Отличие робота от акпп: Страница не найдена — АКПП

Содержание

Страница не найдена — АКПП

Ремонт и обслуживание АКПП

Ремонт АКПП своими руками подарит много сюрпризов владельцу машины. Кроме впечатлений от одарённости конструкторов,

Ремонт и обслуживание АКПП

Сегодня пойдет речь о самой интересной АКПП от Ниссан Жук и ее ремонте. Прежде,

Ремонт и обслуживание АКПП

Популярная 6-ти ступенчатая АКПП 6hp26 после многократной адаптации, отзывов и переделок стала по настоящему

Все про автоматическую коробку передач

Приветствую вас автолюбители, приближается зима и сегодня разберем такой вопрос, как на автомате выехать

Масло для АКПП

Масло ATF — «кровь» автоматической коробки передач. По свойствам и назначению жидкость для автомата

Ремонт и обслуживание АКПП

Хотел бы вначале поинтересоваться: у вас автомобиль Мазда, и, если да, вы ставили его

Страница не найдена — АКПП

Масло для АКПП

Регулярная замена масла в АКПП автомобиля Рено Сандеро защитит вас от растрат на капитальный

Определение типа АКПП

Квалифицированному специалисту по силовым агрегатам не составит труда определить тип АКПП, однако, бывают ситуации,

Все про автоматическую коробку передач

Блокиратор АКПП – это замок, который защищает автомобиль от угона. На механике противоугонный вопрос

Масло для АКПП

Перед заменой масла в АКПП Вольво ХС90 узнайте модель вашего автомата. В ХС90 2002

Все про автоматическую коробку передач

Начинающие водители автомобилей часто спрашивают опытных механиков или автовладельцев о том – нужно ли

Масло для АКПП

Своевременная замена масла в АКПП Мазда СХ 5 это обязательная процедура для авто, чтобы

Страница не найдена — АКПП

Все про автоматическую коробку передач

Сегодня я расскажу об аварийном режиме, в который встает АКПП, когда она неисправна. Хочу

Масло для АКПП

Сколько нужно масла для замены в АКПП зависит не только от вместимости коробки. Влияет

Все про автоматическую коробку передач

Фильтр АКПП является главным комплектующим в жизни автомата. Не было бы его, то автовладельцу

Определение типа АКПП

Квалифицированному специалисту по силовым агрегатам не составит труда определить тип АКПП, однако, бывают ситуации,

Все про автоматическую коробку передач

Начинающие автолюбители интересуются у экспертов «можно ли на автомате буксовать». Еще до того, как

Все про автоматическую коробку передач

Чип тюнинг АКПП – улучшение работы коробки переключения передач. Вносятся изменения в электронный блок

Основные отличия гидротрансформаторной АКПП от робота

Автоматические коробки передач сегодня представлены как стандартными гидротрансформаторными АКПП, так и роботизированной трансмиссией. Эти коробки передач имеют существенные отличия как в своей конструкции, так и в последующей эксплуатации автомобиля. Считается, что гидротрансформатор будет более надежным, чем робот, поэтому большинство потенциальных автовладельцев предпочитают выбирать машины с обычной АКПП, а не с роботом или вариатором. Поговорим поподробнее о том, в чём отличия таких роботизированных и гидротрансформаторных коробок передач.


Отличительные особенности робота и гидротрансформатора

Классические коробки автомат с гидротрансформатором появились около 50 лет назад. Такие трансмиссии были призваны упростить эксплуатацию машин, избавив водителя от необходимости постоянно выжимать сцепление и вручную выбирать скорости. За работой таких АКПП следила автоматика, которая определяла текущие показатели оборотов двигателя и скорость машины, и в зависимости от этого выбирала конкретную ступень.

Роботизированные коробки передач первоначально использовались в мире автоспорта, а в последующем начали внедряться и в серийное автомобилестроение. Основное их назначение — сделать переключение скоростей максимально плавным, однако такие требования существенно усложнили конструкцию, что привело к появлению различного рода поломок. Сегодня крупные автопроизводители пытаются разрабатывать свои собственные модели роботизированных КПП, которые устанавливаются как на машины премиум-класса, так и на бюджетные авто.


Основной отличительной особенностью АКПП от робота является динамика автомобиля и плавность хода. За счёт более сложной конструкции и продвинутой автоматики робот позволяет лучше реализовывать динамические характеристики двигателя, обеспечивая при этом максимально плавное переключение передач, которые практически не ощущаются водителем и пассажиром. В плане динамики такие авто с роботом будут даже превосходить машины, которые оснащены обычными механическими коробками передач.

Ещё одной существенной отличительной особенностью такой трансмиссии является необходимость на роботе часто активировать нейтральную ступень, в особенности когда водитель на 30 секунд и более останавливается на светофоре или в пробке. Первоначально переводить селектор в режим нейтраль требовалось вручную, однако в последующем эту работу стала выполнять автоматика, которая несколько упростила эксплуатацию машины. Необходимо подобное для предупреждения нагрузки на КПП, исключая повреждение сцепления и других жизненно важных узлов на роботизированной автоматической коробке.


Многие АКПП с гидротрансформатором имеют так называемый ползущий режим, когда коробка, будучи на Драйве, даже без нажатия на педаль газа передаёт небольшой крутящий момент на ведущие колеса и автомобиль начинает движение. Фактически, водителю нужно лишь отпустить педаль тормоза, после чего машина сразу начнет медленно двигаться вперёд. Подобное крайне удобно в пробках, всё что нужно сделать водителю — это просто отпускать тормоз или зажимать его при необходимости остановки машины. Тогда как на роботе такой ползущий режим отсутствует, соответственно требуется не только отпускать тормоз, но и нажимать на педаль газа.

 

Роботизированные трансмиссии имеют более сложную конструкцию, что отрицательно сказывается на показателях надежности. Несмотря на все заявления автопроизводителей о том, что они смогли создать по-настоящему надёжный и беспроблемный в эксплуатации роботизированный автомат, все же по этому показателю такая трансмиссия не дотягивает до классического гидротрансформатора. В итоге, не редкость необходимость выполнения капитального ремонта уже на пробеге в 150 000 километров. Это существенно увеличивает расходы автовладельца, когда как такие работы на гидротрансформаторе потребуются при пробегах в 250-300 тысяч километров.


Старые роботы, которые появились в середине двухтысячных годов, имели многочисленные глюки электроники, их прошивки не были оптимизированы для использования в условиях большого города. В пробках или же при необходимости резких ускорений робот мог быть чрезмерно задумчивым, автомобиль, что называется тупил, а машина медленно разгонялась, после чего происходил сильный рывок. Все это делало управление автомобилем вовсе опасным. Однако в последующем управляющая автоматика была улучшена, а сегодня подобные проблемы полностью решены.


Подведём итоги

Если говорить об отличиях робота от автомата, следует отметить плавность хода и лучшую динамику, необходимость постоянной активации на роботе нейтральной передачи, а также отсутствие у такой трансмиссии ползущего режима. По данным статистики, гидротрансформаторная АКПП всё же надёжнее роботизированной, поэтому неудивительно, что она пользуется сегодня наибольшей популярностью у покупателей.

17.04.2020

В чем разница и чем отличается роботизированная коробка от автомата

Среди водителей существует полемика, споры – какая коробка лучше, а также в чем отличие роботизированной коробки передач от автоматической.

Как отличить автомат от робота визуально

Опытные автовладельцы и механики хорошо знают, как отличить коробку автомат от робота визуально. 

Эксперты говорят, что определить внешне какой тип КПП у автомобиля поможет рычаг селектора. Если взглянуть на автоматическую коробку, то можно увидеть следующие положения кулисы:

  • «P» – парковка;
  • «N» – нейтральная;
  • «R» – задняя;
  • «D» – движение вперед.

Наличие остальных положений зависит от модели автомата.

Если же взглянуть на роботизированную трансмиссию, то автовладелец увидит:

  • «N» – нейтральная;
  • «R» – задняя;
  • «D» – движение вперед.

Положения «Парковка» может отсутствовать в роботе. Но роботизированная коробка не похожа на автомат не только по внешним признакам. 

Чем отличается робот от АКПП более подробно в следующих блоках.

Источник: http://akppoff.ru/korobka-avtomat/korobka-robot-i-avtomat-v-chem-raznitsa

Гидромеханический автомат

Материалы по теме

Гидромеханический автомат — самый распространенный ввиду своей универсальности тип автоматических коробок.

Ресурс у АКП

самый разный: от 120 тысяч до 250 тысяч километров.

Главной же особенностью автомата является его выносливость: он может не только передавать большой крутящий момент мощного двигателя на колеса, но и пригоден для езды по бездорожью. Сегодня для легковых автомобилей выпускаются не только 4-ступенчатые автоматы, но и 6-ступенчатые, и даже 10-ступенчатые. Чем больше ступеней, тем миниатюрнее механизм и тем меньше у него запас прочности.

Плюсы:

Минусы:

  • доведенная до совершенства конструкция
  • возможность переключения передач в ручном режиме
  • отсутствие боязни пробуксовок
  • большой срок службы у большинства агрегатов
  • умение адаптироваться под стиль езды водителя
  • невысокий КПД и потеря части мощности двигателя
  • повышенный расход топлива
  • зависания разной продолжительности при переключениях
  • большой вес агрегата
  • потеря запаса прочности при большем количестве ступеней

Источник: http://zr.ru/content/articles/923472-plyusy-i-minusy-avtomatov-robo/

Принцип работы КПП (коробки переключения передач)

Главное предназначение любого устройства, переключающего передачи, — принимать, преобразовывать, передавать и изменять направление крутящего момента. Современные автопроизводители выпускают транспортные средства с механической, автоматической КПП и автоматической в разных вариациях.

В механической переключение передач происходит при помощи человека. В остальных процесс автоматизирован, участия водителя не требуется. Чтобы разобраться в плюсах и минусах автоматической коробки переключения передач (АКПП), вариаторной (CVT) и роботизированной, детально остановимся на принципах работы каждой из них.

Источник: http://auto.rambler.ru/navigator/40391384-chem-otlichaetsya-variator-ot-avtomata-i-robota-kakie-kpp-luchshe-plyusy-i-minusy-opisanie-video/

Особенности АКПП
  • Конструктивные особенности коробки автомата предусматривают наличие редуктора и гидротрансформатора;

Источник: http://renoshka.ru/sovety/otlichie-korobki-avtomat-ot-robota-podrobnyj-obzor.html

Достоинства АКПП
  • Если говорить о светлых сторонах автомата, то подобного рода трансмиссии существенно упрощает вождение за счет того, что нет необходимости постоянно выживать сцепление и пользоваться рычагом КПП. Можно полностью сконцентрировать внимание на вождении и управлять машиной только двумя педалями;
  • Обычное сцепление, которое присуще механике, очень быстро выходит из строя. В то время как гидротрансформатор отличается большой износостойкостью и долговечностью;

Источник: http://renoshka.ru/sovety/otlichie-korobki-avtomat-ot-robota-podrobnyj-obzor.html

Недостатки

К минусам можно отметить следующее:

  • Динамика разгона автомобиля меньше, чем при механике;
  • На малоступенчатых АКПП можно наблюдать значительный расход топлива;
  • АКПП требует большого количества масла;
  • У автомобиля на «автомате» снижается КПД и динамика;

Теперь стоит разобрать роботизированную коробку передач.

Источник: http://renoshka.ru/sovety/otlichie-korobki-avtomat-ot-robota-podrobnyj-obzor.html

Обычный автомат

При выборе транспортного средства с одним из видов автоматической трансмиссии необходимо знать, что такое автомат и робот и из чего состоит каждая из них.

Внимание!

АКПП

впервые была выпущена в свет в 30 года двадцатого столетия. Но массово ее стали производить только в шестидесятые годы того же столетия.

Транспортные средства с автоматом считаются более надежными нежели с CVT или роботом.

Конструкция АКПП

Коробка автомат состоит из гидротрансформатора, планетарной коробки передач, гидроблока.

Элемент автоматаЗа что отвечает
Гидротрансформатор состоит из турбинного и реакторного колеса, центробежного насоса, обгонной и блокировочной муфтыОтвечает за плавное переключение передач, выполняет функцию сцепления
Планетарная коробка состоит из редукторов и фрикционных дисков, тормозной лентыПередает усилие посредством системы различных вариантов зацепления шестерней, переключает скорости

Строение АКПП, как видно из таблицы, более простое, чем у робота. Еще одно отличие от роботизированной заключается в большом количестве ступеней передаточного числа. Благодаря им, снижается потребление топлива транспортным средством.

Разница между роботом и коробкой автомат заключается в принципе работы АКПП. Переключение скоростей происходит без разрывов, когда мотор достигает максимального числа оборотов на одной из передач и в масляной системе нагнетается давление для смены скорости.

Принцип следующий:

  1. Гидротрансформатором меняется крутящий момент.
  2. Смазывающее средство попадает из насоса к турбинному колесу.
  3. Колесо передает его на реактор.
  4. Поток масла становится все больше и увеличиваются обороты насосного колеса.
  5. Задействуется обгонная муфта, благодаря которой происходит вращение реактора.
  6. Муфта переключает передачи между планетарными редукторами.

А гидроцилиндры, которые обеспечивают работу вышеописанных процессов, управляются электронным блоком.

Как уже было описано, коробку автомат можно отличить от робота по следующим положениям ручки на селекторе:

  • P – «Парковка»;
  • R – «Задний ход»;
  • N – «Нейтральная»;
  • D – «Движение вперед»;
  • L – «Принудительно понижающая передача».

Положительные стороны и отрицательные

Как и все устройства, автомат имеет свои положительные стороны и отрицательные черты. К плюсам автоматической коробки передач относятся:

  • надежность;
  • простое управление;
  • отсутствие периодической замены сцепления;
  • экономное расходование горючего;
  • не скатывается назад, если поставить на склоне.

Автомат имеет и отрицательные черты, которые складываются из следующих парметров:

  • высокая стоимость при замене автомата;
  • высокая цена капитального ремонта;
  • транспортное средство с автоматом нельзя заводить с толкача;
  • малый КПД из-за гидротрансформатора. На последний уходит почти половина мощности аппарата;
  • срок жизни устройства маленький.

Источник: http://akppoff.ru/korobka-avtomat/korobka-robot-i-avtomat-v-chem-raznitsa

Основные отличия

Ниже представлен список основных отличий между коробками АКПП и РКПП.

  1. Первое отличие заключается в конструкции коробок.
  2. Следующие отличие – в скорости переключений. Если рассматривать оба варианта, то у автоматики процесс переключения скоростей гораздо лучше.
  3. Еще одна разница заметна, когда речь заходит о возможности ручного управления скоростями. У АКПП подобная функция полностью отсутствует, РКПП же позволяет водителю взять управление в свои руки.
  4. Разница также заметна, когда дело доходит до ремонта и обслуживания. Водитель сэкономит денежные средства, если приобретет автомобиль с РКПП.
  5. Наконец, пятое отличие заключается в потреблении роботом меньшего количества топлива и масла, чего не скажешь об автоматике. Таким образом, становится понятно, в чем разница коробки автомат и робот.

Источник: http://auto-sovets.ru/remont-i-obsluzhivanie/transmissiya/korobka-avtomat-i-robot-v-chem-raznitsa.html

Вариатор

Вариатор отличается плавностью работы — передач здесь нет, а крутящий момент передается через ремень, скользящий по конусам и меняющий соотношение их оборотов. Ресурс вариаторов сопоставим с ресурсом гидромеханических автоматов. Но вариаторы не любят бездорожья и пробуксовок, перегреваются и быстрее выходят из строя. При этом в городе такая коробка незаменима именно благодаря плавности работы из-за отсутствия переключений.

Плюсы:

Минусы:

  • плавная работа
  • двигатель всегда находится на оптимальных оборотах
  • простота конструкции и ремонта
  • невысокая стоимость агрегата по сравнению с классическим автоматом
  • большой ресурс ремня (у некоторых вариаторов до 500 тысяч километров)
  • шумность при разгонах (двигатель сразу выводится на максимальные обороты)
  • скучное ускорение
  • боязнь пробуксовок, бездорожья и долгих поездок на высоких скоростях
  • частые замены масла
  • высокая стоимость ремонта

Источник: http://zr.ru/content/articles/923472-plyusy-i-minusy-avtomatov-robo/

Классический автомат

Казалось бы, будущее «гидротрансформаторных автоматов» предрешено, тем не менее, «старая гвардия» не спешит сдавать свои позиции.

Во-первых, развитие таких трансмиссий также не стоит на месте. Хотя у многих автолюбителей «классическая» АКП ассоциируется с морально устаревшими четырехступенчатыми «автоматами», которые не спешат переключать скорости и не особо заботятся об экономии топлива.

На самом деле такие коробки передач встречаются сейчас только на бюджетных моделях, да и то довольно редко. Подавляющая часть «автоматов» сегодня имеют минимум шесть скоростей и предлагают функцию ручной смены передач.

Более такого, производители активно увеличивают количество ступеней в таких КП, чтобы добиться лучшей экономичности. На автомобилях стоимостью выше среднего все чаще появляются восьми- и даже девятидиапазонные трансмиссии, а некоторые бренды, например Ford, уже завлекают клиентов «автоматами» на 10 (!) ступеней.

Большинство «роботов» не могут справиться с большим крутящим моментом мощных двигателей. Конечно, можно привести пример нескольких суперкаров с роботизированными КП, включая 1000-сильный Bugatti Veyron, но это скорее исключения, подтверждающие правило, тем более, что владельцы спортивных авто не особо беспокоятся о длительности ресурса таких КП.

Также роботизированными трансмиссиями не оснащаются полноценные внедорожники, потому что на сроке службе «роботов» негативно сказываются продолжительные пробуксовки на бездорожье и рывки из-за изменения сцепных свойств при контакте четырех колес с дорогой. Все это по большому счету не очень полезно и для обычных АКП.

Источник: http://autocentre.ua/opyt/tehnologii/robot-protiv-avtomata-plyusy-i-minusy-korobok-peredach-593107.html

Особенности эксплуатации автоматической и роботизированной коробок

Эксплуатационные характеристики помогут разобраться — какая коробка лучше и удобнее. Автоматическая коробка передач существенно снизила нагрузку на шофёра при управлении. Особенно в городских, сложных условиях. У каждого водителя есть своя манера и стиль вождения. Коробка автомат имеют способность «подстроиться» по тип вождения. Автомату характерно мягкое, еле заметное переключение передач. Но существенным минусом этой коробки является большой расход горючего, который особенно проявляется в городской черте. Дорого обойдётся и ремонт этого узла.

Роботизированная коробка близка к механической. Ремонт и техническое обслуживание будет существенно ниже. Расход топлива тоже можем приравнять к механике, особенно в условиях городской езды. Существенно меньше расход машинного масла, а это тоже экономия. КПД передачи крутящего момента от мотора к ведущим колёсам тоже выше, чем у автомата. Огромным плюсом робота можно считать возможность совершать ручное переключение скоростей, а этого нет у автоматической коробки. Ведь это может пригодиться в сложной ситуации. Плохими моментами можно считать замедленное переключение передач и рывки в работе самой коробки. Особенно, если шофёр в этот момент сильно давит на педаль акселератора. В городской черте при стоянке требуется ставить рычаг селектора на нейтральное положение. 

Читайте также: Что такое вариатор и чем он отличается от автоматической коробки передач.

Источник: http://AvtoNov.com/%D0%BE%D1%82%D0%BB%D0%B8%D1%87%D0%B8%D0%B5-%D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%B8%D0%B7%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D0%BE%D0%B9-%D0%BA%D0%BE%D1%80%D0%BE%D0%B1%D0%BA%D0%B8/

Какую коробку выбрать

Эксперты подсказывают автолюбителям, что при выборе коробок: робот или автомат, следует исходить из трех китов, на которых строится система вождения:

  • комфорт при поездке;
  • надежность трансмиссии;
  • цена коробки передач.

Если исходить из того, что лучше для водителя – это комфорт, то рекомендуется автомат. Если при выборе трансмиссии, автовладелец больше склоняется к экономичности, то следует отдать предпочтение роботу.

РКПП

Внимание! По надежности эти трансмиссии не уступают друг другу. Автомат и робот менее надежны в одинаковой степени, чем простая механическая коробка передач. Несмотря на это, эксперты отдают предпочтение все же коробке автомат. Так как она считается более предсказуемой нежели роботизированная коробка переключения скоростей.

РКПП не созданы для поездок вне города без ровных асфальтированных трасс. Однако, для тех, кто обожает быструю езду, различные маневры следует выбрать преселективную трансмиссию.

И еще одна важная вещь, которую не следует обходит стороной начинающим автолюбителям, особенно молодым. Правильная эксплуатация АКПП и ежемесячный уход за ней, позволят любой трансмиссии прослужить не только положенный срок, но и больше его.

АКПП

Если вовремя доливать и менять масло, не допускать стартов «на холодную» и длительных пробуксовок, то и автомат, и робот позволят водителю снизить затраты на капитальный ремонт.

Источник: http://akppoff.ru/korobka-avtomat/korobka-robot-i-avtomat-v-chem-raznitsa

Показательный пример

Большинство владельцев автомобилей форд фьюжн сталкиваются с определенными проблемами по отношению к роботу, обвиняя во всех грехах производителя, которые сделали его некачественно. По крайней мере, это относится именно к этой марке транспортного средства. На устранение поломок уходило немало времени.

По этой причине владельцы данного форда могут дать совет не выбирать машину с РКПП — лучше найти вариант с более надежной коробкой.

Источник: http://promercedes.ru/korobka-peredach/otlichie-mezhdu-akpp-i-robotom

Чем «робот» отличается от «автомата», в чем разница? Что лучше — коробка «робот» или «автомат»?

Сегодня количество модификаций и разновидностей автоматических коробок передач растёт с каждым днём. Ещё совсем недавно автолюбители всего мира узнали о том, что существует стандартная АКПП с гидротрансформатором. Позже машины стали укомплектовывать бесступенчатыми вариаторами. И теперь появились роботизированные КПП. Многие ещё не доверяют этому свежему техническому решению. Так что лучше – «автомат» или «робот»? В чём различия между этими коробками, что выбрать рядовому автолюбителю?

Источник: http://renoshka.ru/sovety/otlichie-korobki-avtomat-ot-robota-podrobnyj-obzor.html

Привод и область применения

Электрические «роботы» применяются чаще на бюджетных моделях автомобилей.

Источник: http://renoshka.ru/sovety/otlichie-korobki-avtomat-ot-robota-podrobnyj-obzor.html

Чем отличается робот от автомата в автомобиле: конструкция и принцип работы

Производители выпускают автомобили с несколькими типами трансмиссии: с механической (МКПП), автоматической (АКПП) и роботизированной (РКПП) коробками переключения передач. Каждый из этих типов имеет свои достоинства и недостатки. Использование АКПП и РКПП становится все более популярным и востребованным в городах с плотным трафиком. Автолюбители интересуются, что лучше выбрать: коробку робот или автомат, в чем разница между ними.

Автоматическая коробка передач.

Визуальное отличие автомата от робота

Для того чтобы определить тип переключения передач, нужно начать с внешнего осмотра машины. Автомобиль с автоматической трансмиссией имеет на кузове маркировку А или АТ.

Далее стоит обратить внимание на внешний вид консоли.

Режимы работы автомата обозначаются буквами:

  • Р (Park) — парковка;
  • R (Reverse) — задний ход;
  • N (Neutral) — нейтральная передача;
  • D (Drive) — движение вперед.

Консоль РКПП имеет другие режимы:

  • N (Neutral) — нейтральная передача;
  • R (Reverse) — задний ход;
  • A/M или E/M — движение вперед;
  • +/- — переключение передач (используется при ручном управлении).

Основные отличия

Главное отличие автоматической коробки передач — это наличие положения Р (парковка) на консоли.

Если есть возможность, следует изучить на сайте производителя информацию о том, какие типы трансмиссии имеет данная модель.

На автомобиле с РКПП нет щупа. Замена масла возможна только в техцентре.

Мировые концерны ведут разработки новых типов коробок передач, уже выпускаются экземпляры с роботом второго поколения DSG. Отличить ДСГ от автомата визуально невозможно, так как консоли выглядят одинаково.

Достоверно определить тип трансмиссии можно по характеру езды. Машина с АКПП едет более плавно, без рывков.

Ресурс коробки-автомат может быть разным. Если в одном автомобиле трансмиссия прослужит 100 тысяч км.,
то в другом – порядка 500 тысяч.

Преимущества и недостатки трансмиссий

С конструктивной точки зрения автоматическая и роботизированная коробки переключения передач — это разные типы трансмиссии.

Автомат — гидромеханический агрегат. Переключение происходит за счет гидротрансформатора. Управление осуществляется электроникой. Робот представляет собой усовершенствованную МКПП, но передачи переключаются не водителем, а с помощью электронного блока управления.

Достоинства и недостатки роботизированной коробки передач

Роботизированная коробка переключения передач объединяет в себе надежность механики и удобство автомата.

К преимуществам РКПП относятся:

  1. Удобство. Передачи переключаются автоматически. Машина не откатывается при трогании в горку, что имеет значение для малоопытных водителей.
  2. Относительно невысокая стоимость самого агрегата, а также его ремонта, т. к. трансмиссия является механической.
  3. Экономный расход топлива.
  4. Небольшое количество масла (около 2-3 л).
  5. Меньший вес относительно АКПП.
  6. Возможность буксировки автомобиля в случае его поломки.
  7. Возможность переключить РКПП на ручное управление, хотя автоматика будет продолжать контролировать действия водителя.

У данной трансмиссии есть и недостатки: медленный разгон, некоторая заторможенность на старте. Во время разгона водитель может ощущать рывки, как при МКПП. При каждой остановке (на светофоре, в пробке и т. д.) нужно устанавливать рычаг в нейтральное положение.

https://youtube.com/watch?v=DkicALxeMeI

Плюсы и минусы коробки-автомат

Классический автомат является самым популярным типом трансмиссии в современном автомобилестроении. Он устанавливается как на легковых, так и на грузовых автомобилях.

Главные преимущества АКПП — это ее удобство и высокая надежность. За счет 7, 8 или 9 ступеней обеспечиваются плавность хода и комфортность в управлении. К достоинствам также относится низкое потребление топлива. АКПП обеспечивает бережливую эксплуатацию двигателя за счет переключения передач на оптимальных оборотах. Есть пассивная система безопасности, которая препятствует откату автомобиля назад на склоне. При бережной эксплуатации, правильном обслуживании такая коробка передач прослужит долго.

Среди недостатков данного типа трансмиссии выделим:

  1. Высокую цену как самого агрегата, так и его ремонта.
  2. Менее динамичный разгон относительно МКПП.
  3. Более низкий КПД автомата из-за гидротрансформатора, который поглощает часть мощности.
  4. Наличие около 10 л масла для работы АКПП.
  5. Высокое потребление топлива по сравнению с РКПП, в которой оно расходуется более экономно.
  6. Запрет на буксировку автомобиля. В случае поломки машину можно перемещать только на эвакуаторе.

Какую коробку лучше выбрать

Обе трансмиссии обеспечивают комфорт передвижения, простоту управления. Педаль сцепления отсутствует и в том и в другом варианте. Автопроизводители продолжают выпускать машины с различными видами коробок передач под разных потребителей. Однозначного ответа, что лучше, нет. Водитель делает выбор исходя из своих предпочтений.

Если выбирать по уровню комфорта, то АКПП является предпочтительным вариантом, т. к. обеспечивает плавность хода. Кроме того, РКПП в пробках нужно ставить в положение N (Neutral), при АКПП такой необходимости нет.

С экономической точки зрения роботизированная коробка передач выигрывает перед автоматической. РКПП дешевле, а цена обслуживания и ремонта ниже. Кроме того, для робота требуется меньше масла, а за счет повышенного КПД расход топлива также меньше. Исходя из экономических соображений, автоэксперты сходятся во мнении, что за роботами и ДСГ будущее, т. к. потребители отдают предпочтение дешевым моделям.

С точки зрения надежности и автомат, и робот уступают механической коробке. РКПП стоит выбирать, если автомобиль будет передвигаться преимущественно по дорогам с качественным асфальтовым покрытием. Автомат признан автолюбителями в качестве наиболее предсказуемой системы переключения передач.

Роботизированную коробку можно переключить в ручной режим управления. Таким образом водитель сможет самостоятельно понизить или повысить передачу в режиме движения. На машинах с АКПП без типтроника такая возможность отсутствует.

Учитывая свои предпочтения, сравнительную характеристику и особенности трансмиссий, каждый автолюбитель сможет выбрать вид коробки переключения передач, который ему подходит.

КПП робот или автомат что лучше?

Робот или автомат: какая коробка лучше

Если еще сравнительно недавно автолюбители при выборе автомобиля могли рассчитывать только на автомат либо механику, то сегодня диапазон выбора значительно расширился. С развитием автомобилестроения в обиход вошли трансмиссии нового поколения, такие как роботизированная коробка и вариатор. Чем отличается роботизированная коробка передач от автомата, и какая коробка лучше (автомат или робот) необходимо знать каждому покупателю автомобиля. От этого зависит выбор, который в итоге сделает водитель.

Основу автоматической трансмиссии составляют гидротрансформатор, система управления и непосредственно сама планетарная КПП с набором фрикционов и шестерен. Такая конструкция автомата позволяет ему самостоятельно переключать скорости в зависимости от оборотов двигателя, нагрузки и режима движения. Участие водителя здесь не требуется.

Автомат устанавливается на легковых и грузовых автомобилях, применим он также и в автобусах. Главная передача и дифференциал дополняют конструкцию АКПП в случае ее установки на переднеприводную машину.

Плюсы и минусы автоматической КПП

Автоматическая коробка передач обладает как преимуществами, так и недостатками:

Преимущества АКППНедостатки АКПП
1. Плавное движение и разгон1. Дорогостоящие обслуживание и ремонт
2. Комфорт водителя и пассажиров2. Низкий КПД
3. Простота управления автомобилем3. Более высокий расход топлива
4. Отсутствие необходимости в периодической замене сцепления4. Высокая стоимость

Роботизированная КПП

Роботизированная трансмиссия сочетает в себе функции как АКПП, так и механической коробки передач. Это по сути та же механика, но с автоматическим управлением. Система управления с помощью исполнительных механизмов управляет работой сцепления и переключением передач. При этом переключение происходит так же, как и в механике, только без участия водителя.

Изначально роботизированная КПП создавалась для того, чтобы существенно снизить стоимость коробки передач в сравнении с АКПП и в то же время объединить в себе все достоинства автомата и механики, к которым в первую очередь относятся комфорт и удобство управления.

В автомобилях спортивного класса используется несколько иной тип роботизированной трансмиссии – с двумя сцеплениями. Это позволяет добиться максимально высокой скорости переключения передач.

Преимущества и недостатки робота

Преимущества и недостатки роботизированной трансмиссии для наглядности также представим в виде таблицы. Заодно проведем сравнительную характеристику между двумя видами трансмиссий.

Преимущества роботизированной коробки передачНедостатки роботизированной коробки передач
1. Более простая конструкция в отличии от АКПП1. Рывки при старте и переключении передач (для РКПП с одним сцеплением)
2. Менее дорогие обслуживание и ремонт по сравнению с АКПП2. Необходимость перевода рычага в нейтральное положение при длительной остановке и откат автомобиля на подъеме
3. Лучшая топливная экономичность3. Непредсказуемость поведения роботизированной коробки передач в тяжелых дорожных условиях
4. Более высокий КПД4. Эффект “задумчивости” при переключении передач

Делаем выводы

Какая же коробка передач лучше? С точки зрения комфорта, несомненно выигрывает АКПП, хотя разработчики робота и пытались отвоевать эту позицию у автоматической коробки.

А вот более экономически выгодным будет робот. Стоимость самой коробки, ее обслуживание и ремонт обойдутся дешевле. Да и топливо с маслом автомобиль с роботизированной коробкой потребляет меньше, чем с автоматической.

Теперь надежность. Здесь можно поспорить. Ни ту, ни другую коробку нельзя назвать абсолютно надежной в сравнении с той же механикой. Непонятно также, как обе коробки поведут себя в тяжелых условиях. Но АКПП хотя бы более предсказуема, чем робот, от которого неизвестно чего ожидать.

Поэтому какая коробка передач будет лучше, каждый водитель решает сам, исходя из своих представлений об удобстве и комфорте управления автомобилем. Стоит отметить, что робот можно легко принять за автомат: зачастую отсутствие педали сцепления как у автоматической, так и у роботизированной КПП приводит неопытных водителей в замешательство. Поэтому необходимо внимательно изучать характеристики выбранного автомобиля в процессе покупки.

Вариатор? Робот? Гидромеханика? DSG? Или все же «ручка»?!

Разбираемся, чего ждать от разных типов коробок передач и в чем преимущества (недостатки) каждого.

Общие соображения насчет плюсов и минусов «ручки» и автомата мы недавно высказывали. Однако тут же пообещали продолжить тему: ведь автоматы не ограничиваются одной только гидромеханикой. Разбираемся в роботах, вариаторах и прочих DSG.

Очевидно, что проще, надежнее и дешевле механики сегодня ничего нет. Поэтому любой шаг в сторону от привычной «ручки» повлечет за собой определенный набор проблем — от технических до финансовых и даже организационных: взять ту же буксировку неисправной машины. В качестве компенсации за отсутствие третьей педали получаем комфорт и… А вот насчет «и» как раз и расскажем.

Робот с одним сцеплением

Примеры использования: Smart fortwo, Лада Веста, Лада Иксрей.

Примитивный «недоавтомат» имеет сторонников: многие уверяют, что ездить с такой коробкой удобно и комфортно. При этом надежность несложного агрегата считается более высокой, чем у гидромеханики и уж подавно вариатора. В основе такого робота лежит обычная механика, однако ресурс сцепления у него повыше — по заводским данным, процентов эдак на 40.

  • Довольно надежная коробка передач
  • Относительно проста в ремонте — почти как в случае с механикой
  • Повышенный, в сравнении с механикой, ресурс сцепления (по заявлениям производителей)
  • Требует меньше масла в сравнении с вариатором
  • Допускает откатывание машины назад, в отличие от полноценного автомата
  • Реакции на управляющие действия водителя замедленные
  • Рывки при переключениях
  • На подъемах часто размыкается сцепление — из-за перегрева. Коробка переходит в аварийный режим

Впервые столкнулся с этим типом коробки передач, взяв в середине нулевых в аренду в Италии Fiat Grande Punto с 90-сильным турбодизелем и однодисковым роботом.

Короче, мое мнение: однодисковый робот — ни за что. Лучше танцевать джигу на педалях служебного Ларгуса с механической коробкой передач в диких московских пробках, когда десяток километров порой продираешься час, чем такие автоматы.

Робот с двумя сцеплениями

Примеры использования: некоторые модели Mercedes-Benz, BMW, Mini, Ford, большинство автомобилей концерна Volkswagen, включая Audi, Skoda, Seat.

Суть идеи состоит в том, что за четные и нечетные передачи отвечают отдельные первичные валы и, соответственно, отдельные диски сцепления. Если вы движетесь на первой передаче, то второй вал уже вращается на второй! За счет этого переключение происходит очень быстро — за миллисекунды. Человек на такую проворность неспособен. При этом никакие рывки во время смены передач практически не ощущаются. Используются как «мокрые» диски сцепления, работающие в масле, — тогда это шестиступенчатая коробка DSG 6, так и «сухие» — 7-ступенчатая DSG. Ресурс «сухих» сцеплений весьма ограничен и практически никогда не достигает 100 000 км пробега, а при агрессивной езде не превышает порой 30 000 км.

  • Быстрые, незаметные переключение
  • Хорошая динамика разгона
  • Экономичность
  • Удорожание конструкции
  • Недостаточная надежность блоков управления
  • Недостаточный ресурс «сухих» сцеплений

Личные впечатления ограничиваются поездками на автомобилях, которые нашему издательству предоставляют для испытаний российские представительства различных марок. Машины эти практически новые, с небольшими пробегами, на которых характерные проблемы двухдисковых роботов еще не успели проявиться. Все выглядит отлично: быстро, мощно, тихо — одни плюсы. Если же выбирать автомобиль для личного пользования, а пробег предстоит накатывать большой, то лучше предпочесть в качестве коробки передач традиционный гидромеханический автомат или старую добрую механику.

Вариаторы

Кайф от такой коробки состоит в том, что привычных ступенчатых переключений здесь нет в принципе! На входном и выходном валах закреплены конусообразные диски, образующие в сумме эдакий шкив с изменяемым диаметром. Валы соединяет передача — клиноременная, цепная и т.п. Смещая конусы друг относительно друга, можно плавно изменять передаточное число. Игрушка — не из дешевых. Для работы требуется особая трансмиссионная жидкость, уровень которой нужно тщательно контролировать.

Разновидностей вариаторов довольно много — ниже перечислены основные.

Вариатор клиноременный

Примеры использования: Nissan Qashqai, Nissan X-Trаil, Renault Kaptur, Mitsubishi Outlander и др.

Клиноременный вариатор на сегодняшний день наиболее распространенный тип бесступенчатых коробок передач. Крутящий момент транслирует металлический толкающий ремень. Торцы надетых на ленту трапециевидных элементов, соприкасаясь с конусами, приводят их во вращение. Вместе с тем применен обычный гидротрансформатор с блокировкой, как на гидромеханических автоматах. При троганье с места гидротрансформатор повышает крутящий момент двигателя вплоть до величины в четыре раза большей. Применение этого узла обеспечивает плавное начало движения при передвижении в городских пробках.

  • Отсутствуют переключения
  • Проще и дешевле гидромеханического автомата
  • Ресурс ремня, как правило, ограничен 150 000 км

Вариатор клиноцепной

Примеры использования: Audi А6 , Subaru Forester.

Устройство похоже на клиноременный вариатор, но вместо ремня в качестве передачи используется металлическая цепь, состоящая из пластин, соединенных клиновидными осями. Именно торцы этих осей и передают крутящий момент. Другое отличие состоит в том, что в коробках Audi используется пакет сцеплений и двухмассовый маховик вместо гидротрансформатора.

  • Отсутствуют переключения
  • Проще и дешевле гидромеханического автомата
  • Ограничения по передаче крутящего момента

Оба типа бесступенчатых трансмиссий в последнее время стали делать с виртуальными ступенями. Якобы это больше нравится водителям, потому что двигатель не воет на одной ноте.

По потребительским свойствам вариатор — лучший тип коробки передач. Она обеспечивает быстрый разгон, а что до монотонного звука. Помнится, Хоттабыч удалил звук двигателей летящего самолета, а к чему это привело? Участники событий едва спаслись. На ровном шоссе при скорости автомобиля чуть за сотню обороты двигателя не достигают 2000. Торможение двигателем — есть. Лично я побаиваюсь за ресурс ремня и грею зимой даже больше не двигатель, а вариатор. А так — идеальная коробка (тьфу, не передач)!

И, да, забыл: вариаторы на склоне назад не откатываются!

Старая добрая гидромеханическая коробка передач

Примеры использования: практически весь модельный ряд корейских и американских брендов, а также относительно мощные автомобили других производителей.

Представляет собой ступенчатую планетарную коробку передач, соединенную с двигателем через гидротрансформатор. Выбор и переключение планетарных рядов раньше осуществлялись гидромеханически, а сейчас вездесущая электроника вместе с системой управления двигателем определяет, на какой передаче следует работать силовому агрегату в данный момент. Число ступеней постоянно увеличивается, достигая девяти на самых дорогих автомобилях.

  • Отработанная конструкция
  • Возможность оперировать с огромными крутящими моментами
  • «Живучесть» при длительном буксовании
  • Несколько меньший КПД, чем у вариатора
  • Чувствуются переключения, особенно при небольшом количестве ступеней

Здесь особенно выделяется «всефранцузская» четырехступенчатая коробка передач DP0. Эту коробку и ее многочисленные реинкарнации до сих пор устанавливают на огромное число относительно маломощных автомобилей Peugeot, Citroen и Renault. Наиболее часто в нашей стране с этой коробкой сталкивались владельцы таких автомобилей, как Peugeot 307, Citroen С4, Renault Logan (со всем семейством) и Megane. Нрав коробки довольно строптивый, случаются «затыки» с переключениями. Надежность тоже не выдающаяся: редкая КП этого типа доживает до 80 тысяч км без ремонта. Причем иногда удается обойтись заменой клапанов, а порой приходится менять половину «начинки».

А вот «всеяпонский» производитель автоматов Jatco сумела сделать относительно беспроблемную «четырехступку». Одна из версий ставится даже на седанчик и хэтчбек, выпускающиеся у нас под японским брендом Datsun.

И все-таки для современного автомобиля с гидромеханическим автоматом число ступеней должно быть не меньше шести. Сверхпопулярные Rio и Solaris в последней генерации это полностью подтверждают. Многоступенчатые автоматы куда экономичнее, особенно при езде по трассе. На мощных бизнес-седанах, на тяжелых кроссоверах и внедорожниках альтернативы гидромеханическим трансмиссиям и вовсе нет и пока не предвидится. Скорее уж они станут гибридными, и тогда вся трансмиссия будет скомпонована совсем иначе. Но это уже другая история.

Выводы

Для тяжелых условий эксплуатации, для мощных двигателей или в ситуации, когда нравящаяся машина не выпускается с другим типом автомата, можно брать гидромеханическую коробку передач. Но с числом ступеней не меньше шести.

Вариатор хорош в составе малых и средних автомобилей (не больше, чем среднеразмерный кроссовер).

Автомобиль с роботизированной коробкой передач и двумя сцеплениями советую покупать, только если вы собираетесь ездить на нем не дольше гарантийного срока. Дальше все преимущества будут нивелированы дорогостоящим ремонтом. Автомобили с однодисковым роботом, на мой взгляд, не достигли совершенства в области удобства управления тягой и не отличаются высокой надежностью в трудных условиях.

В заключение, как обычно, жду от вас комментариев. Какой тип коробки передач вам нравится, на каком ездите и о каком мечтаете?

Какая коробка лучше: автомат или робот

Сегодня автомобили с автоматической трансмиссией по целому ряду причин намного более востребованы, чем модели с механической коробкой передач. При этом важно понимать, что существует несколько основных типов «автоматов»: классическая гидромеханическая коробка, вариатор и робот. На практике по популярности и распространенности лидируют РКПП и АКПП.

Стоит отметить, что каждый из указанных типов КПП имеет свои плюсы и минусы. Не удивительно, что при выборе автомобиля многие потенциальные владельцы интересуются, какая коробка стоит на той или иной модели. Далее мы постараемся разобраться в этом вопросе и поговорим о том, что лучше, робот или автоматическая коробка передач.

Робот или АКПП: что лучше

Начнем с того, что роботизированная коробка передач РКПП массово стала появляться на различных авто сравнительно недавно. В то же время гидромеханический автомат АКПП является проверенным временем решением.

  • В основе АКПП лежит гидротрансформатор ГДТ, клапанная плита (гидроблок) и сама коробка, которая является планетарной КПП с набором фрикционов и шестерен. Такая трансмиссия может быть установлена на полноприводные авто, машины с задним или передним приводом. Коробка передач данного типа способна работать мягко и плавно, хорошо справляется с большим крутящим моментом ДВС, отличается надежностью и долговечностью при условии грамотной эксплуатации и своевременного качественного обслуживания.

Если же говорить о минусах АКПП, прежде всего, стоит выделить повышенный расход топлива и сниженный КПД, высокую стоимость обслуживания и ремонта коробки или ГДТ, необходимость постоянно следить за состоянием, качеством и уровнем трансмиссионной жидкости, а также менять такую жидкость каждые 40-60 тыс. км. пробега.

Также изначально многие авто одного класса стоят дороже аналогов с роботизированной коробкой передач. Если говорить о вторичном рынке, в среднем, разница может составлять 15-25%, что также зачастую играет свою роль при выборе.

  • Роботизированная КПП (коробка робот) может быть представлена двумя вариантами: так называемый однодисковый робот или преселективная коробка (например, DSG).

Хотя роботизированная трансмиссия справляется со своей задачей аналогично АКПП, то есть передачи переключаются без участия водителя, такая коробка кардинально отличается от классических автоматов по конструкции и принципу действия.

Начнем с простых роботов с одним сцеплением. В двух словах, КПП робот это механическая коробка передач, где сцепление вместо водителя включается и выключается автоматически. Также автоматически реализован выбор и включение/выключение передач. За выполнение этих функций отвечают сервомеханизмы, которые работают под управлением ЭБУ.

Также добавим, что сцепление на таких коробках выходит из строя достаточно быстро (часто быстрее, чем на МКПП). Еще по мере износа сцепления эту коробку нужно «обучать», так как автоматика, в отличие от водителя, который физически управляет сцеплением при помощи отдельной педали на МКПП, не способна самостоятельно «подстроиться» и учесть изменившуюся точку схватывания.

Теперь перейдем к преселективным роботам. Эти коробки по своему устройству и принципу работы похожи на обычные РКПП и АМТ, однако имеют не одно сцепление, а сразу два. В результате, пока автомобиль едет на одной передаче, следующая уже также практически полностью включена. Такая схема позволяет выполнять переключения очень быстро, водитель попросту не замечает моментов переключений, комфорт значительно повышается.

Данный тип КПП можно по праву считать самым экономичным, так как максимально быстрые переключения передач позволяют добиться практически постоянной и неразрывной передачи тяги от ДВС на ведущие колеса. Что касается минусов преселективных КПП с двумя сцеплениями по сравнению с АКПП, это меньший ресурс, проблемы с сервомеханизмами, дороговизна и сложность ремонта, необходимость менять пакеты сцеплений по мере износа.

Советы и рекомендации

Как видно, сразу дать однозначный ответ на вопрос, робот или АКПП, что лучше выбрать и почему, не получится. Дело в том, что рассмотрев все сильные и слабые стороны роботов и гидромеханических КПП, подобрать среди них лучший автомат достаточно сложно.

  • Прежде всего, рекомендуется самостоятельно провести тест-драйв похожих по характеристикам моделей с разными типами автоматов, чтобы сразу получить общее представление о том, как ведут себя рассматриваемые типы трансмиссий при езде.
  • С одной стороны, если сравнивать однодисковый робот и классическую автоматическую коробку передач, первый вариант окажется самым доступным по цене и экономичным, также отмечается простота ремонта.
  • Что касается АКПП, эта коробка является комфортным и зачастую достаточно надежным решением, но такой агрегат дороже обслуживать и ремонтировать.
  • Если же говорить о роботах с двумя сцеплениями, по комфорту они уже не уступают АКПП, при этом выигрывают в плане разгонной динамики и топливной экономичности, а также их дешевле обслуживать.

Теперь перейдем непосредственно к выбору и сразу начнем с новых авто. Если стоимость автомобиля является главным определяющим фактором, то есть нужна максимально доступная по цене машина и обязательно с автоматом, тогда вполне можно смотреть в сторону однодисковых роботов.

В том случае, когда на машине планируется много ездить или автомобиль приобретается из расчета на длительный срок эксплуатации, тогда лучше сразу обратить внимание на модели с надежной классической гидромеханической АКПП.

Это значит, что модели с АКПП на вторичном рынке, как правило, более предпочтительны, чем робот. Причина вполне очевидна, так как больше шансов, что такая коробка еще имеет приемлемый остаточный ресурс и не потребует дорогостоящего ремонта в ближайшее время.

Как правильно пользоваться роботизированной коробкой передач: “однодисковый” робот, преселективная роботизированная КПП с двумя сцеплениями. Рекомендации.

Как пользоваться коробкой передач DSG и сохранить ресурс, а также увеличить срок службы. Особенности эксплуатации роботизированной КПП с двумя сцеплениями.

Коробка механика или автомат: какая коробка передач лучше, МКПП или АКПП. Особенности механической и автоматической трансмиссии, рекомендации.

Эксплуатация коробки вариатор CVT: особенности езды на машине с вариатором, обслуживание вариаторной коробки. Полезные советы и рекомендации.

Чем отличается “классическая” АКПП с гидротрансформатором от роботизированной коробки передач с одним сцеплением и преселективных роботов типа DSG.

Устройство и принцип работы роботизированной КПП. Отличия роботизированных коробок передач от гидротрансформаторной АКПП и вариатора CVT.

“Автомат”, “робот” или вариатор? В чем разница и что надежнее?

Последнее время серьезную конкуренцию классическим “автоматам” составляют роботизированные коробки и вариаторы. А какой вариант предпочтительнее? Разбирался Иван Кришкевич.

В поисках компромисса

На самом деле вопрос в стиле “что лучше?” заранее обречен на то, чтобы быть слишком поверхностным. Лучше в каком смысле? В плане комфорта, динамики, топливной экономичности, надежности или стоимости обслуживания или ремонта? Увы, лучшего во всех отношениях варианта не существует, а значит, придется искать компромисс из возможных вариаций. То есть выбор типа коробки зависит от того, какие качества на первом месте, а какими можно пожертвовать.

Так, классический гидромеханический “автомат” по-прежнему считается лучшим в плане комфорта: самые мягкие переключения и отсутствие рывков в любом диапазоне скоростей и в любом режиме движения и ускорения. При этом современные коробки по части “скорострельности” приближаются к преселективным “роботам”. По большому счету пенять можно разве что на топливную экономичность: несмотря на явный прогресс, в этом плане гидромеханические коробки все равно “расточительнее” остальных типов автоматических трансмиссий.

То ли дело “роботы”! Конструктивно они близки к механическим коробкам, но – с автоматическим управлением, что обеспечивает эффективность. Некоторые “роботы” демонстрируют даже лучшую топливную экономичность, чем “механика”, обыгрывая усредненного водителя просто за счет заложенных алгоритмов работы. Преселективные коробки с двумя сцеплениями, кроме того, обеспечивают необычайную скорость: разрыва потока мощности при переключениях практически нет.

Однако по части комфорта “роботы” пусть немного, но уступают “автоматам”. Особенно коробки с сухими сцеплениями, особенно в городских условиях, когда используется “ползущий” режим – редкая коробка обходится без подергиваний в эти моменты. Переключения хоть и быстрые, но не такие мягкие, как у “автомата”. Активный водитель этого, возможно, и не заметит, но спокойный и ценящий комфорт наверняка отметит для себя этот недостаток.

А ведь есть еще и простенькие “роботы” с одним сцеплением. Вот это уже чистая “механика” с актуаторами – и пока еще ни одному из производителей (а брались многие!) не удалось приблизить эту коробку к “автомату” по части как комфорта, так и “скорострельности”. В итоге сейчас такие “роботы” используются лишь на недорогих моделях, а к их преимуществам помимо экономичности можно отнести разве что небольшую стоимость.

Главной “фишкой” вариатора является возможность беспрерывно изменять передаточные числа: ведущий шкив увеличивает свой радиус, ведомый параллельно его уменьшает. Автомобиль разгоняется, а двигатель постоянно “поет” на одних оборотах, приближенных к максимальному крутящему моменту. Это и обеспечивает высокую эффективность вариатора. А когда надо ехать на установившейся скорости, коробка выставляет уже оптимальное для данного режима соотношение.

Но со временем от такого “троллейбусного” характера отказались в пользу фиксированных передач, как на “автоматах” и “роботах”, – и тем самым лишили вариатор одного из преимуществ. А вот по части комфорта и топливной экономичности CVT располагается где-то между “автоматами” и “роботами”.

Впрочем, приведенные выше преимущества и недостатки разных типов трансмиссий следует считать условными. Во-первых, конструкции продолжают совершенствоваться, что изменяет их потребительские качества. Во-вторых, один тип коробок включает в себя множество самых разных моделей со своими особенностями (как минимум настройками), так что все относительно.

А что с надежностью?

А вот это, пожалуй, самое главное, что волнует покупателей даже новых или свежих автомобилей, планирующих ездить на машине не один год и продать ее без сильной потери в цене. Что же, давайте разбираться.

С классическими “автоматами”, казалось бы, все просто: такие коробки выпускаются давно, поэтому хорошо изучены и должны обходиться без “сюрпризов”. На самом деле все не совсем так. Это старые 4- и 5-ступенчатые “автоматы” с их неспешными переключениями жили своей размерной жизнью. Современным коробкам такое только снится!

Начнем с того, что их ставят в связке с более мощными и “моментными” моторами, так что уже приходится несладко. Далее для достижения более интересных динамических качеств и лучшей топливной экономичности применяется ранняя блокировка гидротрансформатора на низших передачах. Отсюда ускоренный износ фрикционов при управляемом проскальзывании и, как следствие, быстрое загрязнение масла.

По-хорошему его бы теперь менять чаще, чтобы не страдал гидроблок и сам гидротрансформатор и чтобы не было локальных перегревов. Но интервалы замены в лучшем случае сохраняются на прежнем уровне, в худшем – растягиваются, а то и вовсе отменяются. Да-да, некоторые производители заявляют, что масло залито на весь срок службы коробки. Это на самом деле так. Вопрос лишь в том, каким будет этот самый срок…

Также стоит упомянуть общее усложнение конструкции, а вместе с тем борьбу за снижение веса и себестоимости агрегата (иногда в ущерб долговечности – чего стоит, например, отказ от радиатора охлаждения на некоторых коробках), всеобщую тенденцию к сокращению сроков разработки и испытаний новых узлов.

В общем, нельзя сказать, что АКПП проще и надежнее других типов автоматических коробок. Это по-прежнему технически сложный, требовательный к своевременному обслуживанию и чувствительный к нарушению правил эксплуатации узел.

Это если говорим “вообще”. А в частностях у каждой коробки – свои особенности. Достаточно вспомнить ранние версии Mercedes 7G-Tronic 722.9, где был отмечен выход из строя электроплаты Siemens, размещенной в масляной ванне и страдающей от высокотемпературного режима. Или же коробку GM 6Т30/6Т40/6Т45 ранних лет выпуска, постоянно страдавшую от перегревов и требовавшую замены то гидроблока, то сгоревших фрикционов. И это к вопросу о том, что стоит отдавать предпочтение коробкам, выпускаемым не один год и пережившим все свои “детские болезни”.

Та же история и “роботами”: репутацию подмочили как раз ранние версии, которые имели целый набор самых разнообразных проблем, причем некоторые из них типичны для автоматических коробок любого типа. Так что здесь правило “чем позже год выпуска, тем лучше” работает железобетонно.

Основная проблема старых коробок с сухими сцеплениями (а это, например, фольксвагеновская DQ200 или Getrag 6DCT250, которую ставят на модели Ford и Volvo) – прогрессирующие рывки при переключениях, иногда и вовсе отказ от работы, что “лечилось” новыми прошивками, заменой сцеплений, в некоторых случаях – и гидроблока. Собственно говоря, здесь проблема та же, что и у простых роботизированных коробок с актуаторами, – обеспечить адаптивность автоматики к естественному износу сцепления плюс беречь его в специфических режимах движения.

Коробки с мокрыми сцеплениями (фольквагеновские DQ250 и 500, 6DCT450) этой проблемы лишены, но страдают от тех же бед, что и классические “автоматы”. Масло быстро накапливает продукты износа фрикционов, поэтому требует периодической (в идеале каждые 40-50 тыс.км) замены.

В противном случае страдают управляющие соленоиды, каналы, подшипники. Например, у ранних версий 6-ступенчатой DSG (DQ250) слабым местом оказался как раз мехатроник: клапанный механизм “травился” продуктами износа, накапливавшимися в масле. А еще одна “болячка” – точно такая же, как у упоминавшегося выше мерседесовского “автомата”: плата гидроблока “жарилась” в горячем масле, страдая от перепадов температур.

Любопытно, что подобный казус имеется и в “биографии” вариатора Multitronic ранних лет выпуска. Но вообще CVT-коробки имеют свои конструктивные особенности, которые могут сказаться на ресурсе основных узлов и быть причиной возникновения тех или иных проблем.

Напомним, что изменение передаточных чисел (плавное или ступенчатое – как задумал производитель) обеспечивают хитрые составные шкивы на валах коробки. Каждый шкив состоит из двух половинок – конусов, которые, сдвигаясь или раздвигаясь, изменяют свой внешний радиус. За эту работу отвечает гидравлика, которой заведует электронно-управляемый гидроблок.

Поскольку трение является рабочим процессом (ремень плотно прижимается к конусам), неизбежен износ. В зависимости от коробки срок службы ремня составляет 200-300 тыс. км, однако сократить эти цифры могут повышенные нагрузки на узел при агрессивной езде, пробуксовках, буксировке.

Но не только. Раз есть трение, есть и продукты износа. Мелкую стружку улавливают фильтры и магниты, но если “мусора” в масле слишком много, будут страдать клапаны и каналы гидроблока. Добавляет загрязнений и гидротрансформатор (Lineatronic и Jatco) или “мокрое” сцепление (Multitronic). При некорректной работе гидравлики натяжение ремня может отличаться от необходимого, что приведет к его проскальзыванию, вызывая ускоренный износ и повреждая конусы шкивов. А это уже недешевое удовольствие.

Но ведь есть и другие напасти! Отказы электронного блока управления (Multitronic), поломка степ-мотора, отвечающего за положение конусов (Jatco), износ фрикционов старт-пакета (Lineatronic). То есть у каждой коробки – свои особенности и “болячки”.

Собственно к надежности вариаторов как таковой особых претензий нет. Проблема – в чувствительности к нагрузкам и в принципе ограниченном ресурсе ремня, высоком риске износа конусов шкивов, что при пробеге свыше 200 тыс. км может вылиться в дорогостоящий ремонт. Но это тоже выводы “вообще”. А в частности, современные вариаторы получают новые конструктивные решения, снижающие негативное воздействие нагрузок. Примеры – коробка Toyota с первой механической передачей или же вариатор JF015E с двумя ступенями переднего хода.

Вообще же мнение о том, что ремонт вариатора и “робота” обойдется дороже, чем ремонт “автомата”, тоже далеко не всегда соответствует истине. Пожалуй, пока еще можно согласиться с тем, что сервисная база для диагностики, обслуживания и ремонта гидромеханических коробок в нашей стране развита лучше, но последние годы ситуация с “роботами” и вариаторами улучшается. Это неизбежно, ведь на рынке уже предостаточно автомобилей с такими коробками, а со временем их число будет только расти.

Наш вердикт

Несмотря на то что у каждого типа коробки имеются свои заложенные на конструктивном уровне особенности, преимущества и недостатки, оценивать огульно “скорострельность”, комфорт или надежность той или иной модели “автомата”, “робота” или вариатора неверно, тем более что потребительские качества коробок постепенно сближаются.

Расклад по части надежности мы тоже озвучили: проблемы на конструктивном уровне имеются у любого типа, к этому добавляются индивидуальные “болячки” конкретных моделей, но в немалой степени на “здоровье” коробки влияет стиль езды, своевременность и качество обслуживания. И это стоит помнить как покупателям “бэушки”, так и тем, кто выбирает новый автомобиль.

Более 80 тысяч объявлений о продаже запчастей в базе Автобизнеса

В чем разница и чем отличается роботизированная коробка от автомата

Автоматические коробки передач постепенно вытесняют механические. А начинающие автовладельцы не знают, в чем разница между коробками автомат и робот. Ведь они одинаково самостоятельно переключают передачи на транспортном средстве без воздействия водителя.

На самом деле автоматическая трансмиссия – это общее название. Она содержит три типа устройств переключения скоростей:

Между этими трансмиссиями есть много общего и различного.

Как отличить автомат от робота визуально

Опытные автовладельцы и механики хорошо знают, как отличить коробку автомат от робота визуально.

Эксперты говорят, что определить внешне какой тип КПП у автомобиля поможет рычаг селектора. Если взглянуть на автоматическую коробку, то можно увидеть следующие положения кулисы:

  • «P» – парковка;
  • «N» – нейтральная;
  • «R» – задняя;
  • «D» – движение вперед.

Наличие остальных положений зависит от модели автомата.

Если же взглянуть на роботизированную трансмиссию, то автовладелец увидит:

  • «N» – нейтральная;
  • «R» – задняя;
  • «D» – движение вперед.

Чем отличается робот от АКПП более подробно в следующих блоках.

Обычный автомат

При выборе транспортного средства с одним из видов автоматической трансмиссии необходимо знать, что такое автомат и робот и из чего состоит каждая из них.

Конструкция АКПП

Коробка автомат состоит из гидротрансформатора, планетарной коробки передач, гидроблока.

Элемент автоматаЗа что отвечает
Гидротрансформатор состоит из турбинного и реакторного колеса, центробежного насоса, обгонной и блокировочной муфтыОтвечает за плавное переключение передач, выполняет функцию сцепления
Планетарная коробка состоит из редукторов и фрикционных дисков, тормозной лентыПередает усилие посредством системы различных вариантов зацепления шестерней, переключает скорости

Строение АКПП, как видно из таблицы, более простое, чем у робота. Еще одно отличие от роботизированной заключается в большом количестве ступеней передаточного числа. Благодаря им, снижается потребление топлива транспортным средством.

Разница между роботом и коробкой автомат заключается в принципе работы АКПП. Переключение скоростей происходит без разрывов, когда мотор достигает максимального числа оборотов на одной из передач и в масляной системе нагнетается давление для смены скорости.

  1. Гидротрансформатором меняется крутящий момент.
  2. Смазывающее средство попадает из насоса к турбинному колесу.
  3. Колесо передает его на реактор.
  4. Поток масла становится все больше и увеличиваются обороты насосного колеса.
  5. Задействуется обгонная муфта, благодаря которой происходит вращение реактора.
  6. Муфта переключает передачи между планетарными редукторами.

А гидроцилиндры, которые обеспечивают работу вышеописанных процессов, управляются электронным блоком.

Как уже было описано, коробку автомат можно отличить от робота по следующим положениям ручки на селекторе:

  • P – «Парковка»;
  • R – «Задний ход»;
  • N – «Нейтральная»;
  • D – «Движение вперед»;
  • L – «Принудительно понижающая передача».

Положительные стороны и отрицательные

Как и все устройства, автомат имеет свои положительные стороны и отрицательные черты. К плюсам автоматической коробки передач относятся:

  • надежность;
  • простое управление;
  • отсутствие периодической замены сцепления;
  • экономное расходование горючего;
  • не скатывается назад, если поставить на склоне.

Автомат имеет и отрицательные черты, которые складываются из следующих парметров:

  • высокая стоимость при замене автомата;
  • высокая цена капитального ремонта;
  • транспортное средство с автоматом нельзя заводить с толкача;
  • малый КПД из-за гидротрансформатора. На последний уходит почти половина мощности аппарата;
  • срок жизни устройства маленький.

Роботизированная коробка передач

Начинающие автовладельцы часто не понимают, что это такое – робот и чем отличается от обычного автомата. Дело в том, что РКПП это по сути механическая КПП, которой управляет электронный блок.

Роботизированная коробка передач в отличие от автомата делится еще на два подвида:

  1. Механическая коробка переключения скоростей с электронным блоком или простой робот. Этот тип был разработан первым, поэтому имел множество отрицательных сторон. Доходило в плоть до больших временных промежутках между переключением передач в АКПП автомобиля. Водитель чувствовал эти провалы, как вечные подергивания и толчки во время разгона.
  2. Та же коробка только с двумя системами сцепления или преселективная. Это более усовершенствованный первый тип РКПП. Устанавливается на гоночные транспортные средства. Два вала сцепления позволяют переключать скорости в момент работы еще предыдущей передачи.

Бюджетные варианты роботов со вторым типом не очень удачны. Например, на Опель или Форд с РКПП, производители заменили гидронасосы на шаговые двигатели. В итоге, водитель постоянно чувствует рывки и задержки в переключении. Хотя, экспертами отмечено, что на той же Тойота Королла установлен аналогичный робот, а эти минусы отсутствуют.

Конструкция РКПП

По конструкции отличие робота от автомата заключается в следующем:

  • два механических вала, которые находятся друг в друге. Каждый из них имеет собственное сцепление;
  • актуатор или сервопривод: электрический или гидравлический. При использовании первого все исполнительные команды выполняют сервомеханизмы. Если присутствует гидромеханический блок, то он выполняет роль сцепления. В случае если установлен гидравлический привод, то он управляется посредством гидроцилиндров, которыми, в свою очередь, управляют клапаны электромагнита;
  • электронный блок. Эта система контролирует механизмы исполнения и следит за датчиками КПП робота. Он совмещается с бортовым компьютером.

В отличие от автоматической КПП передачи переключаются быстрее на роботе. Например, на DSG от Фольксвагена смена скоростей происходит за одну сотую секунду.

Отличить робот от автомата можно и по преимуществам, которые дает его использование и отрицательным сторонам.

Преимущества и недостатки

Роботы, установленные в машинах, имеют следующие плюсы:

  • простые в обслуживании;
  • экономичное потребление смазывающей жидкости из-за отсутствия гидротрансорфматора;
  • мгновенное переключение скоростей;
  • низкий расход топлива;
  • высокая динамика.

Есть и недостатки у роботизированной системы:

  • некачественное плавное переключение передач;
  • водитель чувствует задержки при смене скоростей;
  • непредсказуемость в поведении при тяжелых дорожных условиях;
  • переход в нейтральное положение при каждой остановке;
  • ресурс робота уменьшается при каждой пробуксовке.

Эксперты отмечают, что постоянное движение с пробуксовкой приводит к износу не только робота, но и двигателя. Поэтому РКПП больше всего предназначены для городского типа движения.

Сравнение двух КПП: чем отличается робот от автомата

В этом блоке подведены сравнительные итоги темы: «Какая коробка все же лучше автомат или робот?».

Таблица ниже показывает различия между коробками робот и автомат.

Тип отличийРоботАвтомат
КонструктивныйМеханическая коробка с электронным блоком управленияГидротрансформатор, планетарная коробка, гидроблок
ФункциональныйНаличие функции ручного переключенияРучное переключение
ЦеновойДорогая в ТОНизкое по стоимости сервисное обслуживание
ПотребительскийНизкое потребление горюче-смазочных материаловБольшие объемы расхода масла и горючего

Теперь начинающему автовладельцу будет легче выбирать между этими двумя видами автоматической трансмиссии. В следующем блоке приведены некоторые советы от опытных автовладельцев и механиков по выбору того или иного устройства, если автолюбитель уже сделал шаг в сторону одного из типов.

Какую коробку выбрать

Эксперты подсказывают автолюбителям, что при выборе коробок: робот или автомат, следует исходить из трех китов, на которых строится система вождения:

  • комфорт при поездке;
  • надежность трансмиссии;
  • цена коробки передач.

Если исходить из того, что лучше для водителя – это комфорт, то рекомендуется автомат. Если при выборе трансмиссии, автовладелец больше склоняется к экономичности, то следует отдать предпочтение роботу.

РКПП не созданы для поездок вне города без ровных асфальтированных трасс. Однако, для тех, кто обожает быструю езду, различные маневры следует выбрать преселективную трансмиссию.

И еще одна важная вещь, которую не следует обходит стороной начинающим автолюбителям, особенно молодым. Правильная эксплуатация АКПП и ежемесячный уход за ней, позволят любой трансмиссии прослужить не только положенный срок, но и больше его.

Если вовремя доливать и менять масло, не допускать стартов «на холодную» и длительных пробуксовок, то и автомат, и робот позволят водителю снизить затраты на капитальный ремонт.

Заключение

Чтобы понять, какая из двух коробок нужна будущему водителю, эксперты рекомендуют определить насколько значимым является один из вышеперечисленных принципов для автолюбителя. Для многих автолюбителей, например, отсутствие педали сцепления уже означает автомат.

В чем разница между роботизированной коробкой передач и автоматической коробкой передач? Робот или автомат: какая коробка лучше.

Современные автомобили оснащены коробками передач разного типа и потребителю, особенно при покупке своего первого автомобиля, может быть сложно сделать правильный выбор среди этого разнообразия трансмиссий.

Поэтому в этой статье мы постараемся разобраться, чем АКПП отличается от робота, именно этот вопрос волнует многих будущих автовладельцев.

Коробка автомат. Как известно, автоматическая коробка передач состоит из двух основных компонентов — гидротрансформатора и коробки передач. Гидротрансформатор обеспечивает плавное и плавное переключение передач, по сути заменяя сцепление на автомобилях с механической коробкой передач.

АКПП состоит из определенного набора шестерен, они зацеплены и образуют несколько ступеней: 4, 5, 6 и даже 8.

Благодаря конструктивным особенностям шестерни АКПП в зависимости от частоты вращения коленчатого вала двигателя и давления нагнетаемого масла сама переключает ступени (скорости), без вмешательства водителя.Благодаря такому переключению передач электроника используется по минимуму.

КПП робот что это? Проще говоря, на МКПП установили блок управления, который состоит из гидропривода и сервопривода (электронного блока). Этот блок без вмешательства человека отвечает за сцепление и переключение передач.

Принцип работы робота такой же, как и у механики, только все происходит автоматически — гидравлика с электронным управлением она все сделает сама.

Чтобы лучше понять, чем автоматическая трансмиссия отличается от роботизированной, рассмотрим их тактико-технические характеристики.

1. Автоматическая коробка передач значительно снизила нагрузку на водителя при движении, особенно это заметно при движении в городских условиях. Современные автоматические трансмиссии (адаптивные) способны даже адаптироваться под каждого водителя, под его стиль вождения. Также автомат отличается мягким и незаметным переключением передач.

АКПП имеет свои минусы — это повышенный расход топлива, особенно в городе и ремонт машины, который иногда бывает, обойдется в приличную сумму.

2. Робот принадлежит механикам, а это значит, что обслуживание и ремонт будут дешевле, чем у машины. Расход топлива у машины с коробкой эквивалентен механической трансмиссии, а в городских условиях даже ниже, что не может не радовать. Кроме того, роботы едят меньше масла, чем автоматы.

Роботы передают крутящий момент от мотора на колеса машины без значительных потерь, чего нельзя сказать о машине. Большое преимущество роботизированной коробки в том, что она поддерживает ручное переключение скоростей, чего нет у многих машин.

У робота тоже есть недостатки — это медленное переключение передач и рывки с рывками при работе коробки, это случается довольно часто, если водитель очень сильно нажимает на педаль газа. Также в городских условиях при парковке необходимо переводить рычаг селектора в «нейтральное» положение.

А зачем это нужно, вы можете узнать из этого видео, в котором рассказывается о роботе-боксе.

Подведем итоги различий между автоматом и роботом:

  • робот — механическая трансмиссия с блоком управления, автомат имеет собственную конструкцию;
  • при переключении передач автомат превосходит робота по скорости и плавности переключения;
  • робот имеет ручное переключение, и многие машины не имеют этой функции;
  • робот-бокс потребляет меньше топлива и масла, чем автомат;
  • обслуживание и ремонт роботизированной коробки дешевле автоматической коробки.

Заключение. Мое мнение: робот — это темная лошадка, от которой можно ожидать неприятных сюрпризов. Выбираю автомат, он проработан и предсказуем в работе, тем более что новые АКПП с большим набором передач уже приближаются к механике по расходу топлива, а также эти автоматы можно настроить под каждого водителя.

Сегодня автомобиль — это столь необходимое устройство индивидуального пользования, такое как мобильный телефон, фотоаппарат или персональный компьютер.Большинство автолюбителей, находящиеся в процессе выбора нового автомобиля, не могут полностью понять разницу между коробкой передач робота и автоматом, а также испытывают трудности с пониманием технических характеристик и терминологии представленных им моделей. Автоматические трансмиссии скоро будут заменены механическими, но мало кто знает о большом количестве их разновидностей и отличий. Однако об этом пока рано говорить, теперь необходимо разобраться, что это означает.механика роботов и что такое классический автомат.

Есть два основных элемента «автомата»:

  • — это альтернатива сцеплению, используемая классической коробчатой ​​передачей.
  • Редуктор выполнен из зацепленных пар шестерен. Благодаря своей конструкции раскрывается особенность автоматической системы — возможность переключать передачи без помощи водителя. Механизм практически не оснащен электроникой.

«Робот» в принципе похож на механику, но имеет некоторые отличия.В его составе есть тип, состоящий из сервоприводов и гидроприводов, работающих на основе определенных алгоритмов. Коробка передач самостоятельно переключает систему трения сцепления, а также скорость, позволяет водителю не вмешиваться в этот процесс

Визуальное отличие «машины» от «робота»

Когда вы решили купить машину или уже сделали это, но понятия не имеете, какая трансмиссия установлена ​​внутри, вам нужен ответ на вопрос, чем отличается автомат от робота, почему один лучше, чем другой.Визуальная разница этих двух коробок передач — робота и автомата — выражена достаточно четко. Все, что нужно, — это обратить внимание на конструкцию канала переключения передач, именно они отличаются. Если вверху есть такое положение, как Парковка — «П», то это АКПП АКПП, когда такого положения нет, но при этом есть Нейтраль — «N», а также Сзади «R», значит, вы имеете дело с роботизированным устройством.

Принцип работы «автоматов»

АКПП состоит из двух частей (гидротрансформатор, коробка передач), как уже было сказано ранее.Теперь рассмотрим устройство и принцип работы коробки. Коробка передач передает мощность через систему шестерен, которые в различных вариациях зацепляются друг с другом. Именно благодаря этой позиции меняется усилие. Гидротрансформатор отвечает за плавное переключение с одной скорости на другую, а также выполняет функции, аналогичные функциям сцепления на механике.

Автоматическая коробка передач значительно упрощает управление, позволяя водителю избежать постоянного нажатия на педаль сцепления.Водителю не нужно переключать передачи рычагом и контролировать плавность движения, так как автоматика все делает за него. Благодаря этому у автовладельца есть масса способов полностью контролировать любую дорожную ситуацию (именно этим АКПП отличается от МКПП). Гидротрансформатор как агрегат здесь намного надежнее, в отличие от механической коробки передач. Сломать его по неопытности практически невозможно. За счет этой детали создается нагрузка на ходовую часть и силовой агрегат.

Ресурс двигателя лучше сохраняется при переключении передач на приемлемых оборотах. Топливо расходуется более экономно за счет большого количества ступеней на передаточном числе … Автомобиль никогда не катится самостоятельно, стоя на склоне, поскольку установлен пассивный режим системы безопасности.

Даже у этого варианта управления есть недостатки, помимо очевидных достоинств. Автомат отличается от робота тем, что динамика увеличения скорости меньше во время езды. Менее экономичный расход топлива по сравнению с большим количеством ступеней редуктора.КПД агрегата намного ниже из-за того, что гидротрансформатор поглощает часть мощности. Высокая стоимость единицы влияет на общую цену всего продукта. Обслуживание, замена деталей, ремонт — дороже.

Совет! Поскольку самой неэкономичной является коробка с четырьмя передачами, отдавайте предпочтение меньшему количеству передач при покупке автомобиля с АКПП.

Во-первых, при наличии АКПП в штатном режиме водителю не нужно самостоятельно выбирать и включать передачу, работать педалью и т. Д.На практике это значительно упрощает процесс управления автомобилем, повышает комфорт и безопасность.

Что касается самих АКПП, то сегодня в обиходе принято называть и (АМТ), и вариаторы «автоматом». Другими словами, есть несколько вариантов. автоматические трансмиссии, при этом по ряду причин наиболее распространенными среди них являются классические автоматические трансмиссии и «роботы».

Читайте в этой статье

В чем разница между «роботом» и «машиной»

Чтобы понять, чем один вид коробки передач отличается от другого, необходимо рассмотреть их особенности и принцип работы.Сразу отметим, что и «автомат» (АКПП), и «робот» (РКПП, АМТ) дают схожий конечный результат: трансмиссия автоматически выбирает и переключает передачи во время движения, учитывая скорость автомобиля, нагрузку на двигатель, положение педали газа и т. д.

Однако гидромеханическая автоматическая трансмиссия и роботизированная коробка передач механической трансмиссии принципиально различаются по конструкции и принципу действия. Давайте рассмотрим их особенности и отличия более подробно.

  • Начнем с «классического» гидромеханического «автомата» стр. В отличие от робота, появившегося сравнительно недавно, обычный автомат появился очень давно и стал первым типом АКПП, который начали массово устанавливать на автомобили.

В двух словах, автоматическая коробка передач — это ступенчатая коробка передач, в которой гидротрансформатор (ГТТ) играет роль сцепления. В этом случае на газовую турбину передается трансмиссионная жидкость ATF.

Клапанная пластина () и ЭБУ автоматической коробки передач отвечают за управление работой автоматической коробки передач. В пластине есть специальные каналы, по которым в нее под давлением подается трансмиссионная жидкость … Каналы закрываются клапанами (). По команде ЭБУ клапан открывается или закрывается, соответственно открывая или закрывая канал.

Когда клапан открыт, ATF воздействует на трансмиссию, что приводит к автоматическому включению и выключению передач.

Достоинства и недостатки АКПП. Говоря о плюсах и минусах гидромеханической АКПП, в списке основных достоинств следует выделить надежность агрегата и проверенную временем конструкцию, а также способность выдерживать достаточно большой крутящий момент.

Из минусов отметим, что хотя АКПП работает достаточно плавно, моменты автоматического переключения передач все же ощутимы для водителя. Также переключение передач может быть «тугим», особенно на старых «автоматах».Также следует выделить большой расход топлива для автомобилей с данным типом трансмиссии.

Что касается ремонта, то в случае выхода из строя как самой коробки, так и гидротрансформатора следует готовиться к серьезным расходам. При этом ремонтопригодность АКПП вполне приемлема, большое количество СТО предоставляют услуги по ремонту.

  • Роботизированная трансмиссия была разработана с нуля для максимальной экономии топлива и комфорта при упрощении и снижении стоимости самого агрегата.В условиях глобального топливного кризиса и жестких экологических стандартов это решение было призвано решить ряд проблем, присущих классической гидромеханической автоматической трансмиссии.

Проще говоря, в «роботизированной» коробке ножной привод сцепления заменен электроприводом, а переключение передач осуществляется исполнительным механизмом. Выбор и включение передачи, а также включение и выключение сцепления контролируются электронным блоком.

Управление этими ящиками напоминает принцип работы уже известного однодискового робота.Есть все те же сервоприводы, исполнительные механизмы и контроллер. Основное отличие состоит в том, что при включении, например, второй передачи, ЭБУ также параллельно включает третью, удерживая сцепление «выжатым». Как только наступает время переключения, за доли секунды отключается вторая передача и включается третья, уже включенная наполовину.

Во время движения блок управления коробкой передач оценивает действия водителя, учитывает скорость автомобиля, положение педали газа, нагрузку на двигатель и ряд других параметров, чтобы выбрать наиболее подходящую передачу для конкретных условий.

  • Плюсы и минусы «робота» с двойным сцеплением … С точки зрения преимуществ, точки переключения вверх и вниз незаметны для водителя, переключение на максимальную скорость позволяет добиться практически полного отсутствия перерыва в потоке мощности, разгон авто плавный и быстрый.

Также сохраняется максимальная топливная экономичность, присущая всем роботизированным коробкам передач. При этом преселективные коробки наиболее экономичны по сравнению со всеми другими типами (однодисковый робот, АКПП, вариатор, механика).

Что касается недостатков, то в первую очередь такие коробки достаточно сложные, автомобили с преселективной коробкой передач отличаются высокой стоимостью. Ресурс этих типов трансмиссий больше, чем у аналогов с одним сцеплением, но на практике он снижен по сравнению с классическими АКПП с гидротрансформатором.

Если говорить о ремонтопригодности, то от ремонта DSG и аналогов других производителей можно отказаться довольно дорого. На практике стоимость таких работ и запчастей часто превышает качественную реставрацию АКПП с гидротрансформатором в рамках комплексной переборки или капремонта коробки передач.

Подведем итоги

Как видите, у каждого из рассмотренных типов АКПП есть свои плюсы и минусы. Также, если рассматривать АКПП и робота, есть отличия как в устройстве данных КПП, так и в принципах их работы.

Также перед покупкой автомобиля (особенно бывшего в употреблении) важно знать, какая коробка передач установлена, автомат или робот, как отличить эти типы коробок. Дело в том, что под общей концепцией АКПП сегодня могут скрываться как первый, так и второй вариант.

Как правило, рекомендуется отдельно изучить информацию о конкретной модели автомобиля, на каком поколении и в каких годах выпуска устанавливалась та или иная трансмиссия. Следует помнить, что визуально, например, DSG не отличить от обычной АКПП с Tiptronic. Другими словами, вам нужно знать, как отличить робота от автомата в автомобиле.

Напоследок отметим, что однозначно ответить на вопрос, робот и машина, что лучше, довольно сложно.Если речь идет о новых автомобилях с автоматом, то КПП лучше выбирать с учетом личных предпочтений и финансовых возможностей.

Как правило, машина с однодисковым роботом дешевле и экономичнее по расходу, однако комфорт при переключении передач по сравнению с классической АКПП может быть снижен. По этой причине оптимально перед покупкой протестировать модели с разными типами коробок передач.

В случае преселективных роботизированных коробок передач более «продуманной» может показаться именно классическая АКПП, немного страдает комфорт при переключении передач, хуже динамика разгона и т. Д.

Однако надежность гидротрансформатора АКПП на практике оказывается выше, такую ​​коробку зачастую проще и дешевле ремонтировать. Эти особенности стоит учитывать отдельно, особенно если вы планируете покупать подержанный автомобиль с автоматической коробкой передач.

Читайте также

Вождение автомобиля с автоматической коробкой передач: как пользоваться коробкой передач — автомат, режимы работы автоматической коробки передач, правила использования этой трансмиссии, советы.

  • Почему пинает АКПП, рывки АКПП при переключении передач, в АКПП возникают рывки и толчки: основные причины.


  • Количество разновидностей АКПП постоянно растет. Не так давно просто знали о существовании АКПП — стандартной версии автомат с обычным гидротрансформатором. Чуть позже на автомобили начали активно устанавливать бесступенчатые вариаторы, а не так давно стали популярными роботизированные боксы.Сегодня мы рассмотрим, чем робот отличается от автомата в техническом и эксплуатационном плане, а также каковы плюсы и минусы этих технологий. Сравнение коробок двух разных типов часто помогает получить ценные данные для покупки различных машин.

    В зависимости от предпочтений коробки передач вы можете уточнить выбор модели при покупке автомобиля на новом транспортном рынке. Поэтому к сравнению технологий в ящиках следует отнестись с пониманием сути дела.Лучше всего испытать машины с разными технологиями, чтобы иметь представление о возможностях и особенностях их работы.

    Технические отличия робота от стандартной машины

    Технически эти типы коробок передач совершенно разные. Автоматическая трансмиссия — это конструкция с гидротрансформатором, а также электроникой для управления поведением автомобиля. Гидротрансформатор играет важную роль в этом наборе устройств, выполняя переключение передач в зависимости от частоты вращения.Эта функция позволяет стабильно работать на машине и ожидать определенной реакции.

    Роботизированная коробка передач носит механический характер, поэтому имеет ряд конкретных преимуществ. МКПП … Коробка более гибкая, имеет довольно замечательный набор различных функций и обеспечивает экономичную езду. Основные отличия робота от стандартной автоматической коробки заключаются в следующем:

    • принцип работы надежной механической трансмиссии, простота основной конструкции;
    • наличие большого количества электроники, управляющей сцеплением и переключением передач;
    • возможность активного изменения типа конструкции, используемой всеми мировыми производителями;
    • экономия топлива за счет отсутствия перегрузки по газу и возможности досрочного переключения передач;
    • возможность быстрого изменения настроек роботизированной коробки, дающей персонажа;
    • технологичность и современный дизайн, высокая надежность качественно выполненных агрегатов.

    В конструкции стандартной АКПП есть и определенные плюсы. Такая коробка более надежна, не ломается и не требует дорогостоящего ремонта электроники. Конечно, гидротрансформатор — далеко не самый надежный технологический агрегат в автомобиле, но при правильной эксплуатации он оказывается долговечным и служит не меньше, чем двигатель.

    Все эти особенности говорят о том, что машина с обычным автоматом и роботизированной коробкой имеет свой характер.Действительно, разница в дизайне — не единственное различие между двумя агрегатами. Также используются коробки с индивидуальными характеристиками, которые создают определенные ощущения при путешествии разными видами транспорта.

    Особенности практической эксплуатации робота и штатной АКПП

    Роботизированный бокс не требует в эксплуатации каких-либо специальных функций. Сегодня многие уважающие себя концерны имеют брендовых роботов, а производители часто дают индивидуальные рекомендации по использованию агрегатов.Например, роботов DSG от Volkswagen рекомендуется использовать на более низких оборотах без использования спортивного режима.

    Коробки

    Robotic PowerShift от Ford лучше всего работают в среднем диапазоне, увеличивая не только отзывчивость автомобиля, но и расход топлива. Унифицированная АКПП может выполнять самые разные задачи и работать в разных условиях … Специфика использования такого узла такова:

    • не набирайте скорость слишком резко — это приведет к повышенной нагрузке на АКПП;
    • следует избегать буксировки других автомобилей и тяжелых прицепов — работа коробки регулируется под вес автомобиля;
    • при отсутствии нормального обслуживания вскоре придется менять целые узлы агрегата и прибегать к дорогостоящему ремонту;
    • Неисправности гидротрансформатора
    • часто не зависят от эксплуатации — иногда возникают неожиданно;
    • работа агрегата достаточно стабильная, часто с задержкой реагирует на нажатие педали газа;
    • Часто в автоматических системах предусмотрена возможность Kick-Down — аварийного сброса скорости на пониженную для быстрого разгона.

    Учитывая довольно чопорную работу АКПП, система может сильно раздражать и недостаточно динамична. Полностью изменится характер автомобиля с одним и тем же двигателем на механической коробке передач и с традиционной автоматической коробкой передач. Часто покупатели таких автомобилей искренне удивляются вялой и не слишком динамичной поездки на очень мощных и объемных двигателях.

    Однако стандартная автоматическая коробка передач традиционного типа предохраняет силовой агрегат от чрезмерного износа, поэтому двигатели с автоматической коробкой передач часто работают намного дольше, чем с механической коробкой передач или вариатором.А вот АКПП дороже, потому что ее все чаще можно увидеть в дизайне дорогого люксового автомобиля, а не в комплектации бюджетного транспорта. О плюсах и минусах разных типов коробок передач смотрите следующее видео:

    Подводя итоги

    Использование автоматических трансмиссий становится все более актуальным в наше время, ведь этот удобный элемент позволяет уделять больше внимания дороге и получать максимум информации об окружающей среде.Также АКПП любого типа удобны в пробках, где на ручной коробке приходится постоянно переключаться. Но современная обрабатывающая промышленность отдает предпочтение более доступным компонентам, таким как роботизированная коробка передач или вариатор.

    Робот обходится производителю дешевле традиционной машины, а в эксплуатации до 200 тысяч километров по многим параметрам показывает себя намного лучше конкурентов … Поэтому популярность данного типа КПП в последнее время сильно возросла.Есть ли у вас особые предпочтения по использованию определенного типа автоматической коробки передач?

    Любой автолюбитель, задумываясь о покупке новой или подержанной машины, решает, с какой коробкой передач покупать машину. И довольно часто именно этот выбор сбивает человека с толку.

    И если в вопросе выбора между автоматом и механикой все относительно ясно, то роботизированные коробки передач вызывают у автомобилистов много вопросов. Поэтому сегодня мы расскажем нашим читателям, чем отличается робот от автомата, попробуем выяснить, что лучше: робот или автомат.

    Ведь нужно учитывать все особенности автоматической и роботизированной трансмиссии, их недостатки и достоинства. Каковы, условно говоря, различия между роботом и автоматом, их плюсы и минусы. И прежде чем выбирать машину с той или иной коробкой, нужно все тщательно взвесить.

    Автоматическая коробка передач

    Автоматическая коробка передач состоит из двух основных модулей: гидротрансформатора и коробки передач. Основная функция гидротрансформатора — плавное переключение скоростей, а точнее плавное переключение передач без рывков.В определенной степени гидротрансформатор выполняет функцию сцепления, которая используется в автомобилях с механической коробкой передач.

    Коробка передач автоматической коробки передач имеет несколько пар шестерен, которые входят в зацепление. АКПП имеет несколько ступеней: 4, 5, 6. А возможности автоматических коробок разного числа ступеней совершенно разные.

    Преимущества ACP

    Автоматическая коробка передач обеспечивает легкость вождения. Не нужно выжимать и отпускать сцепление, не нужно думать о переключении передач, не нужно думать о том, как правильно трогаться.За все это отвечает автоматика, позволяя водителю уделять внимание дороге.

    Если рассматривать гидротрансформатор как аналог сцепления, становится очевидным, что, по сравнению с традиционным сцеплением, этот механизм придет в негодность, так же быстро, как это происходит с классическим сцеплением от новых драйверов, это невозможно.

    Автоматическая коробка передач не создает таких нагрузок на двигатель, как на механику. Переключение передач происходит без лишнего увеличения количества оборотов.Таким образом, срок службы двигателя не пропадает зря.

    За счет использования гидротрансформатора снижается нагрузка не только на двигатель, но и на шасси автомобиля.

    Автомобили с автоматической коробкой передач имеют пассивную систему безопасности. Если машина стоит на склоне, она не может катиться.

    Шестиступенчатая автоматическая коробка передач отличается меньшим расходом топлива.

    Минусы АКП

    Автомобили с АКПП не обладают такой динамикой разгона, как автомобили с механикой.

    На четырех и пяти ступенях АКП расход топлива значительный. Особенно это актуально для четырехступенчатых автоматических трансмиссий.

    В целом автомобили с автоматической коробкой передач имеют более низкий КПД. Это связано с тем, что в гидротрансформаторе происходят значительные потери КПД.

    Сама АКПП дорогая. Это не может не сказаться на общей стоимости автомобиля. К тому же ремонт и обслуживание АКПП стоит дорого.

    В автоматической коробке передач используется большое количество масла. К тому же масло дорогое. И все это накладывает свой отпечаток на стоимость услуг.

    Автомобиль с автоматической коробкой передач менее динамичен. Те. разгон на нем занимает гораздо больше времени, чем на механике или на автомобилях с роботизированной коробкой передач.

    При переключении передач присутствует некоторая инерция. Те. АКПП работает с небольшой задержкой.

    Если начало движения происходит на склоне, может произойти определенный откат.

    Роботизированная коробка передач

    Теперь, чтобы узнать, чем робот отличается от автомата, разберем особенности, плюсы и минусы роботизированной коробки передач.

    Все трансмиссии этого типа можно разделить на два типа. Первый тип роботизированной трансмиссии предполагает наличие, по сути, механической трансмиссии с автоматическим управлением.

    В такой коробке передач переключение передач осуществляется электронным способом. Таким образом, у такого устройства нет обычного сцепления.Одновременно с переключением передач с помощью автоматики осуществляется переключение в ручном режиме, как на обычной механике … В этом случае на транспортном средстве устанавливается сцепление.

    Эти коробки передач часто прерывают крутящий момент, поэтому при переключении передач могут возникать провалы.

    Второй тип роботизированных ящиков более совершенный. Такие коробки передач используются в автомобилях спортивного класса … Именно в тех автомобилях, которые участвуют в гонках. Специфика таких роботизированных коробок в том, что за разные передачи отвечают две системы сцепления.Благодаря наличию двух систем сцепления и непосредственному включению скорость переключения передач максимальная. Это очень важно в спорте.

    Плюсы роботизированных коробок передач

    Если рассматривать первый тип роботизированных коробок передач, то их недостатки проявляются гораздо больше, чем их достоинства. Система довольно грубая.

    Но, тем не менее, он имеет свои преимущества перед АКПП.

    Роботизированные коробки передач более экономичны, чем автоматические коробки передач.Их эффективность не уступает механическим коробкам.

    Роботизированная коробка передач дешевле автоматической коробки передач, к тому же дешевле в обслуживании и ремонте. Потребляет меньше масла, чем АКПП.

    Вес роботизированных ящиков меньше, чем автоматических ящиков.

    Могут использоваться специальные системы переключения передач на рулевом колесе, которые делают переключение передач очень быстрым. Таким образом, динамика автомобиля намного выше, чем у машин с автоматической коробкой передач.

    Минусы роботизированных коробок передач

    По сравнению с автоматической коробкой передач переключение передач не такое плавное. Достаточно заметны рывки автомобиля при переключении передач.

    Есть некоторая задержка после включения правой передачи и начала ее реализации.

    Практически любая остановка требует переключения рычага в нейтральное положение, чего нельзя сказать о автомобилях с автоматической коробкой передач.

    Любое проскальзывание при движении негативно сказывается на ресурсе роботизированной коробки передач.Те. этот бокс в основном подходит для твердого дорожного покрытия.

    Во время начала движения происходит некий откат. Хотя маленький.

    Определенные выводы

    Таким образом, на вопрос, что лучше робот или автомат, не может быть однозначного ответа. Если бы один вариант был однозначно хуже другого, производители производили бы только один тип коробки передач. Другое дело, что вопрос выбора коробки передач индивидуален, и каждый автомобилист решает его самостоятельно, опираясь на свои представления об удобстве и комфорте вождения.

    Автоматическая или автоматическая ручная коробка передач: в чем разница? — Техническое обслуживание

    Машины Allison серии 4000 предназначены для автомобилей большой грузоподъемности.

    Фото: Allison Transmission

    Work Truck встретился с Бранденом Харбином, исполнительным директором по глобальному маркетингу Allison Transmission, чтобы узнать немного больше о разнице между автоматической и механической коробкой передач.

    Это то, что мы узнали:

    Work Truck: Не могли бы вы вкратце описать различия между автоматической коробкой передач и автоматической механической коробкой передач (AMT)?

    BRANDEN HARBIN: Основное различие между полностью автоматической коробкой передач и автоматической механической коробкой передач (AMT) заключается в пусковом устройстве.В полностью автоматической коробке передач используется гидротрансформатор, соединяющий двигатель с планетарной коробкой передач, обеспечивающий непрерывное переключение мощности.

    В то время как педаль сцепления снимается в автоматизированном механическом управлении, в AMT по-прежнему используется стандартная механическая коробка передач с электрическим или пневматическим приводом сцепления, что приводит к прерыванию крутящего момента и потере мощности во время переключения передач.

    Эти прерывания питания сокращают время водителей и приводят к более высоким затратам на техническое обслуживание из-за износа сцепления.Для сравнения: гидротрансформатор автоматической коробки передач не подвержен износу.

    Помимо преимущества в безотказной работе полностью автоматической коробки передач, гидротрансформатор обеспечивает улучшенную маневренность на мягкой / рыхлой почве или там, где водителю требуется больше контроля.

    AMT для сравнения обычно начинают перегреваться и снижают мощность, чтобы защитить трансмиссию на мягком / рыхлом грунте. Гидротрансформатор создает бесступенчатое передаточное число, позволяя водителям легко управлять мощностью, подаваемой на колеса.Водители могут контролировать скорость автомобиля для плавного и точного движения, более легкого маневрирования и большего контроля на уклонах — все это при одновременной защите трансмиссии от ударов и уменьшении износа автомобиля.

    Без гидротрансформатора AMT не могут плавно передавать мощность на колеса, создавая больше возможностей для неэффективной и неконтролируемой работы.

    WT : Какие преимущества имеет автоматическая коробка передач по сравнению с AMT с точки зрения производительности водителя?

    HARBIN: Автоматика обеспечивает множество преимуществ в производительности по сравнению с конкурирующими AMT.Среди многих преимуществ автоматика более производительна, поскольку обеспечивает более быстрое ускорение, чем AMT.

    Гидротрансформатор Allison Transmission плавно увеличивает крутящий момент двигателя при запуске и поддерживает постоянную связь трансмиссии с максимальной доступной мощностью двигателя во время каждой смены, обеспечивая ускорение на 14% быстрее. Переключение на полную мощность обеспечивает превосходное ускорение автомобиля, позволяя выполнять больше работы за меньшее время.

    Для сравнения, AMT должны снижать крутящий момент двигателя при запуске, чтобы защитить сцепление.Поэтому грузовики с AMT никогда не используют полный крутящий момент двигателя при запуске. К сожалению для тех, кто управляет грузовиками с AMT, именно в этот момент больше всего необходим максимальный крутящий момент, чтобы полностью загруженный автомобиль двигался с места.

    AMT не имеют преимущества от увеличения крутящего момента двигателя, потому что они требуют, чтобы крутящий момент контролировался или ограничивался при запуске, чтобы продлить срок службы пусковой муфты. Они также требуют уменьшения дроссельной заслонки двигателя при каждой смене, вызывая прерывания крутящего момента. Эти прерывания приводят к увеличению количества переключений и снижению скорости транспортного средства, что требует больше времени для выполнения той же работы.

    В качестве второго примера, в полностью автоматических трансмиссиях отсутствует пусковое сцепление, что сокращает время простоя грузовика, связанного с необходимыми заменами сцепления. Это обеспечивает максимальное время безотказной работы и производительность грузовиков всего парка. Многие автопарки указали, что они могут управлять меньшим парком грузовиков с автоматическим оснащением, потому что каждый грузовик тратит меньше времени на ремонт, будь то проактивный или в худшем случае, реактивный ремонт. В случае автобетоносмесителя время простоя может достигать 7500 долларов на грузовик в день.

    И это при условии, что ствол не был заполнен, когда произошел отказ муфты AMT, что приведет к дополнительным затратам на ремонт при замене ствола.

    WT : Какие преимущества имеет автоматическая коробка передач по сравнению с полностью ручной коробкой передач с точки зрения производительности водителя?

    HARBIN : Автоматическая коробка передач имеет те же преимущества по сравнению с механическими коробками передач с точки зрения бесперебойной подачи энергии в каждую смену, без физического ущерба для водителя, который должен переключаться весь день, или без износа ручного сцепления.

    Снижая утомляемость водителя, автоматика увеличивает удержание водителя и обеспечивает более управляемую среду для водителя и транспортного средства.

    Плавная и плавная работа позволяет водителю легко маневрировать автомобилем, чтобы сосредоточить внимание на выполняемой работе. Также легче нанять водителей для работы с автоматической коробкой передач по сравнению с более интенсивным обучением управлению механической коробкой передач. Сегодня доступно меньше водителей, имеющих опыт вождения с механической коробкой передач.

    Многие водители указали, что их карьера была продлена за счет перехода с механической коробки передач на полностью автоматическую.

    Несмотря на то, что это выгодно для отдельных лиц, это дает дополнительное преимущество в виде решения проблемы нехватки драйверов, с которой также сталкивается наша отрасль.

    И дополнительные затраты на автоматическую трансмиссию часто значительно меньше, чем затраты для бизнеса на набор, обучение и удержание нового водителя.

    Транспортные средства с механической коробкой передач также имеют пониженную маневренность, трудности на узких дорогах, мягком грунте, крутых склонах или обратном движении к погрузочной платформе. Кроме того, коробку отбора мощности (ВОМ) нельзя использовать на лету, как это может быть с автоматической коробкой передач Allison.

    Все это может привести к разочарованию водителя, неправильному использованию компонентов трансмиссии и снижению производительности.

    WT: Есть ли какие-либо преимущества / преимущества механической коробки передач или AMT по сравнению с автоматической коробкой передач?

    HARBIN : В краткосрочной перспективе руководства и некоторые AMT стоят меньше, чем полностью автоматическая коробка передач, с точки зрения цены приобретения. Тем не менее, из-за технического обслуживания сцепления и простоя транспортных средств из-за руководств и AMT, автомобили, оборудованные Allison Automatic, имеют тенденцию иметь более низкие затраты на техническое обслуживание, более высокую стоимость при перепродаже и более низкую общую стоимость владения в течение всего срока службы транспортного средства.

    На Allison нет сцепления, которое могло бы изнашиваться, а сокращенные интервалы технического обслуживания позволяют автомобилю дольше находиться в дороге.

    Вот почему большинство крупных национальных парков рабочих грузовиков используют автоматику Allison. Они осознали превосходные преимущества в отношении совокупной стоимости владения, которые обеспечивает Allison Automatics.

    Несмотря на то, что педаль ручного сцепления на AMT снята, механическое сцепление по-прежнему облегчает запуск транспортного средства и изнашивается и, в конечном итоге, сгорает, что требует традиционного обслуживания и замены.

    Дополнительные изнашиваемые компоненты сцепления включают:

    • Крышка сцепления / промежуточный диск
    • Диск сцепления в сборе
    • Регулирующий механизм
    • Тормоза сцепления
    • Серийное сцепление
    • Крестовина
    • Опорный подшипник
    • Входной вал

    С течением времени , производители AMT попытались имитировать присущие возможности Allison Automatic, продвигая такие функции, как «Призыв к движению», «Creep Mode», «Power Launch», «Rock Free», «Hill Assist» и «Blended Pedal».Однако все эти функции могут увеличивать стоимость и происходить за счет износа сцепления и отказов трансмиссии.

    И когда дело доходит до дела, AMT всегда будут вести себя таким образом, чтобы защитить пусковую муфту. Когда водителю это нужно больше всего, AMT, скорее всего, снизит крутящий момент и ограничит вход водителя, чтобы защитить автоматическую трансмиссию.

    WT : Еще чем вы хотели бы поделиться сегодня?

    HARBIN : Существует некоторая дезинформация относительно топливной экономичности автоматической коробки передач по сравнению с механическими коробками передач или AMT.Некоторые люди считают, что водитель с механической коробкой передач лучше контролирует топливную экономичность, что не соответствует действительности.

    Полностью автоматические трансмиссии были усовершенствованы с использованием новых технологий для повышения топливной экономичности, включая нейтраль при остановке, управление скоростью ускорения и динамическое переключение передач.

    Практически во всех сферах применения, особенно для рабочих тележек, Allison Automatic может обеспечить экономию топлива, эквивалентную или превосходящую по сравнению с механической или автоматической коробкой передач.

    ты робот или человек? О нас Роботизированное устройство коробки передач

    Современные автомобили оснащены трансмиссиями нового типа, в том числе роботизированной коробкой передач.Чтобы понять основные моменты, связанные с его работой, нужно понимать, что такое коробка передач робота.

    [Скрыть]

    Что такое роботизированная трансмиссия?

    Роботизированная коробка передач на автомобиле означает нечто среднее между механической коробкой передач и автоматической коробкой передач. По сути, роботизированная коробка передач — это «механика», оснащенная автоматическим сцеплением и возможностью переключения передач. Работа этого типа агрегата зависит не от водителя, а от работы управляющего электронного модуля.Во время движения водитель должен только правильно передавать поступающие данные, чтобы обеспечить правильную работу КПП.

    Роботизированное устройство коробки передач

    Схематическое устройство конструктивных элементов МКПП

    Чтобы понять, что это такое, необходимо разобраться в устройстве агрегата. Дополнительные элементы, предназначенные для выжимания сцепления, а также переключения и выбора скоростей, называются исполнительными механизмами.

    Роботизированная трансмиссия оснащена собственной системой управления, выполненной в виде блока управления, а также несколькими контроллерами.Эти датчики предназначены для взаимодействия с устройством. Роботизированная коробка передач принципиально отличается от традиционной автоматической коробки передач и трансмиссий CVT.

    Коробки передач роботов, как и механические, комплектуются сцеплением. Трансмиссионные масла ATF в этих типах агрегатов не используются.

    В зависимости от производителя автомобиля роботизированная трансмиссия может комплектоваться одним или двумя сцеплениями:

    • если сцепление только одно, то это однодисковый агрегат;
    • , если два, трансмиссия преселективная.

    Основные узлы устройства робототехнического блока:

    1. Сам КПП.
    2. Приводы или сервоприводы. Предназначен для выжимания сцепления и включения скоростей.
    3. Модуль управления, представляющий собой микропроцессорный блок. Используется для обработки и передачи команд.
    4. Внешние контроллеры. Количество датчиков может варьироваться в зависимости от производителя машины.
    КПП

    Рекомендуем более подробно разобраться в устройстве роботизированного агрегата на примере шестиступенчатой ​​коробки передач с двумя сцеплениями.Агрегат выполнен в виде механической коробки передач, но укомплектован двумя ведущими шкивами. Один из этих элементов устанавливается внутри другого. Внешний шкив имеет внутреннюю полость, в которую входит внутренний компонент. На внешнем шкиве расположены шестерни привода второй, четвертой и шестой передач, а на внутреннем шкиве — шестерни первой, третьей, пятой и задней передач.

    Каждый вал роботизированной коробки передач оснащен отдельной муфтой.

    Приводы или сервоприводы

    Приводные устройства могут быть электрическими или гидравлическими.Электрический тип элементов выполнен в виде электродвигателя с редукторным устройством, а гидравлический тип считается гидроцилиндром. Шток последнего соединен с синхронизирующим устройством. Основное назначение исполнительных элементов — механическое движение синхронизирующих компонентов, а также включение и выключение сцепления.

    Модуль управления

    Модуль управления — это микропроцессорный блок, на котором установлены внешние контроллеры.Эти датчики используются в электронной системе управления двигателем машины. Датчик трансмиссии взаимодействует с контроллерами трансмиссии и других систем, например, ABS. Модуль управления может быть совмещен с микропроцессорным блоком управления двигателем, но трансмиссия будет работать по собственному алгоритму.

    Канал Carvizor подробно рассказал об устройстве и конструктивных особенностях МКПП.

    Характеристики роботизированной коробки передач

    Электрический привод сцепления приводится в действие электродвигателем, а также механической скоростью.Работа гидропривода основана на специальных цилиндрических устройствах, управление которыми осуществляется с помощью электромагнитного клапана. Иногда роботизированный агрегат может быть дополнен электродвигателем, используемым для перемещения цилиндрических элементов и предназначенным для поддержки функционирования гидромеханического модуля. Для этого моторизованного устройства характерны длительные изменения скорости, которые могут составлять до полсекунды.

    По сравнению с гидравлическим устройством, агрегат не требует постоянного поддержания желаемого уровня давления для работы.В некоторых моделях Opel гидравлические агрегаты характеризуются быстрым циклом переключения передач, обеспечивающим переключение за 0,06 секунды. Но обычно эти роботы устанавливаются на спортивные автомобили.

    Принцип работы роботизированной коробки передач


    Функциональная схема роботизированной установки

    Роботизированная установка работает как механик — чтобы начать движение и переключить передачи, водителю необходимо нажать педаль сцепления. Процедура активации этого механизма выполняется с помощью исполнительного устройства, которое получает импульс от модуля управления.После подачи сигнала блок медленно вращает редуктор.

    Если трансмиссия оснащена двумя сцеплениями, то сначала включается первая. После этого исполнительное устройство для выбора и активации скорости переводит синхронизирующий блок на передачу первой скорости. Это приводит к его блокировке на валу и началу вращения вторичного шкива. Когда машина трогается с места, водитель нажимает на педаль газа. Если передача однодисковая, следующая скорость будет активирована через определенный промежуток времени.В результате получается так называемый таймлапс.

    Для предотвращения появления запаздывания и сокращения времени переключения передач агрегат снабжен второй муфтой и другим валом. Это привело к созданию поля предварительного отбора. Когда включена первая скорость, вторая готова к включению, поскольку второе сцепление уже включено. Когда устройство получает сигнал от блока управления, оно быстро переключается с первой скорости на вторую.

    Последующее переключение на повышенную и пониженную скорость во время движения осуществляется таким же образом.Временной интервал переключения минимальный. Исключено любое зарастание, также нет сбоя тяги двигателя и прочих нюансов. В результате автомобиль движется динамично, а экономия топлива максимальна. Работа в автоматическом режиме достигается за счет регулярного анализа микропроцессорным модулем импульсов, поступающих от внешних контроллеров.

    При приеме сигналов и их отправке микропроцессор учитывает:

    • величину нагрузки на силовой агрегат;
    • скорость движения;
    • положение, в котором находится педаль газа.

    Роботизированные боксы имеют возможность ручного переключения скоростей, эту функцию можно назвать имитацией гидромеханического автомата. Некоторые типы агрегатов допускают блокировку при активации превышения скорости.


    Блок-схема функционирования роботизированной системы I-Shift на автомобилях Honda

    Режимы работы

    Микропроцессорный модуль может работать в нескольких режимах:

    1. Sport. Обычно он активируется при движении по трассе, когда автомобиль устойчиво едет с повышенной скоростью.
    2. Городской режим. Активируется при движении по городу или стоянии в пробке.
    3. Экономика. Обеспечивает максимальную экономию топлива. Но скорость движения будет минимальной.

    Как научиться водить роботизированную коробку передач? Ключевые особенности управления

    Для предотвращения возникновения сбоев в работе трансмиссии необходимо знать, как пользоваться роботом, а именно:

    • как прогреть агрегат;
    • как правильно начать движения;
    • как пользоваться трансмиссией при эксплуатации автомобиля в городском режиме.

    Прогрев роботизированной коробки передач и рабочие элементы

    Многие автопроизводители заявляют, что роботизированные агрегаты не нуждаются в прогреве. Но в этом вопросе необходимо учитывать температуру рабочей жидкости в системе смазки, а также то, как масло ведет себя в морозных условиях. Некоторые виды расходных материалов загустевают при низких температурах и скапливаются на дне устройства. По стандарту процесс прогрева состоит из запуска двигателя и ожидания 2-3 минуты.При прогреве автомобиля трогать рычаг КПП не нужно.

    Если машина стоит в гараже, то выезжайте на ней спокойно и плавно, чтобы не допустить толчков и рывков. При прогреве нужно следить за количеством оборотов, их количество в идеале будет минимальным и составит около 1 тысячи в минуту. Агрегат также следует прогревать летом, благодаря чему все компоненты робота будут правильно смазаны. Выполнение прогрева предотвратит быстрый износ компонентов машины.

    Основные особенности эксплуатации, которые увеличивают срок службы агрегата в целом:

    1. Не допускать заноса при движении в морозных условиях. Это приведет к быстрому износу исполнительных механизмов и узлов. Регулярное скольжение приведет к калибровке устройства.
    2. Специалисты не рекомендуют частые поездки по сильно заснеженным поверхностям. Автомобиль может застрять и, в конечном итоге, вызвать пробуксовку.
    3. В качестве зимних шин рекомендуется использовать изделия с шипами.При установке на колеса с обычными шинами есть вероятность поскользнуться на льду.
    4. При длительном бездействии, составляющем несколько дней и более, рекомендуется установить селектор передач в положение E. Двигатель должен быть выключен.
    5. Если состояние дороги плохое, специалисты советуют начинать движение на второй скорости, но при этом не слишком сильно газовать.

    Алексей Рыков рассказал об основных принципах управления роботизированной КПП на примере Lada Grants.

    Правила правильного старта на роботе с коробкой

    Владельцам автомобилей, оборудованных роботизированными коробками передач, следует учитывать, что на некоторых автомобилях нет дополнительной опции помощи при запуске. В частности, речь идет о начале движения на холме, в гору. Поэтому важно правильно научиться трогаться с места. Процедура запуска осуществляется так же, как и на машине с механическим агрегатом.

    Подробнее о начале поездки:

    1. Рычаг стояночного тормоза должен быть поднят.
    2. Рычаг переключения передач установлен в положение А.
    3. Водитель легко и без усилий нажимает на газ.
    4. При этом отпускается рычаг стояночного тормоза.

    Если в начале движения по улице температура ниже нуля, а влажность высокая, селектор коробки передач можно переместить в положение M1. Усилие, прикладываемое к педали газа, должно быть допустимым, чтобы не допустить проскальзывания. Если машина оборудована гироскопом, то при выборе автоматического режима микропроцессор установки выберет необходимую скорость и произведет переключение.Это позволит переключаться на пониженную передачу. Если водитель опытный, то с учетом ситуации он может установить режим М при фиксации включенной передачи.

    Если изначально установлен скоростной режим, то менять скорость передвижения не рекомендуется. Частота вращения двигателя должна составлять от 2500 до 5000 об / мин, но не выходить за пределы этого диапазона. При начале движения под уклон селектор трансмиссии устанавливается в режим A, а рычаг ручного тормоза выключается.

    Эксплуатация роботизированной коробки передач в городских условиях

    Регулярная эксплуатация автомобиля в городском режиме и в пробках может привести к быстрому износу узлов трансмиссии.Чтобы этого не произошло, при остановке машины переводите рычаг переключения передач в положение N. Затем включается стояночный тормоз и двигатель останавливается. Если остановки кратковременные, например, в пробках, то нейтральный режим включить нельзя, достаточно остановиться, когда рычаг установлен в положение А. Если машина остается в пробке более одного раза минуту, затем двигатель нужно будет остановить.

    Василий Костин рассказал о тонкостях использования машин с установленным роботом.

    Преимущества

    Плюсы робототехнических агрегатов:

    1. Надежность конструкции агрегата в целом.В основе устройства лежит механический компонент, прошедший многочисленные испытания и изученный специалистами. Благодаря этому по надежности этот тип коробки передач лучше обычных автоматов и вариаторов.
    2. Эксплуатация автомобиля с установленным роботизированным агрегатом позволяет экономить топливо. Если коробка передач и двигатель автомобиля не изношены, то экономия топлива может составить до 30%.
    3. Для заполнения роботизированной установки требуется меньше смазки, в среднем не более трех литров. Для сравнения в коробки вариатора наливается около семи литров.Это преимущество позволяет сэкономить деньги.
    4. Количество передач в роботах соответствует количеству скоростей на механике.
    5. Поскольку в основе коробки передач лежит механическая часть, это позволяет производить простой ремонт. Многие специалисты владеют навыками такого ремонта, чего нельзя сказать о вариаторных агрегатах. Наиболее частые проблемы можно решить самостоятельно при правильном подходе.
    6. Срок службы системы сцепления примерно на 40% больше, чем у механических коробок передач.Речь идет не только об экономии денег, но и о безопасности.
    7. При эксплуатации автомобиля в городских условиях функция переключения скоростей в ручном режиме позволяет начать движение без загрузки агрегата.

    недостатки

    Роботизированные коробки передач имеют не только достоинства, но и недостатки, они приведены в соответствии с отзывами владельца автомобилей с МКПП:

    1. Основным недостатком МКПП являются проблемы с программированием трансмиссии. .Автовладельцу может быть сложно перепрограммировать программное обеспечение для улучшения динамики автомобиля и экономии машинных ресурсов. Поэтому сложно настроить трансмиссию под конкретный стиль вождения. Водителю потребуется время, чтобы привыкнуть к работе машины для комфортной эксплуатации.
    2. Низкая скорость активации скоростей и медленный отклик агрегата. Это связано с накладными расходами на программирование устройства. Эта проблема характерна для многих автоматических трансмиссий.
    3. При движении в городских условиях и пробках, а также на неровной дороге водитель должен перейти в ручной режим управления.В противном случае элементы системы сцепления изнашиваются быстрее. Это отражается на сроке службы агрегата в целом.
    4. При переключении передач ощущаются рывки и рывки. Не все единицы, но многие. Это связано с тем, что дроссельная заслонка не отпускается до того, как произойдет изменение скорости. Для устранения этой проблемы не нужно полностью нажимать педаль газа.
    5. Сцепление может размыкаться при движении в гору. Проблема связана с перегревом трансмиссионного агрегата. Если автомобиль движется в гору, рекомендуется переключиться на ручное управление.

    Проблема с перепрограммированием может быть решена заменой микропрограммы микропроцессора, но это необходимо сделать по истечении гарантийного срока.

    Канал HPC представил настоящий негативный отзыв потребителей о работе роботизированного агрегата на автомобиле.

    Отличия роботизированной коробки передач от автоматической

    Основные отличия роботизированной коробки передач от автоматических агрегатов:

    1. Конструктивные особенности. Робот представляет собой механический блок, оснащенный микропроцессорным устройством управления.У автоматических коробок передач есть собственное устройство. Он также включает в себя электронный модуль, но в машинах нет механического компонента.
    2. Автоматические трансмиссии превосходят роботизированные агрегаты по скорости переключения передач. Также на машинах процедура переключения более плавная.
    3. Роботизированные устройства имеют возможность ручного переключения. На автоматах нет возможности ручного управления.
    4. Автомобили, оснащенные роботизированной установкой, потребляют меньше топлива. Для заправки им требуется меньше смазки.
    5. Порядок ремонта и обслуживания коробок передач, робот обойдется потребителю дешевле, чем автомат.

    Актуальность робота-бокса в России

    Российские автопроизводители практически не устанавливают роботизированные агрегаты на свою продукцию. В 2015 году руководство автопроизводителя ВАЗ заявило, что модели автомобилей Lada Priora будут оснащаться роботизированными коробками передач. Общий вес устройства составляет примерно 35 кг. Сам агрегат адаптирован для внутренних дорог, а также погодных условий, характерных для российского климата.

    Например, машины могут отказать в запуске двигателя автомобиля, если температура опускается ниже -25 градусов. Роботизированные агрегаты смогут эффективно функционировать и запускать двигатель внутреннего сгорания при -40 градусах. Производитель АвтоВАЗ дает трехлетнюю гарантию на КПП, но утверждает, что средний срок службы устройства составит около десяти лет. Такой шаг предприняло представительство концерна для увеличения продаж автомобилей Lada Priora.

    Сегодня из отечественных автомобилей роботизированные КПП устанавливаются только на Лада Гранты и Приоры.

    Официальный канал Lada представил видеоролик о производстве роботизированных агрегатов для автомобилей Lada Granta.

    Советы по выбору роботизированной коробки передач

    Перед покупкой автомобиля с механической коробкой передач необходимо собрать как можно больше информации о функционировании того или иного типа трансмиссии. Рекомендуется изучить отзывы потребителей, так как некоторые версии роботов имеют «глюки», характерные для всей линейки. В частности, нужно знать временной интервал при переключении передач.Лучше отдать предпочтение вариантам, в которых процедура переключения выполняется максимально быстро.

    При выборе автомобиля также необходимо учитывать параметр индивидуальности устройства. Идентичные передачи могут отличаться друг от друга. Проблемы, связанные с работой блока, часто можно устранить перепрошивкой микропроцессорного блока.

    Основные неисправности роботов

    Симптомы, которые могут указывать на проблему с устройством:

    1. На панели управления появился индикатор тревоги.Это может быть лампочка Check Engine или специальный символ, указывающий на проблемы в работе коробки передач.
    2. При движении водитель слышит посторонние звуки. О неисправностях передачи можно сообщить нехарактерным воем или жужжанием.
    3. Нет реакции при нажатии на газ. Частота вращения двигателя не увеличивается или не увеличивается, а также скорость движения не увеличивается.
    4. Появление масляной лужи под автомобилем. Это указывает на утечку расходной жидкости из агрегата.
    5. Система сцепления буксует.
    6. Когда водитель нажимает на педаль газа и делает это плавно, или при переключении передач, возникает рывок или рывок.
    7. Блок трансмиссии сам по себе перестает функционировать, автомобиль останавливается и не движется.

    Большинство проблем вызвано неправильной работой микропроцессорного устройства. Если говорить о механических проблемах, то большинство из них связано с износом составляющих элементов. Такие детали обычно не подлежат ремонту и заменяются.

    Механические проблемы:

    • износ вилки выбора скорости;
    • Подшипники качения изнашиваются, наблюдается шум.

    Фотогалерея

    В этом разделе представлены фотографии роботов разных автопроизводителей.

    Видео «Как не допустить быстрого выхода из строя роботизированного пункта пропуска»

    Пользователь ДжоРик Ревазов рассказал о вещах, которые невозможно сделать с помощью роботизированного блока на автомобиле.

    Имея ранее ограниченный выбор трансмиссий, автомобилисты при покупке транспортного средства могли отдать предпочтение только механике или автомату.Сейчас активное развитие автомобильной промышленности привело к появлению новых трансмиссий, и выбор уже не так прост. Интересна коробка робота и автомат: чем отличаются эти трансмиссии и как выбирать между ними?

    Чем отличается робот от автомата

    Чтобы понять, чем АКПП отличается от робота, стоит разобраться в принципе работы каждой из указанных трансмиссий и устройстве системы в целом .

    В основе автоматики лежит система управления, гидротрансформатор и сама коробка передач планетарного типа со специальными передачами и сцеплениями. Благодаря такой конструкции скорости переключаются автономно без участия водителя. Ориентиром в данном случае являются такие параметры, как режим движения, нагрузка и обороты двигателя.

    Читайте также очень информативную статью нашего специалиста о.

    Актуальность установки машины наблюдается на грузовые и легковые автомобили, а также автобусы.Если автомобиль переднеприводный, то конструкция АКПП дополняется дифференциалом и.

    Первое, что отличает робота от автомата, — это особая конструкция, сочетающая в себе возможности механической и автоматической коробки передач. Фактически механика в этом случае дополняется автоматом с исполнительными механизмами, которые отвечают за переключение передач и работу сцепления. Переключение передач происходит так же, как и в случае с механической коробкой передач, но водитель не участвует.

    Основной целью создания роботизированной коробки передач было снижение стоимости трансмиссии и в то же время объединение всех преимуществ механики и автомата. Речь идет о простоте эксплуатации и комфорте. В итоге есть несколько вариантов конструкции системы.

    1. На примере автомобилей BMW M серии можно рассмотреть наиболее качественную и известную механическую коробку передач Sequental M Gearbox (SMG). Коробка передач 6-ступенчатая, механическая, а за переключение передач и выключение сцепления отвечает гидравлическая система с электронным управлением.Передачи переключаются за 0,08 сек.
    2. На примере Mercedes-Benz A-класса можно рассмотреть другой принцип, в котором электрогидравлический привод сцепления устанавливается на основе механики. Водитель участвует в переключении передач, но педалей всего две. Электропривод самостоятельно контролирует положение рычага и педали газа, поэтому сцепления в этом случае нет и выключается автоматически. Цифры на датчиках АБС и двигателя помогают электронике производить расчеты, чтобы избежать рывков при переключении передач и резких остановов двигателя.
    3. На примере автомобилей Ford и Opel можно рассмотреть третий принцип, когда гидронасосы заменяются шаговыми двигателями. Несмотря на бюджетность этого варианта, на практике он оказался не очень удачным, что отражается на задержке переключения передач и сильных рывках. Тем не менее, аналогичная трансмиссия установлена ​​на Toyota Corolla, и упомянутые недостатки здесь отсутствуют.

    Основные отличия АКПП от МКПП

    Итак, коробка робот и автомат: чем отличаются эти две трансмиссии?

    1. Первое отличие — в дизайне.В случае с роботом это механика с блоком управления, устройство автоматики совершенно другое.
    2. Плавность и скорость переключения с автоматики лучше.
    3. Практически во всех автоматических трансмиссиях отсутствует функция ручного переключения, в то время как роботизированная трансмиссия имеет эту функцию.
    4. Еще одно отличие робота от машины в бюджетном ремонте и обслуживании первого.
    5. Экономия также выражается в меньшем расходе масла и топлива роботом.

    Достоинства и недостатки трансмиссии

    Чтобы окончательно сделать выводы о том, что лучше: робот или автомат, стоит проанализировать положительные и отрицательные стороны каждой из трансмиссий.

    Ниже представлено сравнительное описание преимуществ и недостатков автоматизации.

    Преимущества недостатки
    1. Управлять автомобилем просто и комфортно.Водитель следит только за дорогой, все остальное делает автоматика.
    2. Гидротрансформатор более долговечен по сравнению со сцеплением для новичков.
    3. Нагрузка на двигатель меньше по сравнению с механикой. Количество оборотов не увеличивается для изменения скорости.
    4. Также снижена нагрузка на шасси.
    5. Наличие системы пассивной безопасности не позволяет машине двигаться самостоятельно, если она стоит на склоне.
    6. Топливо расходуется более экономно в шестиступенчатых автоматических коробках передач.
    1. Значительный расход топлива в 4- и 5-ступенчатых коробках передач.
    2. Отсутствие такой динамики разгона, как в случае с механикой.
    3. КПД меньше из-за наличия гидротрансформатора.
    4. Стоимость автоматизации выше, что влияет на общую стоимость автомобиля, его обслуживания и ремонта.
    5. Нефть потребляется в больших объемах.
    6. Динамика не такая уж и высокая, разгон долгий.
    7. Передачи переключаются с небольшой задержкой.
    8. Если начать движение по склону, то присутствует небольшой откат назад.


    Следующим шагом будет анализ преимуществ и недостатков роботизированных трансмиссий.

    Преимущества недостатки
    1. Рентабельность на уровне механики.
    2. Более низкая цена, доступный ремонт и обслуживание. Более экономичный расход масла.
    3. Быстрое переключение передач благодаря соответствующей системе рулевого колеса.
    4. Роботизированная трансмиссия, в отличие от автоматической, весит меньше.
    5. Высшая динамика.
    1. Недостаточно плавное переключение передач, ощущаются рывки.
    2. Задержка после включения данной передачи.
    3. Необходимость переключения рычага в нейтральное положение при любой остановке.
    4. Ресурс коробки передач значительно страдает при каждой пробуксовке.
    5. Наличие небольшого отката при старте движения.


    Выбирая, что лучше: робот или автомат, следует ориентироваться на три основных принципа — комфорт, стоимость и надежность.

    Комплектный электропривод производства корпорации «Триол» используется для управления конвейерной линией длиной 415 м для системы частотно-регулируемого привода.

    Технология производства корпорации «Триол» зарекомендовала себя как принципиально надежная для работы в подземных условиях рудников и шахт.

    Открытое акционерное общество «Транснациональная компания КАЗХРОМ» Актюбинский завод ферросплавов — филиал ОАО «ТНК« КАЗХРОМ »

    Уважаемая Анар Ондасыновна! В ответ на ваш запрос мы подтверждаем, что преобразователи частоты, а также устройства плавного пуска производства Корпорации Триол были поставлены и установлены в филиал АО «ТНК-Казхром» Актюбинского завода ферросплавов в 2006 году и до сих пор находятся в эксплуатации.Устройства плавного пуска Триол АС-11-03 предназначены для регулирования скорости вращения вентиляторов градирни, а также для пуска компрессора отсадочного комплекса КПФШ-50. За время эксплуатации УПП Корпорации Триол претензий и замечаний к оборудованию нет. Данное оборудование было доставлено на объект в полной заводской готовности, что позволило ввести его в эксплуатацию в течение 1 рабочего дня и зарекомендовало себя как надежное устройство, работающее в сложных условиях эксплуатации с повышенной запыленностью и температурой.

    Открытое акционерное общество «Салехардэнерго»

    Данным письмом выражаю благодарность ООО «Триол-Электрик» за поставку преобразователя частоты Триол АТ04-055 предприятию ГТЭС ОАО «Салехардэнерго». Подтверждаю, что ООО «Триол-Электрик» поставило и ввело в эксплуатацию преобразователь частоты серии АТ04-055, заводской номер 2440, на предприятии ГТЭС ОАО «Салехардэнерго» в 2004 году. Преобразователь частоты работал со штатной нагрузкой. В процессе эксплуатации отказов оборудования не выявлено.ООО «Триол-Электрик» зарекомендовало себя как надежный производитель и поставщик низковольтных преобразователей частоты. Надеемся на плодотворное и взаимовыгодное сотрудничество!

    Башкирская генерирующая компания

    На Ново-Стерлитамакской ТЭЦ ООО «БГК» по договору № 112/0879 от 04.12.15. В ООО «Триол-Нефть» внедрена система автоматического поддержания необходимого рабочего давления с использованием частотно-регулируемого привода «Триол АТ27», обеспечивающего минимальный перепад давления между коллектором питательной воды и корпусом котла

    .

    ПАО «ГМК« Норильский никель »

    Регулировка частотно-регулируемого электропривода воздуходувок No.1, №2, №3 цеха производства серной кислоты Медного завода завершены в необходимом объеме. Два высоковольтных преобразователя частоты АТ27-М63-6 / 6-31С52М-С-44 с укомплектованными шкафами ввода-вывода и коммутацией в полном объеме выполняют функции регулирования частоты вращения и синхронной безударной передачи приводных двигателей 630 кВт, 6 кВ на питание от сети заложено в проекте … Спасибо за помощь в решении возникающих вопросов. Отдельно хочется отметить высокий профессионализм монтажника Нафикова Ришата Маратовича, выражаем ему огромную благодарность.

    ОАО «Турбонасос»

    Настоящим подтверждаем, что компания «Триол-Ойл» на предприятии ОАО «Турбонасос» (Государственная корпорация по космической деятельности «Роскосмос»), г. Воронеж, ул. Острогожская 107, поставлен и введен в эксплуатацию преобразователь частоты среднего напряжения серии АТ27-2М0-10 / 6С64М-К12-14 заводской номер 70879. Поставленное ООО «Триол-Нефть» оборудование было введено в эксплуатацию в декабре 2015 года и в настоящее время претензий на работы нет. Выражаем благодарность за проделанную работу.

    ООО «Дорогобужская ТЭЦ»

    В 2006 году ООО «Триол-Электрик» поставило преобразователь частоты АТ04-45К для ООО «Дорогобужская ТЭЦ». За весь срок службы оборудования отказов не выявлено. Корпорация Триол зарекомендовала себя как надежный производитель и поставщик низковольтного оборудования. ООО «Дорогобужская ТЭЦ» выражает благодарность ООО «Триол-Электрик» за качественную и своевременную поставку преобразователя частоты АТ04

    .

    РУП «Минскэнерго» филиал «Минские тепловые сети»

    ООО «Триол-Электрик» зарекомендовало себя как надежный производитель и поставщик низковольтных преобразователей частоты.РУП «Минскэнерго» филиал «Минские тепловые сети» выражает благодарность ООО «Триол-Электрик» за производство качественного электрооборудования.

    ООО «Промрезерв», г. Москва

    В 2013 году ООО «Триол-Электрик» поставило нам 3 преобразователя частоты АТ24-75К-380-х20000 и 3 пульта управления П24Е. По эксплуатации этих приводов претензий нет. Надеемся на дальнейшее взаимовыгодное сотрудничество.

    Череповецкая ГРЭС, Вологодская область

    Относительно приводов АТ24, поставляемых вашей компанией, мы отмечаем следующие — преимущества: простое, гибкое меню для настройки привода, удобное расположение клеммных зажимов для подключения внешних цепей.В целом по работе приводов АТ24 замечаний нет.

    ОАО «Щекиноазот», Тульская область

    В 2014 году ООО «Триол-Электрик» поставило нам три преобразователя частоты АТ24-55К-380-S10000 и три пульта П24Е. Компания Триол зарекомендовала себя как надежный производитель и поставщик низковольтных преобразователей частоты АТ24. ОАО «Щекиноазот» выражает благодарность ООО «Триол-Электрик» за качественную и своевременную поставку преобразователей частоты АТ24, за возможность отсрочки платежа, что позволило нам работать бесперебойно.

    ООО «Билмарт», Республика Саха

    С 2006 года мы используем преобразователи частоты серии Triol AT24. Хочу отметить функциональность и отличное качество поставляемой продукции. Надеемся на дальнейшее успешное развитие наших деловых отношений.

    ООО «ЭнергоКомплектация», Саратовская область

    ООО «ЭнергоКомплектация» сотрудничает с ООО «Триол-Электрик» с 2013 года. За достаточно короткий срок ООО «Энергокомплектация» смонтировало около 120 преобразователей частоты серии АТ24.За время сотрудничества ООО «Триол-Электрик» зарекомендовало себя как надежный партнер, выполняющий все взятые на себя обязательства. Имеет квалифицированный и оперативный центр технической поддержки

    А мы думаем иначе.

    Но, если бы можно было разделить наше мышление на более человечное и машинное, как бы вы описали свой образ мышления?

    Пройдите этот тест, и по вашим ответам мы сможем сказать вам, находитесь ли вы ближе к человеку или думаете почти как робот.

    Попробуем определить!

    Более 10 человекоподобных роботов, ужасно похожих на людей

    Геминоид-F

    Модель касается лица робота-гуманоида, который был создан под видом самой модели. Некоторые его части работают за счет давления воздуха. Выражение лица может очень точно повторять мимику реального человека.

    Android Кодомороид



    Этот коммуникационный андроид из Японии был представлен на пресс-конференции во время выставки роботов в Музее науки в Лондоне в феврале 2017 года.

    Ибн Сина



    Студенты университета ОАЭ изучают первого арабоязычного робота, способного общаться с людьми. Такие роботы могут работать секретарями, администраторами, продавцами и консультантами.

    Цзя цзя


    Этот робот общается с инженером из Университета науки и технологий Китая. Команда ученых создала Jia Jia за 3 года.Они представили свое творение в апреле 2016 года. Робот может говорить, демонстрировать даже самые маленькие выражения лица, а также двигать губами и телом.

    Асуна



    Этот робот был представлен на ежегодной неделе дизайна в Токио в октябре 2017 года. Роботом дистанционно управляет оператор, который наблюдает за посетителями через камеру.

    Робот от Toshiba



    Этот человекоподобный робот был представлен на выставке электроники CEATEC в префектуре Тиба, Токио, в октябре 2014 года.

    Чихира Дзюнко



    Компания Toshiba создала робота специально для торговых центров. Этот автомобиль встречает посетителей торгового центра Tokyo. Презентация прошла в декабре 2015 года. Стоит отметить, что робот может даже помогать иностранным туристам, общаясь с ними на английском и китайском языках.

    Минами



    Посетитель взаимодействует с роботом-гуманоидом Минами в магазине в Осаке в мае 2013 года.Робот может общаться с посетителями с помощью определенных фраз, например «Вы пришли один?» или «Давайте сфотографируемся вместе».

    Мираи Мадока



    Этот робот-гуманоид был представлен на выставке Robot Development & Application Expo в январе 2017 года. Выставка проходила в Токио.

    Двойные андроиды



    Ученый Ёсио Мацумото демонстрирует роботов-близнецов в своей лаборатории в Цукубе, Япония, июль 2014 года.

    Хан и София



    Дэвид Хэнсон, генеральный директор Hanson Robotics, стоит между роботом Ханом и роботом Софией во время их демонстрации на технологической конференции RISE в Гонконге в июле 2017 года.

    ChihiraAico



    Этот робот встречает покупателей в магазине в Токио. Акция проходит в апреле 2015 года. Стоит отметить, что робот умеет улыбаться, петь и давать полезные советы покупателям.

    Отонароид



    Этот робот-гуманоид общается с другими роботами, особенно с CommU и Sota. Действие происходит на пресс-конференции в Токио в январе 2015 года.

    Механическая коробка передач вместо автоматической | Digital Trends

    «Палка» — популярный термин для тех, кто умеет водить машину с механической коробкой передач. Механические трансмиссии, требующие уникального набора навыков, дают водителям больше контроля над переключением передач, мощностью, и многие думают, что это улучшает общее впечатление от вождения.

    Автоматические коробки передач переключаются автоматически по мере необходимости, позволяя водителю сосредоточиться на дороге и своих пассажирах. Различия в ощущениях и механике очень глубоки, когда мы сравниваем механическую и автоматическую трансмиссии в этом руководстве.

    МКПП

    Chevrolet Camaro ZL1

    2017 года Механическая коробка передач также известна как рычаг переключения передач, и этим все сказано — водитель буквально использует ручку для переключения передач. В первой машине вашего отца мог быть переключатель, установленный на рулевой колонке или приборной панели, но в современных автомобилях рычаг переключения передач почти всегда установлен вертикально на центральной консоли и соединен с трансмиссией через рычажный механизм.

    Для переключения передач диск сцепления, зажатый между двигателем и трансмиссией, необходимо отпустить с помощью третьей педали, расположенной с левой стороны тормоза. Отпустите сцепление, выберите желаемую передачу и снова включите сцепление. В состоянии покоя слишком медленное включение сцепления приведет к преждевременному износу диска, а слишком быстрое включение приведет к остановке двигателя.

    Чтобы научиться управлять рычагом переключения передач, требуется немного времени, но это полезно и намного проще, чем кажется.Управляя палкой, вы чувствуете связь со своей машиной, которую трудно воспроизвести с помощью автоматической коробки передач. Кроме того, автомобилисты, которые могут управлять механической коробкой передач, могут управлять практически любым типом автомобиля в любой точке мира, в том числе в странах, где арендовать автоматическую коробку передач легче сказать, чем сделать.

    Трехступенчатые механические коробки передач были распространены в 1940-х, 1950-х и даже 1960-х; оригинальный Ford Mustang стандартно поставлялся с трехступенчатой ​​коробкой передач. Инженерные отделы добавляли шестерни по мере совершенствования технологий, а также по мере того, как автомобили становились быстрее и потребность в эффективности возрастала.Четырехступенчатая механическая коробка передач стала нормой на десятилетия, потом на пять, а теперь на шесть. Однако некоторые спортивные автомобили высокого класса, такие как Porsche 911, предлагают семь передач.

    АКПП

    Audi R8 V10 Plus

    2017 года. Хотите верьте, хотите нет, но трансмиссия, которая переключает передачи сама по себе, когда-то считалась роскошью и долгое время была дорогостоящей опцией для многих моделей. Просмотрите местные объявления, и вы неизбежно заметите, что автоматическая коробка передач получила такое же распространение, как электрические стеклоподъемники и кондиционер.

    Есть два основных типа автоматических коробок передач. Традиционная автоматическая коробка передач связана с двигателем через гидротрансформатор, а автомат с двойным сцеплением полагается — как вы уже догадались; хорошая работа — пара клатчей. Оба могут переключать передачи без какого-либо участия водителя. Этот процесс осуществляется гидравлически или электронно путем отслеживания важных параметров, таких как положение педали газа, скорость, с которой движется автомобиль, и обороты двигателя. Во многих автомобилях с автоматической коробкой передач переключение передач можно осуществлять вручную с помощью рычага переключения передач или подрулевых переключателей, установленных за рулевым колесом.

    Наличие всего двух педалей дает много преимуществ. При такой конфигурации практически невозможно заглохнуть двигатель, а автомобиль с автоматической коробкой передач, как правило, более плавный и комфортный в управлении, чем рычаг переключения передач, особенно в условиях движения с остановками и остановками. Автомат обычно требует меньше обслуживания, чем ручной, хотя это может варьироваться от модели к модели. Наконец, автоматическая коробка передач с двойным сцеплением часто переключает передачи всего за миллисекунды для большей производительности и эффективности.

    Четырехступенчатые автоматические коробки передач долгое время были нормой в отрасли, и небольшая горстка моделей все еще работает с четырьмя передачами.Однако сегодня обычным явлением является шестиступенчатая и восьмиступенчатая автоматика. Хонда строит девятиступенчатую; Ford и General Motors даже имеют на рынке совместно разработанную 10-ступенчатую коробку передач. Больше передач означает лучшее ускорение, более тихую езду по шоссе и улучшенную экономию топлива.

    вариатор

    Honda CR-V

    2017 Третий основной тип трансмиссии — бесступенчатая трансмиссия, название которой обычно сокращают до CVT. Вместо шестерен в вариаторе используется система ремня и шкивов, обеспечивающая бесконечное количество передаточных чисел.Другими словами, передача никогда не переключается. Вариаторы также встречаются в скутерах, мотоциклах и снегоходах.

    Вообще говоря, автомобиль, оснащенный вариатором, более плавный в управлении, чем эквивалентная модель с обычной автоматической коробкой передач. Вариатор также может сократить расход топлива, что объясняет, почему многие гибридные автомобили оснащены им. Однако это не все плюсы. Некоторые покупатели находят вождение автомобиля с вариатором совершенно странным, потому что он не переключается. Двигатель имеет тенденцию гудеть, когда он прикручен к вариатору, и автомобили часто обеспечивают ускорение, похожее на резиновую ленту.

    Стремясь повысить признание потребителей, автомобильные компании иногда предлагают автомобили с вариатором и переключателями, которые выбирают предварительно запрограммированные передаточные числа, имитирующие передачи в обычной автоматической коробке передач. Не каждый автомобилист оценит жизнь с вариатором. Наш совет — попробовать перед покупкой и убедиться, что вы используете его во многих различных сценариях, а не только вокруг квартала. Вы можете не замечать, что он делает за кулисами, чтобы держать вас в движении, или можете полностью ненавидеть это.

    CVT находятся в бесчисленном количестве автомобилей на японском рынке, и они становятся все более распространенными в Соединенных Штатах.Subaru Crosstrek, Mitsubishi Outlander Sport и Honda CR-V относятся к моделям с вариатором. Кроме того, некоторые высокопроизводительные автомобили, особенно Subaru WRX, предлагают вариатор вместо стандартной автоматической коробки передач.

    Какая коробка передач мне подходит?

    Вы, наверное, слышали, что выбирать автомобиль разумно на основе его трансмиссии. Мы согласны. Вы можете значительно сузить свой выбор, выбрав ручную или автоматическую коробку передач. В противном случае вы потратите много времени на перебор бесчисленных вариантов.Выбор механической или автоматической коробки передач зависит от двух ключевых факторов: вашего стиля вождения и того, какой автомобиль вызывает у вас наибольший интерес. Если вас не волнует «динамика вождения», то вам, вероятно, будет хорошо, если у вас будет душевное спокойствие по принципу «установил и забыл» в сочетании с автоматической коробкой передач или вариатором.

    Большинство автолюбителей выбирают механическую коробку передач, потому что им нравится активно участвовать в вождении. Помните, что лучше не использовать механическую коробку передач, если вам предстоит долгая поездка с интенсивным движением на работу.Маршрут с остановками — неинтересно, если у вас механическая коробка передач. Однако важно отметить, что у вас могут быть ограниченные возможности, потому что многие новые автомобили имеют только один тип трансмиссии. В некоторых случаях вы можете попросить производителя заменить трансмиссию, но это будет стоить немалых денег.

    Люди, которым нравится водить машину с механической коробкой передач, будут огорчены тем, что они не работают в автомобильной промышленности. Многие американские автопроизводители сокращают количество производимых механических коробок передач, делая механическую коробку передач роскошью для активных водителей.К счастью, на рынке все еще есть несколько доступных автомобилей с механической коробкой передач. К ним относятся Volkswagen GTI, Subaru Impreza, братья и сестры Mazda MX-5 Miata / Fiat 124 Spider и Toyota 86. Есть также варианты, доступные тем, у кого более большой бюджет, в том числе BMW M3, Porsche 911 и Jaguar. F-Type, хотя вам может потребоваться специальный заказ.

    Рекомендации редакции

    границ | Компактные редукторы для современной робототехники: обзор

    Введение

    Промышленные роботы составляют основу нескольких крупных традиционных производств, включая автомобилестроение и электронику.Сегодня многие регионы мира видят реальную возможность возродить обрабатывающую промышленность, внедряя роботов на малых и средних предприятиях (МСП) и в вспомогательные услуги, как правило, в здравоохранении (SPARC, 2015).

    Для крупномасштабных промышленных сред с высокой степенью автоматизации преимущество роботизированных решений по сравнению с людьми-операторами в основном заключается в (i) большей доступности и (ii) способности перемещать — обычно большие — полезные грузы с исключительной точностью позиционирования и с высокой скоростью.Эти аспекты имеют решающее значение при разработке и выборе подходящих технологий для промышленного робота, особенно для первичных двигателей и трансмиссий, обеспечивающих движение этих устройств.

    Применения в производстве и персональном обслуживании малых и средних предприятий бросают вызов этой традиционной парадигме робототехники. Ключ к успеху в этих новых приложениях лежит в очень высокой степени гибкости, необходимой для обеспечения безопасного и эффективного прямого сотрудничества с людьми для достижения общих целей.Эта цель требует, чтобы роботы сначала развили способность безопасно взаимодействовать с людьми в дисциплине, обычно называемой pHRI — физическое взаимодействие человека и робота.

    pHRI оказывает широкое влияние на срабатывание роботов. Опыт, накопленный в течение последних десятилетий, в основном в области робототехники в сфере здравоохранения, показывает, что для безопасного и эффективного взаимодействия с людьми роботы должны в основном двигаться как люди, поэтому жертвуют некоторыми из своих традиционных преимуществ с точки зрения полезной нагрузки, точности и скорости.Эта ситуация привела к обширным исследованиям в последние годы, охватывающим оптимальный выбор первичных двигателей и передач для срабатывания HRI (Zinn et al., 2004; Ham et al., 2009; Iqbal et al., 2011; Veale and Xie, 2016 ; Verstraten et al., 2016; Groothuis et al., 2018; Saerens et al., 2019).

    Эти работы относятся к более широкой области исследований, изучающих оптимизацию соединения между первичным двигателем и коробкой передач для данной задачи в автоматических машинах. Краткий обзор основных разработок в этой области дает полезные сведения, позволяющие понять влияние коробки передач на общую производительность системы.Паш и Серинг (1983) определили важность инерции при срабатывании и предложили использовать передаточное число для согласования инерции двигателя и отраженной нагрузки в качестве средства минимизации потребления энергии для чисто инерционной нагрузки. Чен и Цай (1993) применили эту идею к области робототехники и определили результирующую способность к ускорению конечного эффектора как определяющий параметр. Ван де Стрете и др. (1998) разделили характеристики двигателя и нагрузки, чтобы распространить этот подход на общую нагрузку, и предоставили метод определения подходящих передаточных чисел для дискретного набора двигателей и коробок передач.Roos et al. (2006) изучали выбор оптимального привода для трансмиссии электромобилей, добавляя вклад КПД коробки передач. Giberti et al. (2010) подтверждают инерцию ротора, передаточное отношение, эффективность коробки передач и инерцию коробки передач как наиболее важные параметры для выбора срабатывания и предлагают графический метод оптимизации этого выбора для динамической задачи. Петтерссон и Олвандер (2009) снова сосредоточились на промышленных роботах и ​​представили метод, моделирующий коробку передач с упором на массу, инерцию и трение.Резазаде и Херст (2014) используют очень точную модель двигателя и включают фундаментальный критерий выбора полосы пропускания в дополнение к минимизации энергии. Дрессчер и др. (2016) исследуют влияние трения на планетарный редуктор, в котором кулоновское трение является доминирующим механизмом трения, и демонстрируют, как КПД редуктора обычно становится преобладающим над КПД двигателя при высоких передаточных числах.

    По сравнению с исходными моделями коробок передач, использовавшихся в этих работах, где коробки передач моделировались как идеальные передаточные числа, сложность моделей постепенно возрастала.Тем не менее, необходимо сделать важные — и нереалистичные — упрощения, чтобы добиться хорошей практической применимости этих методов. Таким образом, не учитываются такие важные эффекты, как жесткость на кручение и потерянное движение, а модели инерции и эффективности коробки передач сильно упрощены. Это оправданный подход для множества приложений, где упрощенные методы могут помочь инженерам выбрать подходящие трансмиссии. Однако в HRI эти свойства слишком важны для пригодности коробки передач, и их нельзя так сильно упростить.

    Следовательно, необходим другой подход, чтобы предоставить полезные рекомендации по выбору коробки передач в HRI, избегая чрезмерной сложности задач оптимизации в этой области. Предоставление подробных сведений об эксплуатационных свойствах и характеристиках различных технологий редукторов для обоснованного выбора — еще один вариант, следуя традициям таких работ, как Schempf and Yoerger (1993) или Rosenbauer (1995). Следуя этому подходу, Siciliano et al. (2010), Ли (2014), Шейнман и др.(2016) и Pham and Ahn (2018) предоставляют интересные обзоры высокоточных редукторов для современной робототехники. Однако технологии не анализируются достаточно подробно, чтобы получить хорошее представление о сложных механизмах, в которых они влияют на выполнение роботизированной задачи.

    Основная цель этого обзора состоит в том, чтобы дополнить эти работы подробным анализом основных принципов, сильных сторон и ограничений доступных технологий. Помимо возможности прогнозирования будущего технологий редукторов в робототехнике, этот подход может помочь неспециалистам по редукторам определить подходящие технологии компактных редукторов для многофакторных требований новых робототехнических приложений (López-García et al., 2018). Для специалистов по коробкам передач из других областей этот анализ может помочь им получить полезную информацию о конкретных потребностях приложений HRI.

    Это исследование начинается с краткого описания основных требований к будущим роботизированным трансмиссиям, чтобы затем представить систему оценки, предназначенную для оценки пригодности и потенциала конкретной технологии коробок передач для этой области. Эта структура включает сильную перспективу pHRI и новый параметр — коэффициент скрытой мощности — для оценки эффективности, присущей определенной топологии редуктора.Эта новая структура используется в первую очередь для обзора традиционных технологий редукторов, используемых в промышленных роботах, и новых технологий передачи, которые в настоящее время находятся в процессе выхода на рынок. Наконец, в конце документа приводится краткое изложение выводов, сделанных в результате этого обзора, вместе с нашими выводами и рекомендациями.

    Система оценки роботизированных трансмиссий с расширенными возможностями HRI

    Контроль

    Управление роботизированными устройствами — очень широкая и сложная тема, которая является предметом обширной исследовательской литературы.В этом разделе мы ограничимся введением основных принципов линейности и отраженной инерции, которые являются основными для понимания влияния редуктора на управление.

    Хотя в целом скорость и точность являются противоречивыми требованиями, обычные робототехнические устройства превосходят в достижении высокой точности позиционирования на высокой скорости благодаря использованию жестких приводов с очень линейным поведением (Cetinkunt, 1991). Включение роботизированной трансмиссии влияет на сложность управления в основном двумя способами: вносит дополнительную нелинейность и сильно влияет на отраженную инерцию.

    Нелинейности, вызванные включением трансмиссии, принимают в основном форму люфта и / или трения и уменьшают полосу пропускания системы, создавая важные проблемы управления (Schempf, 1990). Заявление о зубчатых колесах приводит к люфту, трению и (нежелательному) соответствию, которые затрудняют точное управление. (Hunter et al., 1991) сегодня так же актуально, как и почти 30 лет назад. Для некоторых технологий большие кинематические погрешности передачи и особенно нелинейное трение также могут вызывать значительные нелинейности.

    Передачи также сильно влияют на отраженную инерцию системы. В роботизированном устройстве инерция первичного двигателя обычно на несколько порядков меньше, чем у полезной нагрузки, что делает систему нестабильной и создает серьезные проблемы с управлением. Добавление трансмиссии сильно снижает инерцию полезной нагрузки, которую видит первичный двигатель и которая отражается на него, на коэффициент, равный квадрату передаточного отношения трансмиссии. Таким образом, тщательный выбор трансмиссии может привести к более сбалансированной инерции на обеих сторонах трансмиссии, способствуя минимизации энергопотребления и созданию более надежной, стабильной и точной системы (Pasch and Seering, 1983).

    Отраженная инерция особенно важна, когда рабочие органы претерпевают быстрые и частые изменения скорости и / или крутящего момента, что очень часто встречается в задачах автоматизации и робототехники. В этих случаях вводится перспектива пропускной способности, чтобы подтвердить способность системы отслеживать эти изменения (Sensinger, 2010; Rezazadeh and Hurst, 2014). Это лежит в основе принципа управляемости задним ходом, способности системы демонстрировать низкий механический импеданс, когда она приводится в действие с естественной выходной мощности (с обратным приводом).Это особенно важно при частом двунаправленном обмене энергией между роботом и его пользователем, что типично для реабилитационных устройств или экзоскелетов. Как демонстрируют Ван и Ким (2015), управляемость коробки передач задним ходом включает в себя комбинированный эффект отраженной инерции, отраженного демпфирования и кулоновского трения, и, следовательно, это тесно связано с эффективностью коробки передач.

    Это подчеркивает важность для оценки управляющего воздействия определенной технологии коробки передач как возможностей передаточного числа, так и нелинейностей (люфт, трение), которые она вносит.

    Безопасность

    Промышленные роботы традиционно размещаются за забором в хорошо структурированной среде, где они могут воспользоваться преимуществами своих быстрых и точных роботизированных движений, не подвергая опасности сотрудников-операторов.

    Безопасный pHRI, включающий способность безопасно перемещаться в неструктурированной / неизвестной среде, обязательно тесно связан с управляемостью. Текущая стратегия, используемая робототехниками для достижения этой цели, состоит из формирования механического импеданса (Calanca et al., 2015), то есть позволяя контроллеру соответствия управлять сложным динамическим соотношением между положением / скоростью робота и внешними силами (Hogan, 1984).

    Принцип прост: чтобы обеспечить хорошую адаптацию к неопределенной среде, а также целостность человека-оператора / пользователя во время взаимодействия с роботизированным устройством, последний должен двигаться в соответствии с требованиями человека (Karayiannidis et al. др., 2015). Это подчеркивает важность импеданса и внутреннего соответствия (De Santis et al., 2008) и объясняет появление нового типа внутренне гибких исполнительных механизмов для pHRI (Ham et al., 2009), где требуется высокая степень соответствия (Haddadin and Croft, 2016).

    С точки зрения управления, инерция полезной нагрузки, отраженная к первичному двигателю, уменьшается на коэффициент, соответствующий квадрату передаточного числа. Таким же образом обычно небольшая инерция ротора первичного двигателя усиливается тем же фактором при отражении в сторону полезной нагрузки, который должен быть добавлен к инерции, возникающей в результате движения роботизированного устройства и груза по соображениям безопасности, а также ограничение рабочих скоростей.

    Хотя в большинстве актуаторов pHRI сегодня используются редукторы с высоким передаточным числом, некоторые известные робототехники Seok et al. (2014), Сенсингер и др. (2011) видят большой потенциал робототехники в использовании двигателей с высоким крутящим моментом (бегунков), требующих очень малых передаточных чисел. Новые производители робототехнических решений, такие как Genesis Robotics из Канады или Halodi Robotics AS из Норвегии, предлагают приводы для робототехники, основанные на этих принципах. По их мнению, увеличение инерции двигателя и уменьшение передаточного числа должно приводить к снижению инерции двигателя, отражаемой на рабочий орган, что позволяет повысить рабочие скорости и / или полезную нагрузку без ущерба для целостности оператора.Низкие передаточные числа также имеют дополнительное преимущество в ширине полосы: они имеют меньшее трение и люфт, уменьшая вклад нелинейностей от коробки передач. С другой стороны, умеренное передаточное число не может компенсировать нелинейные условия сцепления — обычно зубчатый крутящий момент (Siciliano et al., 2010).

    При более внимательном рассмотрении технических характеристик этих новых двигателей возникают некоторые вопросы с точки зрения достижимой эффективности, веса или компактности, а также последствий для оборудования, возникающих в результате чрезмерной тяги к высоким электрическим токам (HALODI Robotics, 2018; GENESIS Robotics, 2020).

    Подводя итог, нет полного согласия о том, как лучше всего подойти к безопасному срабатыванию для робототехники. Тем не менее, сильные естественные связи между безопасностью и управляемостью столь же очевидны, как и решающее значение передаточного числа трансмиссии и ее нелинейностей.

    Вес и компактность

    Облегченная конструкция имеет первостепенное значение для обеспечения совместимости безопасности и хорошей производительности в новых приложениях робототехники (Albu-Schäffer et al., 2008). Новейшие коллаборативные роботы (коботы), такие как облегченный робот KUKA, разработанный в сотрудничестве с Институтом робототехники и мехатроники Немецкого аэрокосмического центра (DLR), живут по этому принципу и, следовательно, сильно отличаются от тяжелых и громоздких традиционных промышленных роботов.Благодаря более низкой инерции, легкие коботы обеспечивают более высокую производительность — более высокие скорости — без ущерба для безопасности пользователя.

    Этот выгодный аспект облегченной конструкции имеет и другие преимущества. Для мобильных робототехнических систем меньший вес означает большую автономность. В носимых вспомогательных роботизированных устройствах, включая протезы и экзоскелеты, легкий вес также является ключевым аспектом для повышения комфорта (Toxiri et al., 2019).

    Высокая компактность — еще одна характерная черта этих новых роботизированных устройств: от коботов до вспомогательных устройств, компактность дает преимущества в маневренности и удобстве взаимодействия.

    В роботизированных приложениях, предполагающих тесное сотрудничество с людьми или предоставление мобильных услуг, позиции по своей сути весьма неопределенны. Легкие и компактные конструкции особенно выгодны (Loughlin et al., 2007) для этих применений с двумя последствиями: первичные двигатели и трансмиссии — обычно самые тяжелые элементы в роботизированном устройстве — должны быть легкими и компактными, но легкие конструкции имеют тенденцию требуйте более низких крутящих моментов.

    В отличие от веса коробки передач, определение подходящего критерия для оценки вклада коробки передач в компактность системы является более сложной задачей.Физический объем определенно играет роль, но наш опыт показывает, что фактическая форма коробки передач имеет тенденцию иметь большее влияние. Еще один аспект, о котором стоит упомянуть, — это наличие в некоторых конфигурациях редукторов свободного пространства для размещения материала или движущихся частей, таких как электродвигатели или выходные подшипники, также могут представлять особый интерес. Поэтому мы решили включить в нашу схему оценки приблизительную форму (диаметр × длина) выбранной коробки передач, в то время как наличие дополнительного места можно напрямую оценить с помощью предоставленных цифр для каждой из конфигураций.

    Эффективность и виртуальная мощность

    КПД

    В таких областях, как автомобильные или ветряные турбины, эффективность редукторов долгое время находилась в центре внимания. С другой стороны, в робототехнике эффективность до недавнего времени не становилась ключевым параметром при выборе подходящей коробки передач (Arigoni et al., 2010; Dresscher et al., 2016).

    Более высокий КПД — более низкие потери — позволяют снизить потребление энергии и прямо положительно влияют как на эксплуатационные расходы, так и на воздействие машины или устройства на окружающую среду.Для мобильных и носимых роботизированных устройств повышение эффективности также помогает снизить вес системы — требуются батареи меньшего размера — и в конечном итоге приводит к большей автономности и лучшему удобству использования (Kashiri et al., 2018).

    В коробках передач есть еще одно дополнительное преимущество в снижении потерь: большинство механических трансмиссий, используемых в робототехнике, имеют замкнутую форму и используют некоторый вид контакта зубьев для передачи крутящего момента и движения между первичным двигателем и рабочим органом. Благодаря этому кинематическое соотношение между входной ω In и выходной скоростями ω Out заблокировано количеством зубцов и определяет его передаточное число i K .В коробке передач без потерь передаточное отношение i τ между выходным и входным крутящими моментами τ точно соответствует обратной кинематической трансмиссии с противоположным знаком. Но в реальной коробке передач наличие потерь изменяет это равенство, и, поскольку кинематическое передаточное число заблокировано числом зубьев, абсолютное значение передаточного числа крутящего момента должно уменьшаться пропорционально потерям:

    ωInωOut = iK = — η iτ = -ητOutτIn; где η — КПД системы.

    Следовательно, высокие потери в коробке передач означают, что меньший крутящий момент доступен для рабочего органа и требуются более высокие передаточные числа для достижения такого же усиления крутящего момента.

    Редукторы подвержены нескольким видам потерь. Чтобы классифицировать их, мы принимаем критерии, предложенные Talbot и Kahraman (2014), и разделяем их на зависимые от нагрузки (механические) потери мощности, возникающие из-за скольжения и качения контактных поверхностей, как в контактах шестерен, так и в подшипниках, и нагрузки -независимые (спиновые) потери мощности — возникают из-за взаимодействия вращающихся компонентов с воздухом, маслом или их смесью.

    Виртуальная сила

    Термин виртуальная мощность, насколько известно авторам, был первоначально введен Ченом и Анхелесом (2006), но это явление, объясняющее аномально высокие потери, присутствующие в некоторых планетных топологиях, долгое время было известно под разными названиями, включая Blindleistung (Wolf, 1958; Mueller, 1998) и скрытая или бесполезная мощность (Macmillan and Davies, 1965; Yu and Beachley, 1985; Pennestri and Freudenstein, 1993; Del Castillo, 2002).

    В соответствии с принципом действия коробка передач всегда включает в себя высокоскоростную сторону с низким крутящим моментом и сторону с высоким крутящим моментом и низкой скоростью. Следовательно, его внутренние зубчатые зацепления обычно подвержены либо высокому крутящему моменту и низкой скорости, либо условиям высокой скорости и низкого крутящего момента. Однако в некоторых коробках передач из-за их особой топологии некоторые зацепления шестерен могут иметь одновременно высокую скорость и высокий крутящий момент. Зубчатые зацепления могут легко достичь КПД выше 98%, но поскольку генерируемые потери приблизительно пропорциональны произведению относительной скорости двух зубчатых элементов и крутящего момента, передаваемого через зацепление (Niemann et al., 1975), на этих высоконагруженных сетках появляются неожиданно большие потери. Виртуальная мощность обеспечивает основу для оценки вклада этого явления, которое мы в дальнейшем будем называть Топологической эффективностью редуктора.

    Некоторые из вышеупомянутых авторов предлагают методы для оценки топологической эффективности данной конфигурации и определения ее влияния на общую эффективность системы. В рамках Chen and Angeles (2006) виртуальная мощность определяется как мощность, измеренная в движущейся — неинерциальной — системе отсчета.Скрытая мощность , представленная Ю и Бичли (1985), соответствует виртуальной мощности, когда опорная рамка является несущим элементом коробки передач, а виртуальная передаточная мощность — это соотношение между виртуальной мощностью и мощностью, генерируемой внешним крутящим моментом. применяется по ссылке. Используя эти элементы, мы определяем Latent Power Ratio топологии коробки передач как отношение между суммой скрытых мощностей во всех зацеплениях к мощности, потребляемой коробкой передач.Таким образом, большой коэффициент скрытой мощности соответствует низкой топологической эффективности и указывает на сильную тенденцию к возникновению больших потерь за счет зацепления.

    Чтобы облегчить понимание практического влияния на общую эффективность топологической эффективности, характеризующейся скрытым коэффициентом мощности, данной конфигурации редуктора, мы используем на этом этапе уравнения, предложенные Макмилланом и Дэвисом (1965) для расчета упрощенный пример.

    Полная коробка передач робототехники обычно включает в себя несколько зацепляющих контактов, каждый из которых имеет разные рабочие условия и параметры, что приводит к различной эффективности зацепления.Эти КПД очень высоки в оптимизированных зубчатых зацеплениях — часто выше 99% — и позволяют упростить наши расчеты, учитывая общую уникальную эффективность зацепления η м = 99% во всех зацепляющих контактах в нашем редукторе.

    Во-первых, эталонный редуктор, идеальный с точки зрения топологической эффективности, имел бы только одно зацепление и коэффициент скрытой мощности L = 1. Таким образом, потери мощности внутри этого эталонного редуктора можно легко рассчитать как функцию входной мощности. как:

    Таким образом, общая эффективность зацепления всего редуктора соответствует таковой для одиночного зацепляющего контакта:

    ηsys, идеально = PIN-PLossPIN = ηm = 99%;

    Неидеальный редуктор с таким же типовым η m во всех его зацеплениях и со скрытым коэффициентом мощности L, характеризующим его топологический КПД, указывает на то, что общие потери в редукторе можно приблизительно оценить следующим образом:

    Ploss, L≈ PIN * L * (1-ηm)

    И общая эффективность зацепления всей коробки передач теперь составляет:

    ηsys, L = PIN-PLoss, LPIN≈L * ηm + (1-L)

    Что для η м = 99% и для значения L = 50 дает:

    Этот результат следует частично релятивизировать, потому что накопленные потери в первых зацеплениях, задействованных вдоль различных внутренних потоков мощности в коробке передач, приводят к тому, что меньшая виртуальная мощность, как предсказано этими уравнениями, будет течь через последующие зацепления.Эффект от этого состоит в том, что КПД обычно будет падать немного медленнее с коэффициентом скрытой мощности, а более реалистичное значение для предыдущего расчета обычно будет между 55 и 60%.

    Чтобы частично компенсировать это большое влияние топологической эффективности на общую эффективность, конфигурации с большим скрытым коэффициентом мощности требуют чрезвычайно высокой эффективности зацепления: для достижения эффективности системы> 70% системе с L = 100 требуется средняя эффективность зацепления. выше 99.5%.

    Поэтому в нашем дальнейшем анализе мы сосредоточимся только на оценке вклада топологической эффективности в эффективность коробки передач. Это позволяет нам использовать упрощенный метод для расчета коэффициента скрытой мощности, который, в первую очередь, не учитывает влияние на потери, вызванные уменьшением крутящего момента. Соответствующие расчеты, использованные для определения коэффициента скрытой мощности различных конфигураций редукторов, проанализированных в этой работе, включены в Приложение I.

    Подводя итог, чтобы охарактеризовать важный эффект КПД коробки передач, мы оценим порядок величины трех параметров: (i) потери, зависящие от нагрузки, (ii) пусковой момент без нагрузки и (iii) коэффициент скрытой мощности.Хотя на него дополнительно влияет статическое трение, а не только кулоновское и вязкое трение, мы выбрали пусковой крутящий момент без нагрузки (относительно номинального крутящего момента) в качестве практического способа характеристики потерь, не зависящих от нагрузки. Наши обмены с производителями редукторов показывают, что это обычная практика, она не зависит от входной мощности и легко доступна в технических данных производителя.

    Производительность

    По сравнению со специальными машинами и машинами для автоматической сборки промышленные роботы не могут достичь тех же стандартов точности и скорости.Оба аспекта пришлось скомпрометировать, чтобы обеспечить большую степень гибкости и мобильности, а также рабочего пространства (Rosenbauer, 1995). С этой точки зрения HRI — это всего лишь еще один шаг в том же направлении: чтобы соответствовать дальнейшим потребностям гибкости и мобильности в неструктурированной среде, необходимы дополнительные компромиссы с точки зрения точности и скорости. Этот переход отражен на рисунке 1.

    Рисунок 1 . Графическое описание перехода основных задач задач от машин через промышленных роботов и коботов к людям-операторам.

    Точность и повторяемость

    Множество аспектов редуктора вносят вклад в общую точность полного роботизированного устройства. Эти аспекты долгое время находились в центре внимания традиционной робототехники и сегодня хорошо изучены, поскольку работы, подобные работам Майра (1989), Шемпфа и Йоргера (1993) или Розенбауэра (1995), содержат очень хорошие ссылки для понимания этих сложных влияний. Эти исследования выявили особенно важную роль, которую играют потерянный ход и жесткость на кручение.

    Lost Motion — это дальнейшее развитие принципа люфта, который описывает полное вращательное смещение, создаваемое приложением ± 3% от номинального входного крутящего момента.

    Жесткость на кручение характеризует податливость всех элементов коробки передач при кручении во всем потоке сил под действием внешнего крутящего момента. Это достигается путем блокировки входа редуктора и постепенного увеличения крутящего момента, прилагаемого на выходе, при этом регистрируются изменения жесткости на кручение, приводящие к отклонениям от идеально линейного поведения.

    По своей природе точные — малые потери движения и линейная высокая жесткость на кручение — редукторы упрощают задачу управления и обеспечивают высокую точность, идеально подходят для управления положением, в то время как менее точные редукторы создают более серьезные проблемы для управления положением и могут использоваться для более гибкого срабатывания. . В технологиях редукторов, где скорость оказывает сильное влияние на потери или с особенно нелинейным трением, также необходимо учитывать вклад этих элементов в точность.

    Чтобы охарактеризовать возможности точности, наша конструкция включает потерю движения и жесткость на кручение, а также субъективную оценку изменения эффективности, вызванного изменениями скорости / крутящего момента.

    Скорость и полезная нагрузка

    Промышленные роботы могут обрабатывать большие полезные нагрузки за счет большой инерции. Для коботов, с другой стороны, соображения безопасности подразумевают, что они не должны обрабатывать такие большие полезные нагрузки, но благодаря более легкой конструкции они действительно могут достичь большего отношения полезной нагрузки к массе.

    Соображения безопасности также ограничивают степень, в которой это снижение массы может быть использовано для увеличения рабочих скоростей (Haddadin et al., 2009). Тем не менее, более низкий крутящий момент способствует использованию более легких и быстрых электродвигателей, что в принципе требует более высоких передаточных чисел для этих приложений.

    Критерий для характеристики вклада коробки передач в скорость и характеристики полезной нагрузки должен отражать эти аспекты и побуждать нас использовать в нашей структуре (i) максимальную входную скорость, (ii) максимальный повторяемый выходной крутящий момент, называемый моментом ускорения, и номинальный крутящий момент, (iii) ) передаточное число и (iv) отношение крутящего момента к массе как для номинального, так и для момента ускорения.

    Сводка

    Определение характеристик роботизированных коробок передач — сложная задача: высокая универсальность этих устройств и их сложное взаимодействие с первичными двигателями и системами управления делают прямое сравнение их характеристик особенно сложным.

    Передаточное отношение продемонстрировало сильное влияние на производительность робототехнической системы. Это объясняет его предпочтительную роль в литературе, посвященной оптимизации срабатывания роботов, и растущий интерес робототехников к возможностям использования переменных передач (Kim et al., 2002; Карбон и др., 2004; Страмиджоли и др., 2008; Жирар и Асада, 2017). Хотя мы убеждены, что трансмиссии с регулируемой передачей являются очень многообещающими и определенно будут способствовать формированию будущего ландшафта робототехники, мы ограничили наш анализ здесь компактными коробками передач с постоянным передаточным числом. На данный момент мы считаем, что нам лучше всего подойдет этот ограниченный объем, который может также способствовать выявлению потенциальных областей применения и подходящих технологий для трансмиссий с переменным передаточным числом.

    На основе этого анализа мы предлагаем схему оценки будущих роботизированных коробок передач на основе следующих параметров:

    • Передаточное число

    • Ускорение и номинальный выходной крутящий момент

    • Вес

    • Форма: диаметр × длина

    • Ускорение и номинальный крутящий момент к массе

    • КПД: пиковое значение и субъективная зависимость от скорости и крутящего момента

    • Топологическая эффективность: коэффициент скрытой мощности

    • Пусковой крутящий момент при прямом и обратном движении без нагрузки в% от номинального входного крутящего момента

    • Потери, не зависящие от нагрузки

    • Потерянное движение

    • Максимальная входная скорость

    • Жесткость на кручение

    Наша структура включает также эталонный вариант использования, характерный для множества задач pHRI согласно нашему собственному опыту: моменты ускорения более 100 Нм и передаточные числа более 1: 100, для которых необходимо оптимизировать вес, компактность и эффективность.

    Обзор технологий передачи данных, используемых в настоящее время в промышленных роботах

    Электродвигатели, оснащенные механическими трансмиссиями, обычно используются в качестве исполнительных механизмов в робототехнике (Rosenbauer, 1995; Scheinman et al., 2016), а также в промышленных роботах. Эти механические трансмиссии почти неизбежно основаны на какой-то зубчатой ​​передаче (Sensinger, 2013).

    Благодаря их большей способности снижать общий вес и поскольку электродвигатели имеют тенденцию иметь более высокий КПД на высоких рабочих скоростях, другой характеристикой промышленных роботизированных трансмиссий является использование относительно больших коэффициентов передачи (передаточных чисел), обычно выше 1:40. (Розенбауэр, 1995).

    Планетарные редукторы: чрезвычайно универсальная платформа

    Планетарные зубчатые передачи

    (PGT) — это компактные, универсальные устройства, широко используемые в силовых передачах. Благодаря характерной коаксиальной конфигурации и хорошей удельной мощности они особенно подходят для вращающихся первичных двигателей, таких как электродвигатели.

    PGT

    могут использовать две дифференцированные стратегии для достижения высоких коэффициентов усиления: (i) добавление нескольких ступеней обычных высокоэффективных PGT — здесь называемых редукторами и представленных на рисунке 2 — или (ii) использование особенно компактных конфигураций PGT с возможностью получения высоких передаточные числа.

    Рисунок 2 . Внутреннее расположение редуктора Neugart с указанием его основных элементов, адаптировано из Neugart (2020) с разрешения © Neugart GmbH. Он также включает схему базовой топологии.

    Хотя использование нескольких ступеней редукторов позволяет наилучшим образом использовать эффективность зацепления высоких шестерен и приводит к высокоэффективным редукторам, это обычно приводит к тяжелым и громоздким решениям. Компактные конфигурации PGT с другой стороны могут достигать высоких передаточных чисел в очень компактных формах, но они страдают от удивительно высоких потерь, связанных с высокими виртуальными мощностями (Crispel et al., 2018).

    Особенно компактная конфигурация PGT для высоких передаточных чисел была впервые изобретена Вольфромом (1912) и использовалась в редукторах серии RE компании ZF Friedrichshafen AG (ZF), предназначенных для промышленных роботов (Looman, 1996). Эта конфигурация, показанная на рисунке 3, сильно зависит от Virtual Power, и ZF представляет собой единственное известное коммерческое применение конфигураций PGT, отличное от обычных редукторов. Хотя производство серии RE было прекращено в 90-х годах, Wolfrom PGT в последнее время вызывает растущий интерес сообщества исследователей робототехники, как мы резюмировали в предыдущей статье авторов (López-García et al., 2019а).

    Рисунок 3 . Внутреннее устройство ZF’s RG Series Wolfrom PGT для роботизированных приложений адаптировано из Looman (1996) с разрешения © 1998 Springer-Verlag Berlin Heidelberg. Он также включает схему базовой топологии.

    Таблица 1 представляет оценку PGT. Несмотря на завышенные размеры для нашего теста, мы использовали ZF RG350 Wolfrom PGT, чтобы попытаться оценить потенциал конфигураций PGT с высоким коэффициентом передачи, основываясь на имеющихся доказательствах его пригодности для достижения высоких коэффициентов (Арнаудов и Караиванов, 2005; Mulzer, 2010 ; Капелевич и AKGears LLC, 2013).Для редукторов мы выбрали — при поддержке производителей — подходящие решения из портфолио Wittenstein и Neugart. Стоит отметить важную роль, которую играет максимальное передаточное число на ступень в редукторе: в то время как Виттенштейн ближе к максимуму осуществимости, определяемому избеганием контакта между соседними планетами, Нейгарт выбирает в своей серии PLE (серия PLFE может достигать 1: 100 соотношений только в два этапа) более ограничительный подход и, следовательно, для достижения общего усиления 1: 100 требуется три этапа вместо двух для Виттенштейна.Это приводит к менее компактным решениям и более низкой эффективности для приложения 1: 100, но позволяет Neugart достичь более высокого прироста — до 1: 512 — без фундаментальных изменений веса, размера или эффективности.

    Таблица 1 . Схема оценки решений с планетарной зубчатой ​​передачей.

    Редукторы

    имеют вес около 4 кг, что нельзя напрямую сравнивать с увеличенными размерами RG350. RG350 имеет форму с большим диаметром и меньшей длиной, чем редукторы.Что касается отношения крутящего момента к весу, значения обоих решений кажутся относительно близкими.

    Редукторы

    имеют сильное преимущество в их хорошем КПД (выше 90%), который также менее чувствителен к изменениям рабочих условий, а пусковые моменты холостого хода очень низкие. Конфигурации с высоким коэффициентом полезного действия показывают, насколько сильно ограничивается топологическая эффективность, что приводит к снижению эффективности. Это, вероятно, объясняет, почему редукторы сегодня являются доминирующей технологией PGT в робототехнике.

    PGT

    демонстрируют самые высокие входные скорости (до 8 500 об / мин), но их потери хода также самые большие (4–6 Arcmin) в обычных редукторах. В робототехнике PGT широко использовались в первых промышленных роботах, в то время как в последние десятилетия их использование сильно сократилось, в основном из-за их ограничений, связанных с уменьшением люфта. Несмотря на то, что существуют механизмы, ограничивающие изначально более значительную обратную реакцию PGT, на практике они основаны на введении определенной предварительной нагрузки, отрицательно влияющей на их эффективность (Schempf, 1990).

    Гармонические приводы: легкий редуктор деформационной волны без люфта

    Редуктор Strain Wave был изобретен Массером (1955) и нашел широкое применение в 70-х годах, первоначально в аэрокосмической отрасли. Его основное космическое применение было в качестве элемента механической передачи в аппарате лунохода Аполлона-15 в 1971 году (Schafer et al., 2005).

    Его название происходит от характерной деформации его Flexspline , нежесткой, тонкой цилиндрической чашки с зубьями, которые служат в качестве выходных.Flexspline входит в зацепление с фиксированным сплошным круглым кольцом с внутренними зубьями шестерни, Circular Spline , в то время как он деформируется вращающейся эллиптической заглушкой — волновым генератором , как это видно на рис. 4. Этот тип редуктора является наиболее распространенным. обычно называют Harmonic Drive © (HD) из-за очень эффективной стратегии защиты IP.

    Рисунок 4 . Внутренняя конфигурация коробки передач Harmonic Drive CSG (слева), адаптированная из Harmonic Drive (2014) с разрешения © 2019 Harmonic Drive SE, и редуктора E-Cyclo (справа), адаптированная из SUMITOMO (2020) с разрешения © Sumitomo Drive, 2020 Germany GmbH.Также включена схема их базовой топологии KHV, используемая для расчета его скрытого коэффициента мощности в Приложении I.

    Для нашего сравнительного анализа мы выбрали два подходящих редуктора Harmonic Drive, CSD-25-2A, предназначенный для интеграции в роботизированное соединение, чтобы обеспечить адекватные структурные граничные условия, и сверхлегкий редуктор CSG-25-LW, представляющий конструктивно достаточное решение. что может быть более прямо по сравнению с другими технологиями. Совсем недавно компания SUMITOMO представила новую коробку передач E-CYCLO, работающую также на принципе действия волны деформации.SUMITOMO предоставила нам доступ к своему самому последнему каталогу (SUMITOMO, 2020), что позволило нам включить его в наш тест (Таблица 2). Еще одна интересная волна деформации, очень похожая на гармонический привод, недавно была также представлена ​​GAM в своей серии коробок передач для робототехники, которая также включает планетарные зубчатые передачи и циклоидные приводы (GAM, 2020).

    Таблица 2 . Схема оценки решений волн деформации.

    Выбранная модель CSG имеет значительно больший крутящий момент, чем предполагалось в нашем тесте.Форма имеет больший диаметр, чем длина, а вес значительно ниже, чем у других технологий, и обеспечивает наилучшее соотношение крутящего момента к весу среди проанализированных технологий. Действительно, характерное зацепление с несколькими зубьями обеспечивает большее сопротивление крутящему моменту, чем в PGT, что делает эту технологию очень подходящей для соединений, расположенных ближе к рабочему органу, где они часто встречаются в современных промышленных роботах.

    Пиковый КПД ниже, чем у редукторов, и ближе к RG350, а КПД особенно чувствителен к условиям эксплуатации.Поезда Strain Wave демонстрируют большие потери, не зависящие от нагрузки, и пусковые моменты без нагрузки — особенно в условиях обратного движения, которые становятся особенно критическими для высоких скоростей и / или низких крутящих моментов (Harmonic Drive, 2014). Для роботизированных устройств HRI, подверженных частым изменениям скорости и полезной нагрузки в сочетании с обменом энергией между роботизированным устройством и пользователем, это означает, что средняя эффективность быстро падает ниже 40–50% (López-García et al., 2019b). Также стоит отметить их большой коэффициент скрытой мощности, указывающий на одновременное присутствие высоких крутящих моментов и скоростей в зацеплении зубьев, что также помогает объяснить относительно низкий КПД.

    Еще раз, благодаря зацеплению с несколькими зубьями, можно достичь потерянных движений ниже 1 угловой минуты, что дает этому редуктору сильное преимущество, которое помогает гармоническим приводам находить широкое применение в промышленных роботах. Они смогли вытеснить PGT из многих приложений, особенно после значительного улучшения характеристик, вызванного новой геометрией зубьев, представленной этой компанией в 90-х годах, что также улучшило линейность их жесткости (Slatter, 2000).

    Максимальная входная скорость раньше была сильным ограничением для использования редукторов HD (Schempf, 1990), но новые достижения и улучшения конструкции позволяют им теперь достигать 7500 об / мин.

    Циклоидные приводы: для высокой прочности и жесткости на кручение

    С момента своего изобретения Лоренцем Брареном в 1927 году (Li, 2014) циклоидные приводы нашли применение в основном в лодках, подъемных кранах и некотором крупном оборудовании, таком как прокатные станы или станки с ЧПУ. В циклоидных приводах эксцентричное входное движение создает шаткое циклоидальное движение одиночного большого планетарного колеса, которое затем преобразуется обратно во вращение выходного вала и приводит к высокой редукционной способности (Gorla et al., 2008), см. Рисунок 5.

    Рисунок 5 . Внутренняя конфигурация циклоидных приводов SUMITOMO Fine Cyclo F2C-A15 и Fine Cyclo F2C-T155, идентифицирующая их основные элементы, адаптирована из SUMITOMO (2017) с разрешения © Sumitomo Cyclo Drive Germany GmbH, 2017. Он также включает схему лежащих в основе топологий.

    Таблица 3 включает лидера рынка (NABTESCO RV) в этом сегменте и основных претендентов (SPINEA и SUMITOMO). RV от NABTESCO и серия Fine-Cyclo T от SUMITOMO включают в себя обычную ступень PGT с предварительным зацеплением.Полезная нагрузка этих устройств больше, чем требуется для нашего теста, и приводит к большому весу. Это уже дает ценную информацию: более компактные решения недоступны на рынке и, согласно информации, предоставленной некоторыми производителями, менее интересны, поскольку для них потребуется высочайшая точность производства и, в конечном итоге, приведет к высоким затратам.

    Таблица 3 . Схема оценки решений для циклоидных приводов.

    Формы аналогичны коробкам передач с волновой деформацией, а по весу больше и ближе к весам PGT по вышеупомянутым причинам.Отношение крутящего момента к массе больше, чем у PGT, но немного ниже, чем у редукторов с волновой деформацией. Основное преимущество циклоидных приводов заключается как раз в их способности выдерживать большие нагрузки и особенно ударные нагрузки, а также в минимальных требованиях к техническому обслуживанию.

    Пиковый КПД выше, чем у редукторов с волновой деформацией, и ближе к КПД PGT, но КПД сильно зависит от условий эксплуатации (Михайлидис и др., 2014), а пусковые моменты холостого хода и коэффициент скрытой мощности высокие, как аналогично редукторам с волновой деформацией.

    Хотя они, как правило, имеют некоторый люфт, который, если их конструкция часто компенсируется, достигает уровней, сопоставимых с уровнями редукторов с волновой деформацией, вероятно, за счет немного более высокого трения. Их жесткость на кручение — самая большая из проанализированных технологий редукторов.

    Циклоидные приводы

    имеют неотъемлемое ограничение на работу с высокими входными скоростями, вызванное наличием большого и относительно тяжелого планетарного (кулачкового) колеса, что приводит к большой инерции и дисбалансу.Это мотивирует использование, как правило, двух планетарных колес, расположенных последовательно и смещенных на 180 градусов друг к другу, для устранения дисбаланса, уменьшения вибраций и увеличения входной скорости. Это объясняет, как благодаря объединению циклоидных приводов со ступенями предварительного зацепления, состоящими из обычных ступеней PGT, циклоидные приводы получили широкое распространение в робототехнике. Такое расположение повышает эффективность, снижает чувствительность к высоким входным скоростям и обеспечивает легкую настройку их передаточных чисел.В 90-х годах гармонические приводы доминировали на рынке роботизированных коробок передач, но усовершенствования циклоидной технологии позволили циклоидным приводам начать покорять бездорожье, сначала в Японии, а затем в других местах (Rosenbauer, 1995). В настоящее время производители, такие как NABTESCO, SUMITOMO или NIDEC, предлагают циклоидные гибриды с интегрированным передаточным механизмом PGT, покрывающие более 60% рынка роботизированных коробок передач, и поэтому стали новой доминирующей технологией, особенно для проксимальных суставов, подверженных более высоким нагрузкам и меньшим ограничениям по весу (WinterGreen Исследования, 2018).

    Наконец, стоит упомянуть наличие относительно большой пульсации крутящего момента, которая вносит нелинейности и усложняет их регулирование. Эта пульсация крутящего момента связана с необходимостью использования циклоидных профилей зубьев, чтобы избежать столкновения зубьев между большим планетарным колесом (-ами) и зубчатым венцом, что делает эти устройства чрезвычайно чувствительными к изменениям межцентрового расстояния, возникающим даже из-за небольших производственных ошибок. Существует несколько попыток улучшить эту ситуацию, используя эвольвентные зубья, менее чувствительные к колебаниям межцентрового расстояния, с уменьшенными углами давления и / или коэффициентами контакта для минимизации радиальных сил и повышения эффективности (Morozumi, 1970), а также с использованием других форм нестандартных зубьев. -инволютные зубы (Коряков-Савойский и др., 1996; Хлебаня и Куловец, 2015).

    Обзор новейших технологий передачи для робототехники

    Усилитель крутящего момента REFLEX

    Genesis Robotics привлекла большое внимание в сообществе робототехники с появлением их двигателя с прямым приводом, LiveDrive © . Согласно Genesis, LiveDrive в двух доступных топологиях — радиальном и осевом потоках — обеспечивает сравнительные характеристики в соотношении крутящего момента к массе. Двигатель с осевым магнитным потоком может достигать 15 Нм / кг, в то время как радиальный поток ограничивается максимум 10 Нм / кг.

    Чтобы расширить спектр применения, Genesis Robotics представила совместимую коробку передач, получившую название Reflex , которая показана на рисунке 6. Эта литая под давлением сверхлегкая пластиковая коробка передач предназначена для легких роботов, и хотя изначально она была разработана для совместной работы с LiveDrive. и поэтому он нацелен на передаточные числа ниже 1:30, он также способен обеспечивать передаточные числа до 1: 400 (GENESIS, 2018).

    Рисунок 6 . Внутренняя конфигурация и основные элементы редуктора Reflex адаптированы из GENESIS Robotics (2020) с разрешения © 2019 Genesis Robotics.Он также включает схему базовой топологии.

    В основе топологии лежит топология Wolfrom PGT с несколькими меньшими планетами (Klassen, 2019), в которой реактивное (стационарное) зубчатое колесо разделено на две части для балансировки в соответствии с конструкцией, первоначально предложенной Россманом (1934) и используемой в качестве хорошо в аппарате Hi-Red Tomcyk (2000).

    В редукторе Reflex выходное кольцо также разделено для облегчения сборки с косозубыми зубьями. Еще одним интересным аспектом этой конструкции является заклеенная лентой форма планет, которая, как подозревают авторы, связана с возможностью предварительной нагрузки системы для достижения нулевого люфта, который, как утверждает Genesis, возможен с этой коробкой передач.По заявлению компании, гибкость пластиковых планетарных колес также дает преимущество в уменьшении люфта.

    К сожалению, пока нет независимых тестов, подтверждающих данные характеристики, и никаких официальных данных, особенно по эффективности, от Genesis пока нет, поэтому в Таблицу 4 включено только значение Latent Power Ratio, полученное в результате его топологии.

    Таблица 4 . Схема оценки новых технологий редукторов.

    Таким образом, хотя лежащая в основе топология Wolfrom указывает на то, что эффективность, безусловно, будет сложной задачей, эта инновационная коробка передач демонстрирует большой потенциал, доступный для переосмысления существующих технологий и их адаптации к будущим потребностям робототехники. Genesis Robotics недавно вступила в интересное партнерство с известными промышленными компаниями, такими как Koch Industries Inc. и Demaurex AG.

    проезд Архимеда

    IMSystems из Нидерландов является дочерней компанией Делфтского технологического университета, созданной в 2016 году для использования изобретения Archimedes Drive (Schorsch, 2014).

    Привод Архимеда снова повторяет топологию редуктора Wolfrom (также с разрезным реактивным зубчатым венцом в некоторых его конструкциях), но включает в себя революционное новшество в использовании роликов вместо зубчатых колес для замены зубчатых контактов контактами качения, см. Рисунок 7. Контролируемая деформация планетарных роликов позволяет передавать крутящий момент между планетами аналогично колесам транспортного средства.

    Рисунок 7 . Внутренняя конфигурация привода Архимеда с деталями, показывающими его планеты Flexroller, адаптирована из IMSystems (2019) с разрешения © 2019 Innovative Mechatronic Systems B.V. со схемой лежащей в основе топологии.

    Характеристики, представленные в таблице 4, взятой из брошюры компании (IMSystems, 2019) и доступной по запросу, показывают, что использование топологии Wolfrom дает этому устройству возможность достигать очень высоких передаточных чисел в компактной форме, но это также приводит к низкой топологической эффективности. Согласно IMSystems, замена контакта зубьев шестерни на контакт качения способствует минимизации контактных потерь, которые, в частности, при передаче крутящего момента между планетарной передачей и кольцевыми роликами должны компенсировать высокое латентное соотношение мощности и приводить к максимальному КПД. около 80% (IMSystems, 2019).Никаких данных о пусковых моментах или потерях, не зависящих от нагрузки, не приводится.

    Чтобы обеспечить передачу высокого крутящего момента без проскальзывания, необходимо строго контролировать деформацию роликов планетарного механизма, а также производственные допуски коробки передач. Это представляет собой одну из основных технологических проблем, и это ядро ​​инноваций, вносимых этой технологией (Schorsch, 2014).

    NuGear

    STAM s.r.l. — частная инженерная компания из Генуи, которая помогла разработать роботизированный сустав для гуманоидного робота I-Cub.Их NuGear — это нутационная коробка передач, которая изначально была задумана (Барбагелата и Корсини, 2000) для космических приложений, но может развить свой потенциал и для робототехники за счет исследования альтернативных производственных средств.

    Пока нет общедоступной информации о рабочих характеристиках этой коробки передач, что означает, что мы можем предоставить здесь только предварительный анализ ее топологии и результирующих характеристик, которых можно ожидать на основе ограниченной информации, доступной в основном из проекта Caxman EU ( CAxMan, 2020), для которого NuGear был примером использования, и из доступных патентов (Barbagelata et al., 2016).

    На рисунке 8 внутренняя структура NuGear представлена ​​с использованием эквивалентной конфигурации PGT — для облегчения понимания абстрагируется аспект нутации. Таким образом становится ясно, что NuGear напоминает два PGT Wolfrom, для которых несущая используется в качестве входа, соединенных последовательно, и где каждый из них соответствует одному из двух этапов, определенных в Barbagelata et al. (2016). Это еще раз указывает на то, что в этой коробке передач будет присутствовать относительно высокий коэффициент скрытой мощности.Для передаточного числа 1: 100 и при условии сбалансированного усиления 1:10 на каждой из двух ступеней, как предложено в Barbagelata et al. (2016), мы получаем, используя уравнения, выведенные в Приложении I, коэффициент скрытой мощности 32, что указывает на топологическую эффективность, аналогичную таковой у Wolfrom PGT.

    Рисунок 8 . Внутренняя конфигурация двухступенчатой ​​коробки передач NuGear для версии с оппозитными контактами планет адаптирована из CAxMan (2020) с разрешения © Stam S.r.l. Он также включает схему базовой топологии.

    Еще предстоит подтвердить, в какой степени использование методов аддитивного производства может помочь STAM s.r.l. снизить большие затраты на производство конических зубчатых колес, а также определить, сможет ли операция нутации достичь достаточной надежности и более компактной формы, которые могут открыть дверь для ее использования в области робототехники (CAxMan, 2020).

    Двусторонний привод

    Компания FUJILAB в Иокогаме предложила в Fujimoto (2015) коробку передач с высокой степенью управляемости для робототехники, которая особенно подходит для работы без датчика крутящего момента (Kanai and Fujimoto, 2018).

    Как видно на Рисунке 9, конфигурация этого устройства снова аналогична PGT Wolfrom. При такой топологии Fujimoto et al. смогли достичь при передаточном числе 1: 102 КПД при движении вперед 89,9% и КПД при движении задним ходом 89,2%. Пусковой крутящий момент без нагрузки в обратном направлении составил 0,016 Нм в коробке передач с внешним диаметром ~ Φ50 мм (Kanai and Fujimoto, 2018). Стратегия достижения такой высокой эффективности с топологией Wolfrom заключается в оптимизации коэффициентов сдвига профиля (Fujimoto and Kobuse, 2017).

    Рисунок 9 . Внутренняя конфигурация двустороннего привода, высокоэффективной коробки передач, способной обеспечивать передаточное число 1: 102 с использованием топологии Wolfrom, любезно предоставлено © Yasutaka Fujimoto.

    Эти многообещающие результаты — см. Таблицу 4 — показывают, что выравнивание соотношений подвода и углубления посредством оптимизации коэффициентов смещения профиля может привести к чрезвычайно высокой эффективности зацепления. Насколько известно авторам, эта стратегия была первоначально предложена Хори и Хаяши (1994) и особенно интересна в топологии Wolfrom, где она в конечном итоге может обеспечить эффективность выше 90% в сочетании с высокими передаточными числами и компактными топологиями.

    Привод подшипника шестерни

    Вслед за новаторской работой в этой области Джона М. Враниша из НАСА, результатом которой стало изобретение планетарной шестерни без водила во Вранише (1995) и подшипников с частичными зубьями (Враниш, 2006), NASA Goddard Space Центр управления полетами представил свою концепцию нового зубчатого подшипника в Вайнберге и др. (2008).

    Северо-Восточный университет в Бостоне продолжил разработку этого нового привода для применения в роботизированных соединениях.Как видно на Рисунке 10, он включает в себя коробку передач Wolfrom, адаптированную для включения конструкции Vranish без опоры и зубчатых подшипников. Подшипники шестерен представляют собой контакты качения, которые предусмотрены для каждой пары зубчатых колес в соответствии с их делительным диаметром и уменьшают нагрузку на подшипники коробки передач (Brassitos et al., 2013). Эта топология обеспечивает удобную интеграцию электромотора, который, следовательно, встроен в полую часть большого солнечного зубчатого колеса в конфигурации, специально предназначенной для космических приложений (Brassitos and Jalili, 2017).

    Рисунок 10 . Внутренняя конфигурация зубчатого подшипника, включая встроенный бесщеточный двигатель, адаптирована из Brassitos and Jalili (2017) с разрешения © 2017 Американское общество инженеров-механиков ASME. Справа также показана лежащая в основе топология Wolfrom с расщепленным реакционным кольцом.

    В Brassitos and Jalili (2018) металлический прототип привода с зубчатым подшипником с передаточным числом 1:40 характеризуется жесткостью, трением и кинематической погрешностью.Измерения полностью соответствуют показателям FUJILAB и подтверждают низкий пусковой крутящий момент без нагрузки в этой конфигурации (0,0165 Нм для внешнего диаметра коробки передач ~ 100 мм). После экспериментального измерения жесткости, трения и кинематической погрешности их привода (Brassitos and Jalili, 2018) интегрировали эти значения в динамическую модель, которая затем была смоделирована и сравнена с откликом скорости разомкнутого контура системы при свободном синусоидальном движении, показав хорошие результаты. корреляция и предлагает очень удобную высокую линейность передачи.

    Предварительные измерения показали хороший комбинированный КПД двигателя и коробки передач Wolfrom с передаточным числом 1: 264 (Brassitos et al., 2013), что не очень хорошо коррелирует с рассчитанным скрытым коэффициентом мощности 196. КПД не был определен. снова в центре внимания недавних статей авторов, и мы, к сожалению, не смогли на данный момент подтвердить окончательные уровни эффективности, которых могут достичь новые прототипы.

    В любом случае привод с зубчатым подшипником дает очень интересные возможности для использования потенциала топологии Wolfrom в робототехнике.Возможность удаления несущего элемента и встраивания электродвигателя в коробку передач в общем корпусе позволяет получить впечатляюще компактные конструкции. Возможность использования продольных роликов зубчатых подшипников для уменьшения радиальной нагрузки на подшипники также является многообещающим вариантом для повышения компактности и повышения эффективности (Brassitos et al., 2019).

    The Galaxie Drive

    Schreiber and Schmidt (2015) защищает основные инновации, включенные в Galaxie Drive, коробку передач, которую WITTENSTEIN в настоящее время выводит на рынок прецизионных коробок передач через свой стартап Wittenstein Galaxie GmbH, созданный в апреле 2020 года.

    Хотя таблица данных и подробная информация еще не доступны, также раскрыты принцип работы и ожидаемая прибыль. Galaxie Drive представляет новый кинематический подход, основанный на линейном наведении одиночного зуба в зубчатом каркасе Teeth Carrier , но, по словам этих авторов, его топология напоминает топологию деформационно-волнового механизма, см. Рис. 11. Гибкая линия заменена зубцами. Держатель, включающий два ряда отдельных зубцов, выполнен с возможностью радиального перемещения и зацепления с круговым шлицем в качестве вращающегося многоугольного вала выполняет роль генератора волн с многоугольным периметром (Schreiber and Röthlingshöfer, 2017).Следовательно, несколько отдельных зубцов одновременно входят в зацепление с круговым шлицем — так же, как в Harmonic Drive. По словам производителя, это вместе с двухточечным контактом с высокой устойчивостью к крутящему моменту между каждым отдельным зубом и зубчатым каркасом обеспечивает этому устройству характерный нулевой люфт, высокую жесткость на кручение и эталонное соотношение крутящего момента к весу.

    Рисунок 11 . Деталь зацепления зубьев коробки передач Galaxy (R) DF адаптирована из Schreiber (2015) с разрешения © 2020 Wittenstein Galaxie GmbH.Он включает схему базовой топологии KHV.

    В ходе прямого обмена мнениями представители Виттенштейна подтвердили, что очевидная проблема трения между отдельными зубьями и их направляющим круговым кольцом решена, и Galaxie может достичь максимальной эффективности выше 90%. Из-за лежащей в основе конфигурации KHV ожидаются большие коэффициенты скрытой мощности, но пока невозможно получить дальнейшее представление об эффективности зацепления, которая будет результатом радиального движения зубьев, которое включает новую логарифмическую спиральную боковую поверхность зуба (Мишель, 2015).

    Первоначально привод Galaxie Drive предназначался для высокоточного оборудования, где высокая жесткость и сопротивление крутящему моменту могут помочь увеличить скорость и повысить производительность. В будущем мы, безусловно, сможем оценить потенциал этой инновационной технологии также для робототехнических приложений.

    Обсуждение

    Новое поколение робототехнических устройств меняет приоритеты в выборе подходящих коробок передач. Вместо высочайшей точности на высоких скоростях эти устройства предъявляют более строгие требования к легким и очень эффективным устройствам с механическим усилением.

    Сверхлегкие приводы деформационных волн (HD, E-cyclo), безусловно, находятся в очень хорошем положении для удовлетворения этих потребностей, что подтверждается их нынешним доминированием в области коботов. При рассмотрении привода деформационной волны для роботизированной задачи pHRI работа при низких крутящих моментах и ​​скоростях должна быть сведена к минимуму, если эффективность должна быть максимальной. Хотя их оптимизированная геометрия зубьев способствует более линейной жесткости на кручение, трение остается очень нелинейным и зависит от направления, вызывая также определенные ограничения использования.Храповик как следствие ударной нагрузки — еще одно ограничение, которое следует учитывать для этого типа редуктора, которое E-Cyclo не должен иметь (SUMITOMO, 2020).

    Циклоидные приводы

    прошли долгий путь, чтобы в конечном итоге стать доминирующей технологией в промышленных роботах. Благодаря технологическим достижениям, направленным на уменьшение люфта и ограничений скорости ввода, они теперь могут обеспечивать хорошую точность с приемлемой эффективностью, несмотря на высокие скрытые коэффициенты мощности, возникающие из-за базовой топологии KHV, эквивалентной топологии приводов с волновой деформацией.Использование ступени перед зацеплением также вносит важный вклад в достижение этой цели за счет повышения базовой топологической эффективности. Сверхлегкие конструкции, подобные конструкции SPINEA, демонстрируют интересный потенциал, но в конечном итоге потребуются более прорывные подходы, такие как пластиковые материалы, чтобы удовлетворить потребности в более легких коробках передач и более высоких передаточных числах, необходимых для HRI. Пока это не станет возможным, циклоидные приводы можно рассматривать только для больших полезных нагрузок, когда их больший вес и результирующая инерция не критичны для работы.Когда исключительная точность не требуется, можно избежать мер компенсации люфта в пользу повышения эффективности и более низких пусковых моментов. В любом случае следует позаботиться о том, чтобы адекватно управлять пульсацией крутящего момента, и, вероятно, необходимо будет остаться на этапе перед включением, чтобы обеспечить высокие скорости входного двигателя.

    Невозможность планетарных редукторов уменьшить люфт при сохранении хорошей производительности и ограничения жесткости на кручение ограничили их использование в промышленной робототехнике. Тем не менее, PGT чрезвычайно универсальны, что демонстрирует их широкое использование во множестве современных промышленных устройств.И они изначально эффективны, надежны и относительно просты — дешевы — в производстве. Это может объяснить недавний интерес робототехников к PGT и почему пять из шести изученных здесь принципиально инновационных редукторов основаны на конфигурации PGT с высоким передаточным числом: топологии Wolfrom. Лучшая топологическая эффективность в сочетании с улучшением эффективности зацепления за счет модификации профиля или даже еще одного шага вперед по замене зубьев контактами качения являются многообещающими характеристиками. В сочетании с возможностями, открываемыми их полой топологией, эти элементы потенциально могут привести к возвращению PGT в робототехнику.

    Наше исследование показывает, что большая универсальность технологий редукторов, используемых в робототехнике, представляет собой серьезную проблему для прямого сравнения их характеристик. Как показывают примеры люфта и максимальной входной скорости, адекватные модификации конструкции могут надлежащим образом компенсировать большинство исходных слабых мест определенной технологии за счет компромиссов в других аспектах, обычно включая эффективность, размер, вес и стоимость. Точно так же большие скрытые коэффициенты мощности указывают на существенный топологический недостаток с точки зрения эффективности, но он также может быть — по крайней мере частично — компенсирован соответствующими модификациями.Таким образом, обучающий эффект заключается в том, что выбор подходящей технологии редуктора для определенного применения pHRI является чрезвычайно сложным процессом, требующим глубокого понимания фундаментальных недостатков, возможностей улучшения и производных компромиссов каждой технологии. Наша первоначальная цель исследования — внести свой вклад в простую таблицу выбора, способную помочь неопытным робототехникам в выборе подходящих технологий редукторов для своих роботизированных устройств, поэтому не могла быть достигнута.Вместо этого в этой статье собраны и объясняются основные параметры выбора и связанные с ними проблемы в каждой из доступных технологий, чтобы помочь инженерам-роботам pHRI развить необходимые навыки, необходимые для осознанного выбора подходящей, индивидуально оптимизированной коробки передач.

    Два важных аспекта роботизированных редукторов для pHRI, к сожалению, не могут быть адекватно оценены в нашем исследовании на данном этапе: шум и стоимость. По мере того как робототехнические устройства становятся все ближе к людям, робототехники уделяют все больше внимания шуму.Редукторы, безусловно, представляют собой важный источник шума (переносимого воздухом и конструкциями), но, к сожалению, на данном этапе рекомендуется исключить шум из нашего анализа по двум основным ограничениям. Во-первых, большинство производителей редукторов еще не предоставляют количественных оценок шумовых характеристик, и когда они это делают, они, как правило, следуют другим методам испытаний, которые также не особенно подходят для рабочих условий в pHRI. Во-вторых, современные технологии коробок передач все еще должны пройти ожидаемый процесс оптимизации шума.

    Стоимость также является важным параметром, делающим технологии pHRI более доступными, и поэтому становится важным при выборе подходящих редукторов для будущих робототехнических технологий. К сожалению, и здесь научному сообществу доступно недостаточное количество исходной информации для систематической справедливой оценки крупномасштабного экономического потенциала определенной технологии редукторов. Прежде чем можно будет определить подходящую основу для оценки этого потенциала, требуется большой объем исследовательской работы, которая явно выходит за рамки нашего исследования.

    Эти два ограничения очерчивают основные рекомендации авторов для интересных направлений будущих исследований. Определение стандартных условий испытаний на воздушный и конструктивный шум в коробках передач, особенно адаптированных к типичным условиям эксплуатации и потребности в pHRI, могло бы позволить прямое сравнение различных технологий и способствовать их оптимизации шума. Кроме того, составление доступных моделей затрат для производственных процессов, связанных с изготовлением коробок передач, и их адаптация к специфике конкретных технологий, используемых в робототехнике, позволит создать основу для оценки потенциала (и препятствий) крупномасштабных затрат разные технологии.

    Взносы авторов

    Все авторы участвовали в предварительной работе, связанной с этой темой исследования, и внесли свой вклад в концептуализацию структуры, представленной в рукописи. PG работала над созданием подходящей системы оценки для выполнения анализа коробки передач и взяла на себя инициативу в написании рукописи и преобразовании ее в ее нынешнюю форму. PG и ES в равной степени способствовали выявлению потенциально подходящих технологий и их анализу с помощью структуры.Все корректуры авторов прочитали и внесли свой вклад в окончательную версию статьи.

    Финансирование

    SC, ES (доктор философии) и TV (доктор наук) являются научными сотрудниками Исследовательского фонда Фландрии — Fonds voor Wetenschappelijk Onderzoek (FWO). Эта работа частично финансируется Программой исследований и инноваций Европейского Союза Horizon 2020 в рамках Соглашения о гранте № 687662 — проект SPEXOR.

    Конфликт интересов

    Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

    Благодарности

    Авторы хотели бы поблагодарить профессора Ясутака Фудзимото из Йокогамского национального университета, а также компании Neugart GmbH, Harmonic Drive SE, Sumitomo Drive Germany GmbH, Genesis Robotics, Innovative Mechatronic Systems B.V., Stam s.r.l. и Wittenstein Galaxy GmbH за любезную поддержку и полученные объяснения, а также за разрешение использовать прилагаемые изображения их устройств.

    Дополнительные материалы

    Дополнительные материалы к этой статье можно найти в Интернете по адресу: https: // www.frontiersin.org/articles/10.3389/frobt.2020.00103/full#supplementary-material

    Список литературы

    Альбу-Шеффер, А., Эйбергер, О., Гребенштейн, М., Хаддадин, С., Отт, К., Вимбок, Т. и др. (2008). Мягкая робототехника. Робот IEEE. Автомат. Mag. 15, 20–30. DOI: 10.1109 / MRA.2008.9

    CrossRef Полный текст | Google Scholar

    Arigoni, R., Cognigni, E., Musolesi, M., Gorla, C., and Concli, F. (2010). «Планетарные редукторы: эффективность, люфт, жесткость» в Международная конференция VDI по зубчатым колесам (Мюнхен).

    Google Scholar

    Арнаудов, К., Караиванов, Д. (2005). «Планетарные зубчатые передачи с высшим составом» в Международная конференция VDI по зубчатым колесам , Vol. 1904 (Мюнхен: VDI-Bericht), 327–344.

    Барбагелата А. и Корсини Р. (2000). Riduttore Ingranaggi Conici Basculanti . Патент Италии № IT SV20000049A1. Рим: Ufficio Italiano Brevetti e Marchi.

    Барбагелата А., Эллеро С. и Ландо Р. (2016). Планетарная коробка передач .Европейский патент № EP2975296A2. Мюнхен: Европейское патентное ведомство.

    Брасситос, Э. и Джалили, Н. (2017). Проектирование и разработка компактного высокомоментного роботизированного привода для космических механизмов. J. Mech. Робот. 9, 061002-1–061002-11. DOI: 10.1115 / 1.4037567

    CrossRef Полный текст | Google Scholar

    Брасситос, Э., и Джалили, Н. (2018). «Определение характеристик жесткости, трения и кинематической погрешности в трансмиссиях с зубчатыми подшипниками», на Международной конференции по проектированию и проектированию ASME 2018, а также на конференции «Компьютеры и информация в машиностроении» (Квебек: цифровая коллекция Американского общества инженеров-механиков).DOI: 10.1115 / DETC2018-85647

    CrossRef Полный текст | Google Scholar

    Brassitos, E., Mavroidis, C., and Weinberg, B. (2013). «Зубчатый подшипниковый привод: новый компактный привод для роботизированных соединений», на Международной конференции по проектированию и проектированию ASME 2013, а также на конференции «Компьютеры и информация в машиностроении» (Портленд, Орегон: цифровая коллекция Американского общества инженеров-механиков). DOI: 10.1115 / DETC2013-13461

    CrossRef Полный текст | Google Scholar

    Брасситос, Э., Вайнберг, Б., Цинчао, К., и Мавроидис, К. (2019). Контактная система изогнутого подшипника . Патент США № US10174810B2. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Каланка, А., Мурадор, Р., Фиорини, П. (2015). Обзор алгоритмов совместимого управления жесткими и фиксированными роботами. IEEE / ASME Trans. Мех. 21, 613–624. DOI: 10.1109 / TMECH.2015.2465849

    CrossRef Полный текст | Google Scholar

    Карбоне, Г., Mangialardi, L., и Mantriota, G. (2004). Сравнение характеристик полнотороидальных и полутороидальных тяговых приводов. мех. Мах. Теория 39, 921–942. DOI: 10.1016 / j.mechmachtheory.2004.04.003

    CrossRef Полный текст | Google Scholar

    Четинкунт, С. (1991). Проблемы оптимального проектирования в высокоскоростных высокоточных сервосистемах движения. Мехатроника 1, 187–201. DOI: 10.1016 / 0957-4158 (91)

  • -A

    CrossRef Полный текст | Google Scholar

    Чен, К.и Анхелес Дж. (2006). Потери виртуальной мощности и механические потери мощности в зубчатых зацеплениях планетарных зубчатых передач. ASME J. Mech. Des. 129, 107–113. DOI: 10.1115 / 1.2359473

    CrossRef Полный текст | Google Scholar

    Чен, Д. З., и Цай, Л. В. (1993). Кинематический и динамический синтез редукторных робототехнических механизмов. J. Mech. Des. 115, 241–246. DOI: 10.1115 / 1.2

    3

    CrossRef Полный текст | Google Scholar

    Crispel, S., López-García, P., Verstraten, T., Convens, B., Saerens, E., Vanderborght, B., and Lefeber, D. (2018). «Представляем составные планетарные передачи (C-PGT): компактный способ достижения высоких передаточных чисел для носимых роботов», на Международном симпозиуме по носимой робототехнике (Пиза), 485–489. DOI: 10.1007 / 978-3-030-01887-0_94

    CrossRef Полный текст | Google Scholar

    Де Сантис А., Сицилиано Б., Де Лука А. и Бикки А. (2008). Атлас физического взаимодействия человека и робота. мех.Мах. Теория 43, 253–270. DOI: 10.1016 / j.mechmachtheory.2007.03.003

    CrossRef Полный текст | Google Scholar

    Дель Кастильо, Дж. М. (2002). Аналитическое выражение КПД планетарных зубчатых передач. мех. Мах. Теория 37, 197–214. DOI: 10.1016 / S0094-114X (01) 00077-5

    CrossRef Полный текст | Google Scholar

    Дрессчер, Д., де Фрис, Т. Дж., И Страмиджоли, С. (2016). «Выбор двигателя и коробки передач для повышения энергоэффективности», в Международная конференция IEEE 2016 по усовершенствованной интеллектуальной мехатронике (AIM) (Банф, AB: IEEE), 669–675.DOI: 10.1109 / AIM.2016.7576845

    CrossRef Полный текст | Google Scholar

    Фудзимото Ю. (2015). Эпициклический зубчатый привод и метод его проектирования . Патент Японии № JP2015164100. Токио: Патентное ведомство Японии.

    Fujimoto, Y., and Kobuse, D. (2017). «Роботизированные приводы с высокой степенью управляемости», на международном семинаре IEEJ по обнаружению, срабатыванию, управлению движением и оптимизации (SAMCON) (Нагаока), IS2–1.

    GAM (2020). GSL Трансмиссионный редуктор .Каталог.

    ГЕНЕЗИС (2018). Усилитель крутящего момента Reflex — движущая сила будущего . Tech Update Общайтесь.

    Гиберти Х., Чинквемани С. и Леньяни Г. (2010). Влияние механических характеристик трансмиссии на выбор мотор-редуктора. Мехатроника 20, 604–610. DOI: 10.1016 / j.mechatronics.2010.06.006

    CrossRef Полный текст | Google Scholar

    Жирар, А., Асада, Х. Х. (2017). Использование естественной динамики нагрузки с приводами с регулируемым передаточным числом. Робот IEEE. Автомат. Lett. 2, 741–748. DOI: 10.1109 / LRA.2017.2651946

    CrossRef Полный текст | Google Scholar

    Горла К., Даволи П., Роза Ф., Лонгони К., Чиоцци Ф. и Самарани А. (2008). Теоретический и экспериментальный анализ циклоидного редуктора скорости. J. Mech. Des. 130: 112604. DOI: 10.1115 / 1.2978342

    CrossRef Полный текст | Google Scholar

    Groothuis, S. S., Folkertsma, G.A., и Stramigioli, S. (2018). Общий подход к достижению стабильности и безопасного поведения в распределенных роботизированных архитектурах. Фронт. Робот. AI 5: 108. DOI: 10.3389 / frobt.2018.00108

    CrossRef Полный текст | Google Scholar

    Хаддадин, С., Альбу-Шеффер, А., и Хирцингер, Г. (2009). Требования к безопасным роботам: измерения, анализ и новые идеи. Внутр. J. Робот. Res , 28, 1507–1527. DOI: 10.1177 / 0278364

    3970

    CrossRef Полный текст | Google Scholar

    Хаддадин, С., Крофт, Э. (2016). «Физическое взаимодействие человека и робота», в книге Springer Handbook of Robotics (Cham: Springer), 1835–1874.DOI: 10.1007 / 978-3-319-32552-1_69

    CrossRef Полный текст | Google Scholar

    HALODI Robotics (2018). Revo1 ™ ДВИГАТЕЛЬ с прямым приводом [Брошюра], Moss. Доступно в Интернете по адресу: https://www.halodi.com/revo1 (по состоянию на 30 апреля 2020 г.).

    Хэм, Р. В., Шугар, Т. Г., Вандерборг, Б., Холландер, К. В., и Лефебер, Д. (2009). Соответствующие конструкции приводов. Робот IEEE. Автомат. Mag. 16, 81–94. DOI: 10.1109 / MRA.2009.

    9

    CrossRef Полный текст | Google Scholar

    Гармонический привод A.G. (2014) Технические данные Наборы компонентов CSD-2A . Каталог.

    Хлебаня Г., Куловец С. (2015). «Разработка плоскоцентрической коробки передач на основе геометрии S-образной шестерни», в 11. Kolloquium Getriebetechnik (Мюнхен), 205–216.

    Google Scholar

    Хоган, Н. (1984). «Контроль импеданса: подход к манипуляции», в 1984 American Control Conference (Сан-Диего, Калифорния: IEEE), 304–313. DOI: 10.23919 / ACC.1984.4788393

    CrossRef Полный текст | Google Scholar

    Хори, К., и Hayashi, I. (1994). Максимальный КПД обычных механических планетарных шестерен парадокса для понижающего привода. Trans. Jpn. Soc. Мех. Англ. 60, 3940–3947. DOI: 10.1299 / kikaic.60.3940

    CrossRef Полный текст

    Хантер И. В., Холлербах Дж. М. и Баллантайн Дж. (1991). Сравнительный анализ актуаторных технологий для робототехники. Робот. Ред. 2, 299–342.

    Google Scholar

    IMSystems (2019). проезд Архимеда.IMSystems — Drive Innovation [Брошюра], Делфт.

    Икбал, Дж., Цагаракис, Н. Г., и Колдуэлл, Д. Г. (2011). «Дизайн носимого оптимизированного экзоскелета руки с прямым приводом», на Международной конференции по достижениям в области взаимодействия компьютера и человека (ACHI) (Гозье).

    PubMed Аннотация | Google Scholar

    Канаи Ю., Фудзимото Ю. (2018). «Бездатчиковое управление для экзоскелета с электроприводом с использованием приводов с высокой степенью обратного хода», на IECON 2018–44-й ежегодной конференции Общества промышленной электроники IEEE (Вашингтон, округ Колумбия: IEEE), 5116–5121.DOI: 10.1109 / IECON.2018.85

    CrossRef Полный текст | Google Scholar

    Капелевич А. и ООО «AKGears» (2013 г.). Анализ планетарных передач с высоким передаточным числом. Коэффициент 3, 10.

    Google Scholar

    Караианнидис Ю., Друкас Л., Папагеоргиу Д. и Доулжери З. (2015). Управление роботом для выполнения задач и повышения безопасности при ударах. Фронт. Робот. AI 2:34. DOI: 10.3389 / frobt.2015.00034

    CrossRef Полный текст | Google Scholar

    Кашири, Н., Abate, A., Abram, S.J., Albu-Schaffer, A., Clary, P.J., Daley, M., et al. (2018). Обзор принципов энергоэффективного передвижения роботов. Фронт. Робот. AI 5: 129. DOI: 10.3389 / frobt.2018.00129

    CrossRef Полный текст | Google Scholar

    Ким, Дж., Парк, Ф. К., Парк, Ю., и Шизуо, М. (2002). Проектирование и анализ сферической бесступенчатой ​​трансмиссии. J. Mech. Des . 124, 21–29. DOI: 10.1115 / 1.1436487

    CrossRef Полный текст | Google Scholar

    Классен, Дж.Б. (2019). Дифференциальная планетарная коробка передач . Международный патент № WO2019 / 051614A1. Женева: Всемирная организация интеллектуальной собственности, Международное бюро.

    Google Scholar

    Коряков-Савойский Б., Алексахин И., Власов И. П. (1996). Зубчатая передача . Патент США № US5505668A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Ли С. (2014). «Новейшие технологии проектирования зубчатых передач с большими передаточными числами», в материалах Proceedings of International Gear Conference (Lyon), 427–436.DOI: 10.1533 / 9781782421955.427

    CrossRef Полный текст | Google Scholar

    Looman, J. (1996). Zahnradgetriebe (Зубчатые механизмы) . Берлин: Springer-Verlag. DOI: 10.1007 / 978-3-540-89460-5

    CrossRef Полный текст

    Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Конвенс, Б., Вандерборгт, Б., и Лефебер, Д. (2018). «Конструкция планетарного редуктора для активной носимой робототехники, основанная на анализе видов отказов и последствий (FMEA)», на Международном симпозиуме по носимой робототехнике (Пиза), 460–464.DOI: 10.1007 / 978-3-030-01887-0_89

    CrossRef Полный текст | Google Scholar

    Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Вандерборгт, Б., и Лефебер, Д. (2019a). «Редукторы Wolfrom для легкой робототехники, ориентированной на человека», в Труды Международной конференции по зубчатым колесам 2019 (Мюнхен: VDI), 753–764.

    Лопес-Гарсия, П., Криспель, С., Верстратен, Т., Сэренс, Э., Вандерборгт, Б., и Лефебер, Д. (2019b). «Настройка планетарных зубчатых передач для поддержки и воспроизведения конечностей человека», в MATEC Web of Conferences (Варна: EDP Sciences), 01014.DOI: 10.1051 / matecconf / 201

    1014

    CrossRef Полный текст | Google Scholar

    Лафлин, К., Альбу-Шеффер, А., Хаддадин, С., Отт, К., Стеммер, А., Вимбек, Т., и Хирцингер, Г. (2007). Легкий робот DLR: концепции проектирования и управления роботами в среде обитания человека. Ind. Робот. Int. J . 34, 376–385. DOI: 10.1108 / 014390774386

    CrossRef Полный текст | Google Scholar

    Макмиллан Р. Х. и Дэвис П. Б. (1965). Аналитическое исследование систем раздвоенной передачи энергии. J. Mech. Англ. Sci . 7, 40–47. DOI: 10.1243 / JMES_JOUR_1965_007_009_02

    CrossRef Полный текст | Google Scholar

    Mayr, C. (1989). Präzisions-Getriebe für die Automation: Grundlagen und Anwendungsbeispiele . Ландсберг: Verlag Moderne Industrie.

    Мишель С. (2015). Logarithmische spirale statt evolvente. Maschinenmarkt № . 18, 40–42.

    Михайлидис А., Афанасопулос Э. и Оккас Э. (2014). «Эффективность циклоидного редуктора», в International Gear Conference (Lyon Villeurbanne), 794–803.DOI: 10.1533 / 9781782421955.794

    CrossRef Полный текст | Google Scholar

    Морозуми, М. (1970). Эвольвентное внутреннее зацепление со смещением профиля . Патент США № US3546972A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Мюллер, Х. В. (1998). Die Umlaufgetriebe: Auslegung und vielseitige Anwendungen . Берлин; Гейдельберг: Springer-Verlag. DOI: 10.1007 / 978-3-642-58725-2

    CrossRef Полный текст | Google Scholar

    Мульцер, Ф.(2010). Systematik hoch übersetzender koaxialer getriebe (докторская диссертация). Технический университет Мюнхена, Мюнхен, Германия.

    Google Scholar

    Musser, C. W. (1955). Деформационно-волновая передача . Патент США № US2

  • 3A. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    НАБТЕКО (2018). Прецизионный редуктор серии RV — N . CAT.180410. Каталог.

    Нойгарт, А. Г. (2020). Линия эконом-класса PLE .Каталог.

    Ниманн Г., Винтер Х. и Хён Б. Р. (1975). Maschinenelemente, Vol. 1 . Берлин; Гейдельберг; Нью-Йорк, штат Нью-Йорк: Спрингер.

    Google Scholar

    Pasch, K. A., and Seering, W. P. (1983). «О приводных системах для высокопроизводительных машин», в Машиностроение (Нью-Йорк, Нью-Йорк: Машиностроение Общества ASME-AMER), 107–107.

    Pennestri, E., and Freudenstein, F. (1993). Механический КПД планетарных зубчатых передач. ASME J. Mech. Des . 115, 645–651. DOI: 10.1115 / 1.29

    CrossRef Полный текст | Google Scholar

    Петтерссон, М., и Олвандер, Дж. (2009). Оптимизация трансмиссии промышленных роботов. IEEE Trans. Робот. 25, 1419–1424. DOI: 10.1109 / TRO.2009.2028764

    CrossRef Полный текст | Google Scholar

    Фам, А. Д., и Ан, Х. Дж. (2018). Прецизионные редукторы для промышленных роботов, участвующих в четвертой промышленной революции: современное состояние, анализ, дизайн, оценка производительности и перспективы. Внутр. J. Precis. Англ. Manuf. Green Technol. 5, 519–533. DOI: 10.1007 / s40684-018-0058-x

    CrossRef Полный текст | Google Scholar

    Резазаде, С., Херст, Дж. У. (2014). «Об оптимальном выборе двигателей и трансмиссий для электромеханических и робототехнических систем», в Международная конференция IEEE / RSJ 2014 по интеллектуальным роботам и системам (Чикаго, Иллинойс: IEEE), 4605–4611. DOI: 10.1109 / IROS.2014.6943215

    CrossRef Полный текст | Google Scholar

    Роос, Ф., Йоханссон, Х., Викандер, Дж. (2006). Оптимальный выбор двигателя и редуктора для мехатронных приложений. Мехатроника 16, 63–72. DOI: 10.1016 / j.mechatronics.2005.08.001

    CrossRef Полный текст | Google Scholar

    Розенбауэр Т. (1995). Getriebe für Industrieroboter: Beurteilungskriterien . Kenndaten, Einsatzhinweise: шейкер.

    Россман, А. М. (1934). Механизм . Патент США № US 1970251. Вашингтон, округ Колумбия: У.S. Ведомство по патентам и товарным знакам.

    Google Scholar

    Saerens, E., Crispel, S., García, P. L., Verstraten, T., Ducastel, V., Vanderborght, B., and Lefeber, D. (2019). Законы масштабирования для роботизированных трансмиссий. мех. Мах. Теория 140, 601–621. DOI: 10.1016 / j.mechmachtheory.2019.06.027

    CrossRef Полный текст | Google Scholar

    Шафер И., Бурлье П., Хантшак Ф., Робертс Э. У., Льюис С. Д., Форстер Д. Дж. И Джон К. (2005). «Космическая смазка и характеристики шестерен гармонического привода», , 11-й Европейский симпозиум по космическим механизмам и трибологии, ESMATS 2005 (Люцерн), 65–72.

    Google Scholar

    Шейнман, В., Маккарти, Дж. М., и Сонг, Дж. Б. (2016). «Механизм и приведение в действие», в Springer Handbook of Robotics (Cham: Springer), 67–90. DOI: 10.1007 / 978-3-319-32552-1_4

    CrossRef Полный текст | Google Scholar

    Шемпф, Х. (1990). Сравнительное проектирование, моделирование и анализ управления роботизированными трансмиссиями (кандидатская диссертация). № WHOI-90-43. Кафедра машиностроения и Океанографический институт Вудс-Холла, Массачусетский технологический институт, Кембридж, Массачусетс, США.DOI: 10.1575 / 1912/5431

    CrossRef Полный текст | Google Scholar

    Шемпф Х. и Йоргер Д. Р. (1993). Изучение доминирующих рабочих характеристик в трансмиссиях роботов. ASME J. Mech. Des. 115, 472–482. DOI: 10.1115 / 1.2

    4

    CrossRef Полный текст | Google Scholar

    Шорш, Дж. Ф. (2014). Составной планетарный привод трения . Патент Нидерландов № 2013496. Де Хааг: Octrooicentrum Nederland.

    Google Scholar

    Шрайбер, Х.(2015). «Revolutionäres getriebeprinzip durch neuinterpretation von maschinenelementen — Die WITTENSTEIN Galaxie®-Kinematik», в Dresdner Maschinenelemente Kolloquium, DMK (Дрезден), 2015. S.

    Шрайбер, Х., Рётлингсхёфер, Т. (2017). «Кинематическая классификация коробки передач с отдельными упорными зубьями и ее преимущества по сравнению с существующими подходами», на Международной конференции по зубчатым колесам , ICG (Мюнхен).

    Шрайбер, Х., и Шмидт, М.(2015). Getriebe. Патент Германии № DE 10 2015 105 525 A1. Мюнхен: Deutsches Patent- und Markenamt.

    Google Scholar

    Сенсинджер, Дж. У. (2010). «Выбор двигателей для роботов, использующих биомиметические траектории: оптимальные критерии, обмотки и другие соображения», в Международная конференция IEEE по робототехнике и автоматизации, 2010 г., (Анкоридж, AK: IEEE), 4175–4181. DOI: 10.1109 / ROBOT.2010.5509620

    CrossRef Полный текст | Google Scholar

    Сенсингер, Дж.W. (2013). КПД высокочувствительных зубчатых передач, таких как циклоидные передачи. ASME J. Mech. Des. 135, 071006-1–071006-9. DOI: 10.1115 / 1.4024370

    CrossRef Полный текст | Google Scholar

    Сенсингер, Дж. У., Кларк, С. Д., Шорш, Дж. Ф. (2011). «Внешний и внутренний роторы в роботизированных бесщеточных двигателях», , Международная конференция IEEE по робототехнике и автоматизации, 2011 г., (Монреаль, Квебек, IEEE), 2764–2770. DOI: 10.1109 / ICRA.2011.5979940

    CrossRef Полный текст | Google Scholar

    Сеок, С., Wang, A., Chuah, M. Y. M., Hyun, D. J., Lee, J., Otten, D. M., et al. (2014). Принципы разработки энергоэффективного передвижения на ногах и их реализация на роботе-гепарде Массачусетского технологического института. IEEE / ASME Trans. Мех. 20, 1117–1129. DOI: 10.1109 / TMECH.2014.2339013

    CrossRef Полный текст | Google Scholar

    Сицилиано Б., Шавикко Л., Виллани Л. и Ориоло Г. (2010). Робототехника: моделирование, планирование и управление . Лондон: Springer Science and Business Media. DOI: 10.1007 / 978-1-84628-642-1

    CrossRef Полный текст | Google Scholar

    Слэттер Р. (2000). Weiterentwicklung eines Präzisionsgetriebes für die Robotik . Санкт-Леонард: Antriebstechnik.

    Google Scholar

    ПОЗВОНОЧНИК (2017). TwinSpin — высокоточные редукторы — Präzisionsgetriebe . Каталог.

    Страмиджоли, С., Ван Оорт, Г., и Дертьен, Э. (2008). «Концепция нового энергоэффективного привода», в Международная конференция IEEE / ASME 2008 по передовой интеллектуальной мехатронике (Сиань: IEEE), 671–675.DOI: 10.1109 / AIM.2008.4601740

    CrossRef Полный текст | Google Scholar

    СУМИТОМО (2017). Fine Cyclo® Spielfreie Präzisionsgetriebe . Каталог 9

    DE 02/2017.

    СУМИТОМО (2020). Приводы управления движением E-Cyclo®. Каталог F10001E-1.

    Талбот Д., Кахраман А. (2014). «Методология прогнозирования потерь мощности планетарных передач», в International Gear Conference (Lyon-Villeurbanne), 26–28. DOI: 10.1533 / 9781782421955.625

    CrossRef Полный текст

    Томчик, Х. (2000). Регулирующее устройство с планетарной передачей . Европейский патент № EP1244880B1. Мюнхен: Европейское патентное ведомство.

    Google Scholar

    Toxiri, S., Näf, M. B., Lazzaroni, M., Fernández, J., Sposito, M., Poliero, T., et al. (2019). «Экзоскелеты с опорой на спину для профессионального использования: обзор технологических достижений и тенденций», в IISE Trans. Ок. Эргон. Гм. Факторы 7, 3–4, 237–249.DOI: 10.1080 / 24725838.2019.1626303

    CrossRef Полный текст | Google Scholar

    Ван де Стрете, Х. Дж., Дегезель, П., Де Шуттер, Дж., И Бельманс, Р. Дж. (1998). Критерий выбора серводвигателя для мехатронных приложений. IEEE / ASME Trans. Мех. 3, 43–50. DOI: 10.1109 / 3516.662867

    CrossRef Полный текст | Google Scholar

    Вил, А. Дж., И Се, С. К. (2016). На пути к совместимым и пригодным для носки роботизированным ортезу: обзор текущих и новых актуаторных технологий. Med. Англ. Phys. 38, 317–325. DOI: 10.1016 / j.medengphy.2016.01.010

    PubMed Аннотация | CrossRef Полный текст | Google Scholar

    Verstraten, T., Furnémont, R., Mathijssen, G., Vanderborght, B., and Lefeber, D. (2016). «Энергопотребление мотор-редукторов постоянного тока в динамических приложениях: сравнение подходов к моделированию» в IEEE Robot. Автомат. Lett. 1, 524–530. DOI: 10.1109 / LRA.2016.2517820

    CrossRef Полный текст | Google Scholar

    Враниш, Дж.М. (1995). Планетарный привод без несущей, без люфта . Патент США № US5409431. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Враниш, Дж. М. (2006). Подшипники с частичным зубчатым колесом . Патент США № US2006 / 0219039A1. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    Ван, А., Ким, С. (2015). «Направленная эффективность в редукторных трансмиссиях: характеристика обратного движения в направлении улучшения проприоцептивного контроля», в Международная конференция по робототехнике и автоматизации (ICRA) 2015 IEEE (ICRA) (Сиэтл, Вашингтон: IEEE), 1055–1062.DOI: 10.1109 / ICRA.2015.7139307

    CrossRef Полный текст | Google Scholar

    Вайнберг Б., Мавроидис К. и Враниш Дж. М. (2008). Зубчатый подшипник привода . Патент США № US2008 / 0045374A1. Вашингтон, округ Колумбия: Бюро по патентам и товарным знакам США.

    Google Scholar

    WinterGreen Research (2018). Прецизионные редукторы деформационных волн и редукторы RV и RD: доли рынка, стратегия и прогнозы, во всем мире, с 2018 по 2024 годы . WIN0418002.

    WITTENSTEIN AG (2020 г.). Technische Broschüre SP + und TP + Getrieben. Каталог.

    Вольф, А. (1958). Die Grundgesetze der Umlaufgetriebe . Брауншвейг: Фридр. Vieweg и Sohn.

    Вольфром, У. (1912). Der Wirkungsgrad von Planetenrädergetrieben. Werkstattstechnik 6, 615–617.

    Ю. Д., Бичли Н. (1985). О механическом КПД дифференциала. ASME J. Mech. Пер. Автомат. 107, 61–67.DOI: 10.1115 / 1.3258696

    CrossRef Полный текст | Google Scholar

    Зинн М., Рот Б., Хатиб О. и Солсбери Дж. К. (2004). Новый подход к срабатыванию для создания роботов, удобных для человека. Внутр. J. Робот. Res. 23, 379–398. DOI: 10.1177 / 0278364

      2193

      CrossRef Полный текст | Google Scholar

      Глоссарий терминов по робототехнике | Productivity Inc

      Щелкните здесь, чтобы загрузить PDF.

      Уровень ускорения: Мера изменения скорости сустава с течением времени.Двойная и однократная дифференциация этого уровня дает общее изменение положения и изменение положения в течение времени, соответственно. Обратитесь к уровню положения и уровню скорости.

      Точность : мера способности робота повторять одну и ту же задачу несколько раз без изменения близости к определенной точке. Точность — это измерение отклонения между характеристикой команды и достигнутой характеристикой или точность, с которой может быть достигнуто вычисленное или рассчитанное положение робота.Точность обычно хуже, чем повторяемость руки. Точность не постоянна по всему рабочему пространству из-за влияния кинематики звена.

      Активный совместимый робот: Активный совместимый робот — это робот, в котором изменение движения во время выполнения задачи инициируется системой управления. Модификация индуцированного движения незначительна, но достаточна для облегчения выполнения желаемой задачи.

      Фактическое положение: Положение или местоположение контрольной точки инструмента.Обратите внимание, что это не будет точно таким же, как позиция запроса из-за множества не обнаруженных ошибок (таких как отклонение линии связи, нерегулярность передачи, допуски на длину линии и т. Д.).

      Привод: Силовой механизм, используемый для движения или поддержания положения робота путем преобразования различных типов энергии, таких как электрические или механические процессы, с использованием жидкости или воздуха (например, двигатель, который преобразует электрическую энергию в движение робота). Привод реагирует на сигнал, полученный от системы управления.

      Алгоритм: Список шагов, используемых для поиска решения данной проблемы.

      Аналитические методы: Математический способ решения задач без повторяющихся попыток приблизительного ответа.

      Прикладная программа: Последовательность шагов, определяющая, какие работы будут выполнять роботы. Владелец может персонализировать программу в соответствии с конкретным дизайном.

      Дуговая сварка: Тип сварки, при котором используется постоянный или переменный ток для подачи энергии от электрода к металлу, создавая электрическую дугу.Место на свариваемом металле оплавляется. Затраты сведены к минимуму, что позволяет использовать этот процесс в широком диапазоне.

      Робот для дуговой сварки: Относится к автоматизированному процессу сварки, выполняемому промышленным роботом для создания электрической дуги между электродом и основным материалом для плавления металлов в точке сварки.

      Рука: Связанный набор звеньев и механических соединений, включающий робот-манипулятор, который поддерживает и / или перемещает запястье и руку или рабочий орган в пространстве.Сама рука не имеет рабочего органа. См. «Манипулятор, конечный эффект и запястье».

      Шарнирный манипулятор: Манипулятор с рычагом, который разделен на секции (звенья) одним или несколькими суставами. Каждое из сочленений представляет собой степень свободы в системе манипулятора и допускает поступательное и вращательное движение.

      Шарнирное сочленение: Описывает шарнирное устройство, такое как шарнирный манипулятор. Шарниры обеспечивают вращение вокруг вертикальной оси и подъем из горизонтальной плоскости.Это позволяет роботу достигать ограниченного пространства.

      Робот-сборщик: Робот, специально разработанный для соединения, подгонки или иной сборки различных частей или компонентов последовательным образом с целью создания готовых изделий. В основном используется для захвата деталей и соединения или подгонки их друг к другу, например, при производстве на конвейере.

      Обеспечиваемая непрерывная работа: Роботы наблюдаются при выполнении назначенных приложений на минимальной скорости.

      Посещенная проверка программы: Рабочий в зоне ограниченного доступа проверяет назначенные роботы задания на указанной скорости, чтобы обеспечить надлежащие условия работы.

      Автоматический режим / Работа: Состояние, когда робот начинает самодвижущиеся операции — выполняет запрограммированные задания без участия рабочего.

      Автоматизация: Система, использующая программируемое оборудование для производства. Оборудование может быть изменено и управляться программой в зависимости от продукта.

      Решения по автоматизации: Машины и программы, используемые для автоматической работы.

      Автономный: Процедуры в системе, выполняемые без участия рабочего и предварительно запрограммированных операций.

      Барьер осведомленности / сигнал: Ограничение, которое физически или визуально (например, звук или свет) информирует человека о приближающейся опасности или опасности.

      Ось: Направление, используемое для задания движения робота в линейном или вращательном режиме.Дело в том, что что-то, например инструмент, вращается. Количество осей у робота варьируется, но большинство промышленных роботов имеют 4 или 6 осей.

      Axis Acceleration: Максимальное ускорение, которое может достичь конкретная ось, когда робот загружен рекомендуемой полезной нагрузкой.

      Объединительная плата: Печатная плата, содержащая гнезда, в которые могут быть вставлены другие печатные платы. В контексте ПК термин объединительная плата относится к большой печатной плате, которая содержит гнезда для плат расширения.

      Шарико-винтовая передача: Устройство для преобразования вращательного движения в линейное или наоборот, содержащее резьбовую часть стержня и гайку, состоящую из клетки, удерживающей множество шарикоподшипников.

      Барьер: Физическая конструкция, используемая для отделения людей от зоны ограниченного доступа.

      База: Устойчивая платформа, к которой прикреплен роботизированный манипулятор.

      Биомиметик: Имитация биологических систем, существующих в природе.

      Burn-In: Процедура тестирования робота, при которой все компоненты робота работают непрерывно в течение длительного периода времени.Это делается для проверки движения и программирования движения робота на ранних этапах, чтобы избежать сбоев в работе после развертывания.

      Автоматизация бизнес-процессов (BPA): Эффективность процесса повышается за счет внедрения корпоративного программного обеспечения на протяжении всего процесса при одновременном снижении вовлеченности сотрудников.

      CAD (Computer-Aided Design): Компьютерные графические приложения, предназначенные для проектирования объектов (или частей), которые должны быть изготовлены. Компьютер используется в качестве инструмента для разработки схем и создания чертежей, которые позволяют точно производить объект.Система CAD позволяет создавать трехмерные чертежи основных фигур, точно определять размеры и размещение компонентов, создавать линии определенной длины, ширины или угла, а также удовлетворять различные геометрические формы. Эта система также позволяет проектировщику испытывать моделируемую деталь при различных напряжениях, нагрузках и т. Д.

      CAM (Автоматизированное производство): Компьютерное программное обеспечение используется для проектирования и / или изменения производственного процесса.

      Кулачок: Осевая линия вращения детали, которая не находится в геометрическом центре, заставляя другие детали давить на нее, заставляя деталь двигаться внутрь и наружу.

      Карусель: Вращающаяся платформа, которая доставляет объекты роботу и служит системой очереди объектов. Эта карусель доставляет объекты или детали на станцию ​​загрузки / выгрузки робота.

      Робот с декартовыми координатами: Робот с декартовыми координатами — это робот, чьи степени свободы манипулятора определяются с помощью декартовых координат. Это описывает движения восток-запад, север-юг и вверх-вниз, а также вращательные движения для изменения ориентации.

      Декартов манипулятор: Рука робота с призматическими шарнирами, которая позволяет перемещаться по одной или нескольким из трех осей в системе координат X, Y и Z.

      Декартовы роботы: Оси трех призматических или линейных подвижных шарниров робота находятся в одном направлении с декартовым координатором.

      Декартова топология: Топология, в которой используются призматические стыки, обычно расположенные перпендикулярно друг другу.

      Центральный процессор (ЦП): Основная печатная плата и процессор системы контроллера.

      Центробежная сила: Когда тело вращается вокруг оси, отличной от оси, расположенной в его центре масс, оно оказывает на ось направленную наружу радиальную силу, называемую центробежной силой, которая удерживает его от движения по прямой касательной линии. Чтобы компенсировать эту силу, робот должен приложить противоположный крутящий момент в суставе вращения.

      Шасси: Детали, составляющие машину, за исключением корпуса или кожуха.В случае автомобиля это будет включать такие части, как рама и двигатель, но не тело, окружающее эти части.

      Тип кругового движения: Расчетный путь, который выполняет робот, имеет круговую форму.

      Зажим: Концевой эффектор, который служит пневматической рукой, которая управляет захватом и освобождением объекта. Тактильные датчики и датчики силы обратной связи используются для управления силой, приложенной зажимом к объекту. См. End-Effector.

      Closed-Form: Итерация или повторное приближение для поиска решения этой постановки задачи.

      Closed-Loop: Управление осуществляется роботом-манипулятором с помощью информации обратной связи. Когда манипулятор находится в действии, его датчики постоянно передают информацию контроллеру робота, который используется для дальнейшего направления манипулятора в рамках данной задачи. Многие датчики используются для передачи информации о размещении манипулятора, скорости, крутящем моменте, приложенных силах, а также о размещении целевого движущегося объекта и т. Д.См. Обратную связь.

      Датчик столкновения: Датчик, который обнаруживает и сообщает контроллеру о необходимости остановить робота до или во время аварии. Другие термины для этого устройства включают в себя, среди прочего, устройство защиты от столкновения, предохранительный шарнир робота и роботизированное сцепление.

      Интерпретатор команд: Модуль или набор модулей, определяющий значение полученной команды. Команда разбивается на части (разбирается) и обрабатывается.

      Command Position: Конечная точка движения робота, которую пытается достичь контроллер,

      Компенсатор: Удаленное устройство, которое включает в себя несколько срезных подушек для облегчения операций по установке колышков в отверстие.Подушечки сдвига представляют собой эластомеры, также известные как полимеры. В устройстве используются от трех до двенадцати таких срезных подушек.

      Соответствие: Смещение манипулятора в ответ на силу или крутящий момент. Высокая податливость означает, что манипулятор немного перемещается при нагрузке. Это называется пористым или упругим. При стрессе низкая комплаенс будет жесткой системой.

      Соответствующий робот : Робот, который выполняет задачи в отношении внешних сил, изменяя свои движения таким образом, чтобы эти силы сводились к минимуму.Указанное или разрешенное движение достигается за счет поперечной (горизонтальной), осевой (вертикальной) или вращательной податливости.

      Компьютерное проектирование (CAD): Приложения для компьютерной графики, предназначенные для проектирования объектов (или частей), которые должны быть изготовлены. Компьютер используется в качестве инструмента для разработки схем и создания чертежей, которые позволяют точно производить объект. Система CAD позволяет создавать трехмерные чертежи основных фигур, точно определять размеры и размещение компонентов, создавать линии определенной длины, ширины или угла, а также удовлетворять различные геометрические формы.Эта система также позволяет проектировщику испытывать моделируемую деталь при различных напряжениях, нагрузках и т. Д.

      Компьютерное производство (CAM): Компьютерное программное обеспечение используется для проектирования и / или изменения производственного процесса.

      Конфигурация: Расположение связей, созданных определенным набором совместных позиций на роботе. Обратите внимание, что может быть несколько конфигураций, приводящих к одному и тому же положению конечной точки.

      Консервативное движение: Рабочий орган и суставы всегда движутся своим определенным маршрутом.

      Контактный датчик: Устройство, которое определяет присутствие объекта или измеряет величину приложенной силы или крутящего момента, приложенного к объекту при физическом контакте с ним. Контактное зондирование можно использовать для определения местоположения, идентичности и ориентации деталей.

      Непрерывный путь: Описывает процесс, в котором робот управляет всем пройденным путем, в отличие от метода обхода от точки к точке. Это используется, когда траектория рабочего органа наиболее важна для обеспечения плавного движения, например, при окраске распылением и т. Д.См. «Точка-точка».

      Алгоритм управления: Монитор, используемый для обнаружения отклонений траектории, в которых датчики обнаруживают такие отклонения, и приложения крутящего момента вычисляются для приводов.

      Команда управления: Команда, передаваемая роботу с помощью устройства ввода от человека к машине. См. Кулон (Обучение). Эта команда принимается системой контроллера робота и интерпретируется. Затем соответствующая команда подается на исполнительные механизмы робота, которые позволяют ему реагировать на начальную команду.Часто команда должна интерпретироваться с использованием логических блоков и определенных алгоритмов. См. «Устройство ввода и цикл команд».

      Устройство управления: Любая часть аппаратного обеспечения управления, обеспечивающая средства для вмешательства человека в управление роботом или роботизированной системой, например кнопка аварийного останова, кнопка запуска или селекторный переключатель.

      Режим управления: Средства, с помощью которых инструкции передаются роботу.

      Программа управления: Управляющая информация, встроенная в робота или автоматизированную систему, которая учитывает возможные варианты поведения.Предполагается, что управляющая информация не будет изменена.

      Управляемость: Свойство системы, с помощью которого входной сигнал может переводить систему из начального состояния в желаемое состояние по предсказуемому пути в течение заранее определенного периода времени.

      Контроллер: Устройство обработки информации, входами которого являются как желаемое, так и измеренное положение, скорость или другие соответствующие переменные в процессе, а выходными данными являются управляющие сигналы для управляющего двигателя или исполнительного механизма.Система контроллера: Механизм управления роботом обычно представляет собой компьютер определенного типа, который используется для хранения данных (как робота, так и рабочей среды), а также хранения и выполнения программ, управляющих роботом. Система контроллера содержит программы, данные, алгоритмы; логический анализ и различные другие операции обработки, которые позволяют ему выполнять. См. Робот.

      Скоординированное движение по прямой линии: Центральная точка инструмента следует определенной траектории, позволяя осям робота достигать заданных конечных точек одновременно.Это обеспечивает плавную работу движения.

      ЦП (центральный процессор): Основная печатная плата и процессор системы контроллера.

      Цикл: Однократное выполнение полного набора движений и функций, содержащихся в программе робота.

      Циклическая система координат: Система координат, которая определяет положение любой точки с точки зрения углового размера, радиального размера и высоты от базовой плоскости.Эти три измерения определяют точку на цилиндре.

      Cyclo Drive: Торговая марка устройства понижения скорости, которое преобразует низкий крутящий момент на высокой скорости в высокий крутящий момент на низкой скорости, обычно используется на главной оси (большей).

      Цилиндрический робот: Оси робота соответствуют цилиндрической системе координат.

      Цилиндрическая топология: Топология, в которой плечо следует по радиусу горизонтального круга с призматическим шарниром для подъема или опускания круга.Не пользуется популярностью в промышленности.

      Переключатель аварийного отключения: См. Устройство включения .

      Степени свободы: Количество независимых направлений или суставов робота, которые позволят роботу перемещать свой конечный эффектор в требуемой последовательности движений. Роботизированный сустав равен одной степени свободы. Для произвольного позиционирования необходимо 6 степеней свободы: 3 для положения (влево-вправо, вперед-назад и вверх-вниз) и 3 для ориентации (рыскание, тангаж и крен).

      Устройство: Аппаратное обеспечение, используемое для управления различными частями системы.

      Ловкость: Мера способности робота проходить определенные сложные пути.

      Цифровой компьютер: Система двоичных чисел чаще всего используется в качестве цифр для вычислений или операций на компьютере.

      Прямой привод: Совместное срабатывание без элементов передачи, т. Е. Тяга привинчена к выходу двигателя.

      Прямое числовое управление (DNC): Оборудование с цифровым управлением получает входные данные от компьютера.

      Прямой поиск: Пробные решения используются для поиска числового ответа, а не для тщательного решения производных.

      Время простоя : период времени, в течение которого робот или производственная линия останавливаются из-за неисправности или отказа. См. Время безотказной работы.

      Привод: Редуктор скорости (зубчатый) для преобразования низкого крутящего момента на высокой скорости в высокий крутящий момент на низкой скорости.См. Разделы Harmonic Drive, Cyclo Drive, Rotary Vector Drive.

      Мощность привода: Приводы преобразуют этот источник энергии в энергию, полезную для движения робота.

      Drop Delivery: Способ доставки предмета на рабочее место под действием силы тяжести. Обычно желоб или контейнер размещают таким образом, чтобы по окончании работы над деталью она упала или упала в желоб или на конвейер с небольшой или отсутствующей транспортировкой робота.

      Dynamic Модель: Эта модель показывает силы, вызывающие движение робота.

      Dynamics: Изучение движения, сил, вызывающих движение, и сил, возникающих при движении. Динамика манипулятора робота очень сложна, поскольку является результатом кинематического поведения всех масс внутри конструкции руки. Кинематика манипулятора робота сложна сама по себе.

      Аварийная остановка (ESTOP): Немедленно останавливает движение и задачи системы. Это достигается за счет работы схемы с использованием аппаратных компонентов, которая перекрывает все другие органы управления роботом, снимая мощность привода с исполнительных механизмов робота, что приводит к остановке всех движущихся частей.

      Разрешающее устройство: Устройство с ручным управлением, которое при постоянной активации разрешает движение. Освобождение устройства должно остановить движение робота и связанное с ним оборудование, которое может представлять опасность.

      Энкодер: Устройство обратной связи в руке робота-манипулятора, которое передает данные о текущем положении (и ориентации руки) контроллеру. Луч света проходит через вращающийся кодовый диск, который содержит точный узор из непрозрачных и прозрачных сегментов на своей поверхности.Свет, который проходит через диск, попадает в фотодетекторы, которые преобразуют световой рисунок в электрические сигналы. См. Раздел «Обратная связь, управление с обратной связью» и «Датчик обратной связи».

      End-Effector: Вспомогательное устройство или инструмент, специально предназначенный для прикрепления к запястью робота или монтажной пластине для инструмента, чтобы робот мог выполнять намеченную задачу. (Примеры могут включать захват, пистолет для точечной сварки, пистолет для дуговой сварки, распылительный пистолет или любые другие инструменты для нанесения.)

      Пространство рабочего органа: Площадь, в которой перемещается рабочий орган робота относительно его основания.

      Инструмент на конце руки (EOAT): Прикладные инструменты, расположенные на конце руки робота. Качество EOAT сильно влияет на производительность системы.

      Конечная точка: Номинальное заданное положение, которое манипулятор будет пытаться достичь в конце пути движения. Конец дистального звена.

      Источник энергии: Энергия обеспечивается преобразованием различных типов источников, таких как химические, термические, механические и т. Д.

      Ограничение равенства: Изменение положения, движения и положения рабочего органа должно быть равно определенному числу.

      Ошибка: Разница между фактическим ответом робота и выданной командой.

      Ошибка Функция: Число выбирается для обозначения расхождения между фактическим значением и желаемым значением для зависимой переменной.

      E-STOP (аварийный останов): Немедленно останавливает движение и задачи системы.Это достигается за счет работы схемы с использованием аппаратных компонентов, которая перекрывает все другие органы управления роботом, снимая мощность привода с исполнительных механизмов робота, что приводит к остановке всех движущихся частей.

      Расширяемость: Возможность добавления ресурсов в систему, таких как память, жесткий диск большего размера, новая карта ввода-вывода и т. Д.

      Экспоненциальная сборка: Нанороботы многократно повторяют себя.

      Factory Automation: Процесс интеграции промышленного оборудования с помощью управляющего программного обеспечения.Эта интеграция повышает эффективность, производительность и качество при одновременном снижении затрат.

      Обратная связь: Сигнал от оборудования робота об условиях в том виде, в каком они существуют на самом деле, а не в том виде, в каком они были указаны компьютером. См. Раздел «Управление обратной связью» и «Датчик обратной связи».

      Управление с обратной связью: Тип управления системой, получаемый, когда информация от манипулятора или датчика возвращается в контроллер робота для получения желаемого эффекта робота.См. Раздел «Обратная связь, управление с обратной связью» и «Датчик обратной связи».

      Датчик обратной связи: Механизм, через который информация от сенсорных устройств передается обратно в блок управления робота. Информация используется в последующем направлении движения робота. См. «Управление с обратной связью и управление с обратной связью».

      Стационарная / жесткая автоматизация: Автоматизированная система с электронным управлением для простой, прямой или круговой. Эти системы в основном используются для крупных производственных циклов, когда требуется небольшая гибкость.

      Гибкость: Разнообразные задания, которые может выполнять робот.

      Гибкая автоматизация: Возможность простого изменения конфигурации робота и системы и изменения конструкции продукта. Производительность повышается за счет минимального времени на настройку.

      Силовая обратная связь: Метод измерения, использующий электрические сигналы для управления рабочим органом робота во время его работы. Информация поступает от датчиков силы рабочего органа к блоку управления роботом во время выполнения конкретной задачи, чтобы обеспечить улучшенную работу рабочего органа.См. Раздел «Обратная связь», «Датчик обратной связи» и «Датчик силы».

      Датчик силы: Датчик, способный измерять силы и крутящий момент, прилагаемые роботом и его запястьем. Такие датчики обычно содержат тензодатчики. Датчик предоставляет информацию, необходимую для обратной связи по силе. См. Раздел «Силовая обратная связь», «Деформация», «Напряжение» и «Тензометрический датчик».

      Прямое кинематическое решение: Вычисление математических алгоритмов, наряду с датчиками сочленения, используемыми для определения положения конечной точки с учетом положений сочленений.Для большинства топологий роботов это проще, чем найти решение с обратной кинематикой.

      Frame : система координат, используемая для определения положения и ориентации объекта в пространстве, а также положения робота в его модели.

      Полностью ограниченный робот: Количество ограничений равенства для робота равно количеству независимых суставов.

      Gantry: Регулируемая подъемная машина, которая перемещается по фиксированной платформе или гусенице, поднятым или на уровне земли по осям X, Y и Z.

      Портальный робот: Робот, который имеет три степени свободы в системе координат X, Y и Z. Обычно состоит из системы намотки (используемой как кран), которая при намотке или размотке обеспечивает движение вверх и вниз по оси Z. Катушка может скользить слева направо по валу, который обеспечивает движение по оси Z. Катушка и вал могут двигаться вперед и назад по направляющим, которые обеспечивают движение по оси Y. Обычно используется, чтобы расположить рабочий орган над желаемым объектом и поднять его.

      Гравитационная нагрузка: Сила, прикладываемая вниз, из-за веса манипулятора робота и / или нагрузки на конце руки. Сила создает ошибку в отношении точности положения рабочего органа. Компенсирующая сила может быть вычислена и применена, чтобы вернуть руку в желаемое положение.

      Захват: Концевой эффектор, предназначенный для захвата и удержания, а также «захватывания» или захвата объекта. Он прикреплен к последнему звену руки. Он может удерживать объект, используя несколько различных методов, таких как: приложение давления между своими «пальцами», или может использовать намагничивание или вакуум для удержания объекта и т. Д.См. End-Effector.

      Рука: Зажим или захват, используемый в качестве рабочего органа для захвата предметов. См. Концевой эффектор, захват.

      Harmonic Drive: Компактный легкий редуктор скорости, который преобразует низкий крутящий момент на высокой скорости в высокий крутящий момент на низкой скорости. Обычно находится на малой оси (меньшей).

      Жгут: Обычно несколько проводов, связанных вместе для подачи питания и / или передачи сигналов к / от устройств. Например, двигатели робота подключены к контроллеру через жгут проводов.

      Опасность: Возможная опасная или вредная ситуация.

      Опасное движение: Непреднамеренное / неожиданное движение робота, которое может привести к травме.

      Удержание: Остановка всех движений робота во время их последовательности, при которой на роботе сохраняется некоторая мощность. Например, выполнение программы останавливается; однако питание серводвигателей остается включенным, если требуется перезапуск.

      Исходное положение: Известное и фиксированное положение на основной оси координат манипулятора, где он останавливается, или в указанном нулевом положении для каждой оси.Это положение уникально для каждой модели манипулятора.

      Взаимодействие человека и компьютера (HCI): Анализ взаимоотношений компьютеров и людей.

      Гибрид: Робот состоит из частей, которые подбирают и устанавливают, а также частей с сервоуправлением.

      Индуктивные датчики: Класс датчиков приближения, которые имеют половину ферритового сердечника, катушка которого является частью цепи генератора. Когда металлический объект входит в это поле, в какой-то момент объект поглощает достаточно энергии из поля, чтобы заставить осциллятор перестать колебаться.Это означает, что объект присутствует в заданной близости. См. Датчик приближения.

      Промышленная автоматизация : Также называемая автоматизацией, использует числовое управление при использовании систем управления (например, компьютеров) для управления промышленным оборудованием и процессами, заменяя людей-операторов. Это шаг за пределы механизации, когда операторы получают оборудование, которое помогает им справляться с физическими требованиями работы. Наиболее заметной частью современной автоматизации можно назвать промышленную робототехнику.Некоторыми преимуществами являются повторяемость, более строгий контроль качества, сокращение количества отходов и интеграция с бизнес-системами, повышение производительности и сокращение трудозатрат.

      Промышленное оборудование: Машины, способные выполнять производственные операции.

      Промышленный робот: Перепрограммируемый многофункциональный манипулятор, предназначенный для перемещения материалов, деталей, инструментов или специализированных устройств с помощью переменных запрограммированных движений для выполнения различных задач.Основные компоненты: одна или несколько рук, которые могут двигаться в нескольких направлениях; манипулятор, компьютерный контроллер, который дает подробные инструкции по перемещению.

      Система промышленных роботов: Система роботов, механизмов и устройств, которые запрограммированы на выполнение операций с включенным интерфейсом.

      Промышленная робототехника: Идея внедрения роботизированной системы в производство.

      Ограничение неравенства: Ограничение функции, которая может варьироваться, например, движение сустава, скорость и крутящий момент.

      Устройства ввода: Разнообразные устройства, обеспечивающие взаимодействие человека с машиной. Это позволяет человеку программировать, управлять и моделировать робота. К таким устройствам относятся пульт для программирования, компьютерные клавиатуры, мышь, джойстики, кнопки, панель оператора, тумба оператора и т. Д.

      Инструкция: Строка программного кода, вызывающая действие системного контроллера. См. Command.

      Цикл команд: Время, необходимое для цикла системы контроллера робота для декодирования команды или инструкции перед ее выполнением.Программисты-роботы должны очень внимательно анализировать цикл команд, чтобы обеспечить быструю и правильную реакцию на изменяющиеся команды.

      Интеграция: Для объединения различных подсистем, таких как роботы и другие устройства автоматизации, или, по крайней мере, различных версий подсистем в одной оболочке управления.

      Интегратор: Компания, которая с помощью механических средств объединяет и координирует отдельные части или элементы в единое целое.

      Интеллектуальный робот: Робот, который может быть запрограммирован на выбор производительности в зависимости от сенсорных входов с минимальной или нулевой помощью со стороны человека.См. Робот.

      Интерфейс: Разделение между роботами и оборудованием не поблизости. Датчики, необходимые для связи между устройствами, используют сигналы, передающие входные и выходные данные.

      Блокировка: Управление запуском или остановкой устройства зависит от действия другого устройства.

      Внутренний датчик: Устройство в руке манипулятора, которое отправляет информацию о движении в блок управления.

      Интерполяция: Метод, с помощью которого создаются пути к конечным точкам.Обычно для задания движения определяется несколько узловых точек, а затем все промежуточные положения между ними вычисляются с помощью математической интерполяции. Таким образом, используемый алгоритм интерполяции существенно влияет на качество движения.

      Обратная кинематика: Определение общего изменения положения сустава на основе ограничений на движение рабочего органа робота.

      Итерация: Метод решения проблемы путем повторения той же процедуры для поиска более точного решения.

      Якобиан: Скорость конечного эффектора связана со скоростями суставов этой матрицей частных производных первого порядка.

      Матрица Якоби: Матрица Якоби связывает скорости изменения совместных значений со скоростью изменения координат конечных точек. По сути, это набор алгоритмов вычислений, которые обрабатываются для управления позиционированием робота.

      Шарнир: Часть системы манипулятора, которая обеспечивает вращение и / или поступательную степень свободы звена рабочего органа — частей манипулятора, которые фактически изгибаются или перемещаются.

      Joint-Interpolated Motion: Метод координации движения суставов, при котором все суставы достигают желаемого места одновременно. Этот метод сервоуправления обеспечивает предсказуемый путь независимо от скорости и обеспечивает самое быстрое время цикла захвата и размещения для конкретного движения. См. Цикл выбора и размещения, сервосистема.

      Тип шарнирного движения: Также известный как двухточечное движение, это метод интерполяции траектории, который управляет движением робота, перемещая каждое соединение непосредственно в заданное положение, так что все оси достигают позиции в одном и том же время.Путь предсказуем, но он не будет линейным.

      Joint Space: Площадь и система координат, которые используются суставами робота.

      Робот с шарнирной рукой: Рука робота имеет два соединения, обеспечивающих вращение и улучшенное движение, подобно плечу и локтю человека на руке.

      Коэффициенты кинематического влияния: Количество входных шарниров влияет на движение робота и реакцию системы из-за влияния на сложные и связанные нелинейные дифференциальные уравнения.

      Kinematics: Анализ движения путем исключения информации о силах. Связь между движением конечной точки робота и движением суставов. Для декартова робота это набор простых линейных функций (линейные дорожки, которые могут быть расположены в направлениях X, Y, Z), для вращающейся топологии (шарниры, которые вращаются), однако кинематика намного сложнее, включая сложные комбинации тригонометрии. функции. Кинематика руки обычно делится на прямое и обратное решения.

      Захват ковша: Концевой эффектор, который действует как совок. Обычно он используется для сбора жидкости, переноса ее в форму и заливки жидкости в форму. Обычно используется для работы с расплавленным металлом в опасных условиях. См. End-Effector.

      Множители LaGrange: Использование позволяет решать неограниченную задачу с критериями производительности в отличие от ограниченной задачи с ограничениями равенства.

      Laser: Сокращение от Light Amplification by Stimulated Emission of Radiation.Устройство, которое производит когерентный монохроматический луч света, который является чрезвычайно узким и сфокусированным, но все же находится в пределах видимого светового спектра. Обычно он используется в качестве бесконтактного датчика для роботов. Роботизированные приложения включают: определение расстояния, определение точного местоположения, картографирование поверхности, сканирование штрих-кода, резку, сварку и т. Д.

      Ограничивающее устройство: Отдельное устройство, которое накладывает ограничение на максимальную огибающую. Это ограничение возникает при прекращении движения робота.

      Линейное движение Тип: Это метод интерполяции траектории, который управляет движением робота, перемещая каждое соединение скоординированным движением, так что все оси достигают позиции одновременно. Путь точки управления инструментом (TCP) предсказуем и будет линейным.

      Линейно зависимые: Числа или функции, связанные сложением, вычитанием или умножением на скаляр.

      Звено: Жесткая часть манипулятора, соединяющая соседние суставы.(В человеческом теле звеньями являются кости.)

      Время цикла загрузки: Термин технологического процесса производственной или сборочной линии, который описывает полное время для выгрузки последней заготовки и загрузки следующей.

      Магнитные детекторы: Датчики роботов, которые могут определять присутствие ферромагнитного материала. Твердотельные детекторы с соответствующим усилением и обработкой могут обнаруживать металлический объект с высокой степенью точности. См. Датчик.

      Техническое обслуживание: Обеспечение правильной работы роботов и производственных систем и устранение обнаруженных проблем.

      Манипулятор: Рука робота. Механизм машины или робота, который обычно состоит из серии сегментов, соединенных или скользящих друг относительно друга, с целью захвата и / или перемещения объектов (частей или инструментов), как правило, с несколькими степенями свободы. Управление манипулятором может осуществляться оператором, программируемым электронным контроллером или любой логической системой (например, кулачковым устройством, проводным и т. Д.). См. «Рука, запястье и конечный эффектор, манипулятор ведущий-ведомый».

      Ручное программирование: Пользователь физически устанавливает определенные задачи и ограничения для робота.

      Робот-производитель: Механическое устройство, использующее автоматизацию для преобразования сырья в готовую продукцию для продажи.

      Погрузочно-разгрузочные работы: Процесс, с помощью которого роботизированная рука перемещает материалы из одного места в другое.

      Робот для обработки материалов: Робот, спроектированный и запрограммированный таким образом, чтобы он мог обрабатывать, резать, формировать или изменять форму, функцию или свойства материалов, с которыми он работает, между моментом первого захвата материалов и моментом их выпуска в производственный процесс.

      Максимальное пространство конверта: Наибольшая площадь, которую покрывают все части робота при различных движениях.

      Механические: Использование машин и аппаратов.

      Механизация: Интеграция машин и оборудования в производственные процессы.

      Мобильный робот: Тип робота с собственным двигателем или мощностью, способный перемещаться без ограничений на своем пути.

      Модульность: Свойство гибкости, встроенное в робота и систему управления, путем сборки отдельных узлов, которые могут быть легко соединены или скомпонованы с другими частями или узлами.

      Момент: Мера вращения вокруг эталонного объекта при приложении силы. Когда используется контрольная точка, момент — это перекрестное произведение величины силы и перпендикулярного расстояния между точкой и линией силы. Когда используется опорная линия, момент — это перекрестное произведение количества силы и кратчайшего расстояния между линией и точкой приложения силы. Когда используется базовая плоскость, момент — это перекрестное произведение величины силы и перпендикулярного расстояния от плоскости до точки, в которой применяется сила.

      Ось движения: Линия, определяющая ось движения, линейного или вращательного, сегмента манипулятора.

      Двигатель: См. Серводвигатель .

      Отключение звука: Отключение устройства защиты от обнаружения присутствия во время работы робота.

      Нанотехнология: (Молекулярное производство) Наука об изучении и изобретении продуктов в малых масштабах на молекулярном уровне.

      Нормализовать: Процесс соотнесения факторов с одинаковыми величинами путем масштабирования.

      Численные методы: Аналитические процедуры или эвристики, многократно используемые компьютером для поиска решения.

      Off-Line Programming: Способ хранения информации о процедурах для робота на компьютере, который будет использоваться в будущем. Метод программирования, при котором целевая программа определяется на устройствах или компьютерах отдельно от робота для последующего ввода программной информации роботу.

      Онлайн-программирование: Средство программирования робота во время его работы.Это становится важным при производстве и на сборочных линиях из-за сохранения высокой производительности, пока робот программируется для других задач.

      Размер рабочего диапазона: Часть ограниченного диапазона, занимаемая во время указанных движений робота.

      Оператор: Лицо, уполномоченное запускать, контролировать и останавливать намеченную продуктивную работу робота или роботизированной системы. Оператор также может взаимодействовать с роботом для производственных целей.

      Оптический кодировщик: Датчик обнаружения, который измеряет линейное или вращательное движение, обнаруживая движение маркировки мимо фиксированного луча света. Его можно использовать для подсчета оборотов, идентификации деталей и т. Д.

      Оптические датчики приближения: Датчики роботов, которые измеряют видимый или невидимый свет, отраженный от объекта, для определения расстояния. Лазеры используются для большей точности.

      Оптимизация: Процесс поиска лучших значений для независимых переменных в функции, которые чаще всего являются максимальным или минимальным значением.

      Ориентация: Угол, образованный большой осью объекта относительно базовой оси. Он должен быть определен относительно трехмерной системы координат. Угловое положение объекта относительно системы отсчета робота. См. Roll, Pitch и Yaw.

      Укладка на поддоны: Используется для перемещения деталей на поддон для транспортировки.

      Параллельный робот: Линейные или поворотные шарниры рук робота соответствуют друг другу по положению и направлению.

      Путь: Непрерывный фокус позиций (или точек в трехмерном пространстве), пересекаемых центральной точкой инструмента и описываемых в указанной системе координат.

      Полезная нагрузка — Максимум: Максимальная масса, которой робот может манипулировать при указанной скорости, ускорении / замедлении, расположении (смещении) центра тяжести и воспроизводимости при непрерывной работе в указанном рабочем пространстве. Максимальная полезная нагрузка указана в килограммах.

      Подвеска [Подвеска обучения]: Переносное устройство ввода, связанное с системой управления, с помощью которого можно программировать или перемещать робота.Это позволяет человеку-оператору занять наиболее удобное положение для наблюдения, контроля и записи желаемых движений в памяти робота.

      Pendant Teaching: Отображение и запись положения и ориентации робота и / или системы манипулятора, когда робот вручную поэтапно перемещается от начального состояния по пути к конечному целевому состоянию. Положение и ориентация каждой критической точки (суставы, база робота и т. Д.) Записываются и сохраняются в базе данных для каждой обученной позиции, через которую проходит робот на пути к своей конечной цели.Теперь робот может повторить путь самостоятельно, следуя пути, сохраненному в базе данных.

      Критерии эффективности: Оценка операций робота, определяемых кинематической и динамической моделями.

      Цикл выбора и размещения: Время, необходимое манипулятору, чтобы поднять объект и поместить его в желаемое место, а затем вернуться в исходное положение. Это включает время во время фаз ускорения и замедления конкретной задачи. Движение роботов контролируется из одной точки в пространстве в другую в системе движения «точка-точка» (PTP).Каждая точка запрограммирована в управляющей памяти робота, а затем воспроизводится во время рабочего цикла.

      Робот для подбора и установки: Тип робота, который перемещает детали из одного места в другое.

      Задача подбора и размещения : повторяющаяся задача перемещения детали, состоящая из действия подбора, за которым следует действие по размещению.

      Шаг: Вращение рабочего органа в вертикальной плоскости вокруг конца руки робота-манипулятора. См. Roll and Yaw.

      Описание завода: Информация о движении и силах робота.

      Point-to-Point (PTP): Движение манипулятора, в котором задано ограниченное количество точек на спроецированной траектории движения. Манипулятор перемещается от точки к точке, а не по непрерывной плавной траектории.

      Поза: Альтернативный термин для конфигурации робота, описывающий линейное и угловое положение. Линейное положение включает азимут, высоту и дальность до объекта. Угловое положение включает в себя крен, тангаж и рыскание объекта.См. Крен, тангаж и рыскание.

      Позиция: Определение местоположения объекта в трехмерном пространстве, обычно определяемое трехмерной системой координат с использованием координат X, Y и Z.

      Уровень позиции: Мера общего изменения местоположения соединения. Это также можно найти путем двойной интеграции уровня ускорения и однократной интеграции уровня скорости. Обратитесь к уровням ускорения и уровня скорости.

      Позиционная сборка: Производство в молекулярном масштабе с использованием автоматизации компонентов.

      Устройство защиты от обнаружения присутствия: Устройство, разработанное, сконструированное и установленное для создания поля обнаружения для обнаружения вторжения в такое поле людьми, роботами или объектами. См. Датчик.

      Производительность: Мера количества произведенного продукта по сравнению с количеством входящего материала.

      Программа: Существительное: набор задач, которые должны выполняться контроллером робота или компьютером для управления системой. Глагол: чтобы закодировать компьютер с набором процедур или предоставить информацию и задачи, которые должна выполнять система.

      Программируемый логический контроллер (ПЛК): Твердотельная система управления, которая имеет программируемую пользователем память для хранения инструкций для реализации определенных функций, таких как: логика управления вводом-выводом, синхронизация, счетная арифметика и обработка данных. ПЛК состоит из центрального процессора, интерфейса ввода / вывода, памяти и устройства программирования, которые обычно используют эквивалентные символы реле. ПЛК специально разработан как промышленная система управления, которая может выполнять функции, эквивалентные релейной панели или проводной твердотельной логической системе управления, и может быть интегрирована в систему управления роботом.С помощью этого устройства пользователь имеет больший контроль, поскольку он может предоставлять статус работы роботов.

      Программируемый робот: Функция, позволяющая дать роботу команду выполнить последовательность шагов, а затем выполнить эту последовательность повторяющимся образом. Затем его можно перепрограммировать для выполнения другой последовательности шагов, если это необходимо.

      Датчик приближения: Бесконтактное сенсорное устройство, используемое для обнаружения объектов на небольшом расстоянии и определения расстояния до объекта.Несколько типов включают: радиочастотный, магнитный мост, ультразвуковой и фотоэлектрический. Обычно используется для: высокоскоростного счета, обнаружения металлических предметов, контроля уровня, считывания кодовых меток и концевых выключателей. См. Индуктивный датчик.

      Псевдообратная: Обращение неквадратной матрицы, используемой с совместными скоростями, чтобы минимизировать величину вектора.

      Обеспечение качества (QA): Описывает методы, политики и процедуры, необходимые для проведения тестирования обеспечения качества во время проектирования, производства и доставки этапов создания, перепрограммирования или обслуживания роботов.

      Вылет: Расстояние от центра робота до максимального выдвижения руки робота. Рабочий диапазон определяется с этого расстояния.

      Система реального времени: Компьютерная система, в которой компьютер должен выполнять свои задачи в рамках временных ограничений некоторого процесса одновременно с системой, которой он помогает. Компьютер обрабатывает системные данные (входные данные) от датчиков с целью мониторинга и вычисления параметров (выходов) управления системой, необходимых для правильной работы системы или процесса.От компьютера требуется, чтобы он выполнял свою работу достаточно быстро, чтобы не отставать от оператора, взаимодействующего с ним через оконечное устройство (например, экран или клавиатуру). Оператор, взаимодействующий с компьютером, имеет возможность доступа, поиска и хранения через систему управления базами данных. Доступ к системе позволяет оператору вмешиваться и изменять работу системы.

      Rebuild: В части роботов были внесены усовершенствования, чтобы максимально приблизить их первоначальный вид, производительность и ожидаемый срок службы.

      Робот с записью и воспроизведением: Манипулятор, для которого критические точки вдоль желаемых траекторий сохраняются последовательно путем записи фактических значений кодеров положения суставов робота, когда он перемещается под операционным управлением. Для выполнения задачи эти точки воспроизводятся в сервосистеме робота. См. Сервосистема.

      Робот с прямоугольными координатами: Робот, рука манипулятора которого движется линейными движениями по набору декартовых или прямоугольных осей в направлениях X, Y и Z.Форма рабочего конверта образует прямоугольную фигуру. См. Рабочий конверт.

      Избыточность: Количество независимых переменных больше, чем количество ограничений.

      Надежность: Вероятность или процент времени, в течение которого устройство будет работать без сбоев в течение определенного периода времени или количества использования. Также называется временем безотказной работы робота или средним временем наработки на отказ (MTBF).

      Реконструкция: Для улучшения и усовершенствования роботов в соответствии с текущими стандартами.Для обновления или модификации роботов в соответствии с пересмотренными спецификациями производителя.

      Remote Compliance Center (RCC): Используется для разделения линейного и вращательного движения. У всех структур комплаенс есть центр, хотя удаленный центр комплаенс спроектирован наружу.

      Ремонт: Чтобы обновить роботизированную систему, устранив все возникшие проблемы для обеспечения правильной работы.

      Повторяемость : мера того, насколько близко рука может повторно получить запрограммированное положение.Например: после того, как манипулятор вручную помещен в определенное место, и это местоположение определено роботом, повторяемость определяет, насколько точно манипулятор может вернуться в это точное местоположение. Степень разрешения в системе управления роботом определяет повторяемость. В общем, воспроизводимость руки никогда не может быть лучше, чем ее разрешение. См. «Обучение и точность».

      Разрешение: Величина движения сустава робота, необходимая для изменения положения на 1 счет.Хотя разрешение каждого датчика совместной обратной связи обычно является постоянным, разрешение конечной точки в мировых координатах не является постоянным для поворотных рычагов из-за нелинейности кинематики рычага.

      Resolved-Rate: Определение общего изменения скорости сустава с течением времени на основе ограничений движения рабочего органа.

      Ограниченное пространство конверта: Часть максимального конверта, в которой расстояние определяет границы, которые робот перемещает после активации ограничивающего устройства.

      Revolute Joint: Соединения робота, способные совершать вращательные движения.

      Робот: Перепрограммируемый многофункциональный манипулятор, предназначенный для перемещения материалов, деталей, инструментов или определенных устройств с помощью переменных запрограммированных движений для выполнения различных задач. Общие элементы, из которых состоит робот: контроллер, манипулятор и рабочий орган. См. Манипулятор, Контроллер и Конечный Эффектор.

      Производитель роботов: Создает, строит и / или продает роботов и роботизированное оборудование.

      Язык программирования роботов: Интерфейс между человеком-пользователем и роботом, который связывает человеческие команды с роботом.

      Моделирование робота: Метод имитации и прогнозирования поведения и работы роботизированной системы на основе модели (например, компьютерной графики) физической системы.

      Робот-системный интегратор: Бизнес, объединяющий роботов, периферийное оборудование и производственное оборудование в производственную систему, которая функционирует как единое целое для выполнения производственных задач.

      Роботизированный инструмент для снятия заусенцев: Инструмент, используемый для удаления таких материалов, как заусенцы, острые кромки или ребра с металлических деталей.

      Поворотный шарнир робота: (Роторное соединение робота, скользящее кольцо робота) Состоит из неподвижной части, соединенной с рукой робота, и вращающейся части, соединенной с запястьем и инструментом, позволяющим электрическим и пневматическим кабелям оставаться на месте, а кабели необходимые для инструмента могут свободно вращаться. Электричество подается с помощью контактного кольца.

      Самодвижение робота: Робот сохраняет положение рабочего органа, позволяя другим частям робота двигаться.

      Роботизированное устройство смены инструмента: Компонент с двумя сопрягаемыми частями (главный и инструмент), которые были разработаны для автоматической блокировки (обычно с использованием пневматического давления) и могут пропускать инженерные сети (например, электрические сигналы, пневматическое питание, вода и т. Д.) . Главная сторона устройства смены инструмента крепится к роботу или другой конструкции.Сторона устройства смены инструмента крепится к инструментам, таким как захваты, сварочные аппараты или инструменты для удаления заусенцев. Роботизированное устройство смены инструмента также известно как устройство автоматической смены инструмента, устройство смены инструмента для робота, устройство сопряжения для роботов, устройство сопряжения для роботов и разъем для роботов.

      ROI (возврат инвестиций): Показатель производительности, используемый для оценки эффективности инвестиций. Прибыль или доход от инвестиций делятся на стоимость инвестиций, в результате чего рентабельность инвестиций выражается в процентах или соотношении.

      Рулон: Вращение рабочего органа робота в плоскости, перпендикулярной концу руки манипулятора. См. Pitch and Yaw.

      Поворотный шарнир: Шарнир, который скручивается, качается или изгибается вокруг оси.

      Rotary Vector Drive (RV): Торговая марка устройства понижения скорости, которое преобразует низкий крутящий момент на высокой скорости в высокий крутящий момент на низкой скорости, обычно используется на главной оси (большей). См. Cyclo Drive, Harmonic Drive.

      Вращательное движение: Описывает круговое движение относительно оси.

      Защитное приспособление: Защитное ограждение, устройство или защитная процедура, предназначенные для защиты персонала.

      Процедура безопасности: Набор инструкций, помогающих избежать вредных или опасных ситуаций.

      Масштаб: Изменение величины линейной операцией, то есть умножением на скаляр.

      Робот SCARA: Цилиндрический робот, состоящий из двух параллельных вращающихся шарниров (горизонтально шарнирно сочлененных) и обеспечивающий податливость в одной выбранной плоскости.Примечание: SCARA является производным от селективно совместимой руки для роботизированной сборки.

      Самосборка: Раздел нанотехнологий, в котором объекты, устройства и системы образуют структуры без внешнего воздействия.

      Self-Replication: Системы и устройства в нанотехнологиях, которые сами копируют себя.

      Датчик: Инструменты, используемые в качестве устройств ввода для роботов, которые позволяют им определять аспекты, касающиеся окружающей среды робота, а также собственное положение робота.Датчики реагируют на физические стимулы (такие как тепло, свет, звук, давление, магнетизм, движение) и передают результирующий сигнал или данные для измерения, управления или того и другого.

      Сенсорная обратная связь: Переменные данные, измеряемые датчиками и передаваемые на контроллер в замкнутой системе. Если контроллер получает обратную связь, выходящую за пределы допустимого диапазона, значит, произошла ошибка. Контроллер отправляет роботу сигнал об ошибке. Робот вносит необходимые корректировки в соответствии с сигналом ошибки.

      Serial Robot: Тип робота, который состоит из одной серии соединений, соединенных звеньями.

      Сервис: Для улучшения, восстановления и поддержания надлежащих рабочих стандартов.

      Сервоуправление: Процесс, с помощью которого система управления роботом проверяет, соответствует ли достигнутая поза робота позе, заданной при планировании движения, с требуемыми характеристиками и критериями безопасности.

      Робот с сервоприводом: Управление роботом с помощью сервосистемы с обратной связью, в которой положение оси робота измеряется устройствами обратной связи и сохраняется в памяти контроллера.См. «Система с замкнутым контуром» и «Сервосистема».

      Серводвигатель: Электроэнергетический механизм, используемый для воздействия на движение или поддержания положения робота (например, двигатель, преобразующий электрическую энергию для обеспечения движения робота). Двигатель реагирует на сигнал, полученный от системы управления, и часто включает энкодер для обеспечения обратной связи с контуром управления.

      Servo Pack: Электроэнергетический механизм переменного тока, управляемый с помощью логики для преобразования энергии источника питания, имеющей синусоидальную форму, в квадратную форму с широтно-импульсной модуляцией (PWM), подаваемую на двигатели для управления двигателем: скорость; направление; ускорение; замедление; и контроль торможения.

      Сервосистема: Система, в которой контроллер выдает команды на двигатели, двигатели приводят в движение рычаг, а датчик энкодера измеряет вращательные движения двигателя и сообщает о величине движения обратно контроллеру. Этот процесс повторяется много раз в секунду, пока рука не переместится в требуемую точку. См. Робот с сервоуправлением.

      Плечо: Шарнир руки манипулятора робота, соединенный с основанием.

      Simulation: Графическая компьютерная программа, представляющая робота и его окружающую среду, которая имитирует поведение робота во время имитации запуска робота.Это используется для определения поведения робота в определенных ситуациях, прежде чем фактически дать команду роботу выполнить такие задачи. Рассматриваются следующие элементы моделирования: трехмерное моделирование окружающей среды, эмуляция кинематики, эмуляция планирования пути и моделирование датчиков. См. Сенсор, Прямая кинематика и Робот.

      Единая точка управления: Управление роботом осуществляется только из одного источника.

      Singularity: Конфигурация, в которой два шарнира манипулятора робота становятся соосными (выровненными по общей оси).В особой конфигурации плавное следование по траектории обычно невозможно, и робот может потерять управление. Термин происходит от поведения матрицы Якоби, которая становится сингулярной (т.е. не имеет обратной) в этих конфигурациях.

      Управление медленной скоростью: Скорость движения робота уменьшена настолько, что пользователь может удалить материал или полностью остановить движение.

      Программное обеспечение: Написанная программа, используемая компьютером для указания оборудованию для выполнения определенных задач.

      Соленоид: Катушка с подвижным железным сердечником. Сердечник движется по мере прохождения электрического тока через катушку.

      Сферический робот: Состоит из трех шарниров, позволяющих перемещаться в полярной системе координат.

      Сплайн: Сглаженная непрерывная функция, используемая для аппроксимации набора функций, которые однозначно определены на наборе подинтервалов. Аппроксимирующая функция и набор аппроксимируемых функций пересекаются в достаточном количестве точек, чтобы обеспечить высокую степень точности приближения.Назначение плавной функции — позволить роботу-манипулятору выполнить задачу без рывков.

      Spline Motion Тип: Расчетный путь, который выполняет робот, может иметь параболическую форму. Движение сплайна также может создавать кривую произвольной формы со смесью круглых и параболических форм.

      Запуск: Обеспечение питания робота или системы для начала работы.

      Статика: Анализ сил без движения.

      Swing: Вращательное движение робота относительно его средней линии.

      Системный интегратор: Компания или частное лицо, обладающее способностями и знаниями для интеграции различных частей роботизированной сварочной системы. Системные интеграторы используются для определения требований к сварке и соответствующей интеграции необходимого оборудования.

      Обучение: Программировать руку манипулятора, вручную направляя ее через серию движений и записывая положение в память контроллера робота для воспроизведения.

      Режим обучения: Состояние управления, которое позволяет генерировать и сохранять точки позиционных данных, на которые влияет перемещение манипулятора робота по траектории предполагаемых движений.

      Teach Pendant: Ручной пульт управления, который используется оператором для удаленного управления роботом при выполнении его задач. Движения записываются системой управления роботом для последующего воспроизведения. См. Разделы «Точность», «Подвесное управление», «Точность воспроизведения», «Повторяемость» и «Обучение».

      Test Automation: Программное обеспечение, используемое для выполнения тестов для наблюдения за различной информацией о системе.

      Сквозной луч: Система обнаружения объектов, используемая в системе датчиков изображения робота. Точно сфокусированный луч света закреплен на одном конце, а детектор — на другом. Когда луч света прерывается, объект ощущается.

      Инструмент: Термин, используемый в общих чертах для определения рабочего устройства, установленного на конце манипулятора робота, такого как рука, захват, сварочная горелка, отвертка и т. Д. См. «Рука», «Захват» и «Концевой эффектор».

      Центр инструмента (TCP): Центральная ось движения инструмента.

      Инструментальная рама: Система координат, прикрепленная к рабочему органу робота (относительно базовой рамы).

      Датчик касания: Чувствительное устройство, иногда используемое с рукой или захватом робота, которое определяет физический контакт с объектом, тем самым давая роботу искусственное ощущение прикосновения. Датчики реагируют на контактные силы, возникающие между ними и твердыми предметами.

      Построение траектории (расчет): Расчет функций движения, которые обеспечивают плавное контролируемое движение суставов.

      Преобразователь: Устройство, преобразующее энергию из одной формы в другую. Обычно это устройство, преобразующее входной сигнал в выходной сигнал другой формы. Его также можно рассматривать как устройство, которое преобразует статические сигналы, обнаруженные в окружающей среде (например, давление), в электрический сигнал, который отправляется в систему управления роботом.

      Точка срабатывания: Момент, когда компонент переходит в другое состояние.

      Проект «под ключ»: Проект, в котором отдельная организация несет ответственность за установку завода или оборудования и ввод его в эксплуатацию.

      Two-Norm: Длина вектора, которая находится путем суммирования квадратов длин и извлечения квадратного корня из этого числа.

      Время безотказной работы: Период времени, в течение которого робот или производственная линия работают или доступны для работы, в отличие от времени простоя. См. Время простоя.

      Рука с вакуумным колпачком: Рабочий орган для руки робота, который используется для захвата объектов легкого и среднего веса с помощью всасывания для манипуляций. К таким предметам может относиться стекло, пластик и т. Д.Обычно используется из-за его достоинств, заключающихся в уменьшении скольжения предмета, когда он находится в пределах досягаемости вакуумной чашки. См. End-Effector.

      Уровень скорости: Мера изменения положения сустава с течением времени. Единичная интеграция приводит к общему изменению позиции. Однократное дифференцирование приводит к изменению скорости сустава с течением времени. Обратитесь к уровню ускорения и уровню положения.

      Вертикальный ход: Величина вертикального перемещения манипулятора робота от одного места к другому.

      Vision Guided: Система управления, в которой траектория робота изменяется в ответ на ввод от системы технического зрения.

      Датчик обзора: Датчик, который определяет форму, местоположение, ориентацию или размеры объекта посредством визуальной обратной связи, например, телекамеры.

      VLSI (очень крупномасштабная интеграция): Объединение нескольких компонентов на одной микросхеме.

      Сварщик: Рабочий, соединяющий металлы с помощью тепла.

      Рабочая ячейка: Элементы оборудования в непосредственной близости, которые работают над одной и той же частью.

      Рабочий диапазон: Набор всех точек, которые манипулятор может достичь без вторжения. Иногда форма рабочего пространства и положение самого манипулятора могут ограничивать рабочий диапазон.

      Незавершенная работа: Бухгалтерский термин, используемый для выражения стоимости материалов, постоянно используемых в процессе работы.

      Заготовка: Любая деталь, которая обрабатывается, совершенствуется или изготавливается до того, как она станет готовым продуктом.

      Рабочее пространство: Зона, в которую робот может попасть для выполнения операций. Часть пространства с максимальной досягаемостью.

      Рабочее место: Место, куда перемещаются детали для обработки.

      Модель мира: Трехмерное представление рабочей среды робота, включая объекты, их положение и ориентацию в этой среде, которое хранится в памяти робота. Поскольку объекты воспринимаются в окружающей среде, система контроллера робота постоянно обновляет модель мира.Роботы используют эту модель мира, чтобы определять свои действия для выполнения поставленных задач.

      Запястье: Набор поворотных шарниров между рукой и рабочим органом робота, которые позволяют ориентировать рабочий орган по отношению к обрабатываемой детали. В большинстве случаев запястье может иметь степени свободы, которые позволяют ему захватывать объект с ориентацией по крену, тангажу и рысканью. См. Раздел «Рука», «Рабочий орган», «Крен», «Шаг», «Рыскание» и заготовка.

      Координаты XYZ: Ссылка на наиболее распространенные имена, данные линиям, образующим декартово твердое тело.

      Рыскание: Вращение рабочего органа в горизонтальной плоскости вокруг конца руки манипулятора. Боковое движение по оси. Смотрите Roll and Pitch.

      Даже с роботами производителям нужно человеческое прикосновение: NPR

      Роботизированная рука работает на производственной линии на заводе Volvo в Риджвилле, Южная Каролина.Но другие важные работы, включая основные этапы окончательной сборки, по-прежнему выполняются людьми. Камила Домоноске / NPR скрыть подпись

      переключить подпись Камила Домоноске / NPR

      Роботизированная рука работает на производственной линии на заводе Volvo в Риджвилле, Южная Каролина. Но другие важные работы, включая основные этапы окончательной сборки, по-прежнему выполняются людьми.

      Камила Домоноске / NPR

      Роботы произвели революцию в автомобилестроении, сделав заводы более безопасными, а продукты — более надежными — и сократив количество людей, вовлеченных в процесс. Но войдите в современный автомобильный завод, и вы быстро поймете, что роботы вряд ли заменили человеческое прикосновение — по крайней мере, в некоторых областях.

      Автомобильный завод Volvo в Риджвилле, Южная Каролина, открывшийся в прошлом году, дает наглядный урок.Завод производит роскошный седан S60 как для рынка США, так и на экспорт.

      Начало производственной линии высоко автоматизировано; в первом из трех больших зданий численность роботов превышает численность людей от 300 до 200. Но в конце процесса преобладают люди.

      Начнем с роботов. За ограждением безопасности полдюжины роботов-манипуляторов движутся согласованно, сваривая вместе кузов автомобиля, мягко жужжая.Свет в этой части массивного здания приглушен, потому что роботам не требуется много света для завершения своей работы.

      Роботы, бесспорно, лучше людей в некоторых задачах. Они точны и последовательны, и они превосходно повторяют одно и то же движение снова и снова.

      Джефф Мур, вице-президент Volvo по производству в Северной и Южной Америке, говорит, что при принятии решения о том, какие задания назначить роботу, компания начинает с монотонной, требовательной к физическим нагрузкам работы — особенно всего, что связано с проблемами безопасности.

      «Со всем жаром, искрами, большим током и прочими вещами, связанными со сваркой, это естественное место, где можно более тщательно автоматизировать», — говорит он.

      Но в других частях линейки «человеческое прикосновение имеет много преимуществ», — говорит Мур.

      Или, как сказал в прошлом году генеральный директор Tesla Илон Маск, «людей недооценивают».

      Он признал, что Tesla просчиталась, обратившись к тяжелой автоматизации в своем Фремонте, штат Калифорния., конвейер. После того, как возникли проблемы с производством, производитель электромобилей изменил курс и начал возвращать задачи людям.

      Так где именно люди до сих пор побеждают роботов? Следуйте за кузовом автомобиля по сборочной линии Volvo, и в конечном итоге огни станут яркими, когда люди прикрепят капот, багажник, крылья и бамперы.

      Рабочие осматривают кузов седана Volvo S60 20 июня 2018 года. Роботизированные датчики исследуют сварные швы, а человеческие руки и глаза оценивают прикосновение к металлу. Логан Сайрус / Блумберг через Getty Images скрыть подпись

      переключить подпись Логан Сайрус / Блумберг через Getty Images

      Рабочие осматривают кузов седана Volvo S60 20 июня 2018 года. Роботизированные датчики исследуют сварные швы, а человеческие руки и глаза оценивают прикосновение к металлу.

      Логан Сайрус / Блумберг через Getty Images

      Затем идет контроль качества. Роботы с датчиками проверяют точечные сварные швы, а люди водят руками по поверхности металлического корпуса, выискивая недостатки. Буквальное человеческое прикосновение здесь все еще невозможно превзойти.

      Кузов машины проезжает по небесному мосту в другое здание, где его окрашивают — еще одна задача, в которой роботы преуспевают. Затем он отправляется в третье здание для окончательной сборки, где тысячи деталей со всего мира собираются вместе, чтобы сформировать законченный автомобиль.Здесь снова правят люди.

      Люди лучше роботов манипулируют сложными формами и соединяют их воедино — это как раз те навыки, которые необходимы, например, для прикрепления деталей к двигателям.

      Эти рабочие также работают с различными типами двигателей — газовыми или гибридными, полноприводными или переднеприводными, с турбонаддувом или без него, а в будущем даже с полностью электрическими двигателями. Люди могут легко переключаться между разными задачами и даже на лету брать новые; роботов не так много.

      По мере того, как Тремейн Смоллс прикрепляет приводные валы к двигателям, а репортер по радио иногда мешает ему, он не обращает внимания на сложности работы с двигателями разных типов.

      «Это как бы один и тот же процесс, только разные приводные валы», — говорит он, показывая, как он сверяет номера деталей на листе бумаги, чтобы убедиться, что каждый двигатель настроен правильно.

      Завод Volvo полагается на людей, которые прикрепляют приводные валы и другие детали к конечной производственной линии.Рабочие сверяют номера деталей с бумажными распечатками, прикрепленными к каждому двигателю. Гэри Коулман / Предоставлено Volvo Cars America скрыть подпись

      переключить подпись Гэри Коулман / Предоставлено Volvo Cars America

      Завод Volvo полагается на людей, которые прикрепляют приводные валы и другие детали к конечной производственной линии.Рабочие сверяют номера деталей с бумажными распечатками, прикрепленными к каждому двигателю.

      Гэри Коулман / Предоставлено Volvo Cars America

      Джейсон Додгинс, работавший на той же линии, раньше был руководителем группы производителя подшипников. Там, по его словам, его работа заключалась в том, чтобы запустить машину с компьютерным управлением.

      «Машина выполняла большую часть основной работы», — говорит он. «Вы в основном проводили инспекцию». Напротив, работа на этой сборочной линии для автомобилей «требует гораздо большего количества ручного труда», — говорит он.

      По мере того, как двигатель движется по линии, люди и машины делят работу. Кайла Джеймс, проработавшая всего две недели на этой работе, использует механический подъемник для установки выхлопной системы; снимает физическое напряжение задачи. Позже большая машина устанавливает одновременно десятки болтов, но между каждым какофоническим залпом Брэндон Маршалл вставляет различные болты на место.

      Люди вытесняют роботов в этих задачах, даже когда все идет гладко, но у них есть особое преимущество, когда что-то идет не так.

      На современных автозаводах, вдохновленных революционной производственной философией Toyota, рабочих поощряют останавливать конвейер всякий раз, когда возникает какая-либо проблема, большая или маленькая. (На таких предприятиях, как этот завод Volvo, рабочие тянут шнур и играет музыка — разные песни для каждого местоположения сигнализируют о возникновении проблемы.)

      Роботы тоже могут определять определенные ошибки, возникающие в процессе работы, но люди имеют явное преимущество, когда дело доходит до , решающего этих проблем.

      Рассмотрим радиаторы Volvo. В одной ключевой точке линии кузов автомобиля, ожидающий на приподнятом конвейере, опускается на двигатель, трансмиссию, оси и все остальное, что заставляет автомобиль двигаться. Они собираются вместе в «точке брака».

      «Если этот радиатор не отодвинуть достаточно далеко, он разобьется вместе с корпусом», — говорит Трей Йонсе, который помог установить линию точки брака.

      Первоначальный производственный процесс предусматривал использование резиновых лент, чтобы удерживать радиатор на месте в этот ключевой момент, но лазерный датчик часто обнаруживал, что радиатор был не совсем в нужном месте. Машины могут пометить проблему, которую нужно исправить.

      Но людей, в отличие от роботов, раздражают повторяющиеся проблемы.

      «Им просто надоело это делать, и один парень придумал идею, и она сработала», — говорит Йонсе. Он указывает на маленький желтый кусок пластика, который более эффективно удерживает радиатор на месте — улучшение процесса.

      Мур, вице-президент Volvo, говорит, что компания уже подала заявку на получение нескольких патентов на основе идей, которые исходили от рабочих этого нового завода.

      У людей есть сильные стороны по сравнению с роботами на самых разных рабочих местах — не только на автомобильных заводах.

      И вообще, люди и роботы лучше всего работают вместе, когда роботы выполняют опасные, монотонные работы и точную работу, в то время как люди выполняют тактильную работу, переключаются между задачами, принимают решения — и придумывают творческие идеи для улучшения вещей.

      В каком-то смысле здесь есть урок философии.

      «Люди часто думают, что рабочие на производстве — плохая замена роботу», — говорит Сьюзан Хелпер, экономист из Университета Кейс Вестерн Резерв. Как машина, которая жалуется, устает и ошибается.

      Исторически сложилось так, что некоторые фабрики пытались обращаться со своими рабочими как с роботами, отделяя «умственную» работу от «ручной» и заставляя рабочих сборочного конвейера выполнять повторяющиеся задачи, не задумываясь.В этой настройке робот — это апгрейд человека-рабочего: он не будет жаловаться и уставать.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *