью уплотнения наконечников.

В течение многих лет было трудно снимать фактический процесс горения, но современные материалы означают, что теперь это возможно. Вот классное видео процесса, на самом деле происходящего с разными видами топлива.Определенно не пытайтесь делать это дома.

В основном автомобили используют бензин (он же бензин) или дизельное топливо. Оба эти варианта сделаны из очищенной сырой нефти, но на самом деле существует множество альтернатив, которые мы обсудим в сопутствующей статье на следующей неделе.

Для бензина искра используется для воспламенения топливно-воздушной смеси, в то время как в дизельном топливе она самовоспламеняется при высоких температурах и давлении двигателя с более высокой степенью сжатия. Это означает, что дизельные двигатели должны быть более прочными, что обычно приводит к более тяжелому двигателю.Причина, по которой некоторые транспортные средства, такие как грузовики, автобусы и промышленные автомобили, такие как экскаваторы, используют дизельное топливо, связана с кривой крутящего момента. Крутящий момент — вращающая сила на коленчатом валу измеряется силой x расстояние, часто указывается в Нм, т.е. сколько ньютонов силы на один метр.

В бензиновых двигателях он достигает пика при более высоких оборотах в минуту, что отлично подходит для гоночного автомобиля, но не подходит для самосвала.

Какие проблемы у двигателей внутреннего сгорания?

Топливо в основном производится из сырой нефти, тяжелой углеводородной смеси, запертой в земле, где она не может причинить никакого вреда.После сгорания в двигателе выбросы образуются в выхлопных газах. Таким образом, водород является топливной частью, прикрепленной к углероду, чтобы поддерживать его в жидком состоянии, а другими составляющими являются азот и кислород в воздухе.

Это создает несколько нежелательных проблем. Идеальное сгорание невозможно, поэтому двигатели неэффективны с термодинамической точки зрения — большая часть энергии топлива используется для нагрева, а не для приведения в движение автомобиля.

Выбросы выхлопных газов включают диоксид углерода, монооксид углерода, оксиды азота (Nox) и твердые частицы сажи (PM).Сэм Акехерст, профессор передовых систем трансмиссии Института передовых автомобильных силовых установок (IAAPS) Университета Бата на западе Англии, говорит: «Если взять среднее значение между дизельным и бензиновым двигателями, то у типичного нового двигателя будет пик. тепловой КПД тормозной системы двигателя около 42%. Мы ожидаем, что к 2025 году этот показатель вырастет примерно до 48%, а к 2035 году — до 53%, а с тяжелыми транспортными средствами — до 60%. Первоначально это будет высокоэффективное, очень разбавленное, низкотемпературное сгорание и рекуперация тепла, а затем, возможно, новые циклы сгорания.NOx и PM будут в основном решены к 2025 году, независимо от топлива: при надлежащем управлении сгоранием и последующей очисткой уровни выхлопных газов могут быть ниже уровней окружающей среды, характерных для большинства зон с нулевым уровнем выбросов. (Полная статья здесь ).

Так что улучшения идут. Акехерст продолжает: «Термин« поршневой двигатель »включает в себя множество новых архитектур, но все они находятся в десятилетнем или более крупном производстве. Изучая дорожную карту автомобильных технологий правительства Великобритании, мы получили убедительные аргументы в пользу многих подходов, включая концепции с разделенным циклом и линейные поршневые генераторы.Когда ДВС развивается до уровня, когда он становится младшим партнером в системе электрифицированной трансмиссии, он может быть любым из них, может быть роторным, или даже чем-то, что еще не предлагалось. Между электрификацией и ДВС в гибридных автомобилях существует большая синергия. Когда уровень гибридизации достаточно высок, тогда двигатель может быть более эффективно оптимизирован для более ограниченного рабочего диапазона ».

На следующей неделе мы более подробно рассмотрим альтернативы топливу, а также возможности электромобилей.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *