Принцип работы регулятора напряжения генератора: Реле регулятор напряжения: стабильность напряжения бортовой электросети

Содержание

Регулятор напряжения генератора – что это такое

Электрооборудование любого автомобиля включает в себя генератор — устройство, преобразующее механическую энергию, получаемую от двигателя, в электрическую. Вместе с регулятором напряжения он называется генераторной установкой. На современные автомобили устанавливаются генераторы переменного тока. Они в наибольшей степени отвечают предъявляемым требованиям.

Что такое регулятор напряжения генератора?

Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции — защищать элементы генераторной установки от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.

Принцип действия регулятора напряжения

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки — тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения.

Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить увеличивается.

Проверка регулятора напряжения

Прежде чем проверить регулятор напряжения, нужно убедиться, что проблема кроется именно в нём, а не в других элементах генератора (слабо натянут ремень, окислилась масса и т.д.), для этого нужно проверить сам генератор (Как проверить генератор?). После этого вам нужно снять регулятор напряжения. Процесс демонтажа регулятора описан в статье «как снять регулятор напряжения?». В двух словах скажу, что сначала нужно снять минусовую клемму, снять все провода с генератора, снять пластиковый кожух с генератора, затем открутить и вынуть регулятор напряжения в сборе вместе с щётками.

Давайте перейдём непосредственно к проверке регулятора напряжения. Проверять регулятор напряжения нужно обязательно в сборе с щёткодержателями – т.к. в случае обрыва цепи щёток и регулятора напряжения, мы сразу это заметим.

Перед проверкой, обратите внимание на состояние щёток: если они обломаны или их длина короче 5мм, неподвижны и не пружинят, – то их нужно заменить. Для проверки нам понадобится:

– провода;

– аккумулятор автомобильный;

– лампочка на 12в 1-3Вт;

– две обычные пальчиковые батарейки.

Чтобы проверить регулятор напряжения, нам нужно будет построить две схемы: К щёткам подключаем лампочку, К выводам Б и В подключаем «+» от аккумулятора, «-» аккумулятора закрепляем на массу регулятора. Делаем ту же схему, но добавляем последовательно две пальчиковые батарейки. Вывод из всего вышесказанного таков.

Исправный регулятор напряжения: в первой схеме лампа горит, во второй схеме лампа не горит, т.к. напряжение выше 14,7в и подача напряжения на щётки должна быть прекращена. Неисправный регулятор напряжения: в обоих случая лампа горит, значит в регуляторе пробой. Лампа не горит вообще – значит, отсутствует контакт между щётками и регулятором или обрыв цепи в регуляторе.

Трехуровневые регуляторы напряжения

Сначала узнаем, для чего нужен этот регулятор. Автомобильный генератор во время движения и работы двигателя должен подпитывать аккумуляторную батарею. Тем самым восстанавливается ёмкость аккумулятора, когда он разряжается во время стоянки. Если мы ездим каждый день, то аккумулятор почти не разряжается, если он в исправном состоянии.

Хуже приходиться аккумулятору, когда машина долго стоит без движения, ведь его энергия постепенно уходит на поддержание работы авто сигнализации. Ещё хуже дела обстоят зимой, когда при отрицательных температурах аккумуляторная батарея разряжается очень быстро. А если вы ездите помалу и не часто, то аккумулятор не заряжается полностью во время движения и может полностью разрядится как-то утром.

Справиться с вышеуказанной проблемой, призван трехуровневый регулятор напряжения.

У него три положения работы: это максимальное (выдаёт напряжение на генераторе 14,0-14,2 В), нормальное (13,6-13,8 В) и минимальное (13,0-13,2 В). Как мы знаем из статьи про проверку работоспособности аккумулятора, нормальное напряжение при заведённом двигателе должно быть от 13,2-13,6 В. Это означает, что генератор работает в нормальном режиме и АКБ заряжается в полном объёме.

Это соответствует среднему (нормальному) положению регулятора напряжения. А вот зимой, желательно повысить напряжение до 13,8-14,0 В, т.к. аккумулятор быстрее разряжается при отрицательных температурах. Это делается простым переводом рычажка на регуляторе напряжения. Так будет обеспечена лучшая зарядка АКБ зимой при работающем двигателе.

Летом, особенно когда жара превышает +25 градусов и выше — желательно понизить напряжение генератора до 13,0-13,2 В. Зарядка от этого не пострадает, но генератор не будет “выкипать”, т.е. не будет терять свою номинальную ёмкость и не сокращать ресурс.

Как снять или заменить регулятор напряжения?

Перед заменой регулятора напряжения, обязательно проверьте генератор в целом (Как проверить генератор?). Регулятор напряжения нужно менять, если напряжение под нагрузкой бортовой сети (включены дальний, обогрев зеркал, печка) меньше 13в. Так же регулятор напряжения может стать причиной высокого напряжения (выше 14,7в). Но, как писалось выше, перед снятием регулятора нужно проверить сам генератор, ознакомиться с другими возможными неисправностями (например слабо натянут ремень генератора), и только потом приступать к замене регулятора напряжения. Так же данная статья вам понадобится для замены щёток генератора, т.к. щётки и регулятор напряжения устанавливаются на генератор в сборе.

Итак, как же снять регулятор напряжения? Открываем капот, снимаем минусовую клемму аккумулятора, находим генератор, отсоединяем колодку проводов «D».

— Снимаем защитный резиновый колпачок с наконечников проводов вывода «+». Откручиваем гайку крепления этих проводов, снимаем их с блока генератора.

— Далее нам нужно снять сам пластиковый блок генератора (чаще всего он черного цвета). Для этого нужно отсоединить три пружинных фиксатора, расположенных по периметру блока.

— Находим регулятор напряжения, и крестовой отверткой откручиваем его крепления.

— Вынимаем регулятор напряжения в сборе с щётками, и отключаем от него колодку проводов.

— Далее нам нужно проверить регулятор напряжения, дабы убедиться в его неисправности.

Устанавливаем регулятор напряжения строго в обратной последовательности. Стоит отметить, что в последнее время, многие автолюбители стали пользоваться трёхуровневым регулятором напряжения, для того, чтобы избавиться от просадок напряжения в бортовой сети.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ

От работы регулятора напряжения (реле-регулятора) зависит состояние аккумуляторной батареи, правильная работа генератора и системы зажигания, состояние и нормальная работа приборов и устройств автомобиля. Ниже рассматриваются принципы работы различных схем автомобильных регуляторов напряжения и генераторных установок.

РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ

Принцип работы

Электрические схемы

Принцип работы регуляторов напряжения

Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции — защищать элементы генераторной установки от аварийных режимов и перегрузок, автоматически включать в бортовую сеть силовую цепь генераторной установки или обмотку возбуждения.

По своей конструкции регуляторы делятся на бесконтактные транзисторные, контактно-транзисторные и вибрационные (реле-регуляторы). Разновидностью бесконтактных транзисторных регуляторов являются интегральные регуляторы, выполняемые по специальной гибридной технологии, или монолитные на монокристалле кремния. Несмотря на столь разнообразное конструктивное исполнение, все регуляторы работают по единому принципу.

Напряжение генератора зависит от трех факторов — частоты вращения его ротора, силы тока нагрузки и величины магнитного потока, создаваемого обмоткой возбуждения, который зависит от силы тока в этой обмотке. Любой регулятор напряжения содержит чувствительный элемент, воспринимающий напряжение генератора (обычно это делитель напряжения на входе регулятора), элемент сравнения, в котором напряжение генератора сравнивается с эталонной величиной, и регулирующий орган, изменяющий силу тока в обмотке возбуждения, если напряжение генератора отличается от эталонной величины.

В реальных регуляторах эталонной величиной может быть не обязательно электрическое напряжение, но и любая физическая величина, достаточно стабильно сохраняющая свое значение, например, сила натяжения пружины в вибрационных и контактно-транзисторных регуляторах.

В транзисторных регуляторах эталонной величиной является напряжение стабилизации стабилитрона, к которому напряжение генератора подводится через делитель напряжения. Управление током в обмотке возбуждения осуществляется электронным или электромагнитным реле. Частота вращения ротора и нагрузка генератора изменяются в соответствии с режимом работы автомобиля, а регулятор напряжения любого типа компенсирует влияние, этого изменения на напряжение генератора воздействием на ток в обмотке возбуждения. При этом вибрационный или контактно-транзисторный регулятор включает в цепь и выключает из цепи обмотки возбуждения последовательно резистор (в двухступенчатых вибрационных регуляторах при работе на второй ступени закорачивает эту обмотку на массу), а бесконтактный транзисторный регулятор напряжения периодически подключает и отключает обмотку возбуждения от цепи питания. В обоих вариантах изменение тока возбуждения достигается за счет перераспределения времени нахождения переключающего элемента регулятора во включенном и выключенном состояниях.

Если сила тока возбуждения должна быть, например, для стабилизации напряжения, увеличена, то в вибрационном и контактно-транзисторном регуляторах время включения резистора уменьшается по сравнению с временем его отключения, а в транзисторном регуляторе время включения обмотки возбуждения в цепь питания увеличивается по отношению к времени ее отключения.

На рис. 1 показано влияние работы регулятора на силу тока в обмотке возбуждения для двух частот вращения ротора генератора n1 и п2, причем частота вращения п2 больше, чем п1. При большей частоте вращения относительное время включения обмотки возбуждения в цепь питания транзисторным регулятором напряжения уменьшается, среднее значение силы тока возбуждения уменьшается, чем и достигается стабилизация напряжения.

С ростом нагрузки напряжение уменьшается, относительное время включения обмотки увеличивается, среднее значение силы тока возрастает таким образом, что напряжение генераторной установки остается практически неизменным.

На рис. 2 представлены типичные регулировочные характеристики генераторной установки, показывающие, как изменяется сила тока в обмотке возбуждения при неизменном напряжении и изменении частоты вращения или силы тока нагрузки. Нижний предел частоты переключения регулятора составляет 25—30 Гц.

Электрические схемы

Генераторные установки с вентильными генераторами не используют каких-либо включающих устройств в силовой цепи. Для нормального функционирования их регулятора напряжения к нему должны быть подведены напряжение бортовой сети (напряжение генератора) и выводы цепи обмотки возбуждения генератора. Напряжение генератора действует между выводами «+» и «М» («масса») генератора (у генераторов автомобилей ВАЗ соответственно «30» и «31»). Выводы обмотки возбуждения обозначены индексом «Ш» («б7» у генераторов ВАЗ).

На рис. 3 изображены принципиальные схемы генераторных установок. В скобках даны обозначения выводов генераторных установок автомобилей ВАЗ. На рисунках цифрами обозначены: 1 - генератор; 2 — обмотка возбуждения; 3 — обмотка статора; 4 — выпрямитель с вентильным генератором; 5 - выключатель; 6 — реле контрольной лампы; 7 — регулятор напряжения; 8 — контрольная лампа; 9 — помехоподавляющий конденсатор; 10 - трансформаторно-выпрямительный блок,; 11 — аккумуляторная батарея; 12 — размагничивающая обмотка у генераторов смешанного магнитно-электромагнитного возбуждения; 13 — резистор подпитки обмотки возбуждения от аккумулятора.

Различают два типа не взаимозаменяемых регуляторов напряжения. В одном типе (рис. 3, а, з) выходной коммутирующий элемент регулятора напряжения соединяет вывод обмотки возбуждения генератора с «+» бортовой сети, в другом типе (рис. 3, б, в) — с «—» бортовой сети. Транзисторные регуляторы напряжения второго типа являются более распространенными.

Чтобы на стоянке аккумуляторная батарея не разряжалась, цепь обмотки возбуждения генератора (см. рис. 3, а, б) замыкается через выключатель зажигания. Однако, при этом контакты выключателя коммутируют силу тока до 5 А, что неблагоприятно сказывается на их сроке службы. Поэтому через выключатель зажигания замыкается лишь цепь управления регулятора напряжения (см. рис. 3, в), потребляющая ток в доли ампера. Прерывание тока в цепи управления переводит электронное реле регулятора в выключенное состояние, что не позволяет току протекать в обмотку возбуждения. Однако, применение выключателя зажигания в цепи генераторной установки снижает ее надежность и усложняет монтаж на автомобиле.

Кроме того, падение напряжения в выключателе зажигания и других коммутирующих или защитных элементах, включенных в цепь регулятора (штекерные соединения, предохранители), влияет на уровень поддерживаемого регулятором напряжения и частоту переключения его выходного транзистора (см. рис. 3, а—в), что может сопровождаться миганием ламп осветительной и светосигнальной аппаратуры, колебанием стрелок вольтметра и амперметра.

Поэтому более перспективной является схема рис. 3, д. В этой схеме обмотка возбуждения имеет свой дополнительный выпрямитель, состоящий из трех диодов (в пятифазной системе генератора — из пяти диодов). К выводу «+» этого выпрямителя, который обозначен индексом «Д», и подсоединяется обмотка возбуждения генератора. Схема допускает разряд аккумуляторной батареи малыми токами по цепи регулятора напряжения. При длительной стоянке рекомендуется снимать наконечник провода с клеммы «+» батареи.

Подвозбуждение генератора от аккумуляторной батареи вводится через контрольную лампу 8. Небольшая сила тока, поступающая в обмотку возбуждения через эту лампу от аккумуляторной батареи, достаточна для возбуждения генератора и в то же время не может существенно влиять на разряд аккумуляторной батареи. Обычно параллельно контрольной лампе включают резистор 13, чтобы даже в случае перегорания контрольной лампы генератор мог возбудиться. Контрольная лампа (см. рис. 3, д) является одновременно и элементом контроля работоспособности генераторной установки. На стоянке при включении замка зажигания контрольная лампа загорается, так как в нее поступает ток аккумуляторной батареи через обмотку возбуждения генератора и регулятор напряжения.
После пуска двигателя генератор на клемме «Д» развивает напряжение, близкое по величине напряжению аккумуляторной батареи, и контрольная лампа погасает. Если этого при работающем двигателе не происходит, значит генераторная установка напряжения не развивает, т. е. неисправна.

С целью контроля работоспособности (см. рис. 3, а) введены реле с нормально замкнутыми контактами, через которые получает питание контрольная лампа 8. Эта лампа загорается после включения замка зажигания и погасает после пуска двигателя, так как под действием напряжения генератора, к средней точке обмотки статора которого подключено реле, оно разрывает свои нормально замкнутые контакты и отключает контрольную лампу 8 от цепи питания. Если лампа при работающем двигателе горит, значит генераторная установка неисправна. В некоторых случаях обмотка реле контрольной лампы подключается к выводу фазы генератора. Обмотка возбуждения (рис. 3, е) включена на среднюю точку обмотки статора генератора, т. е. питается напряжением, вдвое меньшим, чем напряжение генератора.

При этом приблизительно вдвое снижаются и величины импульсов напряжения, возникающих при работе генераторной установки, что благоприятно сказывается на надежности работы полупроводниковых элементов регулятора напряжения. Резистор 13 (см. рис. 3, е) служит тем же целям, что и контрольная лампа, т.е. обеспечивает уверенное возбуждение генератора.

На автомобилях с дизельными двигателями может применяться генераторная установка на два уровня напряжения 14/28 В. Второй уровень 28 В используется для зарядки аккумуляторной батареи, работающей при пуске ДВС. Для получения второго уровня используется электронный удвоитель напряжения или траисформаторно-выпрямительный блок (ТВБ) (рис. 3, г). В системе на два уровня напряжения регулятор стабилизирует только первый уровень напряжения — 14 В. Второй уровень возникает посредством трансформации и последующего выпрямления ТВБ переменного напряжения генератора. Коэффициент .трансформации трансформатора ТВБ близок к 1.

В некоторых генераторных установках зарубежного и отечественного производства регулятор напряжения поддерживает напряжение не на силовом выводе генератора «+», а на выводе его дополнительного выпрямителя (рис. 3, ж). Схема является модификацией схемы рис. 3, д с устранением ее недостатка — разряда аккумуляторной батареи через схему регулятора при длительной стоянке. Такое исполнение схемы возможно, потому что разница напряжения на выводе «+» и «Д» невелика. На рис. 3, ж показана схема пятифазного генератора с размагничивающей обмоткой в системе возбуждения. Эта обмотка действует встречно с обмоткой возбуждения и расширяет рабочий диапазон генераторных установок со смешанным магнито-электромагнитным возбуждением по частоте вращения. По этой схеме выполняются и вентильные генераторы с электромагнитным возбуждением в трехфазном исполнении. В этом случае схема содержит 9 диодов (6 силовых и 3 дополнительных) и не содержит размагничивающей обмотки.

В схеме рис. 3, з лампа контроля работоспособности генераторной установки включена на реле, питающееся от генератора со стороны переменного тока. Реле является одновременно реле блокировки стартера, содержит встроенный внутрь выпрямитель и срабатывает, если генератор развивает переменное напряжение. Выводы переменного тока генератора подключаются и на выводы тахометра. Реле-регуляторы, работающие в комплекте с генераторами постоянного тока, кроме стабилизации напряжения, осуществляют автоматическое включение генератора, когда напряжение генератора больше напряжения батареи, и отключение его, когда напряжение генератора меньше напряжения батареи, а также защиту генератора от перегрузки. Следовательно, ток генератора должен поступать потребителям через схему реле-регулятора — обмотку ограничителя тока и реле обратного тока (рис. 4).

В настоящее время на комплектацию автомобилей поступают, в основном, генераторные установки с бесконтактными транзисторными регуляторами, количество вибрационных и контактно-транзисторных регуляторов, находящихся в эксплуатации, сокращается.

Выполнение генераторных установок в соответствии с рис. 3 и их применяемость сведены в табл. 1.

Тип генератора

Copyright © vksn.narod.ru, 2001 — 2008.

VSVS

Регуляторы напряжения.


Регулятор напряжения




Для чего генератору нужен регулятор?

Генераторная установка предназначена для обеспечения питанием потребителей, входящих в систему электрооборудования автомобиля, и зарядки аккумуляторной батареи при работающем двигателе. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля и работы двигателя не происходил прогрессивный разряд аккумуляторной батареи или ее перезаряд, а питание потребителей осуществлялось напряжением и током требуемой величины.
Кроме того, напряжение в бортовой сети автомобиля, питаемой генераторной установкой, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок.

ЭДС индукции в соответствии с законом Фарадея, зависит от скорости перемещения проводника в магнитном поле и величины магнитного потока:

Е = с×Ф×ω,

где с — постоянный коэффициент, зависящий от конструкции генератора;
ω — угловая скорость ротора (якоря) генератора:
Ф — магнитный поток возбуждения.

Поэтому напряжение, вырабатываемое генератором, зависит от частоты вращения его ротора и интенсивности магнитного потока, создаваемого обмоткой возбуждения. В свою очередь мощность магнитного потока зависит от величины тока возбуждения, который изменяется пропорционально частоте вращения ротора, поскольку ротор выполнен в виде вращающегося электромагнита.
Кроме того, ток, поступающий в обмотку возбуждения, зависит от величины нагрузки, отдаваемой в данный момент потребителям бортовой сети автомобиля. Чем больше частота вращения ротора и ток возбуждения, тем большее напряжение вырабатывает генератор, чем больше ток нагрузки, тем меньше генерируемое напряжение.

Пульсация напряжения на выходе из генератора недопустима, поскольку это может привести к выходу из строя потребителей бортовой электрической сети, а также перезаряду или недозаряду аккумулятора. Поэтому использование на автомобилях в качестве источника электроэнергии генераторных установок обусловило использование специальных устройств, поддерживающих генерируемое напряжение в приемлемом для работы потребителей диапазоне. Такие устройства называются реле-регуляторы напряжения.
Функцией регулятора напряжения является стабилизация вырабатываемого генератором напряжения при изменении частоты вращения коленчатого вала двигателя и нагрузки в бортовой электросети.

Наиболее просто контролировать величину вырабатываемого генератором напряжения изменением величины тока в обмотке возбуждения, регулируя тем самым мощность создаваемого обмоткой магнитного поля. Можно было бы использовать в качестве ротора постоянный магнит, но управлять магнитным полем такого магнита сложно, поэтому в генераторных установках современных автомобилей применяются роторы с электромагнитами в виде обмотки возбуждения.

На автомобилях для регулирования напряжения генератора применяются регуляторы напряжения дискретного типа, в основу работы которых положен принцип действия различного рода реле. По мере развития электротехники и электроники, регуляторы генерируемого напряжения претерпели существенную эволюцию, от простых электромеханических реле, называемых вибрационными регуляторами напряжения, до бесконтактных интегральных регуляторов, в которых полностью отсутствуют подвижные механические элементы.

***



Вибрационный регулятор напряжения

Рассмотрим работу регулятора на примере простейшего вибрационного (электромагнитного) регулятора напряжения.
Вибрационный регулятор напряжения (рис. 1) имеет добавочный резистор Rо, который включается последовательно в обмотку возбуждения ОВ. Величина сопротивления резистора рассчитана так, чтобы обеспечить необходимое напряжение генератора при максимальной частоте вращения. Обмотка регулятора ОР, намотанная на сердечнике 4, включена на полное напряжение генератора.

При неработающем генераторе пружина 1 оттягивает якорь 2 вверх, удерживая контакты 3 в замкнутом состоянии. При этом обмотка возбуждения ОВ через контакты 3 и якорь 2 подключена к генератору, минуя резистор Rо.

С увеличением частоты вращения ток возбуждения работающего генератора и его напряжение растут. При этом увеличивается сила тока в обмотке регулятора и намагничивание сердечника. Пока напряжение генератора меньше установленного значения, силы магнитного притяжения якоря 2 к сердечнику 4 недостаточно для преодоления силы натяжения пружины 1 и контакты 3 регулятора остаются замкнутыми, а ток в обмотку возбуждения проходит, минуя добавочный резистор.

При достижении напряжения генератора значения размыкания Uр сила магнитноо притяжения якорька к сердечнику преодолевает силу натяжения пружины и контакты регулятора напряжения размыкаются. При этом в цепь обмотки возбуждения включится добавочный резистор, и ток возбуждения, достигший к моменту срабатывания реле значения Iр, начнет падать.
Уменьшение тока возбуждения влечет за собой уменьшение напряжения генератора, а это, в свою очередь, приводит к уменьшению тока в обмотке ОР. Когда напряжение уменьшится до значения замыкания Uз, сила натяжения пружины преодолеет силу магнитного притяжения якоря к сердечнику, контакты вновь замкнутся, и ток возбуждения увеличится. При работающем двигателе и генераторе этот процесс периодически повторяется с большой частотой.
В результате происходит пульсация напряжения генератора и тока возбуждения. Среднее значение напряжения Uср определяет напряжение генератора. Очевидно, что это напряжение зависит от силы натяжения пружины реле, поэтому изменяя натяжение пружины можно регулировать напряжение генератора.

В конструкцию вибрационных регуляторов (рис. 1, а) входит ряд дополнительных узлов и элементов, назначение которых — обеспечить повышение частоты колебания якоря с целью уменьшения пульсации напряжения (ускоряющие обмотки или резисторы), уменьшение влияния температуры на величину регулируемого напряжения (добавочные резисторы из тугоплавких металлов, биметаллические пластины, магнитные шунты), стабилизацию напряжения (выравнивающие обмотки).

Недостатком вибрационных регуляторов напряжения является наличие подвижных элементов, вибрирующих контактов, которые подвержены износу, и пружины, характеристики которой в процессе эксплуатации меняются.
Особенно сильно эти недостатки проявились в генераторах переменного тока, у которых ток возбуждения почти в два раза больше, чем в генераторах постоянного тока. Использование раздельных ветвей питания обмотки возбуждения и двухступенчатых регуляторов напряжения с двумя парами контактов не решали проблему полностью и приводили к усложнению конструкции регулятора, поэтому дальнейшее совершенствование шло, прежде всего, по пути широкого использования полупроводниковых приборов.
Сначала появились контактно-транзисторные конструкции, а затем и бесконтактные.

Контактно-транзисторные регуляторы напряжения являются переходной конструкцией от механических регуляторов к полупроводниковым. При этом транзистор выполнял функцию элемента, прерывающего ток в обмотку возбуждения, а электромеханическое реле с контактами управляло работой транзистора. В таких регуляторах напряжения сохранялись электромагнитные реле с подвижными контактами, однако, благодаря использованию транзистора ток, протекающий через эти контакты, удалось значительно уменьшить, увеличив тем самым срок службы контактов и надежность работы регулятора.

В полупроводниковых регуляторах ток возбуждения регулируется с помощью транзистора, эмиттерно-коллекторная цепь которого включена последовательно в обмотку возбуждения.
Транзистор работает аналогично контактам вибрационного регулятора. При повышении напряжения генератора выше заданного уровня транзистор запирает цепь обмотки возбуждения, а при снижении уровня регулируемого напряжения транзистор переключается в открытое состояние.

Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети (дополнительных диодов).
С увеличением частоты вращения ротора напряжение генератора повышается. Когда оно начинает превышать уровень 13,5…14,2 В, выходной транзистор в регуляторе напряжения запирается, и ток через обмотку возбуждения прерывается.
Напряжение генератора падает, транзистор в регуляторе отпирается и снова пропускает ток через обмотку возбуждения.

Чем выше частота вращения ротора генератора, тем больше время запертого состояния транзистора в регуляторе, следовательно, тем сильнее снижается напряжение генератора.
Этот процесс запирания и отпирания регулятора происходит с высокой частотой. Поэтому колебания напряжения на выходе генератора незначительны, и практически можно считать его постоянным, поддерживаемым на уровне 13,5…14,2 В.

Конструктивно регуляторы напряжения могут выполняться в виде отдельного прибора, устанавливаемого раздельно с генератором, или интегральными (интегрированными), устанавливаемыми в корпусе генератора. Интегральные регуляторы напряжения обычно объединяются с щеточным узлом генератора.

Ниже приведены принципиальные схемы подключения и работы полупроводниковых регуляторов напряжения различных типов и конструкций.

***

Определение неисправностей генератора и регулятора напряжения


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Как работает регулятор напряжения генератора автомобиля

Здравствуйте любители авторемонта. Сегодня поговорим о том, как устроен и работает электронный регулятор напряжения генератора автомобиля, что это такое и зачем он нужен в автомобиле.

Назначение регулятора напряжения в генераторе автомобиля

Как известно эта диковенная вещица находится в генераторе автомобиля или где то рядом с генератором в зависимости от конструкции автомобили (или генератора).

В статье «Как устроен автомобильный генератор и принцип его работы» вы узнаете, что из себя представляет генератор автомобиля и где в нем находится регулятор напряжения.

Регулятор напряжения в автомобиле выполняет одну единственную задачу – регулирует выходное напряжение генератора. Иными словами он пытается держать это напряжение равным 14,2 – 14,4 Вольт.

Когда двигатель автомобиля работает на холостом ходу, ротор генератора вращается с минимальной скоростью и фактически находится на грани срыва (возбуждение пропадает из за нехватки оборотов, зарядка АКБ прекращается, генератор перестает работать), а напряжение должно быть равным 14,4 вольт.

Подобная ситуация происходит и при больших оборотах двигателя, только с точностью  да наоборот, ротор генератора вращается быстро, а напряжение на его выходе возрастает до больших величин.

Вот именно в обуздании этих двух прямо противоположных явлениях и заключается принцип работы регулятора напряжения генератора автомобиля.

Только благодаря этому регулятору в электрооборудовании автомобиля поддерживается постоянное напряжение 14,4 Вольта.

Как работает регулятор напряжения генератора автомобиля

Когда ротор генератора начал вращаться на щеточный механизм подается напряжение (напряжение бортовой сети 12,6 вольт), чего достаточно для возбуждения обмотки статора генератора.

Обмотка статора за счет электромагнитных сил начинает выдавать повышенное переменное напряжение на диоды генератора, которые переменное напряжение  преобразуют в постоянное.

И вот это повышенное напряжение идет в электрооборудование автомобиля, и одновременно на регулятор напряжения генератора автомобиля, который его тут же сбрасывает на нужную величину по средствам внутренней электронной схемы.

Переключения регулятора напряжения происходят с большой частотой, поэтому обычным прибором его не зафиксировать.

Рекомендую так же посмотреть не менее интересную статью «Как самому повысить напряжение на генераторе своего автомобиля».

Вот и разобрались в принципе работы электронного реле регулятора генератора автомобиля. Если у кого-то остались вопросы, задавайте.

C уважением автор блога: Doctor Shmi

Как работает реле регулятор напряжения

Реле-регулятор напряжения генератора — это неотъемлемая часть системы электрооборудования любого автомобиля. С его помощью производится поддержка напряжения в определенном диапазоне значений. В данной статье вы узнаете о том, какие конструкции регуляторов существуют на данный момент, в том числе будут рассмотрены механизмы, давно не используемые.

Основные процессы автоматического регулирования

Совершенно неважно, какой тип генераторной установки используется в автомобиле. В любом случае он имеет в своей конструкции регулятор. Система автоматического регулирования напряжения позволяет поддерживать определенное значение параметра, независимо от того, с какой частотой вращается ротор генератора. На рисунке представлен реле-регулятор напряжения генератора, схема его и внешний вид.

Анализируя физические основы, с использованием которых работает генераторная установка, можно прийти к выводу, что напряжение на выходе увеличивается, если скорость вращения ротора становится выше. Также можно сделать вывод о том, что регулирование напряжения осуществляется путем уменьшения силы тока, подаваемого на обмотку ротора, при повышении скорости вращения.

Что такое генератор

Любой автомобильный генератор состоит из нескольких частей:

1. Ротор с обмоткой возбуждения, вокруг которой при работе создается электромагнитное поле.

2. Статор с тремя обмотками, соединенными по схеме «звезда» (с них снимается переменное напряжение в интервале от 12 до 30 Вольт).

3. Кроме того, в конструкции присутствует трехфазный выпрямитель, состоящий из шести полупроводниковых диодов. Стоит заметить, что реле-регулятор напряжения генератора ВАЗ 2107 (инжектор или карбюратор в системе впрыска) одинаков.

Но работать генератор без устройства регулирования напряжения не сможет. Причина тому — изменение напряжения в очень большом диапазоне. Поэтому необходимо использовать систему автоматического регулирования. Она состоит из устройства сравнения, управления, исполнительного, задающего и специального датчика. Основной элемент — это орган регулирования. Он может быть как электрическим, так и механическим.

Работа генератора

Когда начинается вращение ротора, на выходе генератора появляется некоторое напряжение. А подается оно на обмотку возбуждения посредством органа регулировки. Стоит также отметить, что выход генераторной установки соединен напрямую с аккумуляторной батареей. Поэтому на обмотке возбуждения напряжение присутствует постоянно. Когда увеличивается скорость ротора, начинает изменяться напряжение на выходе генераторной установки. Подключается реле-регулятор напряжения генератора Valeo или любого другого производителя к выходу генератора.

При этом датчик улавливает изменение, подает сигнал на сравнивающее устройство, которое анализирует его, сопоставляя с заданным параметром. Далее сигнал идет к устройству управления, от которого производится подача на исполнительный механизм. Регулирующий орган способен уменьшить значение силы тока, который поступает к обмотке ротора. Вследствие этого на выходе генераторной установки производится уменьшение напряжения. Аналогичным образом производится повышение упомянутого параметра в случае снижения скорости ротора.

Двухуровневые регуляторы

Двухуровневая система автоматического регулирования состоит из генератора, выпрямительного элемента, аккумуляторной батареи. В основе лежит электрический магнит, его обмотка соединена с датчиком. Задающие устройства в таких типах механизмов очень простые. Это обычные пружины. В качестве сравнивающего устройства применяется небольшой рычаг. Он подвижен и производит коммутацию. Исполнительным устройством является контактная группа. Орган регулировки — это постоянное сопротивление. Такой реле-регулятор напряжения генератора, схема которого приведена в статье, очень часто используется в технике, хоть и является морально устаревшим.

Работа двухуровневого регулятора

При работе генератора на выходе появляется напряжение, которое поступает на обмотку электромагнитного реле. При этом возникает магнитное поле, с его помощью притягивается плечо рычага. На последний действует пружина, она используется как сравнивающее устройство. Если напряжение становится выше, чем положено, контакты электромагнитного реле размыкаются. При этом в цепь включается постоянное сопротивление. На обмотку возбуждения подается меньший ток. По подобному принципу работает реле-регулятор напряжения генератора ВАЗ 21099 и других автомобилей отечественного и импортного производства. Если же на выходе уменьшается напряжение, то производится замыкание контактов, при этом изменяется сила тока в большую сторону.

Электронный регулятор

У двухуровневых механических регуляторов напряжения имеется большой недостаток — чрезмерный износ элементов. По этой причине вместо электромагнитного реле стали использовать полупроводниковые элементы, работающие в ключевом режиме. Принцип работы аналогичен, только механические элементы заменены электронными. Чувствительный элемент выполнен на делителе напряжения, который состоит из постоянных резисторов. В качестве задающего устройства используется стабилитрон.

Современный реле-регулятор напряжения генератора ВАЗ 21099 является более совершенным устройством, надежным и долговечным. На транзисторах функционирует исполнительная часть устройства управления. По мере того как изменяется напряжение на выходе генератора, электронный ключ замыкает или размыкает цепь, при необходимости подключают добавочное сопротивление. Стоит отметить, что двухуровневые регуляторы являются несовершенными устройствами. Вместо них лучше использовать более современные разработки.

Трехуровневая система регулирования

Качество регулирования у таких конструкций намного выше, нежели у рассмотренных ранее. Ранее использовались механические конструкции, но сегодня чаще встречаются бесконтактные устройства. Все элементы, используемые в данной системе, такие же, как и у рассмотренных выше. Но отличается немного принцип работы. Сначала подается напряжение посредством делителя на специальную схему, в которой происходит обработка информации. Установить такой реле-регулятор напряжения генератора («Форд Сиерра» также может оснащаться подобным оборудованием) допустимо на любой автомобиль, если знать устройство и схему подключения.

Здесь происходит сравнение действительного значения с минимальным и максимальным. Если напряжение отклоняется от того значения, которое задано, то появляется определенный сигнал. Называется он сигналом рассогласования. С его помощью производится регулирование силы тока, поступающего на обмотку возбуждения. Отличие от двухуровневой системы в том, что имеется несколько добавочных сопротивлений.

Современные системы регулирования напряжения

Если реле-регулятор напряжения генератора китайского скутера двухуровневый, то на дорогих автомобилях используются более совершенные устройства. Многоуровневые системы управления могут содержать 3, 4, 5 и более добавочных сопротивлений. Существуют также следящие системы автоматического регулирования. В некоторых конструкциях можно отказаться от использования добавочных сопротивлений.

Вместо них увеличивается частота срабатывания электронного ключа. Использовать схемы с электромагнитным реле попросту невозможно в следящих системах управления. Одна из последних разработок — это многоуровневая система управления, которая использует частотную модуляцию. В таких конструкциях необходимы добавочные сопротивления, которые служат для управления логическими элементами.

Как снимать реле-регулятор

Снять реле-регулятор напряжения генератора («Ланос» или отечественная «девятка» у вас – не суть важно) довольно просто. Стоит заметить, что при замене регулятора напряжения потребуется всего один инструмент — плоская или крестовая отвертка. Снимать генератор или ремень и его привод не нужно. Большинство устройств находится на задней крышке генератора, причем объединены в единый узел с щеточным механизмом. Наиболее частые поломки происходят в нескольких случаях.

Во-первых, при полном стирании графитовых щёток. Во-вторых, при пробое полупроводникового элемента. О том, как провести проверку регулятора, будет рассказано ниже. При снятии вам потребуется отключить аккумуляторную батарею. Отсоедините провод, который соединяет регулятор напряжения с выходом генератора. Выкрутив оба крепежных болта, можно вытянуть корпус устройства. А вот реле-регулятор напряжения генератора ВАЗ 2101 имеет устаревшую конструкцию – он монтируется в подкапотном пространстве, отдельно от щеточного узла.

Проверка устройства

Проверяется реле-регулятор напряжения генератора ВАЗ 2106, «копеек», иномарок одинаково. Как только произведете снятие, посмотрите на щетки – у них должна быть длина более 5 миллиметров. В том случае, если этот параметр отличается, нужно проводить замену устройства. Чтобы осуществить диагностику, потребуется источник постоянного напряжения. Желательно, чтобы можно было изменить выходную характеристику. В качестве источника питания можно использовать аккумулятор и пару пальчиковых батареек. Еще вам необходима лампа, она должна работать от 12 Вольт. Вместо нее можно использовать вольтметр. Подключаете плюс от питания к разъему регулятора напряжения.

Соответственно, минусовой контакт соединяете с общей пластиной устройства. Лампочку или вольтметр соединяете со щетками. В таком состоянии между щетками должно присутствовать напряжение, если на вход подается 12-13 Вольт. Но если вы будете подавать на вход больше, чем 15 Вольт, между щетками напряжения не должно быть. Это признак исправности устройства. И совершенно не имеет значения, диагностируется реле-регулятор напряжения генератора ВАЗ 2107 или другого автомобиля. Если же контрольная лампа горит при любом значении напряжения или вовсе не загорается, значит, присутствует неисправность узла.

Выводы

В системе электрооборудования автомобиля реле-регулятор напряжения генератора «Бош» (как, впрочем, и любой иной фирмы) играет очень большую роль. Как можно чаще следите за его состоянием, проверяйте на наличие повреждений и дефектов. Случаи выхода из строя такого устройства нередки. При этом в лучшем случае разрядится аккумуляторная батарея. А в худшем может повыситься напряжение питания в бортовой сети. Это приведет к выходу из строя большей части потребителей электроэнергии. Кроме того, может выйти из строя и сам генератор. А его ремонт обойдется в кругленькую сумму, а если учесть, что АКБ очень быстро выйдет из строя, расходы и вовсе космические. Стоит также отметить, что реле-регулятор напряжения генератора Bosch является одним из лидеров по продажам. У него высокая надежность и долговечность, а характеристики максимально стабильны.

В электрических сетях очень часто используется автоматическое включение и отключение генератора. Для этого существует реле-регулятор напряжения. С его помощью осуществляется защита генератора от перегрузок, позволяет автоматически регулировать напряжение и силу тока в установленных пределах. Этот прибор, в основном, используется в электрических сетях всех автомобилей и устанавливается в моторном отсеке.

Назначение и устройство реле-регулятора

Данное устройство является трехэлементным, состоящим из трех независимых автоматов. Это реле обратного тока, ограничитель тока и регулятор напряжения. Эти составные части смонтированы на общем основании и закрываются общей крышкой. Для подключения проводов на основании установлены три клеммы.

Автоматическое включение генератора в сеть осуществляется с помощью реле обратного тока при условии его превышения напряжения аккумулятора на определенное значение. При понижении напряжения, происходит автоматическое отключение генератора. В его состав входит катушка и сердечник с двумя обмотками – шунтовой и сериесной с различным количеством витков проволоки, а также ярмо и якорь с системой контактов.

Заранее заданные пределы напряжения генератора поддерживаются с помощью регулятора. В него входят катушка и сердечник с обмоткой, якорь с системой контактов, ярмо, магнитный шунт, а также цилиндрическая пружина.

Один конец обмотки катушки соединен с массой, а другой – с клеммой генератора, проходя через ярмо, сопротивление и обмотки. Таким образом, значение тока и магнитного потока находится в зависимости от напряжения, которое развивает генератор. Регулятор напряжения позволяет автоматически регулировать силу зарядного тока, получаемую за счет разницы напряжений между аккумулятором и генератором.

Использование ограничителя тока

Для защиты генератора от перегрузок применяется ограничитель тока. В состав входит катушка и сердечник с обмоткой, а также обмотка сопротивления, ярмо и якорь с контактами, как и в других составляющих устройствах. Принцип работы устройства совпадает с регулятором напряжения, когда вся нагрузка генератора пропускается через обмотку ограничителя.

Общую нормальную работу реле-регулятора можно определить с помощью амперметра, расположенного на щитке приборов и по состоянию самого аккумулятора. Если на амперметре постоянно видно большое значение зарядного тока, несмотря на то, что аккумулятор находится в хорошем состоянии, это означает, что реле-регулятор напряжения работает при повышенном напряжении.

Данное устройство является достаточно сложным прибором, требующим точных регулировок и грамотного обращения. Регулировка должна осуществляться только с применением точных контрольных приборов.

Реле регулятор выпрямитель напряжения

Создано реле регулятор напряжения генератора для корректировки выдаваемого в бортовую сеть и на клеммы аккумулятора «вольтажа» в заданном диапазоне 13,8 – 14,5 В (реже до 14,8 В). Кроме того, регулятор корректирует напряжение на обмотке самовозбуждения генератора.

Назначение реле регулятора напряжения

Независимо от стажа и стиля вождения владелец авто не может обеспечить одинаковые обороты двигателя в разные моменты времени. То есть, коленвал ДВС, передающий крутящий момент генератору, вращается с разной скоростью. Соответственно, генератор вырабатывает разное напряжение, что крайне опасно для АКБ и прочих потребителей бортовой сети.

Поэтому замена реле регулятора генератора должна производится при недозаряде и перезаряде аккумулятора, горящей лампочке, мигании фар и прочих перебоях электроснабжения бортовой сети.

Взаимосвязь источников тока авто

В транспортном средстве находится минимум два источника электроэнергии:

  • аккумулятор – необходим в момент запуска ДВС и первичного возбуждения обмотки генератора, энергию не создает, а только расходует и накапливает в момент подзарядки
  • генератор – питает бортовую сеть на любых оборотах и подпитывает АКБ только на высоких оборотах

В бортовую сеть необходимо подключение обоих указанных источников для корректной работы двигателя и прочих потребителей электричества. При поломке генератора АКБ «протянет» максимум 2 часа, а без аккумулятора не заведется двигатель, приводящий в движение ротор генератора.

Существуют исключения – например, а счет остаточной намагниченности обмотки возбуждения штатный генератор ГАЗ-21 запускается самостоятельно при условии постоянной эксплуатации машины. Можно завести авто « с толкача», если в нем установлен генератор постоянного тока, с прибором переменного тока такой трюк невозможен.

Задачи регулятора напряжения

Из школьного курса физики каждый автолюбитель должен помнить принцип работы генератора:

  • при взаимном перемещении рамки и окружающего ее магнитного поля в ней возникает электродвижущая сила
  • электромагнитом генераторов постоянного тока служат статоры, ЭДС, соответственно возникает в якоре, ток снимается с коллекторных колец
  • в генераторе переменного тока намагничивается якорь, электроэнергия возникает в обмотках статора

Упрощенно можно представить, что на величину выходящего с генератора напряжения влияет значение магнитной силы и скорость вращения поля. Основная проблема генераторов постоянного тока – пригорание и залипание щеток при съеме с якоря токов большой величины – решена переходом на генераторы переменного тока. Ток возбуждения, подающийся на ротор для возбуждения магнитной индукции, на порядок ниже, снимать электроэнергию с неподвижного статора гораздо легче.

Однако вместо постоянно расположенных в пространстве клемм «–» и «+» производители авто получили постоянное изменение плюса и минуса. Подзарядка аккумулятора переменным током не возможна в принципе, поэтому диодным мостиком его предварительно выпрямляют.

Из этих нюансов плавно вытекают задачи, решаемые реле генератора:

  • подстройка тока в обмотке возбуждения
  • выдерживание диапазона 13,5 – 14,5 В в бортовой сети и на клеммах аккумулятора
  • отсечение питания обмотки возбуждения от АКБ при заглушенном двигателе

Поэтому называют регулятор напряжения еще и реле зарядки, а на панель выведена сигнальная лампа процесса подзарядки АКБ. В конструкцию генераторов переменного тока функция отсечения обратного тока заложена по умолчанию.

Разновидности реле регуляторов

Прежде, чем произвести самостоятельный ремонт устройства регулирования напряжения, необходимо учесть, что существует несколько типов регуляторов:

  • внешние – повышают ремонтопригодность генератора
  • встраиваемые – в пластину выпрямителя или щеточный узел
  • регулирующие по минусу – появляется дополнительный провод
  • регулирующие по плюсу – экономичная схема подключения
  • для генераторов переменного тока – нет функции ограничения напряжения на обмотку возбуждения, так как она заложена в самом генераторе
  • для генераторов постоянного тока – дополнительная опция отсечения АКБ при неработающем ДВС
  • двухуровневые – морально устарели, применяются редко, регулировка пружинами и небольшим рычагом
  • трехуровневые – дополнены специальной платой сравнивающего устройства и сигнализатором согласования
  • многоуровневые – в схеме имеются 3 – 5 добавочных резисторов и система слежения
  • транзисторные – в современных авто не используются
  • релейные – улучшенная обратная связь
  • релейно-транзисторные – универсальная схема
  • микропроцессорные – небольшие габариты, плавные регулировки нижнего/верхнего порога срабатывания
  • интегральные – встраиваются в щеткодержатели, поэтому заменяются после истирания щеток

Внимание: Без доработки схемы «плюсовой» и «минусовой» регулятор напряжения являются не взаимозаменяемыми приборами.

Реле генераторов постоянного тока

Таким образом, схема подключения регулятора напряжения при эксплуатации генератора постоянного тока сложнее. Поскольку в стояночном режиме авто, когда ДВС заглушен, необходимо отключить генератор от АКБ.

При диагностике проверка реле происходит на выполнение трех его функций:

  • отсечка аккумулятора во время стоянки машины
  • ограничение максимального тока на выходе генератора
  • регулировка напряжения для обмотки возбуждения

При любой неисправности требуется ремонт.

Реле генераторов переменного тока

В отличие от предыдущего случая диагностика своими руками регулятора генератора переменного тока немного проще. В конструкцию «автомобильной электростанции» уже заложена функция отсечки питания во время стоянки от АКБ. Остается проверить лишь напряжение на обмотке возбуждения и на выходе с генератора.

Если в машине стоит генератор тока переменного, его невозможно завести разгоном с горки. Так как остаточного намагничивания на возбуждающей обмотке здесь нет по умолчанию.

Встроенные и внешние регуляторы

Для автолюбителя важно знать, что измеряют и начинают регулировать напряжение реле в конкретном месте их установки. Поэтому встроенные модификации воздействуют непосредственно на генератор, а выносные «не знают» о его наличии в машине.

Например, если выносное реле подключено к катушке зажигания, его работа будет направлена на регулировку напряжения лишь на этом участке бортовой сети. Поэтому, прежде чем узнать, как проверить реле выносного типа, следует убедиться, что оно подключено правильно.

Управление по «+» и «–»

В принципе схемы управления по «минусу» и «плюсу» отличаются лишь схемой подключения:

  • при монтаже реле в разрыв «+» одна щетка подключается к «массе», другая к клемме регулятора
  • если же подключить реле в разрыв «–», то одну щетку нужно подключить к «плюсу», другую к регулятору

Однако в последнем случае появится еще один провод, поскольку реле напряжения является устройством активного типа. Для него необходимо индивидуальное питание, поэтому «+» нужно подвести отдельно.

Двухуровневые

На начальном этапе в машинах устанавливались механические двухуровневые регуляторы напряжения с простым принципом действия:

  • через реле проходит электрический ток
  • возникающее магнитное поле притягивает рычаг
  • сравнивающим устройством служит пружина с заданным усилием
  • при увеличении напряжения контакты размыкаются
  • на возбуждающую обмотку поступает меньший ток

Использовались механические двухуровневые реле в автомобилях ВАЗ 21099. Основным минусом являлась работа с повышенным износом механических элементов. Поэтому на смену этим приборам пришли электронные (бесконтактные) реле напряжения:

  • делитель напряжения собран из резисторов
  • стабилитрон является задающим устройством

Сложная схема соединения и недостаточно эффективный контроль напряжения привели к снижению спроса на эти приборы.

Трехуровневые

Однако двухуровневые регуляторы, в свою очередь, так же уступили позиции более совершенным трехуровневым и многоуровневым приборам:

  • напряжение выходит с генератора на специальную схему через делитель
  • информация обрабатывается, действительное напряжение сравнивается с минимальным и максимальным пороговым значением
  • сигнал рассогласования регулирует силу тока, поступающего на возбуждающую обмотку

Более совершенными считаются реле с частотной модуляцией – в них нет привычных сопротивлений, зато увеличена частота срабатывания ключа электронного. Управление осуществляется логическими схемами.

Принцип работы реле регулятора

Благодаря встроенным резисторам и специальным схемам реле получает возможность сравнивать величину вырабатываемого генератором напряжения. После чего, слишком высокое значение приводит к отключению реле, чтобы не перезарядить аккумулятор и не испортить электроприборы, подключенные в бортовую сеть.

Любые неисправности приводят именно к этим последствиям, приходит в неисправность батарея АКБ или резко увеличивается эксплуатационный бюджет.

Переключатель лето/зима

Вне зависимости от сезона и температуры воздуха работа генератора всегда стабильна. Как только его шкив начинает вращаться, электроток вырабатывается по умолчанию. Однако зимой внутренности аккумулятора замерзают, он восполняет заряд значительно хуже, чем летом.

Переключатели лето/зима находятся либо на корпусе регулятора напряжения, либо этим обозначением подписаны соответствующие разъемы, которые нужно найти и подсоединить к ним проводку в зависимости от сезона.

Ничего необычного в этом переключателе нет, это лишь грубые настройки реле регулятора, позволяющие повысить до 15 В напряжение на клеммах аккумулятора.

Подключение в бортовую сеть генератора

Если при замене генератора вы подключаете новый прибор самостоятельно, необходимо учесть нюансы:

  • вначале следует проверить целостность и надежность контакта провода от кузова машины к корпусу генератора
  • затем можно подсоединять клемму Б реле регулятора с «+» генератора
  • вместо «скруток», начинающих греться через 1 – 2 года эксплуатации, лучше использовать пайку проводов
  • заводской провод нужно заменить кабелем сечения 6 мм2 минимум, если вместо штатного генератора монтируется электроприбор, рассчитанный на ток больше 60 А
  • амперметр в цепи генератор/аккумулятор показывает, мощность какого источника электроснабжения в данный момент выше в бортовой сети

Амперметры – нужные приборы, с помощью которых можно определить заряд АКБ и работоспособность генератора. Без особых причин не рекомендуется убирать их из схемы.

Схемы подключения регулятора выносного

Монтируется выносное реле регулятора напряжения генератора только после выяснения, в разрыв какого провода оно должно быть подключено. Например:

  • на старых РАФ, Газелях и «Бычках» используются реле 13.3702 в полимерном или стальном корпусе с двумя контактами и двумя щетками, монтируются в «–» разрыв цепи, клеммы всегда промаркированы, «+» обычно берется с катушки зажигания (Б-ВК клемма), контакт Ш регулятора соединяется со свободной клеммой щеточного узла
  • в «жигулях» применяются реле регуляторы 121.3702 белого и черного цвета, существуют двойные модификации, в которых при выходе из строя одного прибора работа второго устройства продолжается простым переключением на него, монтируется в разрыв «+» клеммой 15 к выводу катушки зажигания Б-ВК, к щеточному узлу крепится проводом клемма 67

Встраиваемые реле-регуляторы автолюбители называют «шоколадками», маркированными Я112. Они монтируются в специальные щеткодержатели, прижимаются винтами и защищаются дополнительно крышкой.

На автомобилях ВАЗ реле обычно встроены в щеточный узел, полная маркировка Я212А11, подключаются к замку зажигания.
Если владелец меняет штатный генератор на старом отечественном ВАЗ на устройство переменного тока от иномарки или современной Лады, подключение производится по другой схеме:

  • вопрос крепления корпуса автолюбитель решает самостоятельно
  • аналогом клеммы «плюс» здесь служит контакт В или В+, его включают в бортовую сеть через амперметр
  • выносные реле регуляторы здесь обычно не используются, а встраиваемые уже интегрированы в щеточный узел, из них выходит единственный провод с маркировкой D либо D+, который подсоединяется к замку зажигания (к клемме катушки Б-ВК)

Для дизельных ДВС в генераторах может присутствовать клемма W, которая присоединяется к тахометру, ее игнорируют при установке на авто с бензиновым мотором.

Проверка подключения

После установки трехуровневого или иного реле-регулятора необходима проверка работоспособности:

  • двигатель заводится
  • напряжение в бортовой сети контролируется на разных оборотах

После установки генератора переменного тока и подключения его по вышеприведенной схеме владельца может ожидать «сюрприз»:

  • при включении ДВС запускается генератор, измеряется напряжение на средних, больших и малых оборотах
  • после выключения зажигания ключом …. двигатель продолжает работать

В этом случае заглушить ДВС можно либо сняв провод возбуждения, либо отпустив сцепление с одновременным нажатием тормоза. Все дело в наличии остаточной намагниченности и постоянном самовозбуждении обмотки генератора. Проблема решается установкой в разрыв возбуждающего провода лампочки:

  • она горит при незапущенном генераторе
  • гаснет после его запуска
  • проходящий через лампу ток недостаточен, чтобы возбудить обмотку генератора

Эта лампа автоматически становится индикатором наличия зарядки АКБ.

Диагностика реле регулятора

Определить поломки регулятора напряжения можно по признакам косвенным. Прежде всего, это некорректная зарядка АКБ:

  • перезаряд – выкипает электролит, раствор кислоты попадает на детали кузова
  • недозаряд – ДВС не запускается, лампы горят в пол накала

Однако предпочтительнее диагностика приборами – вольтметром или тестером. Любое отклонение от максимального значения напряжения 14,5 В (в некоторых авто бортовая сеть рассчитана на 14,8 В) на больших оборотах или минимального значения 12,8 В на малых оборотах становится причиной замены/ремонта реле регулятора.

Встроенного

Чаще всего регулятор напряжения интегрирован в щетки генератора, поэтому необходимо уровневое обследование этого узла:

  • после снятия защитной крышки и ослабления винтов щеточный узел извлекается наружу
  • при износе щеток (осталось меньше 5 мм их длины) замена должна производится в обязательном порядке
  • диагностика генератора мультиметром производится в комплекте с аккумулятором или зарядным устройством
  • «минусовой» провод от источника тока замыкается на соответствующую пластину регулятора
  • «плюсовой» провод от ЗУ или АКБ подключается к аналогичному разъему реле
  • тестер устанавливается в режим вольтметра 0 – 20 В, щупы накладываются на щетки
  • в диапазоне 12,8 – 14,5 В между щетками должно быть напряжение
  • при увеличении напряжения больше 14,5 В стрелка вольтметра должна быть на нуле

В данном случае вместо вольтметра можно использовать лампу, которая должна гореть в указанном интервале напряжения, гаснуть при увеличении этой характеристики больше этого значения.

Провод, управляющий тахометром (маркировка W только на реле для дизелей) прозванивается мультиметром в режиме тестера. На нем должно быть сопротивление около 10 Ом. При снижении этого значения провод «пробит», его следует заменить новым.

Выносного

Никаких отличий в диагностике для выносного реле не существует, зато его не нужно демонтировать из корпуса генератора. Проверить реле регулятор напряжения генератора можно при работающем двигателе, изменяя обороты с низких на средние, затем высокие. Одновременно с увеличением оборотов нужно включить дальний свет (как минимум), кондиционер, монитор и прочие потребители (как максимум).

Таким образом, при необходимости владелец транспортного средства может заменить штатное реле регулятор напряжения на более современную модификацию встраиваемого или выносного типа. Диагностика работоспособности доступна собственными силами при наличии обычной автомобильной лампы.

Назначение и проверка регулятора напряжения генератора

Генераторная установка предназначена для обеспечения питанием потребителей, входящих в систему электрооборудования, и зарядки аккумуляторной батареи при работающем двигателе автомобиля. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумуляторной батареи. Кроме того, напряжение в бортовой сети автомобиля, питаемой генераторной установкой, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок. 

Генераторная установка — достаточно надежное устройство, способное выдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и других факторов.

Технические характеристики генераторов

Максимальная сила тока отдачи (при 13 В и 5000 мин-1), А

55

Пределы регулируемого напряжения, В

14,1+0,5

Максимальная частота вращения ротора, мин-1

13000

Передаточное отношение двигатель-генератор

1:2,04

Особенности устройства и принцип действия

Генератор типа 37.3701 — переменного тока, трехфазный, со встроенным выпрямительным блоком и электронным регулятором напряжения, правого вращения (со стороны привода), с вентилятором у приводного шкива и вентиляционными окнами в торцевой части. Для защиты от грязи задняя крышка генератора закрыта защитным кожухом.

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. Такие катушки, помещенные в пазы магнитопровода (железного пакета), представляют собой обмотки статора — важнейшей неподвижной части генератора — именно они генерируют переменный электрический ток.
Магнитный поток в генераторе создается ротором. Он тоже представляет собой катушку (обмотка возбуждения), через которую пропускается постоянный ток (ток возбуждения). Эта обмотка уложена в пазы своего магнитопровода (полюсной системы). В состав ротора — важнейшей подвижной части генератора — входят также вал и контактные кольца. При вращении ротора напротив катушек обмотки статора появляются попеременно «северный», и «южный» полюсы ротора, т. е. направление магнитного потока, пронизывающего обмотки статора, меняется, что и вызывает появление в них переменного напряжения.
Можно было бы использовать в качестве ротора постоянный магнит, но создание магнитного потока электромагнитом позволяет легко регулировать выходное напряжение генератора в широких диапазонах скоростей вращения и тока нагрузки путем изменения тока возбуждения.

Для того, чтобы получить из переменного напряжения постоянное, используют шесть силовых полупроводниковых диодов, которые составляют между собой выпрямительный блок установленный внутри корпуса генератора.

Питание обмотки возбуждения осуществляется от самого генератора и подводится к ней через щётки и контактные кольца.
Для обеспечения же первоначального возбуждения генератора, после включения зажигания, к клемме «В» регулятора напряжения, подводится ток по двум цепям.

  1. Плюс АКБ — контакт 30 генератора — контакты 30/1 и 15 замка зажигания — контакт 86 и 85 обмотки реле зажигания — минус АКБ. Реле включилось, и ток пошёл по второй цепи:
  2. Плюс АКБ — контакт 30 генератора — контакты 30 и 87 реле зажигания — предохранитель №2 в блоке предохранителей — контакт 4 белого разъема в комбинации приборов — резистор 36 Ом в комбинации приборов — контрольная лампа зарядки АКБ — контакт 12 белого разъема в комбинации приборов — контакт 61 — вывод «В» регулятора напряжения — обмотка возбуждения — вывод «Ш» регулятора напряжения — выходной транзистор регулятора напряжения — минус АКБ.

После пуска двигателя обмотка возбуждения питается с общего вывода трёх дополнительных диодов, установленных на выпрямительном блоке, а напряжение в системе электрооборудования автомобиля контролируется светодиодом или лампой в комбинации приборов. При исправно работающем генераторе после включения зажигания светодиод или лампа должны светиться, а после пуска двигателя — гаснуть. Напряжение на 30-м контакте и общем выводе 61 дополнительных диодов становится одинаковым. Поэтому ток через контрольную лампу (светодиод) не протекает, и она не горит. 
Если лампа (светодиод) горит после пуска двигателя, то это означает, что генераторная установка неисправна, т. е. вообще не выдаёт напряжение, или оно ниже напряжения АКБ. В этом случае напряжение на разъёме 61 ниже напряжения на контакте 30. Поэтому в цепи между ними протекает ток, проходящий через светодиод/лампу. Он/она загорается, предупреждая о неисправности генератора.

Регулятор напряжения: назначение и принцип действия

Генераторная установка оснащена полупроводниковым электронным регулятором напряжения, встроенным внутрь генератора. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и от величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки, тем меньше это напряжение. 
Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет управления током возбуждения.

Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети (дополнительных диодов). 
С увеличением частоты вращения ротора напряжение генератора повышается. Когда оно начинает превышать уровень 13,5…14,2 В, выходной транзистор в регуляторе напряжения запирается, и ток через обмотку возбуждения прерывается. Напряжение генератора падает, транзистор в регуляторе отпирается и снова пропускает ток через обмотку возбуждения.
Чем выше частота вращения ротора генератора, тем больше время запертого состояния транзистора в регуляторе, следовательно, тем сильнее снижается напряжение генератора. Этот процесс запирания и отпирания регулятора происходит с высокой частотой. Поэтому колебания напряжения на выходе генератора незаметны, и практически можно считать его постоянным, поддерживаемым на уровне 13,5…14,2 В.

Регулятор напряжения: назначение и принцип действия

Генераторная установка оснащена полупроводниковым электронным регулятором напряжения, встроенным внутрь генератора. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и от величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки, тем меньше это напряжение. 
Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет управления током возбуждения.

Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети (дополнительных диодов). 
С увеличением частоты вращения ротора напряжение генератора повышается. Когда оно начинает превышать уровень 13,5…14,2 В, выходной транзистор в регуляторе напряжения запирается, и ток через обмотку возбуждения прерывается. Напряжение генератора падает, транзистор в регуляторе отпирается и снова пропускает ток через обмотку возбуждения.
Чем выше частота вращения ротора генератора, тем больше время запертого состояния транзистора в регуляторе, следовательно, тем сильнее снижается напряжение генератора. Этот процесс запирания и отпирания регулятора происходит с высокой частотой. Поэтому колебания напряжения на выходе генератора незаметны, и практически можно считать его постоянным, поддерживаемым на уровне 13,5…14,2 В.

Привод генератора и крепление его к двигателю

Привод генератора осуществляется от коленчатого вала ременной передачей при помощи клинового ремня. Соответственно, для этого ремня приводной шкив генератора выполняется с одним ручьём. 
Для охлаждения генератора с тыльной стороны шкива точечной сваркой приварены пластины. На шкиве они располагаются почти перпендикулярно и выполняют функцию вентилятора. 
Нижнее крепление генератора на двигателе выполнено на двух крепежных лапах, сочленяемых с кронштейном двигателя одним длинным болтом с гайкой. Верхнее — через шпильку к натяжной планке.

Меры предосторожности

Эксплуатация генераторной установки требует соблюдения некоторых правил, связанных, главным образом, с наличием в них электронных элементов. 

  1. Не допускается работа генераторной установки с отключенной аккумуляторной батареей. Даже кратковременное отсоединение аккумуляторной батареи при работающем генераторе может привести к выходу элементов регулятора напряжения из строя. 
    При полностью разряженной аккумуляторной батарее машину невозможно завести, даже если катать ее на буксире: АКБ не дает тока возбуждения, и напряжение в бортовой сети остается близким к нулю. Помогает установка исправной заряженной батареи, которая затем при работающем двигателе меняется на прежнюю, разряженную. Чтобы избежать выхода из строя элементов регулятора напряжения (и подключенных потребителей) из-за повышения напряжения, на время перестановки батарей необходимо включить мощные потребители электроэнергии, таких, как обогрев заднего стекла или фары. В дальнейшем за полчаса-час работы двигателя на 1500-2000 об/мин разряженная батарея (если она исправна) зарядится достаточно для того, чтобы завести двигатель.
  2. Не допускается подсоединение к бортовой сети источников электроэнергии обратной полярности (плюс на «массе»), что может произойти, например, при запуске двигателя от посторонней аккумуляторной батареи. 
  3. Не допускаются любые проверки в схеме генераторной установки с подключением источников повышенного напряжения (выше 14 В). 
  4. При проведении на автомобиле электросварочных работ клемма «масса» сварочного аппарата должна быть соединена со свариваемой деталью. Провода, идущие к генератору и регулятору напряжения следует отключить.

Обслуживание генератора

Обслуживание генераторной установки сведено к минимуму и не требует каких-либо специальных знаний и навыков, эти работы может выполнить каждый автолюбитель.
Обслуживание генератора начните с очистки наружных поверхностей. Проверьте крепление генератора к двигателю, надежность присоединения проводов к генератору и регулятору напряжения, а также натяжение приводного ремня вентилятора. Если натяжение слабое, то генератор работает неустойчиво, если сильное — ремень и подшипники быстро изнашиваются. 
Также проверьте состояние приводного ремня. На нём не должно быть трещин и расслоений. 
Состояние подшипников можно проверить, вращая ротор генератора от руки при снятом приводном ремне. При нормальном состоянии подшипников вращение вала должно происходить плавно, без заеданий, сильного люфта, шумов и щелчков.
В принципе этими работами можно и ограничиться до тех пор, пока не появятся какие-либо неисправности.

Контрольная проверка

Перед выездом рекомендуется проверить работоспособность генераторной установки по контрольной лампе, установленной на панели приборов. После включения зажигания до запуска двигателя контрольная лампа горит, что позволяет проверить ее работоспособность. При нормальной работе генераторной установки контрольная лампа после запуска двигателя гаснет. 
У нормально работающей генераторной установки, при средних частотах вращения коленвала двигателя, напряжение должно быть в пределах 13,5…14,2 В. Величину этого напряжения измеряют вольтметром на клеммах аккумулятора.

Предремонтная диагностика

Вспыхнувшая контрольная лампа зарядки АКБ не всегда говорит о неисправности внутри генератора. Зачастую неисправность банальна и лежит на поверхности. Поэтому не стоит сразу же лезть в генератор и сломя голову менять реле-регулятор, авось поможет. Посмотрите схему предварительной диагностики. Для её проведения, возможно, потребуется вольтметр со шкалой не менее 15 В. Каждый может сделать эти проверки и, тем самым, уберечь себя от лишних, неверных действий и потери драгоценного времени.

Если предварительная диагностика показала что, цепь обмотки возбуждения исправна, и неисправность находится в генераторе, то после его снятия желательно проверить все цепи, включая реле-регулятор, по схемам, описанным в разделе

Снятие и установка генератора

  1. Отсоедините минусовый провод от клеммы АКБ (ключ на 10).
  2. Снимите пластмассовые ленточные хомуты с патрубка воздухозаборника и жгута проводов стартёра и генератора.
  3. Разъедините разъём обмотки возбуждения генератора.
  4. Отверните гайку с 30-ой клеммы генератора (ключ на 10).
  5. Отверните гайку крепления генератора к натяжной планке (ключ на 17).
  6. С помощью монтажной лопатки подведите генератор к двигателю и снимите приводной ремень.
  7. Отверните три болта защиты картера (головка на 13) и снимите её.
  8. Снимите правый брызговик двигателя, отвернув пять саморезов с головкой под ключ на 8.
  9. Отверните гайку на 19 с нижнего болта крепления генератора к кронштейну.
  10. Снимите генератор вместе с патрубком воздухозаборника. Для этого нужно немного наклонить его так, чтобы он прошёл вниз между лонжероном и нижним кронштейном крепления генератора.
  11. Установку генератора производите в обратной последовательности.

Разборка и замена регулятора напряжения

Подготовку начните с очистки наружных поверхностей генератора.

  1. Снимите заднюю крышку вместе с воздухозаборным патрубком.
  2. Отсоедините провод от реле-регулятора, отверните два винта М4 и снимите реле-регулятор. Для снятия реле-регулятора старого образца отвинтите провод, закрепленный под удлинителем вывода «30» генератора. Вставьте лезвие отвёртки между корпусом реле-регулятора и щеткодержателем. Работая отвёрткой как рычагом, выдвиньте реле-регулятор и вытащите щётки.
  3. Продуйте от пыли и грязи внутреннюю полость генератора сжатым воздухом с помощью компрессора или насоса. 
  4. При сильном обгорании или износе контактных колец ротора, зачистите их мелкой шлифовальной шкуркой.
  5. Установите новое реле-регулятор в порядке обратном снятию.

Если после проверки старое реле-регулятор окажется исправным (метод проверки описан в следующем разделе), то:

  1. очистите контактные соединения генератора и реле-регулятора от грязи и масла тряпкой, смоченной в бензине или растворителе. Масло и грязь увеличивает сопротивление в местах контактов, что уменьшает отдаваемый генератором ток и повышает изнашивание щеток. 
  2. проверьте минимально допустимое выступание щеток из щеткодержателя — 5 мм. В случае заедания щёток в щеткодержателе замените реле-регулятор в сборе. (Для реле-регуляторов старого образца достаточно заменить только щёточный узел.)
  3. установите его на место.

Поиск и устранение неисправностей узлов и деталей генераторной установки

Для поиска неисправности электрических цепей генераторной установки достаточно иметь омметр. Более точная проверка обмоточных узлов требует применения специальных приборов, таких как ПДО-1, с его помощью осуществляется поиск неисправности в обмотках методом сравнения их параметров. Для проверки реле-регулятора понадобится источники постоянного напряжения 12…14 В и 16…22 В. Все проверки удобнее проводить на генераторе, снятом с автомобиля.

Проверка регулятора напряжения

Регуляторы напряжения не ремонтируются, а заменяются новыми. Однако перед заменой следует точно установить, что именно он вышел из строя.

Проверка на автомобиле

Для проверки необходимо иметь вольтметр постоянного тока со шкалой до 15…30 вольт.
На работающем при средних оборотах двигателе и включенных фарах замерьте напряжение на клеммах АКБ. Оно должно находится в пределах 13,5…14,2 В. 
В том случае, если наблюдается систематический недозаряд или перезаряд аккумуляторной батареи и регулируемое напряжение не укладывается в указанные пределы, возможно, что регулятор напряжения неисправен, и его необходимо заменить. Для того, чтобы узнать, исправен регулятор или нет, проведём его проверку по рисунку показанному ниже.

Проверка снятого регулятора

Регулятор, снятый с генератора, проверяется по следующим схемам (старого образца слева, нового — справа): 


Реле-регулятор лучше проверять в сборе со щеткодержателем, так как при этом можно сразу обнаружить обрывы выводов щеток и плохой контакт между выводами регулятора напряжения и щеткодержателя. 
Между щетками включите лампу 1…3 Вт, 12 В. К выводам «Б», «В» и к массе регулятора присоедините источник питания сначала напряжением 12…14 В, а затем напряжением 16…22 В.
Если регулятор исправен, то в первом случае лампа должна гореть, а во втором — гаснуть.
Если лампа горит в обоих случаях, то в регуляторе пробой, а если не горит в обоих случаях, то в регуляторе имеется обрыв или нет контакта между щётками и выводами регулятора напряжения.

Проверка обмотки ротора (возбуждения)

Для проверки обмотки следует включить омметр на измерение сопротивления и поднести его выводы к кольцам ротора. У исправного ротора сопротивление обмотки должно быть в пределах 1,8…5 Ом. Если омметр покажет бесконечно большое сопротивление, это значит что, цепь обмотки возбуждения разорвана. 
Разрыв чаще всего происходит в месте пайки выводов обмотки к кольцам. Следует внимательно проверить качество этой пайки. Проверку можно осуществить иглой, шевеля выводы обмотки в месте их подпайки. О сгорании обмотки свидетельствует потемнение и осыпание ее изоляции, что можно обнаружить визуально. Сгорание обмоток приводит к обрыву или к межвитковому замыканию в обмотке с уменьшением ее общего сопротивления. Частичное межвитковое замыкание, при котором сопротивление обмотки меняется мало, может быть выявлено прибором ПДО-1, сравнением данной обмотки с заведомо исправной. После проверки сопротивления обмотки следует проверить отсутствие у нее замыкания на «массу». Для этого один вывод омметра подносится к любому кольцу ротора, а другой к его клюву. У исправной обмотки омметр покажет бесконечно большое сопротивление. Неисправный ротор подлежит замене.

Проверка обмотки статора

Статор проверяется отдельно, после разборки генератора. Выводы его обмотки должны быть отсоединены от вентилей выпрямителя.

   

В первую очередь проверьте омметром, нет ли обрывов в обмотке статора (а). Затем подсоединением концов омметра к одному из выводов обмотки и неизолированному участку железа статора проверьте, не замыкаются ли ее витки на «маccу» (б). Омметр должен показать разрыв цепи у исправной обмотки. Проверку межвиткового замыкания в обмотках статора можно с достаточной точностью осуществить с использованием прибора ПДО-1. Обрыв можно проверить и омметром, подсоединяя его к нулевой точке и поочередно к выводу каждой фазы. Внешним осмотром следует убедиться, что отсутствует растрескивание изоляции и подгорание обмотки, которое происходит при коротком замыкании в вентилях выпрямительного блока. Статор с такой поврежденной обмоткой замените.

Проверка вентилей (диодов) выпрямительного блока

Проверка диодов выпрямительного блока производится после отсоединения его от обмотки статора омметром. Исправный вентиль пропускает ток, только в одном направлении. Неисправный — может либо вообще не пропускать ток (обрыв цепи), или пропускать ток в обоих направлениях (короткое замыкание). В случае повреждения одного из вентилей выпрямителя необходимо заменять целиком выпрямительный блок. 
Короткое замыкание вентилей выпрямительного блока можно проверить, не разбирая генератор, а только сняв защитный кожух. Также отсоединяется вывод «Б» регулятора от клеммы «30» генератора и провод от вывода «В» регулятора напряжения. Проверить можно омметром или с помощью лампы (1…5 Вт, 12 В) и аккумуляторной батареи. 
С целью упрощения крепления деталей выпрямителя три вентиля (с красной меткой) создают на корпусе «плюс» выпрямленного напряжения. Эти вентили «положительные» и они запрессованы в одну пластину выпрямительного блока, соединенную с выводом «30» генератора. Другие три вентиля («отрицательные» с черной меткой) имеют на корпусе «минус» выпрямленного напряжения. Они запрессованы в другую пластину выпрямительного блока, соединенную с «массой». 
Сначала проверьте, нет ли замыкания одновременно в «положительных» и «отрицательных» вентилях. Для этого «плюс» батареи через лампу подсоедините к зажиму «30» генератора, а «минус» к корпусу генератора: 


Если лампа горит, то «отрицательные» и «положительные» вентили имеют короткое замыкание. 
Короткое замыкание «отрицательных» вентилей можно проверить, соединив «плюс» батареи через лампу с одним из болтов крепления выпрямительного блока, а «минус» с корпусом генератора: 

Горение лампы означает короткое замыкание в одном или нескольких «отрицательных» вентилях. Следует помнить, что в этом случае горение лампы может быть и следствием замыкания витков обмотки статора на корпус генератора. Однако такая неисправность встречается реже, чем короткое замыкание вентилей. 
Для проверки короткого замыкания в «положительных» вентилях «плюс» батареи через лампу соедините с зажимом 30 генератора, а «минус» — с одним из болтов крепления выпрямительного блока:

Горение лампы укажет на короткое замыкание одного или нескольких «положительных» вентилей. 
Обрыв в вентилях без разборки генератора можно обнаружить либо осциллографом, либо при проверке генератора на стенде по значительному снижению (на 20-30%) величины отдаваемого тока по сравнению с номинальным. Если обмотки, дополнительные диоды и регулятор напряжения генератора исправны, а в вентилях нет короткого замыкания, то причиной уменьшения отдаваемого тока является обрыв в вентилях.

Проверка дополнительных диодов

Короткое замыкание дополнительных диодов можно проверить по схеме:

 

«Плюс» батареи через лампу (1…3 Вт, 12 В) присоедините к выводу «61» генератора, а «минус» к одному из болтов крепления выпрямительного блока. 
Если лампа загорится, то в каком-то из дополнительных диодов имеется короткое замыкание. Найти поврежденный диод можно, только сняв выпрямительный блок и проверяя каждый диод в отдельности. 
Обрыв в дополнительных диодах можно обнаружить осциллографом по искажению кривой напряжения на штекере «61», а также по низкому напряжению (ниже 14 В) на штекере «61» при средней частоте вращения ротора генератора.

Проверка конденсатора

Конденсатор служит для защиты электронного оборудования автомобиля от импульсов напряжения системе зажигания, а также для снижения помех радиоприему.
Повреждение конденсатора или ослабление его крепления на генераторе (ухудшение контакта с массой) обнаруживается по увеличению помех радиоприёму при работающем двигателе. 
Ориентировочно исправность конденсатора можно проверить мегомметром или тестером (на шкале 1…10 МОм). Если в конденсаторе нет обрыва, то в момент присоединения щупов прибора к выводам конденсатора стрелка должна отклониться в сторону уменьшения сопротивления, а затем постепенно вернуться обратно. 
Емкость конденсатора, замеренная специальным прибором, должна быть 2,2 мкФ+20%.

Проверка и замена подшипников

Проверку подшипников начните с внешнего осмотра, выявления трещин в обоймах, наволакивания или выкрашивания металла, наличие коррозии и т. д. Проверьте легкость вращения и отсутствие сильного люфта и шума. Если у подшипника сильно изношены посадочные места или есть повреждения, то он подлежит замене. 
Порядок замены подшипников (генератор снят с автомобиля).

  1. Снимите заднюю крышку вместе с патрубком воздухозаборника.
  2. Снимите регулятор напряжения.
  3. Отверните шкив генератора и вытащите шпонку.
  4. Отверните 4 гайки стяжных болтов и снимите переднюю крышку генератора вместе с ротором и подшипниками.
  5. Извлеките неисправный подшипник из крышки со стороны привода. Отверните гайки винтов, стягивающих шайбы крепления подшипника, снимите шайбы с винтами и на ручном прессе выпрессуйте подшипник. Если гайки винтов не отворачиваются (концы винтов раскернены), спилите концы винтов. 
  6. Запрессуйте новый подшипник. Для этого новый подшипник положите на посадочное место, а сверху него — старый. Несильными ударами молотка, по старому подшипнику, осаживайте новый подшипник в посадочное место. Если подшипник идёт с большим натягом, побрызгайте на его внешнее кольцо жидкостью WD-40. 
  7. С помощью съёмника спрессуйте второй подшипник с обратной стороны ротора.
  8. Запрессуйте новый подшипник (см. п. 6).
  9. Произведите сборку в обратной последовательности.

Проверка крышек

Внешним осмотром определяется отсутствие трещин, проходящих через гнездо подшипника, обломы лап крепления генератора, сильные повреждения посадочных мест. При наличии таких повреждений крышка подлежит замене. При выявлении сильного износа посадочных мест подшипников, замените крышки.

Поиск неисправностей генератора по схемам

Типичные неисправности генератора

Причины неисправности

Способ устранения

Светодиод (лампа) вольтметра не загорается при включении зажигания. Контрольные приборы не работают 

1. Поврежден светодиод (лампа) вольтметра 

Замените светодиод (лампу) вольтметра 

2. Перегорел предохранитель №2 в блоке предохранителей 

Замените предохранитель 

3. Обрыв в цепи питания комбинации приборов: 

не подается напряжение от штекера «Б» блока предохранителей к комбинации приборов 

проверьте провод «О» и его соединения от блока предохранителей до комбинации приборов 

не подается напряжение от реле зажигания к штекеру «Б» блока предохранителей 

проверьте провод «ГЧ» и его соединения от блока предохранителей до реле зажигания 

обрыв или нарушение контакта в проводе, соединяющем с «массой» комбинацию приборов 

проверить провод «Ч» и его соединения от комбинации приборов на «массу» 

4. Не срабатывает выключатель или реле зажигания: 

неисправна контактная часть или реле зажигания 

проверьте, замените контактную часть выключателя или реле зажигания 

не подается напряжение от выключателя к реле зажигания 

проверьте провод «Ч» и его соединения между выключателем и реле зажигания 

обрыв или нарушение контакта в проводе, соединяющем с «массой» реле зажигания 

проверьте провод «Ч» и его соединения от реле зажигания на «массу» 

5. Поврежден стабилизатор напряжения в комбинации приборов

Замените стабилизатор напряжения

При включении зажигания и после пуска двигателя светодиод/лампа вольтметра не горит, аккумулятор разряжается 

Неисправна цепь обмотки возбуждения генератора: 

1. Перегорел предохранитель №2

Замените предохранитель

2. Обрыв проводов в цепях: предохранитель №2 — комбинация приборов; комбинация приборов — реле-регулятор.

Найдите и устраните обрыв

3. В приборной панели; перегорел светодиод/лампа; обрыв печатных проводников; неисправно гасящее сопротивление или плохие пайки его выводов

Замените светодиод/лампу; устраните обрыв печатных проводников; замените или пропаяйте сопротивление.

4. Нет «массы» между корпусом и реле-регулятором

Очистите от окислов и грязи место соединения реле-регулятора с генератором

5. Неисправно реле-регулятор

Замените реле-регулятор

6. Обрыв обмотки ротора

Замените ротор

Светодиод вольтметра горит при работе двигателя. Аккумуляторная батарея разряжена 

1. Проскальзывание ремня привода генератора

Отрегулируйте натяжение ремня

2. Нет контакта между выводами «В» и «Ш» регулятора напряжения и выводами щеток 

Зачистите выводы «В» и «Ш» регулятора напряжения и щеток, подогните выводы регулятора 

3. Обрыв в цепи между комбинацией приборов и штекером «61» генератора 

Проверьте «КБ» провод и его соединения от генератора до комбинации приборов 

4. Износ или зависание щеток, окисление контактных колец 

Замените щеткодержатель со щетками, протрите кольца салфеткой, смоченной в бензине 

5. Поврежден регулятор напряжения 

Замените регулятор напряжения 

6. Повреждены вентили выпрямительного блока 

Замените выпрямительный блок 

7. Повреждены диоды питания обмотки возбуждения 

Замените диоды или выпрямительный блок 

8. Отпайка выводов обмотки возбуждения от контактных колец 

Припаяйте выводы или замените ротор генератора 

9. Обрыв или короткое замыкание в обмотке статора, замыкание ее на «массу»

Замените статор генератора

АКБ разряжается в процессе эксплуатации, но внешних признаков ненормальной работы генератора нет 

1. Неисправна АКБ: окисление проводов или клемм батареи; недостаточно электролита; замыкание одной или нескольких банок 

Очистите провода/клеммы; долить дистиллированную воду, заменить АКБ

2. Грязь, замасливание, окисление контактных колец ротора

Очистить контактные кольца тряпкой смоченной в бензине, мелкой наждачной бумагой

3. Грязь, замасливание щёток реле-регулятора или слабый контакт в связи с их чрезмерным износом

Очистите щётки от грязи тряпкой смоченной в бензине. Замените реле-регулятор в сборе. (Для реле-регуляторов старого образца достаточно заменить только щётки)

4. Перерасход энергии мощными/ дополнительными потребителями

Замените генератор другим, более мощным (ВАЗ-2108 — 955.3701; ГАЗ-3102)

5. Межвитковое замыкание или обрыв одной из фаз обмотки статора

Замените обмотку статора

Светодиод вольтметра мигает при работе двигателя. Аккумуляторная батарея перезаряжается

Поврежден регулятор напряжения (короткое замыкание между выводом «Ш» и «массой») 

Замените регулятор напряжения 

Контрольная лампа горит в полнакала при работе двигателя

Неисправны дополнительные и/или выпрямительные диоды 

Заменить диоды или выпрямительный блок в сборе

Повышенная шумность генератора 

1. Ослаблена гайка шкива генератора 

Подтяните гайку 

2. Повреждены подшипники ротора или их посадочные места

Замените подшипники, крышку/крышки генератора

3. Межвитковое замыкание или замыкание на «массу» обмотки статора (вой генератора) 

Замените статор 

4. Короткое замыкание в одном из вентилей генератора 

Замените выпрямительный блок 

5. Скрип щеток 

Протрите щетки и контактные кольца хлопчатобумажной салфеткой, смоченной в бензине 

6. Задевание ротора за полюса статора

Замените ротор, статор. Обратить внимание на подшипники

Быстрый износ щёток и контактных колец 

1. Попадание масла или грязи на контактные кольца

Очистите контактные кольца тряпкой смоченной в бензине, мелкой наждачной бумагой

2. Увеличенное биение контактных колец

Замените ротор

Внимание! «Минус» аккумуляторной батареи всегда должен соединяться с массой, а «плюс» — подключается к зажиму «30» генератора. Ошибочное обратное включение батареи немедленно вызовет повышенный ток через вентили генератора, и они выйдут из строя.

Не допускается работа генератора с отсоединенной аккумуляторной батареей. Это вызовет возникновение кратковременных перенапряжений на зажиме «30» генератора, которые могут повредить регулятор напряжения генератора и электронные устройства в бортовой сети автомобиля.

Запрещается проверка работоспособности генератора «на искру» даже кратковременным соединением зажима «30» генератора с «массой». При этом через вентили протекает значительный ток, и они повреждаются. Проверять генератор можно только с помощью амперметра или вольтметра.

Вентили генератора не допускается проверять напряжением более 12 В или мегометром, так как он имеет слишком высокое для вентилей напряжение и они при проверке будут пробиты (произойдет короткое замыкание).

Запрещается проверка электропроводки автомобиля мегометром или лампой, питаемой напряжением более 12 В. Если такая проверка необходима, то предварительно следует отсоединить провода от генератора.

Проверять сопротивление изоляции обмотки статора генератора повышенным напряжением следует только на стенде и обязательно с отсоединенными от вентилей выводами фазных обмоток.

При электросварке узлов и деталей кузова автомобиля следует отсоединить провода от всех клемм генератора и выводов аккумуляторной батареи.

Регулятор напряжения генератора — схема, проверка

Электрооборудование любого автомобиля включает в себя генератор — устройство, преобразующее механическую энергию, получаемую от двигателя, в электрическую. Вместе с регулятором напряжения он называется генераторной установкой.

На современные автомобили устанавливаются генераторы переменного тока. Они в наибольшей степени отвечают предъявляемым требованиям.

Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции — защищать элементы генераторной установки от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило, встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков.

Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки — тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется.

Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить — увеличивается.

Прежде чем проверить регулятор напряжения генератора, нужно убедиться, что проблема кроется именно в нём, а не в других элементах генератора (слабо натянут ремень, окислилась масса и т.д.), для этого нужно проверить сам генератор (Как проверить генератор?). После этого вам нужно снять регулятор напряжения. Процесс демонтажа регулятора описан в статье «как снять регулятор напряжения?».

В двух словах скажу, что сначала нужно снять минусовую клемму, снять все провода с генератора, снять пластиковый кожух с генератора, затем открутить и вынуть регулятор напряжения в сборе вместе с щётками.

Давайте перейдём непосредственно к проверке регулятора напряжения. Проверять регулятор напряжения нужно обязательно в сборе с щёткодержателями – т.к. в случае обрыва цепи щёток и регулятора напряжения, мы сразу это заметим. Перед проверкой, обратите внимание на состояние щёток: если они обломаны или их длина короче 5мм, неподвижны и не пружинят, – то их нужно заменить.

Для проверки нам понадобится:

  • провода;
  • аккумулятор автомобильный;
  • лампочка на 12в 1-3Вт;
  • две обычные пальчиковые батарейки.

Чтобы проверить регулятор напряжения, нам нужно будет построить две схемы: К щёткам подключаем лампочку, К выводам Б и В подключаем «+» от аккумулятора, «-» аккумулятора закрепляем на массу регулятора. Делаем ту же схему, но добавляем последовательно две пальчиковые батарейки. Вывод из всего вышесказанного таков.

Исправный регулятор напряжения генератора: в первой схеме лампа горит, во второй схеме лампа не горит, т.к. напряжение выше 14,7в и подача напряжения на щётки должна быть прекращена. Неисправный регулятор напряжения: в обоих случая лампа горит, значит в регуляторе пробой. Лампа не горит вообще – значит, отсутствует контакт между щётками и регулятором или обрыв цепи в регуляторе.

Сначала узнаем, для чего нужен этот регулятор. Автомобильный генератор во время движения и работы двигателя должен подпитывать аккумуляторную батарею. Тем самым восстанавливается ёмкость аккумулятора, когда он разряжается во время стоянки. Если мы ездим каждый день, то аккумулятор почти не разряжается, если он в исправном состоянии.

Хуже приходиться аккумулятору, когда машина долго стоит без движения, ведь его энергия постепенно уходит на поддержание работы авто сигнализации. Ещё хуже дела обстоят зимой, когда при отрицательных температурах аккумуляторная батарея разряжается очень быстро.

А если вы ездите помалу и не часто, то аккумулятор не заряжается полностью во время движения и может полностью разрядится как-то утром.

Справиться с вышеуказанной проблемой, призван трехуровневый регулятор напряжения. У него три положения работы: это максимальное (выдаёт напряжение на генераторе 14,0-14,2 В), нормальное (13,6-13,8 В) и минимальное (13,0-13,2 В). Как мы знаем из статьи про проверку работоспособности аккумулятора, нормальное напряжение при заведённом двигателе должно быть от 13,2-13,6 В. Это означает, что генератор работает в нормальном режиме и АКБ заряжается в полном объёме.

Это соответствует среднему (нормальному) положению регулятора напряжения. А вот зимой, желательно повысить напряжение до 13,8-14,0 В, т.к. аккумулятор быстрее разряжается при отрицательных температурах. Это делается простым переводом рычажка на регуляторе напряжения. Так будет обеспечена лучшая зарядка АКБ зимой при работающем двигателе.

Летом, особенно когда жара превышает +25 градусов и выше — желательно понизить напряжение генератора до 13,0-13,2 В. Зарядка от этого не пострадает, но генератор не будет “выкипать”, т.е. не будет терять свою номинальную ёмкость и не сокращать ресурс.

Перед заменой регулятора напряжения, обязательно проверьте генератор в целом. Регулятор напряжения нужно менять, если напряжение под нагрузкой бортовой сети (включены дальний, обогрев зеркал, печка) меньше 13в. Так же регулятор напряжения может стать причиной высокого напряжения (выше 14,7в).

Но, как писалось выше, перед снятием регулятора нужно проверить сам генератор, ознакомиться с другими возможными неисправностями (например слабо натянут ремень генератора), и только потом приступать к замене регулятора напряжения. Так же данная статья вам понадобится для замены щёток генератора, т.к. щётки и регулятор напряжения устанавливаются на генератор в сборе.

Итак, как же снять регулятор напряжения? Открываем капот, снимаем минусовую клемму аккумулятора, находим генератор, отсоединяем колодку проводов «D»:

  • снимаем защитный резиновый колпачок с наконечников проводов вывода «+». Откручиваем гайку крепления этих проводов, снимаем их с блока генератора;
  • далее нам нужно снять сам пластиковый блок генератора (чаще всего он черного цвета). Для этого нужно отсоединить три пружинных фиксатора, расположенных по периметру блока;
  • находим регулятор напряжения, и крестовой отверткой откручиваем его крепления;
  • вынимаем регулятор напряжения в сборе с щётками, и отключаем от него колодку проводов;
  • далее нам нужно проверить регулятор напряжения, дабы убедиться в его неисправности.

Устанавливаем регулятор напряжения строго в обратной последовательности. Стоит отметить, что в последнее время, многие автолюбители стали пользоваться трёхуровневым регулятором напряжения генератора, для того, чтобы избавиться от просадок напряжения в бортовой сети.

Автоматический регулятор напряжения (АРН) для генераторов


ТЕОРИЯ РАБОТЫ

Автоматический регулятор напряжения (АРН) — это электронное устройство для автоматического поддержания выходного напряжения на клеммах генератора на заданном значении при переменной нагрузке и рабочей температуре. Он управляет выходным сигналом, считывая напряжение V на выходе на катушке, генерирующей энергию, и сравнивая его со стабильным эталоном. Затем сигнал ошибки используется для корректировки среднего значения тока возбуждения.


Некоторые небольшие дешевые портативные генераторы имеют фиксированное возбуждение.В таких машинах, когда генератор переменного тока нагружен, его выходное напряжение V out падает из-за его внутреннего сопротивления. Этот импеданс складывается из реактивного сопротивления рассеяния, реактивного сопротивления якоря и сопротивления якоря. V out также зависит от коэффициента мощности нагрузки. Вот почему для поддержания выходной мощности в более жестких пределах в большинстве моделей используется AVR. Обратите внимание, что все АРН помогают регулировать выход в основном в установившемся режиме, но, как правило, медленно реагируют на быстрые переходные нагрузки.Некоторые высокопроизводительные устройства, такие как многие модели Honda, используют более точный цифровой DAVR с лучшей переходной характеристикой.

Блок-схема справа иллюстрирует основные концепции, используемые для стабилизации выходной мощности генераторных установок с генераторами переменного тока с самовозбуждением. Вот как это работает. Когда ротор вращается двигателем, в обмотке возбуждения генерируется переменное напряжение. Этот переменный ток преобразуется в постоянный ток выпрямительным мостом «RB» и конденсатором фильтра «C». Схема обнаружения сравнивает напряжение, представляющее V на выходе , с заданным значением и включает и выключает транзистор «Q».Когда «Q» включен, через обмотку возбуждения течет ток. Когда «Q» выключен, ток возбуждения ослабевает, продолжая протекать через диод «D». Ротор может включать в себя небольшой постоянный магнит для обеспечения некоторого базового тока, когда «Q» выключен. Правильно изменяя рабочий цикл транзистора «Q», можно регулировать V out . Обратите внимание, что теоретически «Q» также может работать в линейном режиме, но его тепловыделение будет увеличиваться.

СХЕМА РЕГУЛЯТОРА

На схеме ниже показана типовая реализация АРН.Этот тип схемы существует уже много лет. Его многочисленные варианты используются как в портативных генераторах, так и в автомобильных генераторах переменного тока и описаны в различных патентах, таких как US3376496 General Motor для трехфазных систем и US6522106 Honda.

Выпрямитель RB1 с конденсатором C1 выдает уровень постоянного тока, близкий к пику В на выходе . Небольшой резистор R1 ограничивает ток заряда C1 и предотвращает «отсечение» синусоидального сигнала. Теоретически его можно опустить. Если делитель R2-R3-R4 установлен правильно, когда V на выходе ниже требуемого значения, Q1 будет выключен, Q2 будет смещен вперед через R6, а пара Дарлингтона Q2, Q3 будет активировать обмотку возбуждения.И наоборот, когда V из повышается и напряжение на катоде D1 превышает примерно Vz + 0,7 В, Q1 размыкается и отключает как Q2, так и Q3.
Вот возможный список деталей , который немного изменен по сравнению с тем, что было предоставлено в этом обсуждении: RB1 / RB2 = GBU6J, R1 = 10Ω / 1 Вт, C1 = 2,2 мк / 250 В, R2 = 56 кОм, R3 = 2,49 кОм, R4 = 0 … 2 кОм (потенциометр), R5 = 2,49 кОм, C2 = 0,01 мк, D1 = 1N4738 (Vz = 8,2 В), Q1 = MPSA06, Q2 = 2N6515, Q3 = BU931T, D2, D3 = 1N4005, C3 = 470 мк / 200 В. Конечно, разные производители могут использовать разные конфигурации.Например, здесь вы можете увидеть реконструированный старый регулятор Generac, который использует SCR и UJT. Многие современные машины часто используют MOSFET вместо биполярных транзисторов Q2-Q3 для снижения коммутационных потерь. Вам просто нужно защитить его ворота дополнительным стабилитроном.

Вся информация здесь предоставляется КАК ЕСТЬ только для технической справки, без каких-либо гарантий и ответственности любого типа, явных или подразумеваемых, и не является профессиональной консультацией — прочтите наш полный отказ от ответственности.


Принцип автоматического регулятора напряжения

Автоматический регулятор напряжения (АРН):

Автоматический регулятор напряжения — это устройство, которое поддерживает напряжение на выходе генератора.Чтобы быть более точным, AVR — это контроллер, который всегда сравнивает напряжение на выходе генератора V t с заданным опорным напряжением V ref и в соответствии с сигналом ошибки, то есть (V ref — V t ), оно меняет поле возбуждения генератора для поддержания постоянного напряжения на зажимах V t .

Принцип автоматического регулятора напряжения:

Для лучшего понимания принципа работы автоматического регулятора напряжения i.е. AVR, сначала мы кратко рассмотрим систему возбуждения генератора. Я здесь, например, беру статическую систему возбуждения. Как известно, в статической системе возбуждения выход генератора подается на тиристорный мостовой выпрямитель. Этот тиристорный мостовой выпрямитель преобразует переменный ток в постоянный. Обратите внимание, что выходом постоянного тока тиристорного моста можно управлять, управляя углом включения тиристора. Затем постоянный ток с выхода тиристорного моста подается на обмотку генератора, как показано на рисунке ниже.

Предположим, что ток поля в любой момент времени равен I f . Тогда поток в воздушном зазоре генератора можно записать как Ø = KI f , где K — некоторая константа.

Но мы заинтересованы в поддержании напряжения на выходе генератора V t , которое задается как

В t = 1,414 π fNØ где символы имеют свое обычное значение.

Из вышесказанного совершенно очевидно, что изменение I f изменит напряжение на клеммах V t .

Таким образом, регулирование напряжения может быть достигнуто путем управления током возбуждения. Автоматический регулятор напряжения AVR выполняет это действие, изменяя угол зажигания. На рисунке ниже показана упрощенная схема AVR.

АРН

принимает три входа, а именно опорное напряжение V ref , напряжение на клеммах V t и сигналы ограничения. Для простоты предположим только два входа V ref и V t . Опорное напряжение Vref устанавливается вручную в АРН. Это опорное напряжение также динамически изменяется относительно вручную установленного V ref стабилизатором системы питания (PSS).Но для этого обсуждения мы исключим влияние PSS и предположим, что V ref является постоянным. Сигнал ошибки (V ref -V t ) подается на контроллер. Контроллер на схеме обозначен его передаточной функцией. Выходной сигнал передаточной функции подается на тиристорный мостовой выпрямитель для изменения угла зажигания и, следовательно, возбуждения поля.

Предположим, что V ref = 21 кВ и по какой-то причине напряжение на клеммах V t = 25 кВ. Таким образом, АРН уменьшит ток возбуждения I f , чтобы уменьшить значение потока в воздушном зазоре.Это, в свою очередь, снизит напряжение на клеммах и попытается стабилизировать его на уровне 21 кВ.

Что такое автоматический регулятор напряжения (АРН) для генератора? — PortablePowerGuides

Генераторы

часто сильно выходят из строя во время скачков напряжения и перегрузки. Кроме того, они подают на автоматические выключатели напряжение, превышающее желаемое, что иногда приводит к повреждению любого используемого оборудования и приборов. Чтобы контролировать такие условия и обеспечить защиту от любого вида опасности поражения электрическим током или пожара, вам необходимо убедиться, что автоматический регулятор напряжения (АРН) вашего генератора находится в хорошем рабочем состоянии.

АРН — это электронное устройство, которое присутствует в нескольких устройствах для предотвращения скачков напряжения. Он также присутствует в генераторе переменного тока. Будучи твердотельным устройством, он регулирует выходное напряжение. Он устанавливает фиксированное значение выходного напряжения на клеммах. АРН включается при изменении нагрузки на генератор и влияет на выходное напряжение.

Каковы функции AVR?

Интересно, что АРН генератора не только регулирует напряжение, но и выполняет различные другие функции.

Генератор переменного тока преобразует механическую энергию в электрическую. Работает по принципу электромагнитной индукции. Поскольку он производит переменный ток, электрическая энергия не фиксируется. Таким образом, это может вызвать помехи и привести к повреждению проводов, электроприборов и генератора.

Вот где на помощь приходит автоматический регулятор напряжения (АРН)! Он устанавливает фиксированное значение выходного напряжения, чтобы не было такого повреждения. Вот основные функции АРН в генераторе переменного тока:

регулирует выходное напряжение

Как уже говорилось, AVR помогает регулировать выходное напряжение, принимая статическое значение, так что перегрузка не влияет на выходное напряжение.Таким образом, ваш генератор, проводка и электрическое оборудование останутся в безопасности и защищены от любых электрических или пожарных опасностей.

Регулирует падение напряжения в параллельных генераторах

Помимо регулирования выходного напряжения, AVR также отвечает за поддержание спада напряжения, когда речь идет о параллельных / синхронных генераторах.

Обычно параллельно работающий генератор имеет одинаковое напряжение между своими параллельными генераторами. При скачке напряжения может быть падение выходного напряжения генератора.Это приводит к тому, что один генератор несет большую нагрузку, чем другой.

В результате возникает дисбаланс нагрузки. Генератор, на который подается большой ток, скорее всего, отключится.

Наличие АРН сводит к минимуму вероятность и риски перегрузки. Поскольку AVR определяет падение напряжения, он помогает поддерживать выходное напряжение каждого генератора. Таким образом, несмотря на любые скачки напряжения или внезапные нагрузки, каждый генератор будет оставаться стабильным и обеспечивать оптимальное напряжение.

Для обнаружения спада напряжения AVR оснащен комплектом спада напряжения, который известен как ТТ спада.Комплект для подвеса не обязательно имеет фиксированную точку крепления — вы можете прикрепить его к датчику нагрузки, выходному кабелю или току, который проходит через основной кабельный рулон.

Если вы ищете свой комплект для свисания, убедитесь, что вы проверили его во всех возможных местах.


Действует как система защиты от напряжения, перегрузки и сверхтока

Поскольку это электрическое устройство, ваш генератор может испытывать несколько помех, таких как высокое напряжение, перегрузка или перегрузка по току.

К счастью, АРН поставляется с предохранительным возбудителем максимального тока . Когда мощность нагрузки превышает предел генератора, АРН подаст дополнительное напряжение на эту катушку возбудителя максимального тока.

Если ток, проходящий к возбудителю, превышает фиксированную величину АРН, это приводит к разрыву между электрической цепью АРН и катушкой возбудителя. Таким образом, генератор не будет производить избыточное напряжение, и вы будете защищены от любых серьезных повреждений.

Как отрегулировать напряжение генератора с помощью АРН?

Как упоминалось выше, можно регулировать напряжение генератора с помощью АРН, чтобы получить необходимое количество напряжения.AVR регулирует выходное напряжение, управляя генератором возбуждения, создаваемым в катушке возбудителя.

AVR может использоваться для средней частоты 60/50 Гц для одиночных или параллельных генераторов, а также генераторов, которые работают на более высокой частоте 400 Гц. Он позволяет регулировать напряжение, но вы должны следовать правильным шагам:

  1. Осторожно снимите крышку генератора.
  2. По часовой стрелке вы увидите устройство в форме почки; это AVR.Он должен быть закреплен на месте с помощью болтов, поэтому вам нужно будет удалить болты.
  3. Не прикасайтесь к проводке и не отсоединяйте ее при откручивании болтов. Переверните АРН тыльной стороной к себе.
  4. Круглый кусок, известный как конденсатор, скорее всего, оторвется. Вы сможете найти небольшую прямоугольную шкатулку, удерживаемую ювелирным винтом; это винт регулировки напряжения AVR.
  5. Возьмите отвертку с плоским жалом. Поверните винт по часовой стрелке, чтобы снизить выходное напряжение.Продолжайте смотреть на вольтметр, чтобы знать, когда вы достигнете желаемого выходного напряжения.
  6. Если у вас генератор большей мощности, скажем, 5000 Вт +, отрегулируйте винт на 250 вольт. Однако для небольших блоков напряжение должно быть установлено на 120 вольт.

Если вы по-прежнему не можете отрегулировать выходное напряжение, это, скорее всего, из-за недостатка опыта с вашей стороны или из-за неисправности АРН. В этом случае вам нужно нанять техника, чтобы разобраться в этом вопросе.

Меры предосторожности

Помните, что регулировка напряжения несложная, но вы должны соблюдать такие меры безопасности, как:

  • Прочтите руководство оператора, чтобы узнать, где находится АРН и как получить к нему доступ.
  • Всегда останавливайте двигатель и отсоединяйте провод свечи зажигания перед выполнением любых регулировок.
  • Убедитесь, что двигатель полностью остыл, чтобы не получить ожогов.
  • Держите подальше от горящих предметов, например сигарет.

Каков принцип работы АРН?

Принцип работы АРН зависит от типа системы возбуждения генератора.

Как правило, существует два типа систем возбуждения:

Система генератора с возбуждением от ГПМ лучше, чем система с самовозбуждением, поскольку она обеспечивает относительно стабильное напряжение на катушке возбудителя.

Генераторная система с самовозбуждением

Принцип работы АРН для самовозбуждающейся генераторной системы указан ниже:

  • AVR получает выходное напряжение от основной катушки и отправляет его на катушку возбудителя в качестве источника питания. В то же время АРН также получает напряжение от главного ролика и использует его как датчик, определяющий, какое напряжение нужно генерировать.
  • Затем величина напряжения на валке возбудителя регулируется в соответствии с выходным напряжением, которое генератор AVR получает от основного вала.
  • Если выходное напряжение меньше требуемого, АРН подает большее напряжение на катушку возбудителя. Когда напряжение в основной катушке достигает желаемого значения, AVR ограничивает подачу напряжения, проходящего на валок возбудителя.

Таким образом, чем выше напряжение в катушке возбудителя, тем выше выходная мощность генератора .

Генераторная система с возбуждением от PMG

Система генератора с возбуждением от ГПМ работает по тому же принципу, что и система генератора с самовозбуждением. Единственное отличие состоит в том, что система с возбуждением от PMG состоит из двух частей:

  1. Ротор PMG
  2. Статор PMG

Итак, вот как это работает:

  • Напряжение от PMG проходит на АРН, а затем на катушку возбудителя. Здесь величина напряжения либо фиксирована, либо зависит от скорости вращения генератора.
  • В то время как генератор с самовозбуждением генерирует собственное электричество с помощью катушки возбудителя для передачи на ротор, генераторы с возбуждением от PMG используют PMG для выработки напряжения.

Чаще всего генераторы переменного тока оснащены защитой от сбоев в работе. Если АРН выходит из строя, эта защита срабатывает, и генератор отключается, не вызывая повреждений.

Если АРН выходит из строя или отключается, генератор продолжает получать реактивную мощность и продолжает работать, хотя и на более высокой скорости, чем его синхронная скорость — это может привести к серьезным повреждениям.

В данном случае есть двухкратные задержки:

  • Если отказ генерировать напряжение происходит из-за меньшего количества полученного напряжения, АРН не может поддерживать напряжение, и генератор сразу отключается.
  • Если АРН выходит из строя и нет пониженного или повышенного напряжения, будет задержка от 1 до 2 секунд. В большинстве случаев АРН восстанавливается после сбоя.

Как обнаружить неисправный АРН в генераторе?

Все АРН поставляются с регулировочным винтом, который можно использовать для установки предела напряжения и регулирования выходного напряжения.

Эксперты используют процесс устранения, чтобы выяснить, неисправен ли АРН. Вот как это происходит:

  1. Проверьте главный автоматический выключатель генератора
  2. Если выключатели исправны, проверьте проводку в электрической панели и той, которая соединяет выключатель со статором.
  3. Если провода в хорошем рабочем состоянии, вам следует заглянуть в регулировочный винт АРН. Убедитесь, что он установлен в правильное положение / предел.
  4. Если установленный выход правильный, перейдите к щеткам ротора.Они должны соприкасаться с ротором и нормально работать.
  5. Далее проверьте статор. Если статор не вырабатывает мощность, ваш АРН исправен. Однако, если он производит питание, возможно, ваш AVR вышел из строя и, следовательно, нуждается в замене.

Как заменить АРН генератора?

Замена АРН генератора — единственное решение в случае его выхода из строя. Это небольшое устройство, расположенное рядом с угольными щетками в нижнем левом углу головы вашего генератора.

Чтобы заменить АРН вашего генератора, выполните следующие действия:

Найдите угольные щетки

Осторожно снимите крышку.В центре этого отсека вы найдете держатель угольной щетки. Отсоедините положительный и отрицательный провода от клемм. Вы также можете открутить винты, чтобы узнать, кроется ли проблема в угольных щетках или регуляторе.

Если угольные щетки заржавели и застряли в одном и том же положении (вероятно, вниз), то, вероятно, проблема с угольными щетками. Однако, если они в хорошем рабочем состоянии, переходите к следующему шагу.

Открутить регулятор напряжения

Найдя регулятор напряжения, отверните его винты.Отсоедините быстроразъемный соединитель с правой стороны, чтобы освободить регулятор.

Присоединить новый регулятор

На следующем этапе прикрепите новый регулятор к быстроразъемному соединению. Прикрутите его и подсоедините положительный и отрицательный провода угольных щеток. Помните, что позитив всегда идет влево. Затем закрутите крышку.

И готово!

Так же просто заменить АРН вашего генератора. Однако убедитесь, что вы следуете правильным шагам.Обычно все генераторы, независимо от формы и размера, имеют одинаковый процесс сборки. Все же лучше заглянуть в руководство пользователя, чтобы ознакомиться с нужным местом.

Мы предлагаем посмотреть видеоинструкцию, чтобы лучше понять, где расположен регулятор, как отсоединить быстроразъемный соединитель и вставить новый регулятор.

Что ж, не о чем беспокоиться, если ваш AVR выйдет из строя. Стоит это устройство недорого. Вы можете получить новый AVR всего за 10 долларов.

Но чтобы убедиться, что вы покупаете оригинальную деталь, которая не выйдет из строя в ближайшее время, мы рекомендуем покупать ее у производителя генератора. Это может быть немного дороговато, скажем, около 100 долларов, но оно того стоит. Ваш генератор будет работать правильно и выдавать желаемое выходное напряжение.

Почти все электрические устройства и оборудование включают АРН. Это помогает регулировать подачу напряжения и предотвращает повреждение вашего оборудования.

В случае генератора переменного тока АРН поддерживает подачу напряжения, регулирует падение напряжения и действует как система безопасности. В случае выхода из строя его можно легко заменить на новый.

Надеемся, что наша информация оказалась полезной.

Как генератор вырабатывает электричество? Статья о том, как работают генераторы

Генераторы

— это полезные устройства, которые подают электроэнергию во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание бизнес-операций.Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, рассматривая генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, текущую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что вышеупомянутый поток электрических зарядов может быть вызван перемещением электрического проводника, такого как провод, содержащий электрические заряды, в магнитном поле. Это движение создает разность напряжений между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрогенератора можно в общих чертах классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основной узел / рама
Описание основных компонентов генератора приведено ниже.
Двигатель

Двигатель является источником подводимой механической энергии к генератору. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. При оценке двигателя вашего генератора необходимо учитывать несколько факторов. Для получения полных рабочих характеристик двигателя и графиков технического обслуживания необходимо проконсультироваться с производителем двигателя.

(a) Тип используемого топлива — двигатели генераторов работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном состоянии) или природный газ. Меньшие двигатели обычно работают на бензине, в то время как более крупные двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV — двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не на двигателе. блокировать.Двигатели OHV имеют ряд преимуществ перед другими двигателями, такими как:

• Компактная конструкция
• Более простой рабочий механизм
• Прочность
• Удобство в эксплуатации
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако OHV-двигатели также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя — CIS — это накладка в цилиндре двигателя.Это снижает износ и обеспечивает долговечность двигателя. Большинство двигателей OHV оснащены системой CIS, но очень важно проверить наличие этой особенности в двигателе генератора. CIS — это не дорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

Генератор

Генератор переменного тока, также известный как «генератор», представляет собой часть генератора, которая вырабатывает электрическую мощность за счет механического входа, подаваемого двигателем.Он содержит набор неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.

(а) Статор — это стационарный компонент. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.

(b) Ротор / Якорь — это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов:

(i) Индукционным способом — они известны как бесщеточные генераторы переменного тока и обычно используются в больших генераторах.
(ii) Постоянными магнитами — это обычное дело в небольших генераторах переменного тока.
(iii) Использование возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через совокупность токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

При оценке генератора переменного тока необходимо учитывать следующие факторы:

(a) Металлический корпус по сравнению с пластиковым корпусом — цельнометаллическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(b) Шариковые подшипники по сравнению с игольчатыми подшипниками — шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция — генератор переменного тока, в котором не используются щетки, требует меньшего обслуживания, а также производит более чистую мощность.

Топливная система

Топливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем от 6 до 8 часов.В случае небольших генераторных установок топливный бак является частью опорной рамы генератора или устанавливается наверху рамы генератора. Для коммерческого использования может потребоваться монтаж и установка внешнего топливного бака. Все подобные установки должны быть одобрены Управлением городского планирования. Щелкните следующую ссылку для получения дополнительных сведений о топливных баках для генераторов.

Общие характеристики топливной системы включают следующее:

(a) Соединение трубопровода от топливного бака к двигателю — линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.

(b) Вентиляционная труба для топливного бака — Топливный бак имеет вентиляционную трубу для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака убедитесь, что металл-металл соприкасается с заправочной форсункой и топливным баком, чтобы избежать искр.

(c) Переливное соединение от топливного бака к сливной трубе — это необходимо для того, чтобы любой перелив во время заправки бака не вызвал разлива жидкости на генераторную установку.

(d) Топливный насос — перекачивает топливо из основного накопительного бака в дневной.Топливный насос обычно работает от электричества.

(e) Топливный водоотделитель / топливный фильтр — он отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка — распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.


Регулятор напряжения
Как следует из названия, этот компонент регулирует выходное напряжение генератора.Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток — регулятор напряжения принимает небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбудителя.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный — обмотки возбудителя теперь работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток.Обмотки возбудителя подключены к блокам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный — они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор / якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора / якоря.

(4) Ротор / якорь: преобразование постоянного тока в переменное напряжение — ротор / якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения вырабатывает меньше постоянного тока. Когда генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, достаточный для поддержания выходной мощности генератора на полном рабочем уровне.

Когда вы добавляете нагрузку к генератору, его выходное напряжение немного падает.Это вызывает действие регулятора напряжения, и начинается вышеуказанный цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет своей первоначальной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Продолжительное использование генератора вызывает нагрев различных его компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяемого в процессе.

Неочищенная / пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше.Водород иногда используется в качестве хладагента для обмоток статора больших генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему очень большие генераторы и малые электростанции часто имеют рядом с собой большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают как основная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон генератора оставалось минимум 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или газового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент невозможно переоценить, поскольку отравление угарным газом остается одной из наиболее частых причин смерти в пострадавших от урагана районах, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно прикрепляются к двигателю с помощью гибких соединителей, чтобы минимизировать вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба заканчивается снаружи и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не подключена к выхлопной системе любого другого оборудования.Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для эксплуатации вашего генератора получить разрешение от местных властей, чтобы убедиться, что вы соблюдаете местное законодательство и защитите себя от штрафов и других санкций.


Смазочная система
Поскольку генератор содержит движущиеся части в своем двигателе, он требует смазки для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе.Уровень смазочного масла следует проверять каждые 8 ​​часов работы генератора. Вы также должны проверять отсутствие утечек смазки и менять смазочное масло каждые 500 часов работы генератора.


Зарядное устройство
ST e art функция генератора работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений каких-либо настроек. Выходное напряжение постоянного тока зарядного устройства установлено на уровне 2,33 В на элемент, что является точным значением напряжения холостого хода для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.


Панель управления
Это пользовательский интерфейс генератора, в котором находятся электрические розетки и элементы управления. В следующей статье представлены дополнительные сведения о панели управления генератором. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и отключение — панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически отключают агрегат, когда он больше не нужен.

(b) Манометры двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и мониторинг этих параметров позволяет автоматически отключать генератор, когда любой из них превышает соответствующие пороговые уровни.

(c) Датчики генератора. На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.

(d) Другие элементы управления — переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.

Основной узел / рама

Все генераторы, переносные или стационарные, имеют индивидуальные корпуса, которые обеспечивают структурную опору основания. Рама также позволяет заземлить генерируемые элементы в целях безопасности.

Типы регуляторов напряжения

и принцип работы | Статья

.

СТАТЬЯ

Получайте ценные ресурсы прямо на ваш почтовый ящик — рассылается раз в месяц

Мы ценим вашу конфиденциальность


Как работает регулятор напряжения?

Стабилизатор напряжения — это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.

Регуляторы напряжения (VR) поддерживают напряжение источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного / постоянного тока, некоторые из них также могут выполнять преобразование мощности переменного / переменного или переменного / постоянного тока. В этой статье речь пойдет о регуляторах постоянного / постоянного напряжения.

Типы регуляторов напряжения: линейные и импульсные

Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД.В высокоэффективных импульсных регуляторах большая часть входной мощности передается на выход без рассеивания.

Линейные регуляторы

В линейном стабилизаторе напряжения используется устройство активного прохода (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сбрасывая ошибку до нуля.

Линейные регуляторы — это понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих регуляторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и предлагают низкий уровень шума, а также низкие пульсации выходного напряжения.

Линейным регуляторам, таким как MP2018, для работы требуются только входной и выходной конденсаторы (см. Рисунок 1) . Их простота и надежность делают их интуитивно понятными и простыми устройствами для инженеров, а зачастую и очень рентабельными.

Рисунок 1: Линейный регулятор MP2018

Регуляторы переключения

Схема импульсного регулятора обычно более сложна в разработке, чем линейный регулятор, и требует выбора значений внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательного проектирования компоновки.

Импульсные регуляторы

могут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейный регулятор.

Преимущества импульсных регуляторов заключаются в том, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT.Они могут достичь эффективности более 95% в зависимости от требований приложения. В отличие от линейных регуляторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. Рисунок 2) .

Рисунок 2: Импульсный регулятор HF920

Ограничения регуляторов напряжения

Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в определенных случаях использования они рассеивают большое количество энергии.Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение на 2 В, а эффективность ограничивается 3 В / 5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN / VOUT.

Важно учитывать расчетную рассеиваемую мощность линейного регулятора в приложении, поскольку использование более высоких входных напряжений приводит к значительному рассеиванию мощности, что может привести к перегреву и повреждению компонентов.

Еще одним ограничением линейных регуляторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также предлагают повышающее (повышающее) и понижающее-повышающее преобразование.

Импульсные регуляторы

очень эффективны, но к их недостаткам относится то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, сложнее и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важным для конкретного приложения, поскольку шум может повлиять на работу и производительность схемы, а также на характеристики электромагнитных помех.

Топологии импульсного регулятора

: понижающий, повышающий, линейный, LDO и регулируемый

Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто используют топологию с малым падением напряжения (LDO). Для импульсных регуляторов существует три распространенных топологии: понижающие преобразователи, повышающие преобразователи и понижающие-повышающие преобразователи. Каждая топология описана ниже:

Регуляторы LDO

Одной из популярных топологий линейных регуляторов является стабилизатор с малым падением напряжения (LDO).Линейные регуляторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Тем не менее, стабилизатор LDO разработан для работы с очень небольшой разницей напряжения между входными и выходными клеммами, иногда до 100 мВ.

Понижающие и повышающие преобразователи

Понижающие преобразователи

(также называемые понижающими преобразователями) принимают большее входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) принимают более низкое входное напряжение и производят более высокое выходное напряжение.

Пониженно-повышающие преобразователи

Понижающий-повышающий преобразователь — это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выхода в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного напряжения.

Управление регулятором напряжения

Четыре основных компонента линейного регулятора — это проходной транзистор, усилитель ошибки, опорное напряжение и цепь обратной связи резистора. Один из входов усилителя ошибки установлен двумя резисторами (R1 и R2) для контроля процентного значения выходного напряжения.Другой вход — это стабильное опорное напряжение (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).

Для работы линейных регуляторов

обычно требуется только внешний входной и выходной конденсатор, что упрощает их внедрение.

С другой стороны, импульсный стабилизатор требует большего количества компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход.Подобно линейному регулятору, есть операционный усилитель, который производит выборку выходного постоянного напряжения из цепи обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.

Применения линейного регулятора и импульсного регулятора

Линейные регуляторы часто используются в приложениях, которые чувствительны к затратам, чувствительны к шуму, слаботочны или ограничены в пространстве. Некоторые примеры включают бытовую электронику, такую ​​как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который мог бы создавать нежелательный шум и влиять на работу устройства.

Более того, если проектировщики в основном заинтересованы в создании недорогого приложения, им не нужно так беспокоиться о рассеивании мощности, и они могут полагаться на линейный регулятор.

Импульсные регуляторы полезны для более общих приложений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. Рисунок 3) . Например, если приложение требует большого понижающего решения, лучше подходит импульсный стабилизатор, так как линейный регулятор может создать большое рассеивание мощности, которое может повредить другие электрические компоненты.

Рисунок 3: Понижающий регулятор MPQ4430-AEC1

Каковы основные параметры микросхемы регулятора напряжения?

Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, — это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с ИС пользователя.

Другие параметры, включая ток покоя, частоту коммутации, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от приложения.

Ток покоя важен, когда приоритетом является эффективность в режимах малой нагрузки или ожидания. Если рассматривать частоту коммутации как параметр, максимальное увеличение частоты коммутации приводит к меньшим системным решениям.

Кроме того, термическое сопротивление имеет решающее значение для отвода тепла от устройства и его рассеивания по системе. Если контроллер включает в себя внутренний полевой МОП-транзистор, то все потери (проводящие и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.

Напряжение обратной связи — еще один важный параметр, который необходимо изучить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на параметры опорного напряжения. Это ограничивает нижнее выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.

Как правильно выбрать регулятор напряжения

Чтобы выбрать правильный регулятор напряжения, разработчик должен сначала понять их ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например,грамм. эффективность, производительность, стоимость), а также любые дополнительные ключевые функции, такие как индикация хорошего энергопотребления (PG) или включение управления.

После того, как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее желаемым требованиям. Таблица параметрического поиска — ценный инструмент для дизайнеров, поскольку она предлагает различные функции и пакеты, доступные для соответствия требуемым параметрам для вашего приложения.

Каждое устройство MPS поставляется с таблицей данных, в которой подробно описано, какие внешние компоненты необходимы и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции.Таблицу данных можно использовать для расчета таких значений компонентов, как выходная емкость, выходная индуктивность, сопротивление обратной связи и другие ключевые компоненты системы. Кроме того, вы можете использовать инструменты моделирования, такие как программное обеспечение DC / DC Designer или MPSmart, ознакомиться с примечаниями к применению или задать вопросы в местном FAE.

MPS предлагает множество эффективных, компактных линейных и импульсных стабилизаторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.

Список литературы

Глоссарий по электронике

_________________________

Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!

Получить техническую поддержку

Органы управления генератором — бортовая электрическая система

Теория управления генератором

Все самолеты предназначены для работы в определенном диапазоне напряжений (например, 13.5–14,5 вольт). А поскольку самолет работает с разными частотами вращения двигателя (помните, двигатель приводит в действие генератор) и с различными электрическими требованиями, все генераторы должны регулироваться какой-либо системой управления. Система управления генератором предназначена для поддержания выходной мощности генератора в пределах всех параметров полета. Системы управления генератором часто называют регуляторами напряжения или блоками управления генератором (GCU).

Выходную мощность авиационного генератора можно легко отрегулировать, управляя силой магнитного поля генератора.Помните, что сила магнитного поля напрямую влияет на мощность генератора. Больший ток возбуждения означает большую мощность генератора и наоборот. На рисунке 1 показано простое управление генератором, используемое для регулировки тока возбуждения. Когда ток возбуждения регулируется, регулируется выход генератора. Имейте в виду, что эта система настраивается вручную и не подходит для самолетов. Системы самолета должны быть автоматическими, и поэтому они немного сложнее.

Рисунок 1.Регулировка напряжения генератора полевым реостатом

Существует два основных типа управления генератором: электромеханическое и твердотельное (транзисторное). Органы управления электромеханического типа используются на старых самолетах и, как правило, требуют регулярного осмотра и обслуживания. Твердотельные системы более современны и обычно считаются более надежными и более точными для управления мощностью генератора.

Функции систем управления генераторами

Большинство систем управления генераторами выполняют ряд функций, связанных с регулированием, измерением и защитой системы генерации постоянного тока.Для легких самолетов обычно требуется менее сложная система управления генератором, чем для более крупных многодвигательных самолетов. Некоторые из перечисленных ниже функций отсутствуют на легких самолетах.


Регулировка напряжения

Самая основная из функций GCU — это регулировка напряжения. Регулирование любого вида требует, чтобы блок регулирования взял образец выходного сигнала генератора и сравнил этот образец с известным эталоном. Если выходное напряжение генератора выходит за установленные пределы, то блок регулирования должен обеспечивать регулировку тока возбуждения генератора.Регулировка тока возбуждения регулирует выход генератора.

Защита от перенапряжения

Система защиты от перенапряжения сравнивает измеренное напряжение с опорным напряжением. Схема защиты от перенапряжения используется для размыкания реле, контролирующего ток возбуждения поля. Обычно он встречается в более сложных системах управления генераторами.

Параллельная работа генераторов

На многодвигательных самолетах необходимо использовать функцию параллельной работы, чтобы гарантировать, что все генераторы работают в установленных пределах.Как правило, параллельные системы сравнивают напряжения между двумя или более генераторами и соответствующим образом регулируют схему регулирования напряжения.

Защита от перевозбуждения

Когда один генератор в параллельной системе выходит из строя, один из генераторов может перевозбуждаться и, как правило, нести большую часть нагрузки, чем его доля, если не все нагрузки. По сути, это условие заставляет генератор вырабатывать слишком большой ток. Если это состояние обнаружено, перевозбужденный генератор должен быть возвращен в допустимые пределы, иначе произойдет повреждение.Схема перевозбуждения часто работает вместе со схемой перенапряжения для управления генератором.

Дифференциальное напряжение

Эта функция системы управления предназначена для обеспечения того, чтобы все значения напряжения генератора находились в жестких пределах перед подключением к шине нагрузки. Если выходной сигнал находится за пределами указанного допуска, то контактор генератора не может подключать генератор к шине нагрузки.

Измерение обратного тока

Если генератор не может поддерживать требуемый уровень напряжения, он в конечном итоге начинает потреблять ток, а не обеспечивать его.Такая ситуация возникает, например, при выходе из строя генератора. Когда генератор выходит из строя, он становится нагрузкой для других работающих генераторов или батареи. Неисправный генератор необходимо снять с автобуса. Функция измерения обратного тока контролирует систему на наличие обратного тока. Обратный ток указывает на то, что ток течет к генератору, а не от генератора. В этом случае система размыкает реле генератора и отключает генератор от шины.

Органы управления генераторами высокой мощности

Большинство современных генераторов высокой мощности можно найти на самолетах корпоративного типа с турбинным двигателем.В этих небольших бизнес-джетах и ​​турбовинтовых самолетах используются генератор и стартер, объединенные в один блок. Этот агрегат называется стартер-генератором. Преимущество стартер-генератора состоит в том, что он объединяет два блока в один корпус, экономя место и вес. Поскольку стартер-генератор выполняет две задачи: запуск двигателя и выработку электроэнергии, система управления этим агрегатом относительно сложна. Простое объяснение стартер-генератора показывает, что блок содержит два набора обмоток возбуждения.Одно поле используется для запуска двигателя, а другое используется для выработки электроэнергии. [Рисунок 2]

Рисунок 2. Стартер-генератор

Во время функции запуска GCU должен активировать последовательное поле, а якорь заставляет агрегат действовать как двигатель . В режиме генерации блок GCU должен отключать последовательное поле, возбуждать параллельное поле и контролировать ток, производимый якорем.В это время стартер-генератор действует как обычный генератор. Конечно, GCU должен выполнять все функции, описанные ранее, для управления напряжением и защиты системы. Эти функции включают регулирование напряжения, измерение обратного тока, дифференциальное напряжение, защиту от перевозбуждения, защиту от перенапряжения и параллельную работу генератора. Типичный ГПА показан на Рисунке 3.

Рисунок 3. Блок управления генератором (ГПА)

Как правило, современные ГПА для генераторов с высокой выходной мощностью используют твердотельные электронные устройства. схемы для определения работы генератора или стартера-генератора.Затем схема управляет серией реле и / или соленоидов для подключения и отключения устройства к различным распределительным шинам. Почти во всех схемах стабилизации напряжения есть стабилитрон. Стабилитрон — это чувствительное к напряжению устройство, которое используется для контроля напряжения в системе. Стабилитрон, подключенный к схеме GCU, затем регулирует ток возбуждения, который, в свою очередь, регулирует выход генератора.


Элементы управления генератором для генераторов с малой выходной мощностью

Типичная схема управления генератором для генераторов с низкой выходной мощностью изменяет ток в поле генератора для управления выходной мощностью генератора.При изменении параметров полета и электрических нагрузок блок GCU должен контролировать электрическую систему и вносить соответствующие корректировки для обеспечения надлежащего напряжения и тока системы. Типичное управление генератором называется регулятором напряжения или GCU.

Поскольку большинство генераторов с малой мощностью используется на старых самолетах, системами управления для этих систем являются электромеханические устройства. (Твердотельные блоки встречаются на более современных самолетах, в которых используются генераторы постоянного тока, а не генераторы постоянного тока.) Двумя наиболее распространенными типами регуляторов напряжения являются регулятор с угольным стержнем и трехступенчатый регулятор.Каждый из этих блоков управляет током возбуждения с помощью переменного резистора. Затем управление током возбуждения регулирует мощность генератора. Упрощенная схема управления генератором показана на рисунке 4.

Рисунок 4. Регулятор напряжения для генератора малой мощности

Регуляторы угольной сваи

Регуляторы угольной сваи Генератор постоянного тока выводит ток возбуждения через стопку углеродных дисков (углеродную стопку).Углеродные диски включены последовательно с генератором поля. Если сопротивление дисков увеличивается, ток возбуждения уменьшается и мощность генератора падает. Если сопротивление дисков уменьшается, ток возбуждения увеличивается и выходная мощность генератора возрастает. Как видно на рисунке 5, катушка напряжения установлена ​​параллельно выходным выводам генератора. Катушка напряжения действует как электромагнит, который увеличивает или уменьшает силу при изменении выходного напряжения генератора. Магнетизм катушки напряжения контролирует давление на угольную стопку.Давление на углеродный пакет контролирует сопротивление углерода; сопротивление углерода контролирует ток возбуждения, а ток возбуждения контролирует выходную мощность генератора.

Рис. 5. Регулятор с угольным ворсом

Регуляторы с угольным ворсом требуют регулярного обслуживания для обеспечения точного регулирования напряжения; поэтому большинство из них было заменено на самолетах более современными системами.

Трехступенчатые регуляторы

Трехкомпонентный регулятор, используемый с системами генераторов постоянного тока, состоит из трех отдельных узлов.Каждый из этих блоков выполняет определенную функцию, жизненно важную для правильной работы электрической системы. Типичный трехкомпонентный регулятор состоит из трех реле, установленных в одном корпусе. Каждое из трех реле контролирует выходы генератора и размыкает или замыкает точки контакта реле в соответствии с потребностями системы. Типичный трехблочный регулятор показан на рисунке 6.

Рисунок 6. Три реле, имеющиеся в этом регуляторе, используются для регулирования напряжения, ограничения тока и предотвращения обратного тока

Регулятор напряжения

Секция регулятора напряжения трехзвенного регулятора используется для управления выходным напряжением генератора.Регулятор напряжения контролирует выходную мощность генератора и при необходимости регулирует ток возбуждения генератора. Если регулятор определяет, что напряжение в системе слишком высокое, точки реле размыкаются, и ток в цепи возбуждения должен проходить через резистор. Этот резистор снижает ток возбуждения и, следовательно, снижает выходную мощность генератора. Помните, что выходная мощность генератора падает всякий раз, когда падает ток возбуждения генератора.

Рис. 7. Регулятор напряжения

Как видно на Рис. 7, катушка напряжения подключена параллельно с выходом генератора и, следовательно, измеряет напряжение в системе. .Если напряжение выходит за пределы заданного предела, катушка напряжения становится сильным магнитом и размыкает точки контакта. Если точки контакта разомкнуты, ток возбуждения должен проходить через резистор, и, следовательно, ток возбуждения уменьшается. Пунктирная стрелка показывает ток, протекающий через регулятор напряжения, когда точки реле разомкнуты.

Поскольку этот регулятор напряжения имеет только два положения (точки разомкнуты и точки замкнуты), блок должен постоянно регулироваться, чтобы поддерживать точный контроль напряжения.Во время нормальной работы системы точки открываются и закрываются через равные промежутки времени. По сути, точки вибрируют. Этот тип регулятора иногда называют регулятором вибрационного типа. По мере того, как точки вибрируют, ток возбуждения повышается и понижается, а магнетизм поля в среднем достигает уровня, который поддерживает правильное выходное напряжение генератора. Если системе требуется большая мощность генератора, точки остаются закрытыми дольше и наоборот.

Ограничитель тока

Секция ограничителя тока трехзвенного регулятора предназначена для ограничения выходного тока генератора.Этот блок содержит реле с катушкой, включенной последовательно по отношению к выходу генератора. Как видно на рисунке 8, весь выходной ток генератора должен проходить через токовую катушку реле. Это создает реле, чувствительное к токовому выходу генератора. То есть, если выходной ток генератора увеличивается, точки реле размыкаются, и наоборот. Пунктирная линия показывает ток, протекающий в поле генератора, когда точки ограничителя тока открыты. Следует отметить, что, в отличие от реле регулятора напряжения, ограничитель тока обычно замкнут во время нормального полета.Только при экстремальных токовых нагрузках точки ограничителя тока должны открываться; в это время ток возбуждения снижается, а выходная мощность генератора поддерживается в установленных пределах.

Рисунок 8. Ограничитель тока

Реле обратного тока

Третий блок трехступенчатого регулятора используется для предотвращения выхода тока из батареи и питания. генератор. Этот тип протекания тока приведет к разрядке аккумулятора и противоположен нормальному режиму работы.Это можно рассматривать как ситуацию с обратным током и известно как реле обратного тока. Простое реле обратного тока, показанное на рисунке 9, содержит как катушку напряжения, так и катушку тока.

Рисунок 9. Реле обратного тока

Катушка напряжения подключена параллельно к выходу генератора и запитывается каждый раз, когда выход генератора достигает своего рабочего напряжения. Когда катушка напряжения находится под напряжением, точки контакта замыкаются, и ток пропускается к электрическим нагрузкам самолета, как показано пунктирными линиями.На схеме показано реле обратного тока в его нормальном рабочем положении; точки замкнуты, и ток течет от генератора к электрическим нагрузкам самолета. Когда ток течет к нагрузкам, токовая катушка находится под напряжением, а точки остаются закрытыми. Если нет выхода генератора из-за сбоя системы, контактные точки размыкаются из-за потери магнетизма в реле. При разомкнутых точках контакта генератор автоматически отключается от бортовой сети, что предотвращает обратный поток от шины нагрузки к генератору.Типичный трехступенчатый регулятор для авиационных генераторов показан на рисунке 10.

Рисунок 10. Трехуровневый регулятор для генераторов переменной скорости

Как видно на рисунке 10, все три блока регулятора работают вместе для управления мощностью генератора. Регулятор контролирует выходную мощность генератора и регулирует мощность нагрузки самолета по мере необходимости для переменных полета. Обратите внимание, что только что описанный вибрационный регулятор был упрощен для объяснения.Типичный регулятор вибрации, установленный на самолете, вероятно, будет более сложным.

СВЯЗАННЫЕ ЗАПИСИ


АВТОМАТИЧЕСКИЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ | Морской почтовый ящик

Внезапные скачки тока нагрузки (например, из-за запуска двигателя) на генераторе вызывают соответствующее изменение его выходного напряжения. Это связано с внутренним падением напряжения в обмотка генератора и эффект называется провалом напряжения. Точно так же сброс нагрузки вызовет перенапряжение на шине.

Регулятор

необходим для регулирования / быстрого исправления таких изменений напряжения. АРН измеряет выходное напряжение генератора и действует, чтобы изменить ток возбуждения, чтобы поддерживать напряжение на его заданном значении.

АРН поддерживает генератор O / P напряжение + или — 2,5% от его набора значение в диапазоне нагрузок. AVR определяет и изменяет ток возбуждения. Ручной / ручной триммер регулятор установлен на панели управления генератора для установки уровня напряжения. В Схема управления современного АРН состоит из трансформаторов, выпрямители, стабилитроны, транзисторы и тиристеры.Они установлены в одной или нескольких цепях на распределительном щите или на панели генератора.

блок измерения напряжения преобразует, выпрямляет и сглаживает выходное напряжение генератора. Это создает низкое напряжение постоянного тока. сигнализируйте, что пропорциональна переменному току напряжение генератора Это фактическое значение постоянного тока. сигнал сравнивается с заданным постоянным током. значение, полученное по ссылке Схема стабилитрона и резисторов.

Выходной сигнал ошибки компаратора усиливается и используется для управления тиристорами, регулирующими ток возбуждения.Тиристоры — это устройство, которое выпрямляет и регулирует ток возбуждения генератора.

Статический автоматический регулятор напряжения

  • Наличие трансформируемого выпрямленное питание с выхода генератора позволяет согласование его непосредственно с электронным эталоном в статическом АРН.
  • Постоянный ток, полученный от Выход генератора подключен к мосту, который имеет фиксированное сопротивление на двух плечах. и переменное сопротивление на двух других.
  • Стабилитрон работает в обратном направлении режим пробоя, изготовленный с напряжением пробоя стабилитрона очень низкая стоимость. Напряжение остается постоянным после того, как произошел пробой, независимо от изменение тока.
  • Это подразумевает изменение применяемых напряжение, не влияя на напряжение на диоде, вызовет изменение сопротивление, позволяющее изменять ток.
  • Неуравновешенность сопротивлений в мост Уитстона изменяет схему потока и создает напряжение измерительный мост выдает сигнал ошибки.
  • Сигнал ошибки может быть усилен и используется для управления возбуждением генератора несколькими способами.
  • Это может контролировать угол стрельбы тиристоров через цепь запуска, чтобы обеспечить желаемое напряжение в бесщеточный генератор.
  • Может использоваться в статическом возбуждаемый генератор переменного тока для подключения небольших погрешностей через магнитный усилитель договоренность. Сигнал ошибки также можно усилить через транзисторы в серия, для контроля возбуждения.

Средства безопасности АРН

  1. Предохранитель в цепи диода для предотвращения короткого замыкания между фазами при выходе диода из строя.
  2. Перепускной резистор через обмотки возбуждения для предотвращения обратного тока.
  3. Некоторые средства отключения автоматического выключателя в случае короткого замыкания 3-х фазной конденсаторной батареи.

Назначение АРН

  1. Лучшее распределение нагрузки стабильность при параллельной работе.
  2. Быстрое время отклика с стабильность напряжения.
  3. Повышенное / пониженное напряжение срабатывает сигнализация напряжения.
  4. АРН определяет выходное напряжение генератора и действует изменить возбуждение чтобы напряжение генератора поддерживалось в пределах + или — 2.5% заявленной стоимости.
  5. переходный процесс падение напряжения должно быть в пределах 15% и должно быть восстанавливается за 1.5сек.
  6. Тип АРН — Ошибка эксплуатируемый

Функциональный вид

Процесс нарастания напряжения (сам возбужденный шунтирующий генератор)

Напряжение наращивать — Постепенно увеличение напряжения генератора до макс. значение после запуска генератора от отдыха.

В шунтирующем генераторе используется принцип самовозбуждения.Если система поля имеет остаточный магнетизм, то вращение якоря будет генерировать небольшую ЭДС. Эта ЭДС вызовет ток возбуждения, который создаст больший магнитный поток, который, в свою очередь, вызовет большую ЭДС. Следовательно, больше тока возбуждения, больше магнитного потока и ЭДС, чтобы обеспечить состояние непрерывного нарастания. Напряжение непрерывно растет и становится устойчивым, когда возникает падение напряжения, поле становится равным напряжению на клеммах.

Ток возбуждения должен проходить через катушку возбуждения в правильном направлении, чтобы способствовать нарастанию напряжения против остаточного потока.

Состояние необходимое для самообслуживания возбуждение

Должен быть достаточный остаточный магнетизм для создания небольшой ЭДС. когда якорь вращался с правильной скоростью.

Шунт цепь возбуждения должна быть непрерывной и подключенной таким образом, чтобы ток вызвать накопление флюса, чтобы помочь первоначальному остаточному флюсу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *