Зависимость мощности от крутящего момента: Что важнее — мощность или крутящий момент — Лайфхак

Содержание

Крутящий момент и зависимость крутящего момента

Как рассчитать крутящий момент, зная обороты и мощность двигателя?

Крутящий момент напрямую зависит от мощности и числа оборотов двигателя в минуту. Имеется общепринятая формула расчета крутящего момента, выражаемого в Ньютон-метрах ( русское обозначение Н·м, международное N·m ) 

 

M = P х 9550 / N

 

Где P — это мощность двигателя в киловаттах (кВт)

N — обороты вала в минуту

 

 

Как рассчитать мощность двигателя, зная крутящий момент и обороты?


Для такого расчета существует формула:

 

P = M х N / 9550

 

Где M — это крутящий момент двигателя

N — это обороты двигателя

 

Для скорости и простоты расчета воспользуйтесь удобным калькулятором крутящего момента. Впишите в ячейки калькулятора имеющиеся значения и калькулятор автоматически проставит результаты расчета.

 

Калькулятор крутящего момента

мощность или крутящий момент? — журнал За рулем

В технических характеристиках автомобиля присутствуют и максимальная мощность, и максимальный крутящий момент. Рассказываем, какой из показателей «для красоты», а какой — для удобства управления.

Материалы по теме

Конечно, на мощности зациклены все. От знакомых девушек, на которых магия цифр оказывает убийственное влияние, до налоговиков, которые очень радуются каждой ступени повышения мощности после 100 л.с, но особо предпочитают машины с цифрой свыше 250 л.с.

Максимальная мощность определяет возможность транспортного средства достигать максимальной скорости. Здесь зависимость далеко не прямая, но более мощные автомобили при сравнимой массе имеют большую максималку.

А вот на то, как быстро удастся достигнуть максимальной скорости, оказывает влияние характеристика крутящего момента двигателя. Возьмем два мотора с одинаковой максимальной мощностью, но у одного кривая момента имеет форму обычного горба, а другой очень быстро (при небольших оборотах) достигает максимального значения и далее держит полку этого момента вплоть до почти максимальных оборотов. С каким мотором разгон будет лучше? Конечно, со вторым, ведь обычно разгон на каждой передаче происходит в диапазоне оборотов коленвала от 2000 до 4000, ну, возможно, 5000 в минуту. А двигатель все время будет выдавать в этом диапазоне максимальный крутящий момент.

Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.

Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.

Материалы по теме

По такому алгоритму разгоняются на ручных коробках передач, гидромеханических автоматах и роботизированных коробках. Вариаторы стоят несколько особняком. В принципе, более ранние конструкции вариаторов работали честнее современных. На разгоне, особенно в режиме «педаль газа в пол», они обеспечивали в начале разгона самое большое передаточное отношение и позволяли мотору быстро достигнуть оборотов, близких к максимальным. Далее двигатель продолжал работать при максимальных оборотах и мощности, а вариатор, меняя передаточное отношение, обеспечивал самый эффективный разгон. И было почти все равно, моментный мотор или нет. Важна была только максимальная мощность. Хотя не всегда же разгон происходит в режиме кик-дауна.

В последнее время вариаторы, в угоду водительским привычкам, научили имитировать переключение передач. Зачем — непонятно. Я считаю, что водителю важно, чтобы правая педаль обеспечивала максимально ровное, большее или меньшее, в зависимости от ситуации, ускорение.

Итак, моментные моторы обеспечивают более удобное управление ускорением транспортного средства, а, значит, помогают водителю в непростых дорожных условиях. Поэтому моторы с «полкой» крутящего момента нравятся водителям, и такую характеристику им предлагают конструкторы, внедряя прежде всего моторы с турбонаддувом. Высокий, начиная с небольших оборотов крутящий момент повышает удобство управления автомобилем, а потому более важен, чем максимальная мощность, которая не требуется почти никогда.

  • Как улучшить управляемость автомобиля, читайте тут.

Что Такое Крутящий Момент Двигателя Автомобиля



Большинство автовладельцев и водителей оценивают ходовые качества своих автотранспортных средств мощностью двигателя. В процессе эксплуатации транспортных средств часто возникают ситуации необходимости намеренного обгона сопутствующих машин в процессе движения. Находясь в определенном ритме движения, водитель «давит» на педаль акселератора и не получает желаемого ускорения обгона. В этом случае более информативной характеристикой приемистости двигателя является крутящий момент на определенных оборотах двигателя.

Максимальная мощность, указываемая в технических характеристиках двигателя, приводится на соответствующих оборотах. Для бензиновых ДВС обычно эта величина соответствует 5000 – 6000 оборотов в минуту, дизельных – приблизительно 3500 – 4500 об/мин. Поэтому считается, что все бензиновые движки являются высокооборотными, дизельные – низкооборотными. Это не всегда так.

Каждый автовладелец, особенно тот, который желает показать мастерство пилотирования симпатичным девушкам, должен знать характеристики крутящего момента своего авто.

Определение крутящего момента двигателя

Крутящий М момент силы согласно определению равен произведению F силы, действующей на рычаг L длиной. Формула, известная многим из школьного курса физики, представляет:

М=F*L

Если переводить входные величины в единую систему измерений, сила F измеряется в ньютонах, длина (в СИ) в метрах, М будет измеряться в ньютон на метр.

Сила, образуемая при воспламенении воздушно-топливной смеси, приводит в действие кривошипно-шатунный механизм. Чем больше рычаг, то есть разность расстояний от центра воздействия до места его осуществления, тем выше крутящий момент. Теоретически крутящий момент возможно пропорционально длине рычага увеличить. Но при этом уменьшится частота вращения двигателя, и увеличатся размеры механизма коленвала. В судах морских плаваний такие изменения несущественны, но автомобиль требует минимизации размеров всех комплектующих.

Крутящий момент ДВС определяет его мощность. Упрощенная формула для пересчета момента в параметр мощности имеет вид:

Р=М*n / 9549, где М – крутящий момента (в Н*м) на оборотах n (в об/мин). Р – мощность в киловаттах. 9549 – округленное число, полученное в результате сокращения констант.

Для пересчета мощности в более привычные для автолюбителей л.с. результат требуется умножить на 1,36.

Таким образом, мощность прямо пропорциональна количеству оборотов. В силу особенности конструкции бензиновые двигатели эффективно работают на оборотах до 8000 об/мин и выше. Таким образом, высокооборотные движки могут развить достаточно высокую мощность. У дизельных движков максимальная характеристика крутящего момента приходится на оборотах порядка 3500 – 4500 об/минуту. Обычно на таких оборотах происходит крейсерское движение автомобиля в городском ритме. Поэтому совершать маневры обгона и перестроения, резко увеличивая скорость на невысоких оборотах, на автомобилях с дизельными ДВС легче.

Характеристики момента приводятся в технических параметрах транспортного средства только вместе с величиной оборотов, для которых они измерены. В некоторых справочных данных автопроизводители указывают крутящий момент двигателя на холостых оборотах.

Наиболее полную картину ходовых параметров двигателя дают зависимости крутящего момента.

Зависимость мощности и крутящего момента двигателя

Крутящий момент по мере увеличения оборотов двигателя постепенно возрастает, при оборотах около 2800 немного стабилизируется, достигая своего максимума приблизительно 178 н*метр при 4500 об/мин. Мощность двигателя по мере увеличения оборотов продолжает возрастать, что согласуется с приведенной выше формулой. Однако после достижения величины оборотов 5400 об/мин, крутящий момент снижается с большей скоростью, чем растут обороты, и мощность уменьшается.

Это соответствует физической интерпретации процессов в двигателе. На малых оборотах в двигатель поступает мало топлива и воздуха, мощность невысокая. По мере увеличения оборотов сгорает больше топлива, вырабатывается больше энергии. При дальнейшем увеличении количества оборотов двигателя мощность начинает снижаться по причинам:

  • увеличение потерь на процессы трения;
  • кислородное голодание;
  • инерционные и другие механические потери;
  • тепловые потери.

Конструкторы ДВС стремятся расширить диапазон стабильного участка характеристики зависимости крутящего момента. В качестве одного из широко распространенных конструктивных решений применяются системы интеллектуального турбонаддува. Они позволяют избежать ситуации кислородного голодания на различных оборотах.

Крутящий момент относительно стабилен при оборотах двигателя от 2500 до 5500 об/мин. Водители могут смело начинать процесс обгона даже на малых оборотах.

Высокооборотные двигатели имеют стабильный момент до 6500 – 7500 об/мин. Это позволяет развить максимальную мощность на оборотах около 7500 об/мин, как приведено на рисунке 3.

Если вы подходите к покупке автомобиля серьезно, желательно покопаться в справочниках, на форумах, ознакомиться с дилерской информацией, погуглить, и найти зависимости крутящего момента и мощности. Тогда вы с научной точки зрения будете судить о ходовых параметрах автомобиля.

Выбирая автомобиль для эксплуатации в городских условиях, целесообразно приобрести дизельный авто, если вы любитель погонять с ветерком на автобанах, подойдет высокооборотный бензиновый двигатель.

Как увеличить крутящий момент

Характеристики крутящего момента двигателя формируются еще на этапе конструкторской разработки конкретной модели движка. Они также учитываются при расчетах тормозной системы, КПП, подвески и других систем. Самостоятельное увеличение крутящего момента двигателя может привести к преждевременному износу деталей авто.

Существует несколько способов повышения крутящего момента:

  • форсирование двигателя изменением параметров поршневой группы;
  • внесение изменений в топливную систему;
  • увеличение производительности воздухозабора;
  • чип-тюнинг.

Многие участники различных любительских автосостязаний используют комплексное форсирование двигателя. Однако следует помнить, что увеличение мощности и крутящего момента двигателя на четверть, уменьшает его ресурс вдвое.

КРУТЯЩИЙ МОМЕНТ или МОЩНОСТЬ двигателя

…лошадиные силы помогают заработать миллионы, а ньютонометры — выигрывают гонки!

Вот уже более 100 лет двигатели внутреннего сгорания используются практически во всех областях транспорта. Они являются «сердцем» автомобиля, трактора, тепловоза, корабля, самолёта и за последние тридцать-сорок лет стали представлять собой своеобразный симбиоз последних достижений науки и техники. Для нас уже привычными стали такие термины, как МОЩНОСТЬ и КРУТЯЩИЙ МОМЕНТ, которые являются необходимым критерием оценки силовых возможностей двигателя. Но возникает вопрос — на сколько правильно каждый из нас сможет оценить потенциал двигателя, имея перед глазами лишь цифры с техническими данными автомобиля?

Уверены, что Вы не станете целиком полагаться на заверения продавца в автосалоне, что мотор приобретаемого Вами авто достаточно мощный и полностью Вас удовлетворит. Поэтому Вы приняли решение модернизировать свой двигатель и стоите перед дилеммой – провести оптимизацию для увеличения мощности или увеличить крутящий момент? Для того, чтобы потом не пожалеть о не правильном приобретении и выборе, рекомендуем ознакомиться со всем изложенным ниже.

С давних времён для строительства, перемещения грузов, а так же транспортировки людей человечество использовало всевозможные механизмы и устройства. С изобретением более чем 5 тыс. лет назад ЕГО ВЕЛИЧЕСТВА КОЛЕСА, теория механики претерпела серьёзные изменения. Изначально, роль колеса сводилась только к банальному уменьшению сопротивления (силы трения) и переводу силы трения в качение. Конечно, катить круглое гораздо приятней, чем тащить квадратное!

Но качественное изменение способа применения колеса произошло намного позднее благодаря появлению другого гениального изобретения ― ДВИГАТЕЛЯ! Отцом парового локомотива, чаще называют Джорджа Стивенсона, который построил в 1829 году свой знаменитый паровоз «Ракета». Но ещё в 1808 году англичанин Ричард Тревитик демонстрирует одно из самых революционных изобретений в истории – первый паровоз. Но к нашей всеобщей радости Тревитик сначала построил паровой автомобиль для уличного движения, а затем уж только пришел к мысли o паровозе. Таким образом, автомобиль является в некотором роде прародителем паровоза. К сожалению, судьба первооткрывателя Ричард Тревитика, как впрочем, многих инженеров, но не коммерсантов, сложилась печально. Он разорился, долго жил на чужбине, и умер в нищете. Но не будем о грустном…

Наша задача ― понять, что такое крутящий момент и мощность двигателя, и она значительно упростится, если вспомнить устройство паровоза. Кроме пассивного преобразователя трения из одного вида в другой, колесо стало выполнять еще одну задачу — создавать движущую (тяговую) силу, то есть, отталкиваясь от дороги, приводить в движение экипаж. Давление пара действует на поршень, тот, в свою очередь, давит на шатун, последний проворачивает колесо, создавая КРУТЯЩИЙ МОМЕНТ. Вращение колеса под действием крутящего момента вызывает появление пары сил. Одна из них — сила трения между рельсом и колесом — как бы отталкивается от рельса назад, а вторая — та самая искомая нами СИЛА ТЯГИ через ось колеса передается на детали рамы паровоза. На примере паровоза заметно, что чем больше давление пара, действующее на поршень, а через него — на шатун, тем большая сила тяги будет толкать его вперед. Очевидно, изменяя давление пара, диаметр колеса и положение точки крепления шатуна относительно центра колеса, можно менять силу и скорость паровоза. То же самое происходит в автомобиле.

Разница в том, что все преобразования сил осуществляются непосредственно в самом двигателе. На выходе из него мы имеем просто вращающийся вал, то есть, вместо силы, толкающей паровоз вперёд, здесь мы получаем круговое движение вала с определенным усилием ― КРУТЯЩИМ МОМЕНТОМ. А МОЩНОСТЬ, развиваемая двигателем, ― это всего лишь его способность вращаться как можно быстрее, одновременно создавая при этом на валу крутящий момент. Затем вступает в действие силовая передача автомобиля (трансмиссия), которая этот крутящий момент изменяет так, как нам нужно, и подводит к ведущим колесам. И только в контакте между колесом и дорожным покрытием крутящий момент снова «выпрямляется» и становится тяговой силой.

Очевидно, что тяговую силу предпочтительно иметь наибольшую. Это обеспечит нужную интенсивность разгона, способность преодолевать подъемы и перевозить больше людей и груза. В технической характеристике автомобиля есть такие параметры, как число оборотов двигателя при максимальной мощности и максимальном крутящем моменте и величина этой мощности и момента. Как правило, они измеряются соответственно в оборотах в минуту (мин־¹), киловаттах (кВт) и ньютонометрах (Нм). Необходимо уметь правильно понимать внешнюю скоростную характеристику двигателя. Это графическое изображение зависимости мощности и крутящего момента от оборотов коленчатого вала. Наиболее показательной является форма кривой крутящего момента, а не его величина. Чем раньше достигается максимум и чем более полого кривая падает по мере увеличения оборотов (то есть мотор имеет неизменную тягу), тем правильнее спроектирован и работает двигатель. Однако получить двигатель, обладающий достаточным запасом мощности, высокими оборотами, да еще и стабильным КРУТЯЩИМ МОМЕНТОМ в широком диапазоне оборотов, непросто. Именно на это направлены применение наддува различных систем, электронного регулирования впрыска топлива, переменные фазы газораспределения, настройка выпускной системы и ряд других мероприяти

Давайте рассмотрим пример. Вам предстоит преодолеть подъем, а увеличить скорость движения (разогнать автомобиль перед подъемом) нельзя из-за дорожной обстановки. Для сохранения темпа движения потребуется увеличить силу тяги. Тут часто возникает ситуация, которая выглядит так, добавление газа не даёт прироста силы тяги. Это вызывает снижение скорости, а значит, и оборотов двигателя, сопровождающееся дальнейшим уменьшением силы тяги на ведущих колесах.

Так что же делать? Как поддержать большую тяговую силу при малой скорости движения, если двигатель «не тянет», то есть, не обеспечивает достаточный КРУТЯЩИЙ МОМЕНТ? Вступает в действие трансмиссия. Вы вручную, или автоматическая коробка передач самостоятельно, измените передаточное число так, чтобы сила тяги и скорость движения находились в оптимальном соотношении. Но это дополнительные неудобства в управлении автомобилем. Напрашивается вывод: было бы лучше, если бы двигатель сам приспосабливался к работе в таких ситуациях. Например, вы въезжаете на подъем. Сила сопротивления движению автомобиля возрастает, скорость падает, но силу тяги можно добавить, просто сильнее нажав на педаль газа. Автомобильные инженера для оценки этого параметра используют термин «ЭЛАСТИЧНОСТЬ ДВИГАТЕЛЯ».

Под эластичностью двигателя понимается соотношение между числом оборотов максимальной мощности и оборотов максимального крутящего момента (об/мин Pmax/об/мин Mmax). Оно должно быть таковым, чтобы по отношению к оборотам максимальной мощности обороты максимального крутящего момента были как можно ниже. Это позволит снижать и увеличивать скорость только за счет работы педалью газа, не прибегая к переключению передач, а также ехать на повышенных передачах с малой скоростью. Практически оценить эластичность мотора можно путем проверки способности автомобиля разгоняться от 60 до 100 км/ч на четвёртой передаче. Чем меньше времени займет этот разгон, тем эластичнее двигатель.

В подтверждение вышеизложенного, обратимся к результатам тестов автомобилей, проведенных в Европе:
— Audi А6 (двигатель 2,0 / 170 лс при 4300 об/мин / 280 Нм при 1800 об/мин)
— BMW 523i (двигатель 2,5 / 177 лс при 5800 об/мин / 230 Нм при 3500 об/мин)
— Mercedes E200 Kompressor Classic (двигатель 1,8 / 163 лс при 5500 об/мин / 240 Нм при 3000 об/мин)

Главным образом, рассмотрим характеристики Audi и BMW. Двигатель Audi, гораздо меньшего объёма и почти такой же мощности, практически не уступает баварцу в разгоне с места, но зато в замерах на эластичность и экономичность кладёт конкурента на обе лопатки. Почему это происходит? Потому что коэффициент эластичности мотора Audi 2,39 (4300/1800) против 1,66 (5800/3500) у BMW, а поскольку вес автомобилей приблизительно равный, жеребец из Мюнхена позволяет дать завидную фору своему соотечественнику. Причём эти впечатляющие результаты достигаются на топливе АИ-95.

Итак, подведём итог!
Из двух двигателей одинакового объема и мощности, предпочтителен тот, у которого выше эластичность. При прочих равных условиях такой мотор будет меньше изнашиваться, работать с меньшим шумом и меньше расходовать топливо, а также упростит манипуляции с рычагом коробки передач. Под все эти условия попадают современные бензиновые и дизельные двигатели с наддувом. Эксплуатируя автомобиль с таким мотором, Вы получите массу приятных впечатлений!

Крутящий момент двигателя: что это такое?

В списке ключевых характеристик любого бензинового или дизельного ДВС обязательно указывается мощность и крутящий момент двигателя. Что касается самого транспортного средства, отдельный акцент делается на разгонной динамике автомобиля 0-100 км/ч. независимо от типа силового агрегата под капотом (бензин, дизель, гибридный двигатель и т.д.). Традиционно сложилось, что максимум внимания покупателей изначально обращен на мощность двигателя, выраженную в лошадиных силах (л.с.). Прочно укоренилось мнение, что чем больше л.с. выдает двигатель, тем быстрее, динамичнее и, зачастую, престижнее окажется автомобиль в конечном итоге. Параллельно с этим показатель крутящего момента, который выражается в ньютон-метрах (Н∙м), маркетологи сознательно отодвигают на второй план.

Рекомендуем также прочитать статью о том, что такое объем двигателя. Из этой статьи вы узнаете о том, по каким параметрам измеряется и на что влияет рабочий объем ДВС.

Такой подход хорошо иллюстрирует распространенное выражение среди продавцов автомобилей в США. Как они говорят, продавать машины помогают «лошади», то есть мощность, при этом двигает автомобиль вперед крутящий момент. Далее мы подробно рассмотрим, что такое крутящий момент двигателя внутреннего сгорания, а также взглянем на зависимость характеристик мощности двигателя, крутящего момента и разгонной динамики.

Содержание статьи

Мощность и крутящий момент ДВС

Для большинства рядовых автолюбителей понятие о показателе максимальной мощности и крутящего момента сводится к тому, что чем больше мощность, тем больше окажется и крутящего момента, а также более мощный двигатель всегда лучше. При этом чёткое понимание указанных характеристик мотора у многих отсутствует.

Смятение в этот лагерь также внесло растущее число «дизелистов», среди которых намного больше внимания уделяется именно кутящему моменту, а не мощности дизельного мотора. Также следует упомянуть и о турбомоторах, которые могут разгонять автомобиль намного быстрее, хотя мощность самого ДВС с наддувом заметно уступает атмосферным аналогам с намного более внушительным количеством «лошадей» под капотом. Получается, мощнее, но не всегда динамичнее и быстрее? Давайте разбираться, почему так происходит и чем «моментная» характеристика отличается от «мощностной».

Как мощность двигателя и крутящий момент влияют на разгон автомобиля

Как уже было сказано, в технических характеристиках указывается максимальная мощность двигателя и крутящий момент. Итак, крутящий момент представляет собой силу вращения коленвала  ДВС. Измеряется крутящий момент в ньютон-метрах. Также моментная характеристика может быть выражена в килограмм-силах на метр. Крутящий момент возникает тогда, когда свободно вращающийся коленвал начинают тормозить.

Другими словами, на коленвал подается нагрузка, которая заставляет двигать автомобиль.  Отметим, что крутящий момент имеет прямую зависимость от числа оборотов двигателя. Для двигателей внутреннего сгорания характерной особенностью является то, что на низких оборотах крутящий момент небольшой, затем наблюдается рост момента параллельно росту оборотов силового агрегата, далее происходит спад момента, хотя обороты остаются высокими. Обратите внимание, в характеристиках указывается максимальная мощность двигателя, например, 150 л.с. при 6000 об/мин. При этом максимальный крутящий момент указан на отметке 3500-3700 об/мин.

Так происходит по причине того, что на разных оборотах в камере сгорания происходят разные процессы, что отражается на эффективности наполнения цилиндров, качестве сгорания топливно-воздушной смеси, вентиляции цилиндров и т.д. Другими словами, количество воздуха на впуске, угол опережения зажигания, объем отработавших газов и ряд других параметров меняется в зависимости от числа оборотов коленвала. По этой причине каждому водителю бензиновой машины с малообъемным атмосферным мотором хорошо знакома ситуация, когда на «низах» при езде на высокой передаче двигатель не тянет, то есть крутящий момент очень мал.

Нажатие на педаль газа и поднятие оборотов до средних значений приводит к тому, что эффективность наполнения воздухом на впуске растет, топливно-воздушная смесь сгорает более полноценно, цилиндры лучше вентилируются. Результатом становится то, что крутящий момент растет.  Добавим, что турбомоторы в среднем диапазоне оборотов полностью преодолевают эффект турбоямы, после чего у двигателя возникает желаемый подхват. Дело в том, что поток отработавших газов после раскручивания двигателя начинает эффективно вращать крыльчатку турбокомпрессора для подачи большего количества воздуха в цилиндры.

Рекомендуем также прочитать статью об устройстве турбонаддува. Из этой статьи вы узнаете о конструктивных особенностях турбины, а также о преимуществах и недостатках данного способа увеличению мощности двигателя без увеличения его физического объема.

Дальнейший рост оборотов вызывает то, что в двигателе существенно растут механические потери. К таким потерям следует отнести трение поршневых колец о стенки цилиндров, а также различные инерционные потери в других узлах и механизмах двигателя. В результате КПД мотора падает, энергия начинает расходоваться на преодоление таких потерь в условии езды на приближенных к максимальным оборотах.  Закономерно, что крутящий момент начинает уменьшаться с учетом растущих нагрузок. Турбомоторы также теряют отдачу, так как сам турбонагнетатель не обеспечивает должную производительность на максимальных оборотах.

Если сказать иначе, мощность двигателя означает количество работы, которую агрегат способен выполнить за определенный промежуток времени. Мощность ДВС измеряется в киловаттах (кВт) и напрямую зависит от показателя крутящего момента на конкретных оборотах. Не вдаваясь в подробности, мощность является расчетной величиной и не измеряется отдельно от кутящего момента. Что касается максимальной мощности, такая мощность представляет собой условную точку начала уменьшения крутящего момента, но произведение мощности и оборотов еще не стремится к увеличению. С учетом данной информации становится понятно, что такое полка крутящего момента, которая часто отображается на графиках. Под такой полкой следует понимать диапазон оборотов, на которых постоянно доступен максимум крутящего момента.

Простыми словами, крутящий момент и есть мощность двигателя, которая будет доступна на разных оборотах мотора. Этой фактической мощностью, а не разрекламированной маркетологами «максималкой», водители каждый день пользуются во время обгонов и резких ускорений. Вот и получается, что ездим мы на крутящем моменте, а не на максимальной мощности, оценивая динамику разгона на том или ином двигателе. 

Что касается самой максимальной мощности, от данного показателя зависит, прежде всего, та максимальная скорость, с которой способен двигаться автомобиль. Максимальная скорость становится доступной в том случае, когда расходуемая мощность равна мощности ДВС. При этом для определения «максималки» конструкторами учитывается ряд потерь на инерцию и трение, сопротивление потокам воздуха и качению колес. Если проще, от запаса мощности зависит способность мотора преодолевать растущие потери и сопротивление, что и позволяет агрегату разогнать автомобиль только до определенного предела и далее поддерживать набранную скорость.

Крутящий момент дизельного двигателя

Особенностью дизельных двигателей сравнительно с бензиновыми аналогами является более высокий крутящий момент и меньшая мощность. Дело в том, что дизельные моторы имеют суженный диапазон оборотов. Это связано с конструктивными отличиями таких моторов (ход поршня), а также более высокой степенью сжатия и спецификой процесса сгорания дизтоплива.

Другими словами, дизель изначально не приспособлен для работы на высоких оборотах. Следовательно, агрегат не так хорошо раскручивается. Параллельно с этим температура выхлопа у дизельного двигателя ниже по сравнению с бензиновым, а также на «низах» моторы на солярке не так склонны к детонации.  В результате конструкторы смогли установить сложные и максимально эффективные системы турбонаддува именно на дизель.

Благодаря таким особенностям крутящий момент дизельного двигателя на низких оборотах намного выше аналогичных атмосферных или тубированных бензиновых ДВС. Поднимать мощность такого агрегата не имеет смысла, так как уверенная тяга на низах, высокий КПД и топливная экономичность полностью перекрывают небольшое отставание дизелей по показателю мощности и максимальной скорости.

Добавим, что потенциал дизеля позволяет сделать его даже мощнее бензиновых собратьев, но это приведет к существенному удорожанию и утяжелению всей конструкции двигателя. Также понадобится доработка системы питания дизельного мотора и установка более выносливой КПП, которая будет способна выдерживать просто огромный крутящий момент. Не следует забывать и об экологических нормах, для соответствия которым мощные дизели потребуют серьезной модернизации. Получается, поднимать мощность дизеля сегодня попросту нецелесообразно.

Подведем итоги

Если вы столкнулись с возможностью выбрать автомобиль с незначительно отличающимися по характеристикам двигателями, тогда оптимально выбирать агрегат с большим крутящим моментом. Данное правило особенно актуально для машин с МКПП. Например, производитель может выпускать одну и ту же модель, которая получает ДВС с рабочим объемом 1.8 литра (140 л.с.) и 2.0 (155 л.с.). Также следует учитывать и упомянутую выше полку крутящего момента, то есть зависимость мощности и крутящего момента от оборотов двигателя.

Лучшим вариантом двигателя будет тот, когда мотор выходит на пик момента не на определенных оборотах, а в максимально широком диапазоне. Например, простой атмосферный двигатель может иметь пик крутящего момента на 3500 об/мин, в то время как его продвинутый высокотехнологичный аналог с турбиной выходит на пик момента уже при 1500 об/мин, сохраняя «ровную» полку до 4500 об/мин. Это значит, что в первом случае для уверенного разгона мотор нужно крутить, удерживать ДВС на оборотах максимального момента, а также чаще переключать передачи вниз при возникновении нагрузок. Во втором случае максимум крутящего момента будет доступен водителю в широком диапазоне оборотов, что позволяет эффективно ускоряться и справляться с меняющимися нагрузками без частого переключения передачи на пониженную. Другими словами, доступность высокого крутящего момента в расширенном диапазоне фактически означает, что и мощности почти всегда достаточно.

Указанные особенности разных ДВС и умение справляться с нагрузками определяют следующий показатель, который известен как эластичность двигателя. Под эластичностью мотора следует понимать способность агрегата набирать обороты и разгонять автомобиль в условиях растущей нагрузки без переключения передачи на пониженную.

Различные силовые установки тестируются на эластичность путем анализа тяги и разгона с 60 до 100 км/ч при движении на четвёртой передаче или ускорения с 80 до 120 км/ч на включенной пятой передаче. По этой причине малообъемный высокофорсированный двигатель, который имеет отличный подхват на низких оборотах и широкую полку момента, покажет себя отличным вариантом для города. Именно в городском цикле, то есть в условиях умеренных скоростей и режимов ускорение-замедление, потенциала такого ДВС более чем достаточно. При этом следует учитывать, что на более высокой скорости в режиме трассы подобный агрегат может не обеспечить уверенного обгона, уступив в этом плане простому атмосферному двигателю с большим крутящим моментом и мощностью.

Читайте также

формула расчета, от чего зависит

Парадокс, но лишь немногие автолюбители ясно представляют принципиальную разницу между «лошадиными силами» и «ньютон-метрами», в которых измеряется крутящий момент. В обиходе определение крутящего момента двигателя напрямую связывают с динамикой разгона, а лошадиные силы с максимальной скорость. Если говорить уж совсем грубо, то формулировка вполне удовлетворительна, хоть и не объясняет всей сути физических процессов. Восполнить теоретические пробелы, а также получить наглядное представление о том, что такое крутящий момент двигателя, — вам поможет предоставленный ниже материал.

Момент вращения

Если выражаться языком физики, то понятие о вращающем моменте легко уяснить, зная принцип получения преимущества от использования рычага. Вычисляемые путем сложения приложенных на рычаг усилий (вес груза) к длине плеча (рычага) «ньютон-метры», показывают потенциальное количество выполняемой работы. В случае с ДВС вес груза – это усилие с которым поршень после сгорания топливно-воздушной смеси совершает возвратно-поступательное движение. Длина плеча будет не чем иным, как ходом поршня (расстояние от ВМТ до НМТ). Вращающее усилие создается только во время рабочего такта.

От чего зависит полка крутящего момента

Согласно расчетной формуле Мкр = F х L, где F – это сила, а L – длина плеча, момент вращения будет зависеть от КПД сгорания топливно-воздушной смеси (F) и величины хода поршней (L).

Поскольку автомобиль – это комплексный механизм, на крутящий момент двигателя влияет ряд характеристик других узлов и агрегатов. Ведущие колеса автомобиля будут получать максимальное тяговое усилие лишь в тот момент, когда взаимодействие механизмов является оптимальным. Пик крутящего момента достигается на таких оборотах двигателя, когда наполнение камеры сгорания рабочей смесью, сжигание продуктов горение и вывод отработавших газов осуществляется с минимальными механическими потерями. Для каждого двигателя этот параметр колеблется в зависимости от конструктивных особенностей и типа используемого топлива.

Мощность

Количество полезной работы, преобразованное возвратно-поступательными движениями КШМ, обозначается ньютон-метрами (крутящий момент). Тогда что такое мощность двигателя? Мощностью именуется количество произведенной работы за единицу времени. Иными словами, количество единиц крутящего момента, которое мотор способен выдать за определенный промежуток времени. Мощность двигателя измеряется в киловаттах (кВт).

Формула для расчета мощности в киловаттах:

P=Mkp*n/9549, где n – количество оборотов коленвала в минуту; Mkp – вращающий момент на коленчатом валу.

Нехитрое логическое умозаключение приводит нас к тому, что мощность мотора зависит от количества оборотов.

Соотношение крутящего момента к мощности

Для получения наглядного представления о взаимодействии двух величин рассмотрим основные характеристики мотора на графике. Он демонстрирует выдаваемую двигателем мощность и крутящий момент двигателя в зависимости от оборотов коленчатого вала.

График отчетливо демонстрирует тот факт, что тяговое усилие на колесах не прямо пропорционален количеству оборотов либо мощности. Двигатель достигает пика крутящего момента уже на 3 тыс. об/мин. Максимум мощности доступно на 5500 об/мин. В обоих случаях обороты продолжают расти, но отдача падает. Для обозначенного двигателя обороты от 2500 до 5 тыс. наиболее оптимальные.

В этом режиме работы близкая к максимальному значению «полка» момента позволит полноценно реализовать потенциал мотора на протяжении всего отрезка.

Приведенный график является примером гражданской настройки современных бензиновых моторов. Преимущества очевидны:

  • стабильный прирост мощности;
  • достаточно широкая «полка» с плавным приростом и затуханием.

Настройка подобного типа позволяет добиться «эластичности» двигателя. Такая работа обеспечивается не только программно (настройка ЭБУ), но и применением различных вспомогательных технологий (изменяемые фазы газораспределения).

Разница мощностных характеристик во многом зависит от конструкции системы впуска и выпуска. К примеру, двигатели оснащенные турбонаддувом в точке выхода на «буст» получают значительную прибавку в динамике. Крутящий момент и количество лошадиных сил таких моделей значительно превышают своих атмосферных собратьев.

Что такое лошадиные силы

Наблюдательный читатель, скорей всего, отметит подозрительным тот факт, что до сих пор не прозвучало, всеми так любимое «лошадиные силы». Суть в том, что «скакуны» — это лишь дань моде тех времен, когда механизмам приходилось доказывать свое преимущество над живой рабочей силой. Поэтому превосходство (способность выполнить определенное количество работы) удобно было выражать в пересчете на потенциал одной лошади. Фактически 1 л.с – это усилие, которого достаточно для поднятия груза массою 75 кг на 1 м за 1 с.

Для того чтобы получить «лошадиные силы» достаточно умножить значение мощности в киловаттах на коэффициент 1,36.

Покупатели не потеряют ровным счетом ничего, если производители откажутся использовать «л.с» в качестве показателя мощностных характеристики автомобилей. Обозначить крутящий момент и мощность в кВт вполне достаточно. Но традиция настолько глубоко запечатлелась в сознании, что тратить усилия на ее разрушения попросту нецелесообразно.

Итоги

  • Мощность мотора зависит от крутящего момента;
  • «л.с» рассчитаны на достижение максимальной скорости. Автомобиль с большим количеством «скакунов» под капотом сможет развить внушительную скорость, но это займет очень много времени;
  • от тягового усилия зависит насколько быстро двигатель сможет развить свою максимальную мощность;
  • большое количество «ньютон-метров» позволяет более выгодно использовать потенциал двигателя. Такие моторы легче переносят нагрузки;
  • чем шире «полка» момента, тем эластичней двигатель и приятней в управлении автомобиль;
  • ввиду особенностей дизельных ДВС (большая степень сжатия, медленное горение смеси), а также применения современных систем дополнительного нагнетания воздуха, дизельные двигатели имеют больший крутящий момент с самих низких оборотов.

Выражаясь простым языком, «ньютон-метры» – это сила вашего автомобиля, а киловатты – выносливость.

Зависимость мощности от крутящего момента


Соотношение между мощностью и моментом силы

Ниже два калькулятора, которые переводят мощность в момент силы (или крутящий момент) и наоборот для заданной угловой скорости. Формулы под калькулятором.

Момент силы и мощность

Момент силы, Ньютон-метр

Угловая скорость, оборотов в минуту

Точность вычисления

Знаков после запятой: 3

Мощность, Ватт

 

Мощность, килоВатт

 

content_copy Ссылка save Сохранить extension Виджет

Мощность и момент силы
Точность вычисления

Знаков после запятой: 2

Момент силы, Ньютон-метр

 

content_copy Ссылка save Сохранить extension Виджет

Несколько формул/
Для мощности:

где P — мощность (Ватты или килоВатты), τ — крутящий момент (Ньютон-метр), ω — угловая скорость (радиан в секунду), а точка обозначает скалярное произведение.
Для момента силы:

Угловая скорость в калькуляторе задается в оборотах в минуту, приведение ее к радианам в секунду тривиально:

так как один оборот это радиан.

Что важнее для разгона – мощность или крутящий момент

 Этот вопрос – одна из главных тем "холиваров" на автомобильных форумах. Оппоненты готовы порвать друг друга, приводя десятки аргументов. А ведь все просто: мощность — это и есть момент! Как так? Сейчас объясним.

В детстве многие люди постарше собирали фантики «Турбо», на них почти обязательно указывались мощность и максимальная скорость машины. Чем больше цифры, тем больше почтения модели авто. Похоже, так и продолжается до сих пор — лишние несколько лошадиных сил часто становятся решающим аргументом «за» или «против» какой-либо машины.

Но вот уже слышны голоса познавших дизельный Дзен о том, что важен только Крутящий Момент, да и подозрительно хорошая динамика более слабых бензиновых моторов со всякими турбинами или разными там системами VVT-i заставляет иногда водителей усомниться в верности принципа «чем мощнее, тем быстрее», а уж про налоги, которые почему-то зависят от мощности, и так все наслышаны.

Так что же такое мощность и как она связана с динамикой?

В паспортных характеристиках машины и на тех самых вкладышах «Турбо» указана максимальная мощность двигателя. Но что она дает машине? И как с ней связан крутящий момент? Постараемся объяснить максимально просто эту важную истину.

Крутящий момент, напомним, есть произведение силы на плечо рычага. А для двигателя — это сила, с которой вращается коленчатый вал двигателя. Измеряется обычно в ньютонах на метр или в килограмм-силах на метр.


График внешней характеристики двигателя
Собственно, момент возникает, если тормозить вращение коленчатого вала каким-то способом — гидротормозом, генератором или заставить тянуть машину. Именно так его и замеряют — тормозят сам двигатель или колеса машины гидротормозом. Для двигателя обычно указывается максимальный крутящий момент, который развивает мотор при полностью нажатой педали газа, с чьей помощью водитель как раз регулирует, какую часть момента может дать двигатель. Осталось понять, как этот самый момент изменяется. Крутящий момент зависит от величины оборотов двигателя и в начале невелик, потом растет до определенного момента, а затем падает. Почему же?

Пики и спады на графике
В реальной эксплуатации полный момент бывает нужен редко, как раз в тех случаях, когда вы прожимаете педаль газа в пол и надеетесь, что двигатель «вытянет», всё остальное время он меньше максимального на этих оборотах. Но мы уже знаем, что момент меняется не только под воздействием нажатия на педаль газа (механической или электронной), но и с оборотами. На различных оборотах процессы, происходящие в камере сгорания мотора, различны. Дополнительные системы, такие как наддув, системы регулировки фаз ГРМ и прочие, еще сильнее изменяют наполнение камеры сгорания, количество топлива и момент зажигания, и в результате качество и сила рабочего хода зависят от оборотов мотора. Даже если нет никаких систем электронного регулирования, всё равно количество воздуха, попадающего в цилиндр, количество оставшегося выхлопа и оптимальный угол опережения зажигания меняются с оборотами. На самых малых оборотах в цилиндре слишком много остаточных газов или слишком вероятна детонация, потому крутящий момент на малых оборотах обычно намного меньше максимального. На средних оборотах мотор «оживает» — за счет пульсаций во впускном трубопроводе больше воздуха поступает в цилиндры, меньше остаточных газов, потому и растет крутящий момент. Если у машины есть турбина или нагнетатель, то они начинают работать в полную силу. Но с ростом оборотов растут и механические потери на трение поршневых колец, трение и инерционные потери в ГРМ, на разогрев масла в подшипниках и т.д. и т.п., а качество рабочего процесса не улучшается или даже начинает падать. В результате на высоких оборотах момент начинает уменьшаться за счет возрастающих потерь. А у турбонаддувного двигателя в какой-то момент перестает хватать производительности турбины и момент тоже начинает снижаться. Теперь взглянем на график типичного атмосферного (то есть безнаддувного) мотора времен 90-х годов, где есть кривые не только момента, но и мощности.

А вот турбомотор схожего объема, у него момент в зоне средних оборотов ограничен электроникой, часто на пределе прочности цилиндро-поршневой группы, и график мощности тоже очень «гладкий». Хорошо заметно, на сколько выше у него мощность в начале и середине графика.

Обратите внимание именно на кривую мощности. Она круто идет вверх там, где момент большой, и почти не растет там, где он падает. Объяснение этому очень простое: Мощность это то, сколько работы может выполнить мотор за секунду. Для двигателя внутреннего сгорания мощность в киловаттах в каждой точке графика можно получить, умножив момент двигателя в ньютонах на число оборотов в минуту и разделив на 9549, то есть примерно так:

Следовательно, мощность мотора на любых оборотах зависит только от крутящего момента на этих оборотах, а максимальная мощность получается в точке, в которой момент уже уменьшается, но при этом произведение мощности и оборотов пока еще увеличивается. И чтобы увеличить максимальную мощность, можно просто увеличить момент на высоких оборотах или сделать так, чтобы он уменьшался не так быстро. Взгляните на типичный график высокооборотного мотора Honda — японцы поступили именно так.

Надеюсь, достаточно понятна точка зрения тех, кто говорит, что «мощность не важна — важен только момент»? Еще раз: мощность как таковая зависит напрямую от момента и сама по себе является математической, расчетной величиной, которую невозможно измерить отдельно от момента. Крутящий момент, по сути, отражает ту мощность, которая будет доступна на «неполных» оборотах двигателя, а просто при нажатии на газ при обгоне. И чем момента больше, тем лучше! Ведь и мощность на этих оборотах будет выше. А чем больше мощности, тем больше энергии можно придать машине, тем лучше динамика разгона. А максимальная мощность в первую очередь влияет на максимальную скорость машины. Ведь при правильно рассчитанных передаточных числах главной передачи и КПП получается, что максимальная скорость достигается тогда, когда затрачиваемая мощность будет равна мощности мотора. А мощность всех потерь как раз зависит от скорости движения, в первую очередь от сопротивления воздуха и сопротивления качению колес, и в какой-то момент она обязательно совпадет с мощностью мотора, именно эта скорость и будет максимальной. Бывают, конечно, просчеты, когда двигатель или не может развить обороты максимальной мощности, или уже «упирается» в ограничитель, но это бывает не так уж часто.
Дизельный момент
Теперь отвечу на типичный, но простой вопрос: «Почему на дизельных моторах традиционно большой крутящий момент, но при этом сравнительно с бензиновыми у них невысокая мощность?». Всё потому, что у дизеля ограничены рабочие обороты. Из-за высокой степени сжатия дизельных моторов и более медленно горящего топлива дизели хуже работают на больших оборотах, зато у них нет риска детонации, да и турбину можно поставить более эффективную и сложную из-за более низкой температуры газов на выпуске, так что можно подать очень много воздуха и топлива, и момент на малых оборотах получится очень большой. А иногда по мощности они даже будут не так уж далеки от турбонаддувных бензиновых, но момент будет не просто большим, а огромным. Для сравнения приведем характеристики двух трехлитровых моторов от современной BMW 5 series, где будет видно, что дизели эффективны в более низких оборотах. Дизель можно сделать мощнее бензинового мотора, но тогда и так большой момент будет больше еще на четверть, а это означает, что понадобится новая коробка передач и новые карданные валы, способные выдерживать такую мощность. Да и сам двигатель придется сделать еще прочнее и тяжелее. Или можно его «раскрутить», но тогда сложнее будет работать топливной аппаратуре, а допускать дымления и неполного сгорания топлива нельзя.

Так как же правильно разгоняться?
Тут важно уметь работать с коробкой передач. Для максимального разгона нужно переключаться так, чтобы обороты упали примерно на пик крутящего момента или выше него, но чтобы оставался запас по увеличению оборотов — разгон выше оборотов максимальной мощности будет идти медленнее. Идеальный вариант на гражданских машинах — разгон «от пика момента до пика мощности». Впрочем, обычно на современных моторах электроника просто не даст «перекрутить» мотор сильно выше пика мощности — это называется отсечкой. Можно попробовать представить себе это визуально. Посмотрите на график внешней скоростной характеристики. Мотор при разгоне должен как можно больше работать в зоне, где его мощность максимальна, то есть на высоких оборотах вблизи точки максимальной мощности. И при переключении передач попадать в зону с как можно большей достижимой мощностью. Внизу — графики мощности и момента уже знакомых нам атмосферного Honda Accord Type R и турбированного Saab 9-3. На графиках мы выделили диапазоны оборотов, в которых будет работать двигатель, если включить вторую или третью передачу на скорости около 50 км/ч. Чем больше площадь фигуры под кривой мощности, тем эффективнее разгон.

Если коробка умеет переключаться очень быстро, то идеальным случаем будет КПП с очень «короткой» первой передачей с большим-пребольшим передаточным числом для очень высокого момента. А кроме того, очень большим количеством передач «на все случаи жизни». Короткая первая позволит практически сразу со старта поднимать обороты до необходимых для уверенного разгона, а затем мотор всё время будет работать вблизи своего эффективного максимума. Есть одна проблема. К сожалению, таких коробок передач не бывает. Лучше всего была бы электрическая передача, но ее масса и невысокий КПД (то есть потери мощности при «пропускании» через такую трансмиссию) при мощности меньше нескольких тысяч киловатт делают ее применение нерациональным, если только на гибридах, как например на «Мицубиши Аутлендер PHEV». Казалось бы, есть почти идеальный вариатор, где передаточных чисел бесконечное множество, так как они меняются плавно. Но он тоже страдает низким КПД при больших передаточных отношениях и не умеет менять его очень быстро… И в итоге разгон не лучше, чем у других трансмиссий. Гидротрансформатор на традиционных АКПП еще хуже, но в сочетании с механической коробкой передач обеспечивает и надежность, и приличную скорость. А механические коробки и особенно «роботы», несмотря на неизбежные потери мощности на старте при трении дисков в сцеплении, всё равно оказываются быстрее всех! Нужно лишь очень много передач. Например, десять, как в новой версии коробки DSG. Впрочем, половина из них нужна не для разгона, а для экономичного движения, но об этом в другой раз.

Какой мотор предпочесть — с высоким моментом или высокой мощностью?
Если мощность двух моторов, между которыми вы выбираете, отличается не слишком значительно, то выбирайте более «моментный». Особенно если вы пользуетесь механической коробкой передач. Показатель максимального момента и мощности на промежуточных режимах в данном случае важнее. Если же двигаться приходится постоянно «на пределе», то более тяговитый мотор, да еще и более слабый, преимущества иметь не будет, посмотрите хотя бы на мотоциклы, высокооборотные, но не моментные легко выигрывают у более тяговитых низкооборотных. Но показатели надо оценивать в комплексе. Вернемся к нашим «пятеркам» BMW. Бензиновая 535i разгоняется до 100 км/ч за 5,6 секунды, а дизельная 530d — за 5,7, потому что мощность у бензиновой почти на 50 л.с. выше, причем это — турбонаддувный мотор с хорошей мощностью в зоне средних оборотов тоже и многоступенчатая АКПП, быстрая и современная. Мощности должно быть много, но не только на максимальных оборотах, а величина крутящего момента говорит нам именно о том, на сколько много мощности двигатель выдает при обычном движении. Насколько удобно ускоряться без переключений передач. И абсолютная величина крутящего момента говорит даже меньше, чем указание диапазона оборотов, на которых момент близок к своему максимуму и насколько близки эти обороты к оборотам максимальной мощности. И лучше всего с этим справляется график внешней скоростной характеристики. А вот сама величина момента не толкает вас, ведь у более моментного мотора просто будут другие передаточные числа главной передачи и на колесах будет ровно та же мощность.

<a href=»http://polldaddy.com/poll/8627239/»>Какой мотор предпочтете?</a>


Читайте также:

Мощность момент — Энциклопедия журнала «За рулем»

Может ли бульдозер обогнать «формулу 1»? Может, но только на очень короткой дистанции

Часто эксперты автомобильных изданий, рассказывая о выдающейся динамике машины, в первую очередь превозносит огромный крутящий момент двигателя, оставляя мощности роль второго плана. Мол, благодаря именно моменту машина ровно и напористо разгоняется в широком диапазоне оборотов и скоростей. Особенно востребовано это качество на высших передачах, – ведь тяговые силы и ускорения на них в любом случае не столь велики, как на первой или второй передаче. А для безаварийного движения в потоке транспорта возможность быстро прибавить скорость зачастую играет судьбоносную роль. Ездить на таком автомобиле даже психологически легче. И все же, когда нужно быстрей разогнаться, что важней – мощность или крутящий момент?
Сразу отметим: чаще всего эти два параметра «конфликтуют»… в головах журналистов, охотно повторяющих признанные публикой «истины» без какого-либо их анализа. На самом же деле смешно рассматривать мощность в отрыве от крутящего момента и наоборот. Первая показывает энергию, ежесекундно вырабатываемую двигателем, тогда как крутящий момент – всего лишь силовой фактор, показывающий, как нагружен при работе коленчатый вал. Крутящий момент может существовать и сам по себе, без мощности. Например, при неожиданной остановке перегруженного двигателя на крутом подъеме, в песке, при буксировке тяжелого прицепа в какой-то миг момент еще есть, а движения уже нет. А в некоторых механизмах можно обнаружить и длительно действующий на какой-нибудь вал момент, удерживающий его от поворота. Например, в рулевом механизме, когда мы лишь удерживаем управляемые колеса в нужных положениях, тогда как дорога пытается их нарушить. А самый типичный пример: пытаясь открутить «прикипевший» болт, ключ удлинили метровой трубой, – а болт ни с места. Момент огромный, а работа не идет. А коли нет работы – то нет и мощности.

Тут впору вспомнить школьную физику. Нарисуйте круг радиуса R – это будет сечение вала – и приложите к нему «касательную» силу F. Крутящий момент этой силы М = F • R. За один оборот вала сила F пройдет путь 2πR – и выполнит работу: А = F • R • 2π = М • 2π. А работа за n оборотов: А = М • 2π • n. Если n – число оборотов в минуту, то работа за одну секунду – то есть, мощность – составит N = М • 2πn /60.
Выражение 2π n /60 = 0,1047 n = ω – угловая скорость вала. Итак, N = М • 0,1047 n (Формула [1]).
Но мы имеем дело не только с вращающимися деталями, но и движущимися линейно. В этом случае в формуле (1) момент М заменим силой F, а угловую скорость ω – линейной v. Получим: N = F • v (Формула [2]).
Эти формулы равноправны. Замерив, например, тяговую силу колес, умножим на достигнутую машиной скорость – и найдем затрачиваемую мощность. Но если крутящий момент на ведущей оси умножить на угловую скорость колес, получим то же самое.
Итак, мощность – это работа (или энергия) израсходованная или произведенная за 1 секунду. Конечно, о «законе сохранения энергии» знает каждый. Говоря по пионерски, она «не возникает из ничего», но и не исчезает, не оставив следа. Так, лишь около четверти тепловой энергии, получаемой двигателем от сгорания топлива, превращается в механическую, соответствующая мощность (эффективная) тратится на движение машины. Большая же часть полученной в цилиндрах двигателя теплоты идет на «обогрев» окружающего нас мира.
Эффективная мощность тоже доходит до ведущих колес не вся – до 15 % ее может рассеять в виде тепла трение в узлах и агрегатах трансмиссии. Но для нас важней другое: если при открытом дросселе (или при полной подаче топлива в дизель) двигатель выдает на колеса сколько-то киловатт, то это – его «потолок». Никакими простыми механизмами вроде коробок передач, редукторов и т. п. превысить эту величину невозможно – этого «закон сохранения» не допустит.
Итак, крутящий момент – это удобный для нас «инструмент», связывающий процессы в двигателе с трансмиссией машины и ведущими колесами. Но не более того! Ракетчики, например, запрягают пламя напрямую, получают гигантские тяги и мощности, но о крутящих моментах вспоминают лишь в расчетах турбонасосных агрегатов, – да и то, если двигатели не твердотопливные!
Из формулы (1) видно, что для получения достаточной мощности вовсе не обязателен огромный крутящий момент, ведь в произведении два сомножителя. Почему бы, например, не увеличивать мощность при постоянном моменте, наращивая угловую скорость в каком-то диапазоне оборотов? При этом мощность растет по оборотам линейно. А постоянство момента в заданном диапазоне – не чудо, которым некоторые почему-то восторгаются, а всего лишь признак постоянства тяговых сил. Если пренебречь сопротивлением воздуха (к примеру, на первой передаче оно невелико), то и ускорение машины в этом диапазоне постоянное. Это довольно удобно для водителя. Но спросим себя: если бы в начале диапазона момент был таким же, а ближе к пресловутым «верхам» стал больше, стал бы с таким «подхватом» автомобиль хуже? – Вряд ли. Разве только что-нибудь нарушилось бы в смысле экологии.
Мощность можно менять и при постоянных оборотах. Пример: мы ехали со скоростью 90 км/ч по горизонтальному шоссе, а с началом подъема, дабы сохранить скорость, пришлось больше открыть дроссель. Это увеличение момента в чистом виде.
Итак, имеем дело с формулой (1). К примеру, перед нами скромный двигатель грузовика с моментом 35 кгм при оборотах 3000 в минуту. Какова мощность? Тут отметим, что в расчетах всегда важен правильный выбор единиц измерений параметров. Угловую скорость измеряют в 1/сек. А момент? – В старых единицах это кгм. Получаем: N = 35 кгм . 0,1047 . 3000 1/сек = 10993 кгм/сек ≈ 146,6 л.с. А в современной системе СИ: 35 кгм = 343,35 Нм. Тогда N = 343,45 Нм • 0,1047 • 3000 1/сек ≈ 107846 Вт.
На всякий случай напомним, что 1 лс = 75 кгм/сек = 75 • 9,81 Нм/сек = 735,75 Вт. Поэтому 107846 Вт ≈ 146,6 л.с.
А теперь прикинем мощность «формульного» двигателя с таким же скромным моментом, но при оборотах 18 тысяч! Результат – 880 л.с. (647 кВт), которые обеспечивают машине роскошную динамику. Никакого чуда нет: чем больше циклов совершит наш «моментик» за одну секунду, тем больше и совершенная им работа. Еще пример. В авиатехнике ныне практически господствуют газотрубинные двигатели. Повторив наш расчет для небольшого двигателя, с оборотами свободной турбины 40 тысяч в минуту, получим мощность около 1950 л.с. или 1438 кВт. Момент турбины невелик, но ведь воздушный винт приводится от нее не напрямую, а через редуктор, – а уж «мощи» ему хватает!
Но вернемся к автомобилю. Как уже сказано, любому комфортней ездить на машине, у которой под капотом достаточно и мощности, и момента. Но многим приходится ездить на скромных авто, возможности коих, как нынче говорят, «очень бюджетные»! Всякий, кто не умеет вовремя переключать передачи, с ними испытывает неприятности. Значит, надо учиться, друзья. Ну а что делать владельцу авто с АКП? На смену недовольству двигателем зачастую приходят претензии к автомату. Нередко – справедливые, ведь у АКПП тоже случаются специфические болячки, требующие ремонта. Но часто они оказываются не обоснованными: современный автомобиль, насыщенный электроникой и настроенный изготовителем на строгое выполнение жестких экологических норм, вовсе не обязан подстраиваться под любую российскую лихость!
Гусеничному трактору дернуться и оборвать сцепку – плевое дело. Это похоже на выстрел из ружья – можно на миг и «формулу I» опередить. А дольше – никак. Ружье от ракеты отличается принципиально: последняя сохраняет нужное ускорение достаточно долго. В свое время, при стартах к Луне гигант «Сатурн 5» массой свыше 3100 т отделялся от пускового устройства мягко, как пассажирский поезд, – с ускорением чуть больше 1 м/сек2. А минут через пять, по мере выгорания топлива, настолько «терял в весе», что его скорость перед выключением первой ступени составляла 3 км/сек.
Низшая передача бульдозера крайне «коротка»: чуть «перекрутил» – тяга упала. А другие не лучше, – вон и «формула» уже растворилась за горизонтом, так что для серьезных игрищ «мощи» на гусеницах маловато.
Если пренебречь разницей в КПД передач (она невелика), то на любой передаче машину движут одни и те же киловатты. Но движут по-разному. Момент и тяговая сила на ведущих колесах подчиняются «золотому правилу»: сколько процентов выиграешь в скорости, столько потеряешь в силе. Это показывают рис. 1 и 2. Если двигатель заведомо слаб, с ним сильно не разгонишься.

Рис. 1. Величины мощности N1 … N5 на ведущей оси не зависят от включенной передачи. Точки пересечения кривой Nсопр с кривыми N3, N4 и N5 дают информацию о максимальных скоростях автомобиля на этих передачах. Здесь самая скоростная на горизонтальной дороге в безветрие – четвертая.

Вся история современной транспортной техники – это непрерывная борьба за большие мощности. У наиболее знаменитых ракетоносителей они давно превысили 100 миллионов кВт. Это не ошибка — именно 100 000 000 000 Вт, или 100 ГигаВатт. И хотя притязания автомобилиста не столь велики, «прохватить» на динамичной машине всякий не прочь.
Главные враги любителя скорости – не гаишники, а силы, тормозящие движение, – от этих не откупишься! Мощность сопротивления воздуха вкупе с мощностью шинных потерь показаны на рис. 1 линией Nсопр.
(Желающие посчитать, могут воспользоваться следующими формулами. Nсопр. = Nw + Nf. Мощность аэродинамических потерь Nw для автомобиля весом 15000 Н при плотности воздуха 1,25 кг/м3, Сх = 0,3 и лобовой площади S = 2 • м2 составляет: Nw = (0,3 • 2 • 1,25)/2 • v3 = 0,375 v3 Вт. А мощность шинных потерь Nf = 0,015 • 15000 • v = 225 v Вт. При 100 км/ч Nсопр составляет лишь 14,5 кВт. А при 200 км/ч – 77 кВт. Разница впечатляет?)
Колеса автомобиля, борясь с мощностями сил сопротивления, при максимальной скорости полностью расходуют мощность, получаемую от двигателя. Но ее характеристика (например, показанная кривой N4 на рис.1) при полностью открытом дросселе похожа на гору с округлой макушкой, тогда как характеристика мощности сопротивлений Nсопр. поднимается как крутая парабола. Чтобы полностью использовать арсенал мощности двигателя – и получить максимум скорости V4 (на горизонтальной трассе, без ветра), передаточное число трансмиссии и размер шин подбирают так, чтобы кривая Nсопр пересекла кривую N4 возле вершины. Максимальные скорости на третьей и пятой передачах (V3 и V5) существенно ниже. Но на спуске или с ветром вдогон выгодней может стать пятая передача, а на подъеме или с ветром в лоб – третья.
Другие враги скорости – подъем дороги и встречный ветер. Подъем с углом всего 1,5% добавит к потерям в шинах еще столько же. Но еще коварней ветер. Его скорость сложится со скоростью машины относительно дороги, – и уже эту сумму в расчете затрат мощности надо возвести в куб! При скорости по спидометру 36 км/ч (10 м/сек) и ровном встречном ветре 5 м/сек мощность Nсопр вырастет лишь на 0,9 кВт, а вот при 180 км/ч (50 м/сек) – аж на 15,5 кВт. Но придуманный нами автомобиль так ехать не может… Маловато мощи! Максимальная скорость снизится почти на 20 км/ч.

Рис. 2 — Так зависит крутящий момент (М1….М5) или тяговая сила (Fтяг 1 …Fтяг 5) на ведущей оси от включенной передачи. При коэффициенте сцепления шин с дорогой 0,7 ведущая ось, нагруженная половиной веса машины (Gавтом = 15000 н), может создать реальную тяговую силу не больше Fмакс. доп. = 5250 Н.

На рис.2 величины крутящего момента М1…М5, а заодно и теоретические тяговые силы F1…F5 на ведущей оси, показаны одними и теми же кривыми, – ведь тяговые силы пропорциональны моментам. Величины сил – на вертикальной оси справа. Но тут важно учесть следующее.
Разгоняет машину не вся тяговая сила, а лишь избыточная – то есть разница между полной тяговой силой колес и сопротивлением воздуха. Отношение этой силы к весу машины академик Чудаков назвал динамическим фактором D. На первой передаче сопротивление воздуха мало, его можно не учитывать – считать, что машину разгоняет полная сила Fтяг.1. Но отталкиваться от дороги сильней, чем позволяет сцепление шин, невозможно! Если, например, ведущая ось несет половину веса машины – 7500 Н, то при коэффициенте сцепления φ = 0,7 тяговая сила не может превысить 35% ее веса. Это неплохо согласуется с такой официальной характеристикой любого автомобиля как предельно возможный угол подъема. С «моноприводом» трудно получить больше. Правда, у машины с задним приводом на подъемах ведущие колеса несколько догружаются весом машины, а вот передний тут невыгоден. Лучшая схема, но сложная и дорогая, – полный привод (конечно, не с такой скромной мощностью, как у «Нивы» или УАЗа!).
Если избыточная сила (на первой передаче, например) слишком велика, машина «шлифует» дорогу. Дело нелепое, нужно перейти на следующую передачу. А вот при разработке нового авто конструктор учитывает высокую мощность двигателя и ее следствие – тяговые силы в передаточных числах трансмиссии. Передачи проектируются как достаточно «длинные», расширяющие диапазон скоростей при достаточных ускорениях. А это значит, что и при более высоких скоростях действуют нужные тяговые силы (или моменты) на колесах. Иначе говоря, реализуется весь арсенал мощности! Значит, она все же важнее.

Споры на тему влияния мощности-момента ведутся давно, и конца им не видно. Вроде бы сто раз уже объясняли самыми разными способами, что тут к чему, а воз и ныне там. Вызывает неподдельный интерес, откуда все же берется заблуждение и почему оно такое устойчивое?
Причин видится две. Одна из них в том, что мощность есть функция от момента. Зависимость мощности от момента стоит барьером, который преодолеть оказывается непросто. Что странно. Поскольку очевидность того, что мощность есть функция не только от момента, но и от оборотов, не оспаривается, и тот факт, что у разных двигателей бывает весьма большой разброс по соотношению мощности к моменту, также не подвергается сомнению. То есть существует молчаливое согласие с тем, что мощность есть функция от двух аргументов — оборотов и момента, но при этом зависимость от оборотов как бы игнорируется. Почему?
А в этом и есть вторая, главная причина заблуждения. И ключевая фраза здесь: «Человек совершенно может не иметь понятие про мощность.А вот разницу в ускорении на 3 и 4 передаче он вполне способен почувствовать.» Ясно, что на динамику автомобиля оказывают большое влияние и передаточные числа КПП. На графике 1 видны кривые мощности двигателя, смещенные в зависимости от разных передаточных чисел и кривая сопротивлений. Видно, что с ростом передаточного числа динамика резко возрастает. Это очевидно и вопросов не вызывает. Странно, что не менее очевидный факт, что бОльшая часть времени при разгоне приходится вовсе не на 1 и 2 передачи, а на 3-4, при этом упускается из виду.
При разгоне здравомыслящий водитель пользуется всеми четырьмя передачами и весьма широким диапазоном частот вращения двигателя. При этом редко задумывается о том, что динамика разгона на высокой скорости мала и плохо ощущается, но именно на нее и приходится львиная доля времени разгона (по той простой причине, повторю, что на высших передачах динамика хуже и потому занимает бол

Мощность и крутящий момент — что это?

ЧТО ТАКОЕ ЛОШАДИНАЯ СИЛА?

— У тебя сколько сил? — такой вопрос слышал любой, кто хоть немного касался мира автомобилей. Никому даже пояснять не надо, какие силы на самом деле имеются в виду — лошадиные. Именно в них мы привыкли оценивать мощность мотора, одну из важнейших потребительских характеристик машины.

Уже и гужевого транспорта практически не осталось даже в деревнях, а эта единица измерения живёт и здравствует больше ста лет. А ведь лошадиная сила — величина, по сути, нелегальная. Она не входит в международную систему единиц (полагаю, многие со школы помнят, что называется она СИ) и потому не имеет официального статуса. Более того, Международная организация законодательной метрологии требует как можно скорее изъять лошадиную силу из обращения, а директива ЕС 80/181/EEC от 1 января 2010 прямо обязует автопроизводителей использовать традиционные «л.с.» только как вспомогательную величину для обозначения мощности.

Но не зря считается, что привычка — вторая натура. Ведь говорим же мы в обиходе «ксерокс» вместо копир и обзываем клейкую ленту «скотчем». Вот и непризнанные «л.с.» сейчас используют не только обыватели, но и едва ли не все автомобильные компании. Какое им дело до рекомендательных директив? Раз покупателю удобнее — пусть так и будет. Да что там производители — даже государство на поводу идёт. Если кто забыл, в России транспортный налог и тариф ОСАГО именно от лошадиных сил высчитываются, как и стоимость эвакуации неправильно припаркованного транспорта в Москве.

Лошадиная сила родилась в эпоху промышленной революции, когда потребовалось оценить, насколько эффективно механизмы заменяют животную тягу. По наследству от стационарных двигателей эта условная единица измерения мощности со временем перешла и на автомобили

И никто бы к этому не придирался, если не одно весомое «но». Задуманная, чтобы упростить нам жизнь, лошадиная сила на самом деле вносит путаницу. Ведь появилась она в эпоху промышленной революции как совершенно условная величина, которая не то что к автомобильному мотору, даже к лошади имеет достаточно опосредованное отношение. Смысл этой единицы в следующем — 1 л.с. достаточно, чтобы поднять груз массой 75 кг на высоту 1 метр за 1 секунду. Фактически, это сильно усреднённый показатель производительности одной кобылы. И не более того.

Иными словами, новая единица измерения очень пригодилась промышленникам, добывавшим, к примеру, уголь из шахт, и производителям соответствующего оборудования. С её помощью было проще оценить преимущество механизмов над животной силой. А поскольку приводились станки уже паровыми, а позднее и керосиновыми двигателями, то «л.с.» перешли по наследству и к самобеглым экипажам.

Джеймс Уатт — шотландский инженер, изобретатель, учёный, живший в XVIII — начале XIX века. Именно он ввёл в обращение как «нелегальную» сейчас лошадиную силу, так и официальную единицу измерения мощности, которую назвали его именем

По иронии судьбы изобрёл лошадиную силу человек, именем которого названа официальная единица измерения мощности — Джеймс Уатт. А поскольку ватт (а точнее, применительно к могучим машинам, киловатт — кВт) к началу XIX века тоже активно входил в оборот, пришлось две величины как-то приводить друг к другу. Вот здесь-то и возникли ключевые разногласия. Например, в России и большинстве других европейских стран приняли так называемую метрическую лошадиную силу, которая равна 735,49875 Вт или, что сейчас нам более привычно, 1 кВт = 1,36 л.с. Такие «л.с.» чаще всего обозначают PS (от немецкого Pferdestärke), но есть и другие варианты — cv, hk, pk, ks, ch… При этом в Великобритании и ряде её бывших колоний решили пойти своим путём, организовав «имперскую» систему измерений с её фунтами, футами и прочими прелестями, в которой механическая (или, по-другому, индикаторная) лошадиная сила составляла уже 745,69987158227022 Вт. А дальше — пошло-поехало. К примеру, в США придумали даже электрическую (746 Вт) и котловую (9809,5 Вт) лошадиные силы.

Вот и получается, что один и тот же автомобиль с одним и тем же двигателем в разных странах на бумаге может иметь разную мощность. Возьмём, например, популярный у нас кроссовер Kia Sportage — в России или Германии по паспорту его двухлитровый турбодизель в двух вариантах развивает 136 или 184 л.с., а в Англии — 134 и 181 «лошадку». Хотя на самом деле отдача мотора в международных единицах составляет ровно 100 и 135 кВт — причём в любой точке земного шара. Но, согласитесь, звучит непривычно. Да и цифры уже не такие впечатляющие. Поэтому автопроизводители и не спешат переходить на официальную единицу измерения, объясняя это маркетингом и традициями. Это как же? У конкурентов будет 136 сил, а у нас всего 100 каких-то кВт? Нет, так не пойдёт…

КАК ИЗМЕРЯЮТ МОЩНОСТЬ?

Впрочем, «мощностные» хитрости игрой с единицами измерения не ограничиваются. До последнего времени её не только обозначали, но даже измеряли по-разному. В частности, в Америке долгое время (до начала 1970-х годов) автопроизводители практиковали стендовые испытания двигателей, раздетых догола — без навески вроде генератора, компрессора кондиционера, насоса системы охлаждения и с прямоточной трубой вместо многочисленных глушителей. Само собой, сбросивший оковы мотор легко выдавал процентов на 10-20 больше «л.с.», так необходимых менеджерам по продажам. Ведь в тонкости методики испытаний мало кто из покупателей вдавался.

Другая крайность (но гораздо более приближенная к реальности) — снятие показателей прямо с колёс автомобиля, на беговых барабанах. Так поступают гоночные команды, тюнинговые мастерские и прочие коллективы, которым важно знать отдачу мотора с учётом всех возможных потерь, и трансмиссионных в том числе.

Мощность также зависит от того, как её измерять. Одно дело крутить на стенде «голый» мотор без навесного оборудования и совсем другое — снимать показания с колёс, на беговых барабанах, с учётом трансмиссионных потерь. Современные методики предлагают компромиссный вариант — стендовые испытания двигателя с необходимой для его автономной работы навеской

Но в итоге за образец в различных методиках вроде европейских ECE, DIN или американских SAE приняли компромиссный вариант. Когда двигатель устанавливают на стенде, но со всей необходимой для бесперебойного функционирования навеской, включая стандартный выпускной тракт. Снять можно только оборудование, относящееся к другим системам машины (к примеру, компрессор пневмоподвески или насос гидроусилителя руля). То есть тестируют мотор ровно в том виде, в котором он фактически стоит под капотом автомобиля. Это позволяет исключить из финального результата «качество» трансмиссии и определить мощность на коленвале с учётом потерь на привод основных навесных агрегатов. Так, если говорить о Европе, то эту процедуру регламентирует директива 80/1269/EEC, впервые принятая ещё в 1980 году и с тех пор регулярно обновляемая.

ЧТО ТАКОЕ КРУТЯЩИЙ МОМЕНТ?

Но если мощность, как говорят в Америке, помогает автомобили продавать, то двигает их вперёд крутящий момент. Измеряют его в ньютон-метрах (Н∙м), однако у большинства водителей до сих пор нет чёткого представления об этой характеристике мотора. В лучшем случае обыватели знают одно — чем выше крутящий момент, тем лучше. Почти как с мощностью, не правда ли? Вот только чем тогда «Н∙м» отличаются от «л.с.».?

На самом деле, это связанные величины. Более того, мощность — производная от крутящего момента и оборотов мотора. И рассматривать их по отдельности просто нельзя. Знайте — чтобы получить мощность в ваттах необходимо крутящий момент в ньютон-метрах умножить на текущее число оборотов коленвала и коэффициент 0,1047. Хотите привычные лошадиные силы? Нет проблем! Делите результат на 1000 (таким образом получатся киловатты) и умножайте на коэффициент 1,36.

Чтобы обеспечить дизелю (на фото слева) высокую степень сжатия, инженеры вынуждены делать его длинноходным (это когда ход поршня превышает диаметр цилиндра). Поэтому у таких моторов крутящий момент конструктивно получается большим, но предельное число оборотов приходится ограничивать ради повышения ресурса. Разработчикам бензиновых агрегатов, наоборот, проще получить высокую мощность — детали здесь не такие массивные, степень сжатия меньше, так что двигатель можно сделать короткоходным и высокооборотным. Впрочем, в последнее время различие между дизелями и бензиновыми агрегатами постепенно стирается — они становятся всё более похожими как по конструкции, так и по характеристикам

Выражаясь техническим языком, мощность показывает, сколько работы способен выполнить мотор за единицу времени. А вот крутящий момент характеризует потенциал двигателя к совершению этой самой работы. Показывает сопротивление, которое он может преодолеть. Например, если машина упрётся колёсами в высокий бордюр и не сможет тронуться с места, мощность будет нулевой, так как никакой работы мотор не совершает — движения нет, но крутящий момент при этом развивается. Ведь за то мгновение, пока движок не заглохнет от натуги, в цилиндрах сгорает рабочая смесь, газы давят на поршни, а шатуны стараются привести во вращение коленвал. Иными словами, момент без мощности существовать может, а мощность без момента — нет. То есть именно «Н∙м» являются основной «продукцией» двигателя, которую он производит, превращая тепловую энергию в механическую.

Если проводить аналогии с человеком, «Н∙м» отражают его силу, а «л.с.» — выносливость. Именно поэтому тихоходные дизельные двигатели в силу своих конструктивных особенностей у нас, как правило, тяжелоатлеты — при прочих равных условиях они могут тащить на себе больше и легче преодолевают сопротивление на колёсах, пусть и не так проворно. А вот быстроходные бензиновые моторы скорее относятся к бегунам — нагрузку держат хуже, зато перемещаются быстрее. В общем, действует простое правило рычага — выигрываем в силе, проигрываем в расстоянии или скорости. И наоборот.

Так называемая внешняя скоростная характеристика двигателя отражает зависимость мощности и крутящего момента от оборотов коленвала при полностью открытом дросселе. По идее, чем раньше наступает пик тяги и позже — мощности, тем проще мотору адаптироваться к нагрузкам, его рабочий диапазон увеличивается, что позволяет водителю или электронике реже переключать передачи и почём зря не жечь топливо. На этих графиках видно, что бензиновый двухлитровый турбомотор (справа) выигрывает по этому показателю у турбодизеля аналогичного объёма, но уступает ему в абсолютной величине крутящего момента

Как это выражается на практике? В первую очередь, надо понять, что именно кривые крутящего момента и мощности (вместе, а не по отдельности!) на так называемой внешней скоростной характеристике двигателя будут раскрывать его истинные возможности. Чем раньше достигается пик тяги и позже пик мощности, тем лучше мотор приспособлен к своим задачам. Возьмём простой пример — автомобиль движется по ровной дороге и вдруг начинается подъём. Сопротивление на колёсах возрастает, так что при неизменной подаче топлива обороты станут падать. Но если характеристика двигателя грамотная, крутящий момент при этом наоборот начнёт расти. То есть мотор сам приспособится к увеличению нагрузки и не потребует от водителя или электроники перейти на передачу пониже. Перевал пройден, начинается спуск. Машина пошла на разгон — высокая тяга здесь уже не так важна, критичным становится другой фактор — мотор должен успевать её вырабатывать. То есть на первый план выходит мощность. Которую можно регулировать не только передаточными числами в трансмиссии, а повышением оборотов двигателя.

Здесь уместно вспомнить гоночные автомобильные или мотоциклетные моторы. В силу относительно небольших рабочих объёмов, они не могут развить рекордный крутящий момент, зато способность раскручиваться до 15 тысяч об/мин и выше позволяет им выдавать фантастическую мощность. К примеру, если условный двигатель при 4000 об/мин обеспечивает 250 Н∙м и, соответственно, примерно 143 л.с., то при 18000 об/мин он мог бы выдать уже 640,76 л.с. Впечатляет, не правда ли? Другое дело, что «гражданскими» технологиями это не всегда получается добиться.

И, кстати, в этом плане близкую к идеальной характеристику имеют электродвигатели. Они развивают максимальные «ньютон-метры» прямо со старта, а потом кривая крутящего момента плавно падает с ростом оборотов. График мощности при этом прогрессивно возрастает.

Современные моторы «Формулы 1» имеют скромный объём 1,6 л и относительно невысокий крутящий момент. Но за счёт турбонаддува, а главное — способности раскручиваться до 15000 об/мин, выдают порядка 600 л.с. Кроме того, инженеры грамотно интегрировали в силовой агрегат электродвигатель, который в определённых режимах может добавлять ещё 160 «лошадок». Так что гибридные технологии могут работать не только на экономичность

Думаю, вы уже поняли — в характеристиках автомобиля важны не только максимальные значения мощности и крутящего момента, но и их зависимость от оборотов. Вот почему журналисты так любят повторять слово «полка» — когда, допустим, мотор выдаёт пик тяги не в одной точке, а в диапазоне от 1500 до 4500 об/мин. Ведь если есть запас крутящего момента, мощности тоже, скорее всего, будет хватать.

Но всё же лучший показатель «качества» (назовём его так) отдачи автомобильного двигателя — его эластичность, то есть способность набирать обороты под нагрузкой. Она выражается, например, в разгоне от 60 до 100 км/ч на четвёртой передаче или с 80 до 120 км/ч на пятой — это стандартные тесты в автомобильной индустрии. И может случиться так, что какой-нибудь современный турбомотор с высокой тягой на малых оборотах и широченной полкой момента даёт ощущение отличной динамики в городе, но на трассе при обгоне окажется хуже древнего атмосферника с более выгодной характеристикой не только момента, но и мощности…

Так что пусть в последнее время разница между дизельными и бензиновыми агрегатами становится всё более расплывчатой, пусть развиваются альтернативные моторы, но извечный союз мощности, крутящего момента и оборотов двигателя останется актуальным. Всегда.

Крутящий момент и зависимость крутящего момента

Как рассчитать крутящий момент, зная обороты и мощность двигателя?

Крутящий момент напрямую зависит от мощности и числа оборотов двигателя в минуту. Имеется общепринятая формула расчета крутящего момента, выражаемого в Ньютон-метрах ( русское обозначение Н·м, международное N·m ) 

 

M = P х 9550 / N

 

Где P — это мощность двигателя в киловаттах (кВт)

N — обороты вала в минуту

 

 

Как рассчитать мощность двигателя, зная крутящий момент и обороты?

Для такого расчета существует формула:

 

P = M х N / 9550

 

Где M — это крутящий момент двигателя

N — это обороты двигателя

 

Для скорости и простоты расчета воспользуйтесь удобным калькулятором крутящего момента. Впишите в ячейки калькулятора имеющиеся значения и калькулятор автоматически проставит результаты расчета.

 

Калькулятор крутящего момента

мощность или крутящий момент? — журнал За рулем

В технических характеристиках автомобиля присутствуют и максимальная мощность, и максимальный крутящий момент. Рассказываем, какой из показателей «для красоты», а какой — для удобства управления.

Материалы по теме

Конечно, на мощности зациклены все. От знакомых девушек, на которых магия цифр оказывает убийственное влияние, до налоговиков, которые очень радуются каждой ступени повышения мощности после 100 л.с, но особо предпочитают машины с цифрой свыше 250 л.с.

Максимальная мощность определяет возможность транспортного средства достигать максимальной скорости. Здесь зависимость далеко не прямая, но более мощные автомобили при сравнимой массе имеют большую максималку.

А вот на то, как быстро удастся достигнуть максимальной скорости, оказывает влияние характеристика крутящего момента двигателя. Возьмем два мотора с одинаковой максимальной мощностью, но у одного кривая момента имеет форму обычного горба, а другой очень быстро (при небольших оборотах) достигает максимального значения и далее держит полку этого момента вплоть до почти максимальных оборотов. С каким мотором разгон будет лучше? Конечно, со вторым, ведь обычно разгон на каждой передаче происходит в диапазоне оборотов коленвала от 2000 до 4000, ну, возможно, 5000 в минуту. А двигатель все время будет выдавать в этом диапазоне максимальный крутящий момент.

Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.

Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.

Материалы по теме

По такому алгоритму разгоняются на ручных коробках передач, гидромеханических автоматах и роботизированных коробках. Вариаторы стоят несколько особняком. В принципе, более ранние конструкции вариаторов работали честнее современных. На разгоне, особенно в режиме «педаль газа в пол», они обеспечивали в начале разгона самое большое передаточное отношение и позволяли мотору быстро достигнуть оборотов, близких к максимальным. Далее двигатель продолжал работать при максимальных оборотах и мощности, а вариатор, меняя передаточное отношение, обеспечивал самый эффективный разгон. И было почти все равно, моментный мотор или нет. Важна была только максимальная мощность. Хотя не всегда же разгон происходит в режиме кик-дауна.

В последнее время вариаторы, в угоду водительским привычкам, научили имитировать переключение передач. Зачем — непонятно. Я считаю, что водителю важно, чтобы правая педаль обеспечивала максимально ровное, большее или меньшее, в зависимости от ситуации, ускорение.

Итак, моментные моторы обеспечивают более удобное управление ускорением транспортного средства, а, значит, помогают водителю в непростых дорожных условиях. Поэтому моторы с «полкой» крутящего момента нравятся водителям, и такую характеристику им предлагают конструкторы, внедряя прежде всего моторы с турбонаддувом. Высокий, начиная с небольших оборотов крутящий момент повышает удобство управления автомобилем, а потому более важен, чем максимальная мощность, которая не требуется почти никогда.

  • Как улучшить управляемость автомобиля, читайте тут.

В чем разница между крутящим моментом и мощностью?

Большинство рекламных роликов о больших грузовиках рекламируют впечатляющую мощность и крутящий момент, которые обеспечивает двигатель. Вроде как обычно, чем больше цифр, тем лучше. Но что означают эти числа и как связаны эти две концепции?

Мощность, которую производит двигатель, называется мощностью в лошадиных силах. С математической точки зрения, одна лошадиная сила — это мощность, необходимая для перемещения 550 фунтов на один фут за одну секунду, или мощность, необходимую для перемещения 33000 фунтов на один фут за одну минуту.В физике мощность определяется просто как скорость выполнения работы.

Объявление

Мощность двигателя измеряется на динамометре. Динамометр нагружает двигатель и измеряет крутящую силу, которую коленчатый вал двигателя прикладывает к нагрузке. Нагрузка обычно представляет собой тормоз, предотвращающий пробуксовку колес.

На самом деле динамометр измеряет выходной крутящий момент двигателя. В автомобиле крутящий момент измеряется при различных оборотах двигателя или оборотах в минуту (об / мин).Эти два числа вводятся в формулу — крутящий момент, умноженный на число оборотов в минуту, деленный на 5 252, — чтобы получить мощность в лошадиных силах. Общество инженеров автомобильной промышленности имеет два стандарта определения мощности: чистая и полная. Перед испытанием максимальная мощность снимает с двигателя большую часть нагрузки, включая средства контроля выбросов. Чистая мощность — это то, что определяется при тестировании серийного автомобиля того же типа, что вы найдете в выставочном зале, и это измерение сейчас используется в рекламе и в литературе производителей.

Мощность в лошадиных силах определяется по крутящему моменту, потому что крутящий момент легче измерить.Крутящий момент определяется конкретно как вращающая сила, которая может или не может приводить к движению. Он измеряется как величина силы, умноженная на длину рычага, через который она действует. Например, если вы используете гаечный ключ длиной один фут для приложения силы 10 фунтов к головке болта, вы создаете крутящий момент 10 фунт-фут.

Крутящий момент, как упоминалось выше, можно создать без перемещения объекта. Однако, когда он действительно перемещает объект, он становится «работой», и это то, о чем большинство людей думают, когда думают о крутящем моменте (обычно в терминах буксировки).Чем больше крутящий момент производит двигатель, тем больше у него рабочего потенциала.

Читайте дальше, чтобы узнать больше о взаимосвязи между мощностью и крутящим моментом.

.

В чем разница между скоростью и крутящим моментом?

Целью роторного двигателя является обеспечение желаемой выходной скорости вращения при одновременном преодолении различных вращательных нагрузок, сопротивляющихся этому вращательному выходу (крутящий момент). Скорость и крутящий момент напрямую связаны и являются двумя основными факторами производительности при правильном выборе двигателя для конкретного применения или использования. Чтобы узнать, как выбрать правильный двигатель для вашего применения, первым делом необходимо понять взаимосвязь между скоростью, крутящим моментом и выходной мощностью двигателя.

Скорость в зависимости от крутящего момента

Выходная мощность двигателя устанавливает границы характеристик скорости и крутящего момента двигателя на основе уравнения:
Мощность (P) = Скорость (n) x Крутящий момент (M)

    • Мощность: Механическая выходная мощность двигателя определяется как выходная скорость, умноженная на выходной крутящий момент, и обычно измеряется в ваттах (Вт) или лошадиных силах (л.с.).
    • Скорость: Скорость двигателя определяется как скорость, с которой двигатель вращается.Скорость электродвигателя измеряется в оборотах в минуту или об / мин.
    • Крутящий момент: Выходной крутящий момент двигателя — это величина силы вращения, которую развивает двигатель. Крутящий момент небольшого электродвигателя обычно измеряется в дюймах-фунтах (дюймах-фунтах), ньютон-метрах (Н-м) или в других напрямую преобразованных единицах измерения.

Поскольку номинальная выходная мощность двигателя является фиксированным значением, скорость и крутящий момент обратно пропорциональны. По мере увеличения выходной скорости доступный выходной крутящий момент пропорционально уменьшается.По мере увеличения выходного крутящего момента выходная скорость пропорционально уменьшается. Это соотношение мощности, скорости и крутящего момента обычно иллюстрируется кривой производительности двигателя, которая часто включает потребляемый двигателем ток (в амперах) и КПД двигателя (в%).

Соображения по скорости и крутящему моменту при выборе электродвигателя

Ключом к выбору правильного двигателя для конкретной функции является сначала понимание требований приложения. Поскольку большинство применений двигателей являются динамическими, а это означает, что требования к крутящему моменту и скорости меняются внутри приложения, очень важно определить различные рабочие точки в приложении.Знание или расчет требований к скорости и крутящему моменту в каждой рабочей точке приложения определит общие требования к скорости и крутящему моменту для соответствующего двигателя. Выбор двигателя можно проверить путем нанесения различных рабочих точек приложения на характеристическую кривую выбранного двигателя, чтобы убедиться, что каждая точка зависимости скорости от крутящего момента попадает в соответствующую зону кривой (непрерывные или прерывистые зоны).

Во многих случаях прикладные требования вынуждают выбирать стандартный двигатель значительно большего размера, чтобы гарантировать охват всех рабочих точек.Применение двигателей, размер которых слишком велик для конкретного применения, приводит к ненужным расходам, а также к более крупной и тяжелой конструкции всего продукта. К счастью, поставщики двигателей на заказ могут разработать двигатели с оптимизированными характеристиками, которые точно соответствуют требованиям приложения. Это достигается путем изменения электромагнитных характеристик двигателя путем изменения либо размера провода, либо количества витков провода в обмотке, либо того и другого. Чем больше витков провода меньшего диаметра, тем выше крутящий момент и меньше скорость, тогда как меньшее количество витков провода большего диаметра обеспечивает более высокую скорость, но меньший крутящий момент.В некоторых приложениях добавление зубчатой ​​передачи к выходной мощности двигателя обеспечивает идеальное соотношение скорости и крутящего момента, сводя к минимуму стоимость и размер всего решения.

.Максимальное ускорение

: пиковая мощность против максимального крутящего момента — Автоэксперт Джона Кадогана

ТЯГОВОЕ УСИЛИЕ МИНУС УПРАВЛЕНИЕ

И, конечно, вам нужно вычесть любые сопротивления, с которыми борется автомобиль, — например, сопротивление качению шин и аэродинамическое сопротивление, которое сильно зависит от скорости.

Есть еще гравитация, которая помогает, если вы бежите под гору, и больно, если вы с трудом поднимаетесь в гору.

Итак: как добиться максимального усилия, которое трансмиссия прилагает к дороге?

Очевидно, толчок вперед идет от колес.В частности, ведущие колеса — в данном случае два передних — крутящий момент, который вращает колеса, как будто буквально толкает машину вперед. (Вы можете перемещать крутящие моменты в любом месте на твердых телах — это не влияет на их поведение.) Колеса вращают автомобиль вперед.

И эта сила вперед — тяговое усилие — зависит только от двух вещей: во-первых, это крутящий момент на колесах, который исходит от коленчатого вала, но регулируется через коробку передач и редуктор главной передачи.

Во-вторых, необходимо учесть радиус качения шины. Здесь 319 миллиметров.

Итак, для максимального ускорения автомобиля в любой момент времени, нам нужно максимизировать крутящий момент на ведущих колесах. Задумайтесь об этом, и давайте подумаем о двигателе.

.

Инженерное объяснение погружений в крутящий момент электромобиля по сравнению с газом HP

Забирает нас на несколько быстрых поездок

Когда мы говорим об автомобилях и их характеристиках, всегда упускают из виду термины «мощность» и «крутящий момент». Но что означают эти термины и как они помогают нам сравнивать возможности автомобиля с бензиновым двигателем и электромобиля? Мы рады, что вы спросили, потому что в видео выше ведущий Engineering Explained Джейсон Фенске проводит нас через это техническое минное поле, используя свои Honda S2000 и Nissan LEAF.Затем он объясняет, как крутящий момент связан с Формулой E.

Чтобы помочь объяснить числа, он делает несколько ускорений в транспортных средствах, разгоняется до 80 миль в час, делая заметки по пути. LEAF имеет гораздо больший крутящий момент, но намного меньше мощности и относительно тяжелый. Хонда? Он обладает огромной мощностью, но относительно низким крутящим моментом. К тому же он довольно легкий. Несмотря на меньшую мощность и вес, LEAF опережает конкурента с двигателем внутреннего сгорания до 50 миль в час.Кроме того, Хонда сияет. Если, конечно, вы не разгоните маленькую спортивную машину до 5000 об / мин и не сбросите сцепление. Тогда Хонда быстрее, даже на более низких скоростях. Смущенный? Хит-игра!

Описание видео:

Поскольку электромобили развивают максимальный крутящий момент при нулевых оборотах в минуту, вы можете быть удивлены тем ускорением, на которое они способны, особенно на более низких скоростях. С другой стороны, двигатели внутреннего сгорания должны раскручиваться на гораздо более высокой скорости, чем электродвигатели, прежде чем они будут обеспечивать максимальный крутящий момент, особенно такие двигатели, как F20C в Honda S2000, использованной в этом видео.

Для сравнения выбраны разные автомобили. Nissan Leaf имеет высокий крутящий момент, 236 фунт-фут, но относительно низкую мощность — 147 л.с. Honda S2000 с другой стороны имеет приличную мощность, 265 л.с. , но низкий крутящий момент всего 163 фунт-фут. Двигатель разработан для достижения максимальной мощности и максимального крутящего момента на очень высоких оборотах, превышающих 8000, по сравнению с нулевыми оборотами, как у Leaf. Однако S2000 намного легче. Какое транспортное средство будет ускоряться быстрее? Я создал простой тест с 0 до 80 миль в час, чтобы показать, как отличается мощность каждого автомобиля.

Источник: YouTube

.

Какой из них важнее в автомобилях?

Разница между мощностью и крутящим моментом: что важнее для автомобилей? | Репрезентативное изображение & nbsp

Ключевые особенности

  • Автомобиль с большей мощностью в идеале будет иметь лучшее ускорение и более высокую максимальную скорость.
  • Крутящий момент — это тяговое усилие двигателя, помогающее при начальном ускорении
  • Мощность в лошадиных силах влияет на скорость автомобиля, а крутящий момент влияет на несущую способность

Мощность и крутящий момент — одни из наиболее распространенных терминов, используемых в контексте автомобилей, но очень немногие люди знают разницу между ними.Мощность и крутящий момент — это два ключевых термина, используемых для определения характеристик автомобиля, но оба они служат разным целям. Теперь, если вам интересно, какую роль они играют и какая из них более важна при покупке автомобиля, то вот что вам поможет. Мы поможем вам понять основную роль мощности и крутящего момента, а затем объясним разницу между ними.

Давайте сначала разберемся с термином «Энергия»

Энергия — это объем проделанной работы.Он может расходоваться в виде тепла или механической энергии или может содержаться в объекте как потенциальная энергия. Другими словами, для выполнения работы нужна энергия.

Теперь перейдем к крутящему моменту и мощности

Что такое крутящий момент?

Крутящий момент — это сила вращения или скручивания, создаваемая коленчатым валом двигателя. Проще говоря, крутящий момент можно определить как «тяговую силу» двигателя, которая помогает транспортному средству с начальным ускорением. Вот почему в более тяжелых транспортных средствах, таких как внедорожники, часто используются двигатели, обеспечивающие высокий крутящий момент.Высокий крутящий момент помогает силовой установке легко работать, особенно когда автомобиль перевозит тяжелые грузы или поднимается по крутым склонам.

  • Крутящий момент можно рассчитать как Сила X Расстояние.
  • Единица крутящего момента в системе СИ — ньютон-метр, обычно обозначаемая как «Нм»

Что такое мощность?

Мощность определяется как скорость, с которой объект действительно работает. В контексте автомобилей мощность часто описывается как мощность в лошадиных силах. Автомобиль с большей мощностью в идеале будет иметь лучшее ускорение и более высокую максимальную скорость.

  • Мощность может быть рассчитана как крутящий момент X об / мин / 5252, где об / мин означает вращение в минуту
  • Единица мощности в системе СИ — тормозная мощность (л.с.)

Теперь, когда мы поняли основы физики, связанные с мощностью и крутящим моментом, давайте поговорим подробнее об их значении в транспортном средстве и роли, которую они играют.

Мощность и крутящий момент

Крутящий момент — это способность выполнять работу, а мощность — это скорость выполнения работы за заданный промежуток времени.Основное использование крутящего момента — заставить автомобиль ускоряться на начальных этапах движения, в то время как мощность в лошадиных силах определяет скорость ускорения автомобиля.

Для лучшего понимания возьмем два воображаемых автомобиля (A и B) с одинаковым весом и размером. У A мощность 100 л.с. и крутящий момент 250 Нм, а у B 150 л.с. и 200 Нм на выходе. В этом сценарии B имеет больше лошадиных сил, чем A, что означает, что B сможет двигаться с гораздо большей скоростью.

Теперь загрузим в A и B по четыре пассажира и немного багажа.В этом сценарии именно крутящий момент будет играть более важную роль в поддержании производительности двигателя. Из-за меньшего крутящего момента двигатель автомобиля B будет подвергаться большему напряжению, и его характеристики (особенно начальное ускорение) будут ухудшаться по сравнению с двигателем A, который генерирует больший крутящий момент и может относительно легко переносить нагрузку. Транспортному средству A из-за более высокого крутящего момента также может быть легче поддерживать частоту вращения двигателя даже в диапазоне низких оборотов.

Вкратце, мощность в лошадиных силах (л.с.) влияет на скорость автомобиля, а крутящий момент (Нм) влияет на несущую способность.Вот почему большинство внедорожников и грузовых автомобилей используют дизельные двигатели, поскольку они способны генерировать больший крутящий момент по сравнению с бензиновыми аналогами.

Но когда дело доходит до покупки транспортного средства исключительно на основании характеристик мощности и крутящего момента, баланс будет склоняться в сторону мощности, поскольку она имеет тенденцию влиять на общие характеристики транспортного средства, особенно на ускорение (пикап).

Основы мощности и крутящего момента

Не многие понимают, что на самом деле означают мощность и крутящий момент, не говоря уже о том, как они влияют на характеристики автомобиля.Тем не менее, почти в каждой рекламе тяжелых грузовиков в какой-то момент упоминаются эти характеристики. Если вы никогда не замечали, попробуйте прислушаться к нему в следующий раз, когда увидите его.

Мощность, производимая двигателем, называется лошадиных сил. В физике мощность определяется как скорость, с которой что-то работает. Для автомобилей мощность означает скорость. Так что, если вы хотите ехать быстрее и быстрее набирать скорость, вам нужно больше лошадиных сил.

Крутящий момент, с другой стороны, является выражением силы вращения или скручивания .В автомобилях двигатели вращаются вокруг оси, создавая крутящий момент. Крутящий момент можно рассматривать как «силу» автомобиля. Это сила, которая разгоняет спортивный автомобиль от 0 до 60 за секунды и толкает вас обратно в сиденье. Это также то, что приводит в движение большие грузовики, перевозящие тяжелые грузы.

Это основные сведения о мощности и крутящем моменте, но как эти понятия измеряются и как они взаимосвязаны?

За цифрами

С математической точки зрения, лошадиные силы — это сила, необходимая для перемещения 550 фунтов на один фут в секунду или 33 000 фунтов на один фут в минуту.Мощность двигателя измеряется с помощью динамометра, но на самом деле динамометр измеряет выходной крутящий момент двигателя, а также количество оборотов в минуту — или «оборотов в минуту». Эти числа подставляются в формулу (крутящий момент x об / мин / 5 252) для определения мощности. Мощность в лошадиных силах определяется путем измерения крутящего момента, потому что крутящий момент легче рассчитать.

Крутящий момент, как упоминалось ранее, является выражением крутящей силы и измеряется в единицах силы, умноженной на расстояние от оси вращения.Так, например, если вы используете гаечный ключ длиной 1 фут для приложения усилия в 10 фунтов к концу болта, то вы прикладываете крутящий момент в 10 фунт-футов (10 фунт-фут).

2021 Ram 1500:
Грузовик года MotorTrend

Третий год подряд грузовик RAM получает награду MotorTrend Truck of the Year, давая миру знать, а также своим конкурентам, что они кое-что знают, когда дело доходит до производительности, меняющей правила игры. грузовик.

Узнать больше


Взаимосвязь между мощностью и крутящим моментом

И мощность, и крутящий момент влияют на общую скорость автомобиля, поэтому вы можете понять, почему люди смешивают эти два понятия. Однако в реальном мире вождения и перевозки их различия — наряду с конструкцией транспортного средства — имеют большое значение.

Например, чем больше мощность двигателя, тем выше потенциал крутящего момента. Этот «потенциальный» крутящий момент транслируется в реальные приложения через дифференциалы оси автомобиля и трансмиссию.Это объясняет, почему гоночный автомобиль и трактор, имеющие одинаковую мощность, могут так сильно различаться. В гоночном автомобиле весь крутящий момент используется для увеличения скорости через зубчатую передачу, в то время как трактор преобразует лошадиную силу в толкание и тягу чрезвычайно тяжелых грузов.

Другой способ понять, насколько мощность зависит от крутящего момента, — это открутить крышку на новой банке с рассолом. Когда вы изо всех сил открываете банку, вы прикладываете крутящий момент независимо от того, оторвется крышка или нет.Однако лошадиные силы существуют только в движении. Таким образом, вам нужен крутящий момент, чтобы сначала ослабить крышку, а затем вы можете приложить усилия рукой, быстро повернув крышку.

Итак, чего лучше всего иметь в вашем автомобиле — лошадиных сил или крутящего момента? Все зависит от того, как вы собираетесь использовать свой автомобиль или грузовик. Молниеносно быстрый Dodge Charger, например, будет иметь больше лошадиных сил, в то время как грузовик Cummins Diesel будет иметь больший крутящий момент, чтобы помочь тянуть эти тяжелые грузы.

Здесь, в Bryant Motors, у нас есть огромный выбор как новых, так и подержанных автомобилей на месте, чтобы удовлетворить все различные предпочтения и потребности — от быстрого и элегантного Dodge Dart GT 2014 года до обновленного Ram 1500, который также доступен в ультрасовременном исполнении. , турбонаддув EcoDiesel.

Выполните поиск в нашем обширном перечне новых и подержанных автомобилей, чтобы найти автомобиль или грузовик, который вы искали сегодня, по самой доступной цене. Или продолжайте просматривать наш блог и ресурсы руководства по покупке автомобилей для получения дополнительной информации.

Ищете пикап с мощной буксирной способностью?

См. Наш список доступных грузовиков и внедорожников

В чем разница между мощностью и крутящим моментом?

ПОСМОТРИТЕ на характеристики современного турбодизельного двигателя, и вы не можете пропустить одну вещь, которую вы не можете пропустить, — это большой крутящий момент, который они производят.

* Впервые он был опубликован в выпуске 4X4 Australia за сентябрь 2015 г.

2,3-литровый турбодизель в Nissan NP300 Navara требует 450 Нм, что является неслыханной цифрой для относительно небольшого четырехцилиндрового дизеля несколько лет назад, в то время как у хорошего 3,0-литрового дизеля в наши дни вырабатывается 600 Нм. или больше. И если этого недостаточно, что-то вроде 4,4-литрового турбодизеля V8 в Range Rover требует 740 Нм!

Но что на самом деле означает 450 Нм, 600 Нм или даже 740 Нм? И разве такой огромный крутящий момент важнее, чем приличная мощность?

Простые законы физики на самом деле неразрывно связывают мощность и крутящий момент, потому что мощность — это просто математическое произведение крутящего момента, умноженного на частоту вращения двигателя.Итак, где крутящий момент — это сила вращения, мощность — это скорость, с которой эта сила может быть приложена.

Рассмотрим эту простую аналогию: у вас старый внедорожник с колесной гайкой, сильно заржавевшей на шпильке. К счастью, у вас есть огромная колесная скоба длиной в метр и еще больший помощник, чья диета с пиццей и пивом предполагает, что он набирает 100 кг, чтобы помочь снять колесную гайку.

Чтобы гайка проворачивалась, необходимо преодолеть трение между гайкой и шпилькой, приложив достаточное усилие к концу распорки колеса.

Если ваш напарник помещает все свои 100 кг веса на конец распорки колеса, когда он находится в горизонтальном положении, этот вес в 100 кг приравнивается к направляемой вниз (линейной) силе в 980 Ньютон; Ньютон является стандартным мерилом силы в метрической системе. Эта сила в 980 Ньютонов получается из-за умножения массы 100 кг вашего партнера на 9,8 метра в секунду, ускорение свободного падения.

Сила 980 ньютонов на конце рычага (скоба колеса), который находится в метре от гайки, затем создает крутящий момент на гайке 980 ньютон-метров (Нм), рассчитанный путем умножения 980 (ньютонов) на единицу. (метр).

Крутящий момент на колесной гайке прилагается независимо от того, движется гайка или нет. Если гайка не двигается, энергия не вырабатывается. Но как только гайка начинает двигаться, ваш партнер также начинает вырабатывать энергию.

Предположим, что 980 Нм достаточно, чтобы начать движение гайки, и что трение остается постоянным по всей ржавой шпильке. Также предположите (с помощью какой-то магической ловкости), что ваш помощник может поддерживать крутящий момент 980 Нм на гайке при ее вращении, независимо от положения колесной скобы.

Если он поворачивает колесную гайку со скоростью один оборот в минуту, простая формула (см. «Магическая формула» ниже) определяет, сколько мощности он производит. В этом сценарии он будет производить чуть более десятой киловатта.

Если бы он мог вращать гайку 10 раз в минуту, он произвел бы чуть более 1 кВт. Так что большой крутящий момент в этом случае не приводит к большому производству энергии.

Урок, который следует усвоить, состоит в том, что большие значения крутящего момента бесполезны, если только ваш «помощник» или рассматриваемый двигатель не может создавать этот крутящий момент с приличной скоростью или скоростью.Даже если бы ваш напарник мог повернуть гайку при типичных оборотах двигателя на холостом ходу 800 об / мин, его выходная мощность была бы гораздо более полезной — 82 кВт.

В реальном мире мощность — это то, что вам нужно, потому что мощность, а не крутящий момент — это то, что вам нужно, чтобы преодолеть вес вашего внедорожника, его аэродинамическое сопротивление и другие второстепенные факторы, такие как сопротивление качению колес. При прочих равных, большая мощность даст вам большее ускорение, более быстрый подъем на гору и более высокую максимальную скорость, независимо от крутящего момента двигателя.

2

Значит, крутящий момент завышен?

Это совсем не так, поскольку чем больше крутящий момент, тем меньше оборотов двигателя необходимо для выработки хорошей мощности.

Когда дело доходит до двигателей, самый простой способ получить больший крутящий момент — это построить двигатель большего размера. С большим двигателем, который производит большой крутящий момент, вам не нужны высокие обороты, чтобы обеспечить приличную мощность. Если вы объедините большой двигатель с большим количеством оборотов, вы получите большие значения мощности.

Двигателям меньшего размера не хватает крутящего момента, поэтому для получения приличной мощности требуется больше оборотов.Другой простой способ увеличить крутящий момент двигателя — использовать наддув, а именно наддув или турбонаддув.

Простое соотношение, согласно которому мощность равна крутящему моменту, умноженному на частоту вращения двигателя, справедливо для всех двигателей, дизельных или бензиновых, любой мощности и с любым количеством цилиндров, с турбонаддувом или наддувом или без него.

ВОЛШЕБНАЯ ФОРМУЛА

Взаимосвязь между мощностью и крутящим моментом сводится к простой формуле: мощность равна крутящему моменту, умноженному на частоту вращения двигателя.

Формула также содержит «константу» для настройки используемых единиц. Например, в метрической системе мощность (в кВт) равна крутящему моменту (в Нм), умноженному на частоту вращения двигателя (в об / мин), разделенному на 9549.

В британской системе мер, которая когда-то использовалась в Австралии и до сих пор используется в некоторых частях мира, где мощность измеряется в лошадиных силах (л.с.), а крутящий момент — в фунт-футах (фунт-фут), применяется следующая формула: л.с. равно фунт-фут. умножить на об / мин, разделить на 5252.

В метрической системе стандартная единица крутящего момента (Нм) отдает дань уважения великому английскому физику и математику Исааку Ньютону, поскольку Нм означает Ньютон-метр.Ньютон положил начало пониманию гравитации и основ физики движения.

Стандартная единица измерения мощности в метрической системе — кВт или киловатт и относится к шотландскому изобретателю и инженеру Джеймсу Ватту. Ватт разработал паровой двигатель, который сыграл решающую роль в так называемой промышленной революции. Префикс «килограмм» используется в метрической системе для обозначения умножения на 1000. Таким образом, двигатель мощностью 50 кВт фактически производит 50 000 ватт.

Специальное предложение ко Дню отца: подпишитесь на 4X4 Australia и сэкономьте 50% *
Типичный журнал для австралийских любителей полноприводных автомобилей и бездорожья.(* только ограниченное время)

Подписаться

лошадиных сил против крутящего момента: в чем разница?

Когда вы сравниваете автомобили, вы, скорее всего, увидите, что характеристики их двигателей описываются в лошадиных силах, и большинство людей понимает, что большее число означает более мощный двигатель. В какой-то степени это верно, но есть еще одно число, которое вы должны учитывать, чтобы иметь полное представление о выходной мощности двигателя.

(Fiat Chrysler Automobiles)

Это крутящий момент, и легко найти множество причудливых математических объяснений того, что это такое.Говоря простым автомобильным языком, это мера силы скручивания, создаваемой двигателем или двигателем. Эта вращающая сила затем применяется к шестерням трансмиссии и передается на колеса.

Крутящий момент отличается от лошадиных сил, но эти два числа связаны.

В чем разница?

Лошадиная сила — это показатель работы, выполненной за определенный период времени. В частности, одна лошадиная сила — это количество усилий, необходимых для поднятия 33000 фунтов одним футом за одну минуту.Покупатели часто считают мощность в лошадиных силах синонимом скорости или быстроты автомобиля, но это гораздо сложнее.

Конечно, у автопроизводителей нет груды блоков весом 33 000 фунтов, чтобы определить, сколько лошадиных сил производит автомобиль. Они используют устройство, называемое динамометром, которое измеряет крутящий момент двигателя при различных оборотах двигателя, а затем выполняют вычисления, используя числа крутящего момента и обороты двигателя, чтобы определить его мощность.

Из этих расчетов они получают графики мощности и крутящего момента при увеличении частоты вращения двигателя от холостого хода до максимальной номинальной скорости или красной линии.Цифры, которые публикуют производители, обычно представляют собой максимальные точки на графике и обороты двигателя, на которых они встречаются.

(Porsche Cars North America, Inc.)

Например, четырехцилиндровый двигатель Honda Accord 2017 выдает 185 лошадиных сил при 6400 об / мин в большинстве моделей и 181 фунт-фут крутящего момента при 3900 об / мин. Для сравнения, Dodge Challenger Hellcat 2017 выдает 707 лошадиных сил при 6200 об / мин и 650 фунт-фут крутящего момента при 4800 об / мин.

Некоторые автомобили, особенно с турбокомпрессорами и нагнетателями, могут развивать максимальную мощность в широком диапазоне оборотов двигателя.Возьмем, к примеру, Porsche 718 Boxster 2017 года. Его четырехцилиндровый двигатель с турбонаддувом выдает 300 лошадиных сил при 6500 об / мин и 280 фунт-фут крутящего момента при частоте вращения двигателя от 1950 до 4500 об / мин. Это называется широким диапазоном мощности или плоской кривой крутящего момента.

Пиковая мощность почти всегда наблюдается в верхнем правом квадранте графика при сочетании значительного крутящего момента и высоких оборотов. С другой стороны, пиковый крутящий момент может возникать при разных оборотах двигателя, в зависимости от типа двигателя и его назначения.За счет увеличения размера камеры сгорания или давления на поршень, создаваемого сгоранием топливно-воздушной смеси в цилиндрах двигателя, можно увеличить максимальный крутящий момент двигателя.

(Mazda North American Operations)

Математически существует взаимосвязь между мощностью, крутящим моментом и частотой вращения двигателя. Двигатели, которые создают большой крутящий момент на низких оборотах, могут достигать тех же показателей мощности, что и двигатели, которые не развивают большой крутящий момент, но работают на очень высоких скоростях.

Какой из них лучше?

То, что вы хотите, зависит от того, для чего вам нужен автомобиль. Если вы собираетесь буксировать, предпочтительнее двигатели с высоким крутящим моментом, а дизели — короли, когда дело доходит до крутящего момента. Ram 1500 EcoDiesel 2016 года производит всего 240 лошадиных сил, но он развивает наши 420 фунт-фут крутящего момента. Другими словами, когда вам нужно вытащить лодку из воды, у Ram есть много рычания на низких оборотах, чтобы выполнить свою работу.

С другой стороны, спортивные автомобили с высокими оборотами, которые не развивают большой крутящий момент.Mazda MX-5 Miata 2017 развивает всего 148 фунт-футов крутящего момента при 4600 об / мин, но водители любят заставлять его кричать, поощряя его четырехцилиндровый двигатель развивать максимальную мощность в 155 лошадиных сил при 6000 об / мин. Если бы вы попытались тянуть прицеп с Miata, двигатель должен был бы работать на высокой скорости, чтобы генерировать достаточно лошадиных сил, чтобы даже заставить автомобиль двигаться.

Другими словами, большую тяговую мощность обеспечивают двигатели, которые достигают максимального крутящего момента на низких оборотах, но более спортивные характеристики имеют двигатели с высокими оборотами и высокой мощностью.Говорят, что лошадиные силы заставляют вас двигаться быстро, но крутящий момент — это сила, которая заставляет вас вернуться на сиденье, когда вы покидаете стартовую линию.

В легковых и грузовых автомобилях с бензиновым и дизельным двигателем мощность и крутящий момент возрастают с увеличением частоты вращения двигателя, достигая пика, а затем обычно снижается. У электромобилей и некоторых гибридов пик крутящего момента возникает в тот момент, когда двигатель начинает вращаться, а затем снижается. Это дает электромобилям, таким как Chevrolet Bolt 2017 года, отличные характеристики при езде по городу, но их ускорение иссякает вскоре после того, как они достигают скорости на шоссе.

Дополнительные инструменты для покупок из U.S. News & World Report

Изучите наш новый рейтинг автомобилей, прежде чем приступить к покупке. Покупатели могут сравнивать конкурентов по нескольким факторам, включая производительность, чтобы найти правильный баланс мощности и цены для своих нужд. Прежде чем заключить сделку, покупатели должны попробовать нашу программу лучших цен, в рамках которой мы работаем с местными дилерами, чтобы обеспечить гарантированную экономию от рекомендованной розничной цены.

Зависимость мощности

от крутящего момента — x-engineer.org

В этой статье мы собираемся понять, как создается крутящий момент двигателя , как рассчитывается мощность двигателя и что такое крутящий момент и кривая мощности .Кроме того, мы собираемся взглянуть на карты крутящего момента и мощности двигателя (поверхности).

К концу статьи читатель сможет понять разницу между крутящим моментом и мощностью, как они влияют на продольную динамику автомобиля и как интерпретировать кривые крутящего момента и мощности при полной нагрузке.

Определение крутящего момента

Крутящий момент можно рассматривать как крутящее усилие , приложенное к объекту. Крутящий момент (вектор) — это произведение между силой (вектором) и расстоянием (скаляр).Расстояние, также называемое плечом рычага , измеряется между силой и точкой поворота. Подобно силе, крутящий момент является вектором и определяется амплитудой и направлением вращения.

Изображение: Момент затяжки на колесном болте

Представьте, что вы хотите затянуть / ослабить болты колеса. Нажатие или вытягивание рукоятки гаечного ключа, соединенного с гайкой или болтом, создает крутящий момент (усилие поворота), который ослабляет или затягивает гайку или болт.

Крутящий момент Т [Нм] является произведением силы F [Н] и длины плеча рычага a [м] .

\ [\ bbox [# FFFF9D] {T = F \ cdot a} \]

Чтобы увеличить величину крутящего момента, мы можем либо увеличить силу, либо длину плеча рычага, либо и то, и другое.

Пример : Рассчитайте крутящий момент, полученный на болте, если плечо гаечного ключа имеет 0,25 м и приложенное усилие составляет 100 Н (что приблизительно эквивалентно толкающей силе 10 кг )

\ [T = 100 \ cdot 0,25 = 25 \ text {Нм} \]

Такой же крутящий момент может быть получен, если плечо рычага составляет 1 м , а усилие только 25 Н .

Тот же принцип применяется к двигателям внутреннего сгорания. Крутящий момент на коленчатом валу создается силой, прикладываемой к шейке шатуна через шатун.

Изображение: Крутящий момент на коленчатом валу

Крутящий момент T будет создаваться на коленчатом валу на каждой шейке шатуна каждый раз, когда поршень находится в рабочем ходе. Плечо a в данном случае соответствует радиусу (смещению) кривошипа .

Величина силы F зависит от давления сгорания внутри цилиндра.Чем выше давление в цилиндре, тем выше усилие на коленчатом валу, тем выше выходной крутящий момент.

Изображение: функция расчета крутящего момента двигателя для давления в цилиндре

Длина плеча рычага влияет на общую балансировку двигателя . Слишком большое его увеличение может привести к дисбалансу двигателя, что приведет к увеличению усилий на шейках коленчатого вала.

Пример : Расчет крутящего момента на коленчатом валу для двигателя со следующими параметрами:

Диаметр цилиндра, B [мм] 85
Давление в цилиндре, p [бар] 12
Смещение коленвала, a [мм] 62

Сначала мы вычисляем площадь поршня (предполагая, что головка поршня плоская и ее диаметр равен диаметру отверстия цилиндра):

\ [A_p = \ frac {\ pi B ^ 2} {4} = \ frac {\ pi \ cdot 0.2 \]

Во-вторых, мы вычислим силу, приложенную к поршню. Чтобы получить силу в Н, (Ньютон), мы будем использовать давление, преобразованное в Па (Паскаль).

\ [F = p \ cdot A_p = 120000 \ cdot 0,0056745 = 680.94021 \ text {N} \]

Предполагая, что вся сила в поршне передается на шатун, крутящий момент рассчитывается как:

\ [T = F \ cdot a = 680.94021 \ cdot 0.062 = 42.218293 \ text {Нм} \]

Стандартная единица измерения крутящего момента — Н · м (Ньютон-метр).В частности, в США единицей измерения крутящего момента двигателя является фунт-сила · фут (фут-фунт). Преобразование между Н · м и фунт-сила · фут :

\ [\ begin {split}
1 \ text {lbf} \ cdot \ text {ft} & = 1.355818 \ text {N} \ cdot \ text {m} \\
1 \ text {N} \ cdot \ text {m} & = 0,7375621 \ text {lbf} \ cdot \ text {ft}
\ end {split} \]

Для нашего конкретного примера крутящий момент в имперских единицах (США):

\ [T = 42.218293 \ cdot 0.7375621 = 31.138615 \ text {lbf} \ cdot \ text {ft} \]

Крутящий момент T [N] также может быть выражен как функция среднее эффективное давление двигателя.

\ [T = \ frac {p_ {me} V_d} {2 \ pi n_r} \]

где:
p me [Па] — среднее эффективное давление
V d [m 3 ] — рабочий объем двигателя (объем)
n r [-] — количество оборотов коленчатого вала за полный цикл двигателя (для 4-тактного двигателя n r = 2 )

Определение мощности

В физике степень — это работа, выполненная во времени, или, другими словами, — скорость выполнения работы .В системах вращения мощность P [Вт] является произведением крутящего момента T [Нм] и угловой скорости ω [рад / с] .

\ [\ bbox [# FFFF9D] {P = T \ cdot \ omega} \]

Стандартная единица измерения мощности — Вт, (Вт), скорости вращения — рад / с, (радиан в секунду) . Большинство производителей транспортных средств предоставляют мощность двигателя л.с. (мощность торможения) и скорость вращения об / мин (оборотов в минуту).Поэтому мы будем использовать формулы преобразования как для скорости вращения, так и для мощности.

Чтобы преобразовать об / мин в рад / с , мы используем:

\ [\ omega \ text {[rad / s]} = N \ text {[rpm]} \ cdot \ frac {\ pi} { 30} \]

Чтобы преобразовать рад / с в об / мин , мы используем:

\ [N \ text {[rpm]} = \ omega \ text {[rad / s]} \ cdot \ frac {30 } {\ pi} \]

Мощность двигателя также может быть измерена в кВт вместо Вт для более компактного значения.Чтобы преобразовать кВт в л.с. и обратно, мы используем:

\ [\ begin {split}
P \ text {[bhp]} & = 1.36 \ cdot P \ text {[кВт]} \\
P \ text {[кВт]} & = \ frac {P \ text {[bhp]}} {1.36}
\ end {split} \]

В некоторых случаях вы можете найти л.с. (мощность в лошадиных силах) вместо л.с. как единица измерения мощности.

Имея скорость вращения, измеренную в об / мин , и крутящий момент в Нм , формула для расчета мощности следующая:

\ [\ begin {split}
P \ text {[кВт]} & = \ frac {\ pi \ cdot N \ text {[rpm]} \ cdot T \ text {[Nm]}} {30 \ cdot 1000} \\
P \ text {[HP]} & = \ frac {1.36 \ cdot \ pi \ cdot N \ text {[rpm]} \ cdot T \ text {[Nm]}} {30 \ cdot 1000}
\ end {split} \]

Пример . Рассчитайте мощность двигателя как в кВт, , так и в л.с. , если крутящий момент двигателя составляет 150 Нм , а частота вращения двигателя составляет 2800 об / мин .

\ [\ begin {split}
P & = \ frac {\ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 44 \ text {kW} \\
P & = \ frac {1.36 \ cdot \ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 59,8 \ text {HP}
\ end {split} \]

Динамометр двигателя

Скорость двигателя измеряется с помощью датчика на коленчатом валу (маховике).В идеале, чтобы рассчитать мощность, мы должны также измерить крутящий момент на коленчатом валу с помощью датчика. Технически это возможно, но не применяется в автомобильной промышленности. Из-за условий эксплуатации коленчатого вала (температуры, вибрации) измерение крутящего момента двигателя с помощью датчика не является надежным методом. Также довольно высока стоимость датчика крутящего момента. Следовательно, крутящий момент двигателя измеряется во всем диапазоне скорости и нагрузки с помощью динамометра (испытательный стенд) и отображается (сохраняется) в блоке управления двигателем.

Изображение: Схема динамометра двигателя

Динамометр — это в основном тормоз (механический, гидравлический или электрический), который поглощает мощность, производимую двигателем. Самым используемым и лучшим типом динамометра является электрический динамометр . Фактически это электрическая машина , которая может работать как генератор или двигатель . Изменяя крутящий момент нагрузки генератора, двигатель может быть переведен в любую рабочую точку (скорость и крутящий момент).Кроме того, при отключенном двигателе (без впрыска топлива) генератор может работать как электродвигатель для раскрутки двигателя. Таким образом можно измерить трение двигателя и потери крутящего момента насоса.

В электрическом динамометре ротор соединен с коленчатым валом. Связь между ротором и статором электромагнитная. Статор закреплен через плечо рычага на датчике веса . Чтобы уравновесить ротор, статор будет прижиматься к датчику нагрузки. Крутящий момент T вычисляется путем умножения силы F , измеренной в датчике нагрузки, на длину плеча a рычага.

\ [T = F \ cdot a \]

Параметры двигателя: тормозной момент, тормозная мощность (л.с.) или удельный расход топлива при торможении (BSFC) содержат ключевое слово «тормоз», потому что для их измерения используется динамометр (тормоз). .

Результатом динамометрического испытания двигателя являются карты крутящего момента (поверхности), которые дают значение крутящего момента двигателя при определенных оборотах двигателя и нагрузке (стационарные рабочие точки). Нагрузка двигателя эквивалентна положению педали акселератора.

Пример карты крутящего момента для бензинового двигателя с искровым зажиганием (SI) :

900 903 138
Двигатель
крутящий момент
[Нм]
Положение педали акселератора [%]
5 10 20 30 40 50 60 100
Обороты двигателя

[об / мин]
45 90 107 109 110 111 114 116
1300 60 105 13216 903 903 141
1800 35 89 133 141 1 42 144 145 149
2300 19 70 133 147 148 150 151 903 900 3 55 133 153 159 161 163 165
3300 0 41 126165 901 171
3800 0 33 116 150 160 167 170 175
155 169 176 180 184
4800 9031 7 0 18 106 155 174 179 185 190
5300 0 12 96 96 181 187
5800 0 4 84 136 161 170 175 183
72 120 145 153 159 171

Пример карты мощности для бензинового двигателя с искровым зажиганием (SI) :

903 9001 903 110
Двигатель Л.с.] Положение педали акселератора [%]
5 10 20 9 0317 30 40 50 60 100
Обороты двигателя

[об / мин]
800 5 903 12 13 13 13 13
1300 11 19 24 25 25 903 1800 9 23 34 36 36 37 37 38
2300 6 44 49 49 51
2800 1 22 53 61 63 64 65 66
3300 0 19 59 71 76 78 78 0 18 63 81 87 90 92 95
4300 0 16 67 113
4800 0 12 72 106 119 122 126 130 5317
72 111 126 132 137 141
5800 0 90 317 3 69 112 133 140 145 151
6300 0 0 65 137317 903 903 903 168 153

Электронный блок управления (ЕСМ) ДВС имеет карту крутящего момента, хранящуюся в памяти.Он вычисляет (интерполирует) функцию крутящего момента двигателя от текущих оборотов двигателя и нагрузки. В блоке управления двигателем нагрузка выражается как давление во впускном коллекторе для бензиновых двигателей (искровое зажигание, SI) и время впрыска или масса топлива для дизельных двигателей (воспламенение от сжатия, CI). Стратегия расчета крутящего момента двигателя имеет поправки, основанные на температуре и давлении всасываемого воздуха.

График данных крутящего момента и мощности, функции частоты вращения и нагрузки двигателя дает следующие поверхности:

Изображение: Поверхность крутящего момента двигателя SI

Изображение: Поверхность мощности двигателя SI

Для Для лучшей интерпретации карт крутящего момента и мощности можно построить двухмерную линию крутящего момента для фиксированного значения положения педали акселератора.

Изображение: кривые крутящего момента двигателя SI

Изображение: кривые мощности двигателя SI

Крутящий момент и мощность двигателя при полной нагрузке

Как вы видели, крутящий момент и мощность внутреннего сгорания двигатель зависит как от частоты вращения двигателя, так и от нагрузки. Обычно производители двигателей публикуют характеристики крутящего момента и кривых (кривые) при полной нагрузке и (положение педали акселератора 100%). Кривые крутящего момента и мощности при полной нагрузке подчеркивают максимальный крутящий момент и распределение мощности во всем диапазоне оборотов двигателя.

Изображение: параметры крутящего момента и мощности двигателя при полной нагрузке

Форма приведенных выше кривых крутящего момента и мощности не соответствует реальному двигателю, их цель — объяснить основные параметры. Тем не менее, формы аналогичны реальным характеристикам искрового зажигания (бензин), левого впрыска, атмосферного двигателя.

Частота вращения двигателя Н e [об / мин] характеризуется четырьмя основными моментами:

Н мин — минимальная стабильная частота вращения двигателя при полной нагрузке
Н Tmax — частота вращения двигателя при максимальном крутящем моменте двигателя
N Pmax — частота вращения двигателя при максимальной мощности двигателя; также называется номинальной частотой вращения двигателя
N max — максимальная стабильная частота вращения двигателя

При минимальной частоте вращения двигатель должен работать плавно, без колебаний или остановок.Двигатель также должен позволять работать на максимальной скорости без каких-либо повреждений конструкции.

Крутящий момент двигателя при полной нагрузке Кривая T e [Нм] характеризуется четырьмя точками:

T 0 — крутящий момент двигателя при минимальных оборотах двигателя
T max — максимальный двигатель крутящий момент (максимальный крутящий момент или номинальный крутящий момент )
T P — крутящий момент двигателя при максимальной мощности двигателя
T M — крутящий момент двигателя при максимальной частоте вращения двигателя

В зависимости от типа всасываемого воздуха (атмосферный или с турбонаддувом) максимальный крутящий момент может быть точечным или линейным.Для двигателей с турбонаддувом или наддувом максимальный крутящий момент может поддерживаться постоянным между двумя значениями частоты вращения двигателя.

Мощность двигателя при полной нагрузке Кривая P e [л.с.] характеризуется четырьмя точками:

P 0 — мощность двигателя при минимальных оборотах двигателя
P max — максимальная мощность двигателя мощность (пиковая мощность или номинальная мощность )
P T — мощность двигателя при максимальном крутящем моменте двигателя
P M — мощность двигателя при максимальной частоте вращения

Область между минимальными оборотами двигателя N мин и максимальная частота вращения двигателя Н Tmax называется зоной нижнего конца крутящего момента .Чем выше крутящий момент в этой области, тем лучше возможности запуска / ускорения транспортного средства. Когда двигатель работает в этой области при полной нагрузке, если сопротивление дороги увеличивается, частота вращения двигателя будет уменьшаться, что приведет к падению крутящего момента двигателя и остановке двигателя . По этой причине эта область также называется областью нестабильного крутящего момента.

Область между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N Pmax называется диапазоном мощности .Во время разгона автомобиля для достижения наилучших характеристик переключение передач (вверх) следует выполнять на максимальной мощности двигателя. В зависимости от передаточных чисел коробки передач после переключения выбранная передача снижает частоту вращения двигателя до максимального крутящего момента, что обеспечивает оптимальное ускорение. Переключение передач на максимальной мощности двигателя позволит удерживать частоту вращения двигателя в пределах диапазона мощности.

Область между максимальной частотой вращения двигателя N Pmax и максимальной частотой вращения двигателя N max называется зоной крутящего момента верхнего конца .Более высокий крутящий момент приводит к более высокой выходной мощности, что приводит к более высокой максимальной скорости автомобиля и лучшему ускорению на высокой скорости.

Когда частота вращения двигателя поддерживается между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N max , если сопротивление транспортного средства возрастает, частота вращения двигателя упадет, а выходной крутящий момент увеличится, таким образом компенсация увеличения дорожной нагрузки. По этой причине эта область называется областью стабильного крутящего момента .

Ниже вы можете найти несколько примеров кривых крутящего момента и мощности при полной нагрузке для различных типов двигателей. Обратите внимание на форму кривых в зависимости от типа двигателя (с искровым зажиганием или с компрессионным зажиганием) и типа воздухозаборника (атмосферный или с турбонаддувом).

Крутящий момент и мощность двигателя Honda 2.0 при полной нагрузке

Л.с.] 9031 5
Архитектура цилиндров 4-рядный

Изображение: Двигатель Honda 2.0 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
Впрыск топлива порт клапана
Воздухозаборник атмосферный 903 903 Выбор фаз газораспределения переменный
T макс. [Нм] 190
N Tmax [об / мин] 4500
155
N Pmax [об / мин] 6000
N макс. [об / мин] 6800

Saab 2.Крутящий момент и мощность двигателя 0T при полной нагрузке

макс.
Архитектура цилиндров 4-рядный

Изображение: Двигатель Saab 2.0T SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
Впрыск топлива порт клапана
Воздухозаборник с турбонаддувом Синхронизация клапана фиксированная
T макс. [Нм] 265
N Tmax [об / мин] 2500
175
N Pmax [об / мин] 5500
N 9036 7 макс. [об / мин] 6300

Audi 2.0 Крутящий момент и мощность двигателя TFSI при полной нагрузке

903 Л.с.] 9 0316 N макс. [об / мин]
Архитектура цилиндров 4-рядный

Изображение: Двигатель Audi 2.0 TFSI SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1994
Впрыск топлива прямой
Воздухозаборник с наддувом 903 903 с турбонаддувом 903 Синхронизация клапана фиксированная
T макс. [Нм] 280
N Tmax [об / мин] 1800-500020 903
200
N Pmax [об / мин] 5100 — 6000
6500

Toyota 2.0 Крутящий момент и мощность двигателя D-4D при полной нагрузке

[Л.с.]
Архитектура цилиндров 4-рядный

Изображение: Двигатель Toyota 2.0 CI — кривые крутящего момента и мощности при полной нагрузке

Топливо дизель (CI)
Объем двигателя [см 3 ] 1998
Впрыск топлива прямой
Воздухозаборник 903 с турбонаддувом 903 Выбор фаз газораспределения фиксированный
T макс. [Нм] 300
N Tmax [об / мин] 2000 — 2800
126
N Pmax [об / мин] 3600
N макс. [об / мин] 5200

Mercedes-Benz 1.8 Крутящий момент и мощность двигателя Kompressor при полной нагрузке

] 90 320
Архитектура цилиндров 4-рядный

Изображение: Двигатель Mercedes Benz 1.8 Kompressor SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 1796
Впрыск топлива , порт клапана
Воздухозаборник с наддувом синхронизация фиксированная
T макс. [Нм] 230
N Tmax [об / мин] 2800 — 4600
156
N Pmax [об / мин] 5200
N макс. [об / мин] 6250

BMW 3.0 Крутящий момент и мощность двигателя TwinTurbo при полной нагрузке

макс. [Л.с.]
Архитектура цилиндров 6-рядный

Изображение: Двигатель BMW 3.0 TwinTurbo SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 2979
Впрыск топлива прямой
Воздухозаборник с двойным наддувом Синхронизация клапана регулируемая
T макс. [Нм] 400
N Tmax [об / мин] 1300 — 5000
306
N Pmax [об / мин] 5800
N макс. [об / мин] 7000

Mazda 2.6 крутящий момент и мощность при полной нагрузке

атмосферный клапан 903
Архитектура цилиндров 2 Ванкель

Изображение: Двигатель Mazda 2.6 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 1308 (2616)
Впрыск топлива порт клапана
Впускной воздухозаборник атмосферный фиксированный
T макс. [Нм] 211
N Tmax [об / мин] 5500
макс. 231
N Pmax [об / мин] 8200
N макс. [об / мин] 9500

Porsche 3.6 крутящий момент и мощность двигателя при полной нагрузке

регулируемый клапан макс.
Архитектура цилиндров 6 плоских

Изображение: двигатель Porsche 3.6 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 3600
Впрыск топлива порт клапана
Воздухозаборник атмосферное газораспределение
T макс. [Нм] 405
Н Tmax [об / мин] 5500
P 3
N Pmax [об / мин] 7600
N max [об / мин] 8400

Ключевые утверждения, которые следует учитывать в отношении мощности и крутящего момента двигателя:

крутящий момент

  • крутящий момент является составляющей мощности
  • крутящий момент может быть увеличен путем увеличения среднего эффективного давление двигателя или за счет снижения потерь крутящего момента (трение, накачивание)
  • с более низким максимальным крутящим моментом, распределенным в диапазоне скоростей двигателя, с точки зрения тяги лучше, чем с более высокой точкой максимального крутящего момента
  • крутящий момент на нижнем конце очень важно для пусковых возможностей автомобилей
  • высокий крутящий момент полезен в условиях бездорожья, когда автомобиль эксплуатируется на больших уклонах дороги, но на низкой скорости

Мощность

  • Мощность двигателя зависит как от крутящего момента, так и от скорости
  • мощность может быть увеличена за счет увеличения крутящего момента или частоты вращения двигателя
  • высокая мощность важна для высоких скоростей автомобиля eds: чем выше максимальная мощность, тем выше максимальная скорость автомобиля.
  • Распределение мощности двигателя при полной нагрузке в диапазоне оборотов двигателя влияет на способность автомобиля к ускорению на высоких скоростях. работать в диапазоне мощности, между максимальным крутящим моментом двигателя и мощностью

. По любым вопросам или наблюдениям относительно этого руководства, пожалуйста, используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

Мощность в зависимости от крутящего момента: набирать скорость и оставаться на месте

В каждом описании автомобиля, грузовика или внедорожника используются термины «мощность» и «крутящий момент» для описания мощности двигателя транспортного средства.

Но какова зависимость мощности от крутящего момента? Что важнее: мощность против крутящего момента?

Роль мощности и крутящего момента в работе двигателя

Прежде чем узнать о разнице между крутящим моментом илошадиных сил, вы должны понимать важную роль, которую они оба играют, когда речь идет о характеристиках двигателя автомобиля.

Лошадиные силы и крутящий момент делают несколько важных вещей:

  • Они позволяют автомобилю разгоняться на автостраде.
  • Они помогают поддерживать высокую скорость
  • Они позволяют автомобилю подниматься на холм, не слишком замедляясь.
  • Для грузовиков и внедорожников мощность и крутящий момент определяют тяговое усилие и полезную нагрузку.

В каждом случае мощность двигателя рассчитывается и выражается двумя разными числами: мощность и крутящий момент.Все знают, что эти два числа связаны, но большинство не понимают, что они обозначают. У нас есть простое объяснение, которое должно прояснить ситуацию.

Что такое крутящий момент?

Мощность и крутящий момент — это оба показателя мощности двигателя, но они измеряют эту мощность по-разному. Вот как это работает:

  • Представьте себе бегуна, готовящегося к забегу на 50 ярдов.
  • Когда бегун отталкивается от стартовой линии, мышцы его ног работают, чтобы толкнуть тело вперед.
  • Сила мышц бегуна давит на землю.
  • Каждый шаг увеличивает импульс бегуна.

Толкающая сила ног бегуна подобна крутящему моменту. Если вы поместите шкалу между подошвой бегуна и землей, вы сможете измерить силу, прилагаемую к каждому шагу.

Означает ли больший крутящий момент более быстрое ускорение?

Многие люди хотят приобрести автомобиль, который может быстро разгоняться от 0 до 60 миль в час. Это не только важно для общей производительности транспортного средства, но и возможность быстрого ускорения также может помочь водителям избежать аварий.

Так же, как крутящий момент ноги ускоряет бегуна, крутящий момент двигателя ускоряет транспортное средство. Вот что вам нужно знать о крутящем моменте:

  • Крутящий момент — это сила вращения.
  • Двигатели создают крутящий момент при вращении.
  • Крутящий момент возрастает с увеличением частоты вращения двигателя до определенного значения, затем снова падает.

Если вы ищете автомобиль, который быстро разгоняется, обратите внимание на его крутящий момент.
Запомните это: Больший крутящий момент помогает автомобилю разгоняться до 0-60 раз.

Что такое мощность в лошадиных силах?

Вы можете использовать тот же пример сверху, чтобы понять мощность. Вот как это работает:

  • Каждая ступенька обеспечивает крутящий момент, чтобы добавить инерцию телу бегуна.
  • Если мы сложим весь крутящий момент, полученный пошагово в течение 50-ярдового рывка, мы получим общую мощность, производимую бегуном.
  • Лошадиная сила — это постоянное усилие, которое разгоняет бегуна и поддерживает его движение.

Типичный автомобиль в США.У S. двигатель мощностью 120 лошадиных сил, тогда как у внедорожника или грузовика может быть двигатель мощностью 200 лошадиных сил.

Вопрос: Почему бегун не продолжает ускоряться вечно?

Ответ: Потому что существует ограничение на то, насколько быстро спортсмен может двигать ногами. Также есть некоторое сопротивление из-за силы тяжести и сопротивления ветра. В конце концов, бегун бежит настолько быстро, насколько это возможно, и сопротивление препятствует дальнейшему ускорению. То же самое и с двигателями. Вот что вам нужно знать о лошадиных силах:

  • Лошадиная сила — это крутящий момент, измеренный во времени и на расстоянии.
  • Мощность в лошадиных силах увеличивается с увеличением оборотов двигателя, затем падает.
  • Скорость двигателя всегда ограничена.

Запомните: Из-за математических расчетов, используемых при вычислении значений, крутящий момент и мощность всегда одинаковы при 5 252 об / мин.

Почему важны мощность и крутящий момент

Когда люди читают рейтинги двигателей, они, как правило, сосредотачиваются на мощности, потому что это простое число, которое соответствует тому, насколько «быстрым» будет автомобиль.Фактически, крутящий момент обычно более важен, когда речь идет о вождении в реальном мире. Это потому, что мы так сильно ускоряемся на светофорах и знаках остановки. Водители испытывают крутящий момент следующим образом:

  • Крутящий момент — это то, что заставляет автомобиль двигаться с остановки.
  • Torque разгоняет автомобиль до выезда на автостраду.
  • Torque позволяет автомобилю выполнять больше работы, например тянуть прицеп.

Водители испытывают мощность следующим образом:

  • лошадиных сил позволяет машине подниматься в гору без замедления.
  • В определенном смысле более высокие обороты двигателя дают больше лошадиных сил.
  • Когда автомобиль переключается на пониженную передачу для ускорения, он может использовать больше лошадиных сил.

Запомните: Дизельные двигатели вырабатывают больший крутящий момент, но сравнительно меньшую мощность.

лошадиных сил против скорости: в чем разница?

Мощность в лошадиных силах — это термин, используемый для описания мощности, которую способен производить двигатель. Это показатель скорости выполнения работы.

Скорость — это скорость, с которой движется транспортное средство. Таким образом, если транспортное средство движется со скоростью 60 миль в час, это означает, что транспортное средство движется достаточно быстро, чтобы преодолеть 60 миль за один час. Как мощность, так и крутящий момент могут влиять на скорость транспортного средства. Крутящий момент может помочь транспортному средству быстро разогнаться до более высокой скорости, тогда как лошадиные силы могут помочь транспортному средству улучшить свою максимальную скорость.

Связь мощности и крутящего момента с производительностью

Водители

ожидают, что автомобили с высоким крутящим моментом и мощностью в лошадиных силах будут быстрыми и быстро разгоняться, и это в целом верно.Однако вес и аэродинамика автомобиля также являются важными факторами. Как и в случае с нашим воображаемым бегуном, сила тяжести и сопротивление ветру влияют на ходовые качества вашего автомобиля. Вот что вам нужно знать о производительности:

  • Чем легче автомобиль, тем меньше крутящего момента требуется для его движения.
  • Маленьким аэродинамическим транспортным средствам, таким как спортивные автомобили, это легче, чем большим внедорожникам и грузовикам.
  • Для увеличения мощности двигатель должен работать быстрее, обеспечивать больший крутящий момент или и то, и другое.
  • Вы можете снизить вес автомобиля, разгрузив ненужные предметы.

Помните: Мощность и крутящий момент — не единственные факторы, которые влияют на характеристики автомобиля. Производительность зависит от многих факторов, включая размер, вес и мощность двигателя.

Связь мощности и крутящего момента с экономией топлива

Как и производительность, вы должны знать, что существует прямая зависимость между крутящим моментом, мощностью в лошадиных силах и экономией топлива автомобиля. И снова вес и аэродинамика оказывают огромное влияние на эффективность вашего автомобиля.Когда вы оцениваете различные автомобили, вот что вам нужно знать об экономии топлива:

  • Автопроизводители действительно хорошо умеют производить эффективные двигатели, но есть предел.
  • Обычно более высокий крутящий момент и мощность в лошадиных силах означают меньшую экономию топлива.
  • Вес и аэродинамика автомобиля имеют большое значение!

Запомните: Мощность двигателя всегда имеет свою цену. Вы должны сжигать больше топлива, чтобы получить больше мощности.

А как насчет гибридных автомобилей и электромобилей?

Наиболее важные преимущества гибридов и электромобилей заключаются в их электродвигателях.Эти моторы не только экономят топливо, но и обеспечивают отличный крутящий момент. Электродвигатели могут заменить двигатели внутреннего сгорания или увеличить крутящий момент двигателя внутреннего сгорания. Вот что вам нужно знать об электродвигателях:

  • Выходной крутящий момент остается неизменным при всех скоростях двигателя.
  • Общая выходная мощность увеличивается равномерно с увеличением скорости двигателя.
  • Автопроизводители теперь используют электродвигатели для увеличения общего крутящего момента своих двигателей.

Запомните: Электромобили отлично подходят для быстрого ускорения.

А как насчет автомобилей с турбонаддувом?

Один из способов увеличить крутящий момент и мощность — это добавить к двигателю турбонагнетатель или нагнетатель. Эти устройства нагнетают сжатый воздух в двигатель, что также означает, что необходимо сжечь больше топлива. Добавление большего количества воздуха и топлива означает, что вырабатывается больше энергии. Вот что вам нужно знать о двигателях с турбонаддувом:

  • Турбонаддув обычно добавляет немного крутящего момента и много лошадиных сил.
  • Двигатели с турбонаддувом обычно имеют худшую экономию топлива, чем двигатели без турбонаддува того же размера.
  • Старые двигатели с турбонаддувом часто имеют слабую мощность на низких оборотах.

Помните: Двигатели с турбонаддувом работают в большей нагрузке, чем обычные двигатели.

Оценка крутящего момента и мощности при выборе автомобиля

Когда вы собираетесь купить новый или подержанный автомобиль, мощность и крутящий момент имеют большое значение. Однако не покупайте просто автомобиль с самыми большими номерами. Посмотрите на весь пакет, включая размер и вес автомобиля, трансмиссию и экономию топлива.Например, рассмотрим два автомобиля:

.
  • Ford F-350 Super Duty 2019 года выпуска.

Этот грузовик весит 7700 фунтов. F-350 оснащен 6,7-литровым турбодизельным двигателем Power Stroke с крутящим моментом 935 фунт-футов и мощностью 450 лошадиных сил.

Этот автомобиль весит 2337 фунтов. Miata имеет 2,0-литровый двигатель мощностью 181 л.с. и крутящий момент 151 фунт-фут.

Не стоит просто выбирать Ford F-350, потому что у него больше крутящего момента и мощности, чем у Mazda Miata.Вам необходимо учитывать весь пакет, включая вес автомобиля и двигатель.

Например, если вы помните, чем легче транспортное средство, тем меньше крутящего момента ему требуется для движения. Это означает, что Miata не требует такого большого крутящего момента, как F-350, для быстрого ускорения. Таким образом, хотя кажется, что F-350 сможет разгоняться быстрее, чем Miata, поскольку у него больше крутящего момента, это не обязательно так.

Miata может ускоряться с такой же скоростью или даже быстрее, чем F-350, даже если у него меньший крутящий момент.Это связано с тем, что Miata весит значительно меньше, чем F-350, поэтому ему не требуется такой большой крутящий момент, чтобы быстро разогнаться от 0 до 60 миль в час.

Более высокие значения крутящего момента и мощности могут ввести в заблуждение при сравнении двух автомобилей. Имейте это в виду, сравнивая характеристики двигателей разных автомобилей.

Можно ли получить крутящий момент без мощности?

Крутящий момент и мощность не обязательно должны быть равны. Некоторые автомобили могут иметь низкий крутящий момент и более высокую мощность или наоборот.Небольшой легкий спортивный автомобиль, способный работать на высоких оборотах, может иметь большую мощность, но меньший крутящий момент.

Более крупные и громоздкие транспортные средства, такие как тракторы и автобусы, обычно имеют высокий крутящий момент и меньшую мощность. Эти автомобили тяжелые, а это значит, что им нужен большой крутящий момент, чтобы двигаться. Но им не нужно много лошадиных сил, потому что они обычно не двигаются очень быстро.

Итоги мощности и крутящего момента

Большинство людей говорят о двигателях транспортных средств с точки зрения мощности.Они не ошибаются; это простое сокращение для общей производительности. Что касается покупки нового или подержанного автомобиля, лучше всего изучить свои потребности, прежде чем делать выбор на основе номинальных характеристик двигателя. Характеристики крутящего момента:

  • Способность двигаться, особенно с тяжелым транспортным средством.
  • Повышенная буксирно-грузоподъемность.
  • Улучшено 0-60 раз.

Характеристики мощности:

  • Легкое путешествие по шоссе.
  • Отлично подходит для извилистых дорог.
  • Повышенная максимальная скорость

Мощность в лошадиных силах и крутящий момент: что важнее?

Большинство людей скажут вам, что им нравится мощность двигателя, но что им действительно нравится, так это автомобиль с хорошо сбалансированным крутящим моментом и мощностью.

Нужной мощности и крутящего момента достаточно для быстрого ускорения, но не слишком сильно. Слишком большая мощность подвергает водителя опасности раскрутить шины или потерять контроль над автомобилем.

Некоторые люди хотят знать, стоит ли им искать больше мощности или больше крутящего момента при сравнении автомобилей.Но это неправильный способ думать о характеристиках двигателя. Когда вы думаете о мощности и крутящем моменте, самое важное помнить, что они не противоречат друг другу. Крутящий момент и л.с. работают вместе, чтобы дать вашему автомобилю необходимую производительность. Любой бегун может сказать вам это.

Что такое крутящий момент в автомобилях?

Мощность и крутящий момент являются основными показателями мощности трансмиссии. Лошадиная сила, по какой-либо причине, получает известность и дает право на хвастовство.Да, больше лошадей означает больше мощности, но мощность в лошадиных силах измеряет только максимальную производительность двигателя или мотора и не является мерой его силы.

Крутящий момент измеряет крутящую силу или силу двигателя или мотора. Ощущение, будто тебя толкают обратно на сиденье, когда ты нажимаешь на педаль акселератора? Это крутящий момент. На примере, не относящемся к автомобилестроению, при открытии банки крутящий момент — это усилие, с которым вы открываете крышку, а мощность — это скорость, с которой вы ее раскручиваете.

Проще говоря, крутящий момент заставляет вас двигаться, а мощность заставляет вас двигаться. И, в зависимости от того, как вы собираетесь использовать свой автомобиль, одно будет иметь значение выше другого. Крутящий момент также работает по-разному в зависимости от типа двигателя и источника энергии.

Как работает крутящий момент в бензиновом двигателе

Крутящий момент и мощность имеют разные характеристики, часто достигая пика в разных диапазонах оборотов двигателя, более известных как обороты в минуту (об / мин).

В двигателе внутреннего сгорания (ДВС) крутящий момент отображается в виде кривой колокола.После того, как крутящий момент достигнет своих пиковых оборотов, он будет снижаться, поскольку мощность в лошадиных силах одновременно увеличивается до максимальных оборотов. Этот пик крутящего момента наступает, когда двигатель достигает своей наиболее эффективной и максимальной скорости для этого номинального крутящего момента.

Когда автомобиль движется, крутящий момент не так важен. Например, при движении по шоссе двигатель обычно работает на самой высокой передаче и на минимально возможных оборотах. Почему? Дополнительный крутящий момент больше не требуется для поддержания движения автомобиля, поэтому трансмиссия переключается в наиболее эффективный режим работы.

В небольших транспортных средствах обычно используются небольшие двигатели, которые обладают меньшим крутящим моментом и мощностью в лошадиных силах. Их меньший вес и предполагаемое использование владельцами означает, что им не требуются более мощные и мощные двигатели. Простота двигателей также делает автомобили доступными и экономичными. Но это не значит, что на всех маленьких машинах скучно ездить.

Mazda MX-5 Miata — яркий пример спортивного автомобиля с меньшей мощностью и меньшим крутящим моментом, чем у его конкурентов. Тем не менее, его низкие характеристики двигателя вряд ли ухудшают его динамику вождения.С 2,0-литровым 4-цилиндровым двигателем MX-5 Miata выдает 181 л.с. при 7000 об / мин и 151 фунт-фут крутящего момента при 4000 об / мин. Но он также весит не более 2388 фунтов и имеет почти идеальное распределение веса на переднюю и заднюю оси. Его спортивные характеристики обусловлены его высокооборотистым двигателем и сбалансированными характеристиками управляемости, а не чистой скоростью разгона.

Как работает крутящий момент в дизельном двигателе

Дизельные двигатели имеют больший крутящий момент на более низких оборотах, чем бензиновые двигатели, что приводит к лучшей способности буксировки, буксировки и подъема, поскольку двигатель не должен работать так тяжело, как привести автомобиль в движение.

Ford F-150 2021 года предлагает дополнительный 3,0-литровый турбодизель V-6 мощностью 250 л.с. при 3250 об / мин и 440 фунт-фут. крутящего момента, начиная с низких 1750 об / мин. В линейке двигателей F-150 турбодизель имеет один из самых низких показателей мощности, но один из самых высоких значений крутящего момента. Буксирная способность составляет 12 100 фунтов (при надлежащем оснащении), а максимальная полезная нагрузка составляет 1840 фунтов. Для сравнения: самый мощный из предложенных двигателей, 3,5-литровый двухцилиндровый бензиновый V-6, обладает большей мощностью: 400 л.с. и 500 фунтов.-фт. крутящего момента. Однако крутящий момент достигает 3100 об / мин, что в два раза медленнее, чем у дизеля.

Поднимаясь на ступеньку лестницы грузовика Ford, Super Duty, оснащенный опциональным 6,7-литровым турбодизельным двигателем V-8, развивает 475 л.с. при 2600 об / мин и лучший в своем классе 1050 фунт-фут. крутящий момент начиная с 1600 об / мин. Буксировка рассчитана на 15 000 фунтов при полезной нагрузке 2462. Имейте в виду, что это минимальный показатель буксировки, поскольку сверхмощный F-450 может буксировать 37 000 фунтов с гусиной шеей или сцепным устройством с колесом или .

Как работает крутящий момент в двигателе с турбонаддувом

Турбонаддув и наддув также влияют на крутящий момент, потому что пиковая мощность возникает в более широком диапазоне оборотов, а не в определенной точке на колоколообразной кривой крутящего момента.

Рассмотрим Honda Accord 2020 года выпуска. Его стандартный 1,5-литровый рядный 4-цилиндровый двигатель с турбонаддувом невелик для размера этого автомобиля, но он выдает 192 л.с. при 5500 об / мин и развивает 192 фунт-фут. крутящего момента между 1600-5000 об / мин. Дополнительный 2,0-литровый турбо-четырехцилиндровый двигатель Accord предлагает 252 л.с. при 6500 об / мин и максимальный крутящий момент 273 фунта.-фт. от 1500-4000 об. / мин. Когда пиковый крутящий момент распространяется в широком диапазоне оборотов, как этот, он вызывает быстрое ускорение и удовлетворительную тягу, которую вы чувствуете, когда вас толкают обратно в свое сиденье.

Теоретически турбонаддув и наддув позволяют автопроизводителям использовать в своих автомобилях более экономичные двигатели меньшего размера. Однако, чем сложнее вы его выгоните в реальном мире, тем менее заметен выигрыш в экономии топлива.

Как работает крутящий момент в электромобиле

В электромобилях (электромобилях) энергия поступает от электродвигателей.Когда двигатель не запускается, максимальный крутящий момент достигается мгновенно. Вот почему электромобили, такие как Tesla Model 3, в которых официально не указаны данные о мощности или крутящем моменте, могут разгоняться до 100 км / ч за 3,2 секунды. (Для справки, согласно Motor Trend , эта полноприводная модель Performance с двумя двигателями развивает мощность 450 л.с. и 471 фунт-фут мгновенного крутящего момента).

Даже электромобили, считающиеся низкими с точки зрения мощности, по-прежнему быстро выходят из строя и служат в качестве динамичных пригородных транспортных средств с постоянными остановками.Chevrolet Bolt EV развивает мощность 200 л.с., но его мощность составляет 266 фунт-футов. крутящего момента при нулевых оборотах это шустрый автомобильчик. Аналогичным образом, Kia Niro EV имеет мощность 201 л.с. и крутящий момент в 291 фунт-фут. для большого количества скутеров.

Это же преимущество распространяется и на гибриды, в которых электродвигатель сочетается с ДВС. Быстрая передача крутящего момента от электрического вспомогательного двигателя гибрида приводит в движение автомобиль на более низких скоростях. Toyota Prius — хороший тому пример. В то время как Prius рассчитан на скудную мощность в 121 л.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *