Консистентная смазка для подшипников качения и скольжения: Смазка подшипников качения | OKS Spezialschmierstoffe GmbH

Содержание

Смазка подшипников качения | OKS Spezialschmierstoffe GmbH

Правильная смазка подшипников качения снижает количество случаев выхода машин из строя по причине повреждения подшипников и повышает эксплуатационную надежность

Принцип действия и типы подшипника качения

Подшипники качения обеспечивают вращательное движение с уменьшением трения между различными компонентами машины.
Поэтому в технике подшипники качения используются, в том числе, для приведения в движение и поддерживания валов и осей. В основе работы подшипников качения лежит принцип трения качения: они состоят из внутреннего и внешнего кольца, между которыми перекатываются тела качения, которые для еще большего снижения трения и износа отделяются друг от друга сепаратором.

В зависимости от нагрузки тела качения могут иметь различные формы, например, шарики или ролики. По причине трения качения, связанного с формой тела качения, шариковые подшипники подходят больше для использования с большой частотой вращения, а роликовые подшипники, напротив, лучше использовать при высоких нагрузках.

Задачи смазки подшипников качения

Цель смазки подшипников качения состоит в том, чтобы за счет смазочной пленки предотвратить соприкосновение металлических поверхностей катания и скольжения и, таким образом, еще сильнее уменьшить трение скольжения в подшипнике качения. Кроме того, смазка подшипника качения улучшает защиту от износа. Благодаря этому предотвращаются повреждения подшипников, продлевается срок службы подшипника и повышается эксплуатационная надежность. К дополнительным задачам, которые выполняет смазка в подшипнике качения, в зависимости от типа смазочного материала (масло или консистентная смазка с соответствующим использованием присадок), относятся: защита от коррозии, отвод тепла из подшипника, защита подшипника от загрязнений внутри и снаружи, уменьшение шума при работе подшипника, а также обеспечение уплотняющего эффекта уплотнений подшипника.

Критерии выбора консистентной или масляной смазки
В примерно 90% всех подшипников качения используется консистентная смазка. Существенными преимуществами консистентной смазки являются:

  • очень низкие конструктивные затраты
  • хорошее уплотнение подшипника
  • длительный срок эксплуатации
  • низкий момент сил трения
  • хорошая аварийная антизадирная способность при использовании твердых смазочных веществ
  • хорошие шумопонижающие свойства

При правильном выборе консистентные смазки обеспечивают для всех конструкций подшипников (кроме аксиальных самоустанавливающихся роликоподшипников) надежную смазку при широком диапазоне скорости вращения и нагрузки.

Структура и характеристики консистентных смазок
Консистентные смазки состоят из основного масла, связанного сгустителем. Благодаря этому масло остается на месте смазки. Там оно обеспечивает защиту от трения и износа и уплотняет место смазки, защищая его от внешних воздействий, например, влаги и посторонних материалов. Поэтому консистентные смазки идеально подходят для применения в подшипниках качения. Типичные рабочие характеристики консистентной смазки, например, температура каплепадения, способность к восприятию нагрузки и водостойкость, определяются основным маслом и сгустителем. Улучшение защиты от коррозии и износа, способности к восприятию нагрузки, адгезионной способности и стойкости к старению достигается за счет добавляемых в консистентную смазку присадок.

Параметры для выбора консистентной смазки для подшипников качения

Выбор консистентной смазки для подшипников качения зависит от конструкции подшипника качения и материала сепаратора подшипника качения (металлы или пластмассы), а также от таких условий применения, как рабочая температура, диапазон частоты вращения, давление и влияние окружающей среды (вода, пыль или агрессивные среды). Для характеристики консистентной смазки для подшипников качения используются следующие параметры.

1. Класс NLGI

Для консистентных смазок консистенция является мерой твердости. Консистентные смазки классифицируются по NLGI от очень мягких (класс 000) до очень твердых (класс 6). Для использования в подшипниках качения подходят консистентные смазки классов NLGI 1-4.

2. Температура каплепадения (в °C)

Температурой каплепадения консистентной смазки считается температура, при которой происходит сжижение консистентной смазки. Эта температура существенно выше рекомендуемой рабочей температуры, которая определяется в подшипнике качения не только температурой окружающей среды, но и теплом, возникающим при его эксплуатации.

3. Показатель качества смазочного материала, полученный на четырехшариковой машине

Четырехшариковый аппарат – это испытательное устройство для смазочных материалов, которые используются при высоких контактных напряжениях. Он состоит из вращающегося шарика, скользящего по трем неподвижным шарикам. При испытаниях на максимальное восприятие нагрузки смазочного вещества на вращающийся шарик действует испытательная нагрузка, которая ступенчато повышается, пока под воздействием теплоты трения не произойдет сваривание системы четырех шариков.

4. Величина DN (коэффициент числа оборотов)

Величина DN указывает на то, до какой максимальной окружной скорости может использоваться консистентная смазка в подшипнике качения. Она рассчитывается из скорости вращения подшипника, среднего диаметра подшипника (в мм) и коэффициента для учета доли трения скольжения при соответствующей конструкции подшипника.

5. Значение SKF-Emcor

Метод SKF-Emcor используется для оценки антикоррозионных свойств консистентных смазок для подшипников качения. При этом в консистентную смазку добавляется вода, а самоустанавливающиеся шарикоподшипники проверяются на наличие коррозии при заданной продолжительности работы, скорости вращения и длительных простоях в соответствии с DIN 51802. Если визуальный контроль испытуемых колец не показал наличия коррозии, то степень коррозии равна 0. При очень сильной коррозии присваивается степень коррозии 5.

Смазка подшипников качения

Важной предпосылкой для достижения высокой эксплуатационный надежности подшипника качения является его непрерывное снабжение смазочным материалом. При первой или повторной смазке подшипника нужно соблюдать указания производителя подшипника. Заполнять подшипник нужно таким образом, чтобы все его функциональные поверхности покрывались консистентной смазкой. Медленно вращающиеся подшипники (величина DN < 50.000) и их корпус могут быть заполнены полностью, а быстро вращающиеся подшипники (величина DN > 400.000) – до 1/4 свободной внутренней полости подшипника. В остальных случаях рекомендуется заполнять подшипники на 1/3.

Смазываемые консистентной смазкой подшипники обладают достаточной эксплуатационной надежностью, если сроки добавления смазки не превышены. Добавление смазки необходимо в том случае, если срок годности консистентной смазки меньше, чем ожидаемый срок службы подшипника. Добавление смазки выполняется с помощью смазочного шприца или автоматических смазочных систем. По возможности добавление смазки следует выполнять во время эксплуатации. Количество добавляемой смазки составляет 50–80% от количества смазки при первом заполнении.

Если нет возможности для отвода старой консистентной смазки, то количество консистентной смазки должно быть ограничено, чтобы предотвратить избыточное смазывание подшипника.

При больших интервалах добавления смазки следует стремиться к полной замене консистентной смазки. Перед переходом на другой вид консистентной смазки необходимо тщательно очистить подшипник качения или добавлять консистентную смазку до тех пор, пока старая консистентная смазка не будет полостью вытеснена из подшипника. В этом случае следует предварительно проверить смешиваемость и совместимость смазочных материалов.

Назад к обзору

Смазки для подшипников качения

Смазку подшипников качения можно считать главным фактором надежности эксплуатации оборудования. Правильно подобранная, она минимизирует количество случаев поломок механизмов или самого подшипника.

 

Типы подшипников качения и порядок функционирования

Подшипники, которые относятся к типу качения, способствуют вращению узлов оборудования и уменьшению силы трения.

Чаще всего эта деталь применяется для поддержания движения осей и валов. Функционирование основано на принципе трения качения. Конструкция детали такова: между внешним и внутренним кольцами заключены тела качения, разделенные сепаратором, служащим для минимизации износа и силы трения. По принципу воспринимаемой нагрузки подшипники снабжаются теламиразных подвидов: шариками или роликами. Роликоподшипники используются чаще при максимальных нагрузках, а шариковые подшипники — в узлах механизма, на который воздействует вращение высокой частоты.

Основные функции смазки для подшипников качения

Главная роль смазки в функционировании подшипника — предотвращение соприкосновения шариков и роликов с дорожкой катания, выполненной из металла. Именно при смазывании уменьшается трение скольжения, деталь становится менее подверженной износу и поломке.

Правильно подобранная смазка минимизирует возможность деформации детали, повышает надежность в эксплуатации, продлевает срок службы всего узла. Используется масло или консистентная смазка с присадками. Различные варианты смазочного материала выполняют следующие задачи: снижение температуры работы, защита от возникновения коррозии, попадания грязи, снижение уровня вибрации, шума.

Основные функции смазки для подшипников качения

Главная роль смазки в функционировании подшипника — предотвращение соприкосновения шариков и роликов с дорожкой катания, выполненной из металла. Именно при смазывании уменьшается трение скольжения, деталь становится менее подверженной износу и поломке.

Правильно подобранная смазка минимизирует возможность деформации детали, повышает надежность в эксплуатации, продлевает срок службы всего узла. Используется масло или консистентная смазка с присадками. Различные варианты смазочного материала выполняют следующие задачи: снижение температуры работы, защита от возникновения коррозии, попадания грязи, снижение уровня вибрации, шума.

Принципы подбора консистентного или масляного вида смазки

В большинстве случаев (до 90%) сегодня применяется именно густая (консистентная) смазка. Несомненными плюсами можно считать такие характеристики:

  • обеспечение уплотнения;
  • невысокие конструктивные расходы;
  • шумопонижающие свойства;
  • большой срок годности.

Правильно выбранную консистентную смазку возможно использовать в подшипниках любой конструкции с большим диапазоном вращательных скоростей и типами нагрузок. Исключение составляют аксиальные роликоподшипники самоустанавливающиеся.

Состав и характеристика консистентной смазки

В состав входит:

  • основное масло — минеральное или синтетическое;
  • сгуститель — бентонит, силикагель, металлические мыла, поликарбамид;
  • присадки — усилители адгезии, ингибиторы окисления, коррозии, твердые материалы, присадки, предназначенные для защиты от естественного износа, повышения качества ЕР, предотвращения трения.

Консистентные виды смазки оптимальны для заполнения подшипников качения: благодаря своему составу они остаются в месте нанесения, уплотняют их, защищают от негативных наружных воздействий температуры, влаги и попадания механических частиц.

Техническая характеристика смазки — восприятие нагрузки, защита от «старения», коррозии, адгезионная способность, устойчивость к деформации — определяется ее составом (основным маслом-наполнителем и сгустителем), а также типами присадок.

Критерии выбора консистентных смазок

При подборе стоит ориентироваться на конструкцию собственно подшипника, тип разделителя-сепаратора, материала его изготовления, а также технические характеристики функционирования детали: частота вращения, термическое воздействие, попадание пыли, воды, использование в неблагоприятной среде, уровень давления. Консистентные материалы имеют отличительные технические параметры:

  1. Класс NLGI. Консистенция выступает мерой твердости во всех смазках для подшипников. По этому показателю (NLGI) они делятся на типы: от очень мягких класса 000 до очень твердых (6-й класс). В подшипниках качения оптимальны к использованию смазки классов от 1 до 4 по показателю NLGI.
  2. Температура каплепадения (в °C). Этот показатель определяется температурой, при которой консистентная смазка сжижается. Температура эта, как правило, превышает рабочую в несколько раз. Последняя определяется двумя показателями: теплом, выделяемым при работе детали, температурой воздуха окружающей среды.
  3. Показатели качества смазки, определенные на четырехшариковой машине. Эта машина представляет собой устройство, предназначенное для исследования различных типов веществ для смазывания, используемых при различных степенях контактных напряжений. Конструкция аппарата представляет собой вращающийся шарик, который скользит по трем шарикам, расположенным статично. В случае проведения испытаний на предельно допустимые нагрузки смазочного материала на крутящийся шарик воздействует испытательная нагрузка, ступенчато повышающаяся. Процедура проводится до тех пор, пока тепло, выделяемое в процессе работы, не «сварит» систему четырех шариков.
  4. Коэффициент количества оборотов — показатель DN. Эта величина показывает, какая предельная окружная скорость может применяться в подшипнике качения при использовании консистентной смазки. Показатель рассчитывается по трем параметрам: средний диаметр детали в миллиметрах, скорость вращения детали, коэффициент, который служит для учета доли силы трения скольжения в конкретной конструкции подшипника.

Значение SKF-Emcor. Этот показатель применяется для определения антикоррозийных свойств консистентной смазки. В процессе исследования добавляют воду, а самоустанавливающийся шарикоподшипник рассматривается на предмет наличия коррозии при указанной продолжительность эксплуатации, определенных временных периодах простоя (по показателю DIN 51802), частоте вращения. Обследование проводится визуально: если на испытуемых кольцах не обнаружено признаков коррозии, степень ее равна нулю. Максимальное покрытие коррозией — степень 5.

Важность смазки подшипников качения

Непременной предпосылкой для эффективной работы, длительной эксплуатации и надежности подшипника считается его регулярная смазка. Здесь необходимо соблюдать определенные требования производителя детали. Подшипник заполняется так, чтобы материал покрыл все рабочие поверхности: дорожки качения, шарики или ролики, сепаратор. Полностью заполняется корпус медленновращающихся подшипников, показатель DN в которых не превышает значения 50000. В быстровращающихся деталях с показателем DN более 400000 заполняется четверть пространства полости детали. В остальных случаях рекомендовано заполнять свободное пространство в подшипнике на треть объема.

Оптимальная эксплуатационная надежность достигается только тогда, когда время добавления смазочных материалов не превышено. При впрыскивании смазки обязательно следить за тем, чтобы предельный срок годности был меньшим, чем допустимый срок эксплуатации детали. В работе используется специальный шприц или автоматическая система.При определенной конструкции узла добавлять смазочный материал желательно во время работы механизма.

Количество вещества при первом заполнении должно находиться в пределах 50–80% от свободного объема полости детали. Если же вывести старую смазку возможности нет, то новый материал подается в деталь ограниченно. Во избежание переизбытка вещества в полости подшипника, когда замена производится с длительными интервалами, необходимо полностью менять консистентную смазку.

Если необходимо перевести подшипник на другой вид смазочного материала, проводят полную очистку внутренней полости. Также нужно проверить возможность смешивания и совместимость материалов.

Смазки для подшипников скольжения

В статье рассмотрены вопросы применения различных пластичных смазок EFELE и покрытий MODENGY для металлических подшипников скольжения в зависимости от основных условий работы.

Содержание: Универсальные пластичные смазки для подшипников скольжения из металла
Пластичные смазки для подшипников скольжения из металла, работающих при высоких и экстремально высоких температурах
Пластичные смазки для подшипников скольжения из металла, работающих при низких температурах
Пластичные смазки для подшипников скольжения из металла, работающих при высоких и экстремально высоких нагрузках
Пластичные смазки для подшипников скольжения из металла, работающих в оборудовании пищевой промышленности
Пластичные смазки для подшипников скольжения из металла, работающих в химически агрессивных средах
Особенности смазывания металлических подшипников скольжения пластичной смазкой
Применение для обслуживания подшипников скольжения АТСП MODENGY

Подшипник – опорная деталь, используемая для уменьшения трения между движущимися частями механизмов.

Подшипник скольжения является первым узлом трения, созданным человеком. Учитывая простоту конструкции, способность работать в условиях сверхбольших нагрузок и ряд других преимуществ, область применения подшипников скольжения в современных механизмах очень велика.

Опоры скольжения применяются в тяжелом и транспортном машиностроении, механизмах управления самолетов, автомобилей, в приводах различного оборудования, в приборостроении и многих других областях. Подшипники скольжения являются основным элементом цепных передач, гусеничных лент и др.

Надежная и безотказная работа таких устройств напрямую зависит от смазочных материалов, применяемых при их сборке и обслуживании.

Основное назначение смазочных материалов – снижение трения между контактирующими поверхностями, снижение износа и предотвращение заедания. Кроме того, смазка должна предотвращать проникновение абразивных и коррозионно-активных агентов к поверхностям трения.

Для смазывания подшипников скольжения применяются жидкие масла, пластичные смазки, пасты и антифрикционные покрытия.

Выбор смазки для конкретного узла должен определяться условиями окружающей среды, эксплуатационным режимами, а также дополнительными требованиями, предъявляемыми к подшипникам скольжения.

Для изготовления втулок и вкладышей металлических подшипников скольжения применяются антифрикционные материалы. Обычно это цветные металлы и их сплавы (медь, свинец, кадмий, бронза, латунь, баббиты и т.д.). Некоторые из этих материалов чувствительны к химическому воздействию продуктов окисления смазки. Поэтому при выборе смазки необходимо учитывать ее совместимость с материалами подшипника.

Большая часть подшипников скольжения предназначена для работы в режимах значительных статических и динамических нагрузок. Однако эти нагрузки распределяются по относительно большой поверхности, поэтому удельное давление в подшипниках скольжения значительно ниже, чем в подшипниках качения или зубчатых передачах. Несмотря на это, к противозадирным и противоизносным свойствам смазок, применяемых в подшипниках скольжения, предъявляются достаточно высокие требования.

Неправильно подобранные смазочные материалы в условиях высоких нагрузок быстро разрушаются, предел их прочности падает, и смазка выдавливается из зоны трения даже после остановки механизма. Типичным примером такого поведения является разжижение и вытекание солидола из шарниров подвески автомобиля.

При использовании смазочных материалов без учета специфики конкретных условий эксплуатации приходится сталкиваться с рядом проблем.


Рассмотрим подробнее применение пластичных смазок EFELE в металлических подшипниках скольжения в зависимости от требований к продукту и типичных проблем, возникающих в данных узлах.

Главными критериями при выборе оптимального смазочного вещества являются:
  • Диапазон рабочих температур
  • Несущая способность (нагрузка)
  • Наличие пищевого допуска
  • Влияние окружающей среды

Универсальные пластичные смазки для подшипников скольжения из металла

EFELE MG-211 (диапазон рабочих температур от -30 до +120 °С) – многоцелевая литиевая пластичная смазка с противозадирными присадками, устойчивая к смыванию водой, хорошими противоизносными свойствами, высокими антикоррозионными свойствами для долговременного смазывания подшипников.

EFELE MG-212 (диапазон рабочих температур от -30 до +120 °С) – универсальная литиевая пластичная смазка с противозадирными присадками и дисульфидом молибдена, с высокой несущей способностью, устойчивая к смыванию водой, отличными противоизносными свойствами, высокими антикоррозионными свойствами для долговременного смазывания подшипников.

EFELE MG-213 (диапазон рабочих температур от -30 до +160 °С) – универсальная комплексная литиевая пластичная смазка с противозадирными присадками, устойчивая к смыванию водой, отличными противоизносными свойствами, высокими антикоррозионными свойствами, высокой несущей способностью для долговременного смазывания подшипников.

EFELE MG-214 (диапазон рабочих температур от -40 до +120 °С) – многоцелевая морозостойкая литиевая пластичная смазка с высокой механической и химической стабильностью, устойчивая к воздействию воды  для подшипников.

Пластичные смазки для подшипников скольжения из металла, работающих при высоких и экстремально высоких температурах

Пластичные смазки, не обладающие достаточной термостойкостью, в условиях воздействия высоких и экстремально высоких температур будут интенсивно разлагаться и коксоваться, теряя свои смазочные свойства и приводя к ускоренному износу узла трения.  

Термостойкие смазки EFELE для подшипников скольжения:
  • EFELE MG-213 (диапазон рабочих температур от -30 до +160 °С) – устойчива к смыванию водой, влажной среде, имеет высокие антикоррозионные свойства, обеспечивает длительное смазывание
  • EFELE MG-221 (диапазон рабочих температур от -30 до +150 °С) – устойчива к смыванию водой, влажной среде, выдерживает ударные нагрузки, имеет отличные противоизносные и высокие антикоррозионные свойства
  • EFELE SG-301 (диапазон рабочих температур от -40 до +160 °С) – устойчива к смыванию водой, выдерживает высокие нагрузки, защищает от коррозии, обладает высокой адгезией, имеет пищевой допуск
  • EFELE SG-321 (диапазон рабочих температур от -55 до +150 °С) – устойчива к смыванию водой, высоким нагрузкам, совместима с пластмассами и эластомерами, имеет высокие антикоррозионные свойства
  • EFELE SG-391 (диапазон рабочих температур от -40 до +160 °С) – устойчива к смыванию водой, влажной среде, высоким нагрузкам, имеет пищевой допуск, обеспечивает длительное смазывание
  • EFELE SG-392 (диапазон рабочих температур от -45 до +170 °С) – устойчива к смыванию водой и моющими средствами, высоким нагрузкам, влажной среде, имеет высокие антикоррозионные и хорошие противоизносные свойства,  пищевой допуск, обеспечивает длительное смазывание
  • EFELE SG-394 (диапазон рабочих температур от -20 до +260 °С) – работоспособна в запыленной среде, вакууме, химически агрессивной среде, совместима с пластмассами и эластомерами, имеет пищевой допуск, высокие антикоррозионные свойства, обеспечивает длительное смазывание.

Пластичные смазки для подшипников скольжения из металла, работающих при низких температурах

Проблема смазывания подшипников при низких температурах связана, в основном, с эксплуатацией оборудования в зимний период или в холодных климатических зонах, а также в устройствах заморозки. 

Применение обычных смазочных материалов при температурах ниже -40 °С, как правило, недопустимо – в них увеличивается вязкость базового масла, смазка густеет и прекращает эффективно поступать в зону трения.

Новейший смазочный материал от компании «Эффективный Элемент» для обслуживания подшипников скольжения, работающих при очень низких температурах — морозостойкая смазка EFELE SG — 321.

Она изготовлена на основе сульфоната кальция, что придает материалу высокие несущие и водостойкие свойства.Смазка совместима с пластмассами, отлично работает при высоких нагрузках, во влажной среде и надежно защищает узлы от коррозии и износа.

Морозостойкие пластичные смазки EFELE  предназначены для работы при низких температурах и сохраняют свои высокие эксплуатационные свойства в этих условиях.

EFELE MG-214 (диапазон рабочих температур от -40 до +120 °С) – устойчива к смыванию водой, работоспособна во влажной среде, обладает высокой химической и механической стабильностью.

EFELE SG-301 (диапазон рабочих температур от -40 до +160 °С) – устойчива к смыванию водой, высоким нагрузкам, влажной среде, защищает от коррозии, обладает высокой адгезией, имеет пищевой допуск.

EFELE SG-311 (диапазон рабочих температур от -60 до +120 °С) – устойчива к смыванию водой, высоким скоростям вращения, совместима с пластмассами и эластомерами, обеспечивает длительное смазывание.

EFELE SG-321 (диапазон рабочих температур от -55 до +150 °С) – устойчива к смыванию водой, высоким нагрузкам, совместима с пластмассами и эластомерами, имеет высокие антикоррозионные свойства.

EFELE SG-391 (диапазон рабочих температур от -40 до +160 °С) – устойчива к смыванию водой, влажной среде, высоким нагрузкам, имеет пищевой допуск, обеспечивает длительное смазывание.

EFELE SG-392 (диапазон рабочих температур от -45 до +170 °С) – устойчива к смыванию водой и моющими средствами, высоким нагрузкам, влажной среде, имеет высокие антикоррозионные и хорошие противоизносные свойства, пищевой допуск, обеспечивает длительное смазывание

Пластичные смазки для подшипников скольжения из металла, работающих при высоких и экстремально высоких нагрузках

Для подшипников скольжения из металла, работающих в условиях высоких нагрузок, целесообразно применение смазок, образующих смазочную пленку с высокой несущей способностью. Это достигается введением в смазочный материал специальных противозадирных и противоизносных присадок, а также антифрикционных наполнителей на основе твердых смазок.

Пластичная минеральная смазка EFELE MG — 221 — новинка от компании «Эффективный Элемент». Она изготовлена на основе сульфоната кальция, что придает материалу высокие несущие и водостойкие свойства.

EFELE MG-221 отлично работает под воздействием тяжелых и ударных нагрузок, во влажной среде и отлично защищает узлы от коррозии и износа, обеспечиваю длительную, бесперебойную работу узлов.

Смазки  EFELE, имеющие высокую несущую способность:

  • EFELE MG-212 (диапазон рабочих температур от -30 до +120 °С) – устойчива к смыванию водой, влажной среде, имеет высокие антикоррозионные свойства
  • EFELE MG-213 (диапазон рабочих температур от -30 до +160 °С) – устойчива к смыванию водой, влажной среде, имеет высокие антикоррозионные свойства, обеспечивает длительное смазывание
  • EFELE MG-221 (диапазон рабочих температур от -30 до + 150 °С) – устойчива к смыванию водой, влажной среде, ударным нагрузкам, имеет отличные противоизносные и высокие антикоррозионные свойства
  • EFELE SG-301 (диапазон рабочих температур от -40 до +160 °С) – устойчива к смыванию водой, высоким нагрузкам, влажной среде, защищает от коррозии, обладает высокой адгезией, имеет пищевой допуск
  • EFELE SG-321 (диапазон рабочих температур от -55 до +150 °С) – устойчива к смыванию водой, высоким нагрузкам, совместима с пластмассами и эластомерами, имеет высокие антикоррозионные свойства
  • EFELE SG-392 (диапазон рабочих температур от -45 до +170 °С) – устойчива к смыванию водой и моющими средствами, высоким нагрузкам, влажной среде, имеет высокие антикоррозионные и хорошие противоизносные свойства, обеспечивает длительное смазывание
  • EFELE SG-394 (диапазон рабочих температур от -20 до +260 °С) – работоспособна в запыленной среде, вакууме, химически агрессивной среде, имеет пищевой допуск, совместима с пластмассами и эластомерами, характеризуется высокими антикоррозионными свойствами, обеспечивает длительное смазывание

Пластичные смазки для подшипников скольжения из металла, работающих в оборудовании пищевой промышленности

Для металлических подшипников скольжения, работающих в оборудовании пищевых предприятий, где не исключен случайный контакт смазочного материала с продуктами питания, необходимо применять смазки с пищевым допуском NSF h2.

Смазки EFELE, имеющие такой допуск:

  • EFELE SG-301 (диапазон рабочих температур от -40 до + 160°С) – устойчива к смыванию водой, высоким нагрузкам, влажной среде, защищает от коррозии, обладает высокой адгезией
  • EFELE SG-391 (диапазон рабочих температур от -40 до + 160°С) – устойчива к смыванию водой, влажной среде, высоким нагрузкам, обеспечивает длительное смазывание
  • EFELE SG-392 (диапазон рабочих температур от -45 до + 170°С) – устойчива к смыванию водой и моющими средствами, высоким нагрузкам, влажной среде, имеет высокие антикоррозионные и хорошие противоизносные свойства, обеспечивает длительное смазывание
  • EFELE SG-394 (диапазон рабочих температур от -20 до + 260°С) – работоспособна в запыленной среде, вакууме, химически агрессивной среде, совместима с пластмассами и эластомерами, имеет высокие антикоррозионные свойства, обеспечивает длительное смазывание

Пластичные смазки для подшипников скольжения из металла, работающих в химически агрессивных средах

Для обеспечения надежности и долговечности металлических подшипников скольжения, работающих в условиях контакта с различными нефтепродуктами, кислотами, щелочами, или растворителями необходимо применять химически стойкие смазки, например EFELE SG-394 .

Характеристики:

  • Работоспособность в запыленной среде, вакууме, химически агрессивной среде
  • Совместимость с пластмассами и эластомерами
  • Наличие пищевого допуска
  • Антикоррозионные свойства
  • Обеспечение длительного смазывания

Особенности смазывания металлических подшипников скольжения пластичной смазкой

Подшипники скольжения и шарнирные соединения заполняют смазками полностью. В процессе работы желательно автоматическое или полуавтоматическое пополнение смазкой таких узлов трения.

Применение для обслуживания подшипников скольжения АТСП MODENGY

На подшипники скольжения из металла можно наносить антифрикционные твердосмазочные покрытия MODENGY.
В отличие от пластичных смазок, они не нуждаются в постоянном обновлении (однократного нанесения хватает на весь срок эксплуатации деталей) и образуют сухой тонкий слой твердой смазки, не выделяют испарений после отверждения, функционируют в более широком диапазоне температур.

Для данного применения наилучшим образом подойдут покрытия MODENGY 1005 и MODENGY 1007.


MODENGY 1005 (диапазон рабочих температур от -70 до + 255°С) – обладает повышенной несущей способностью, обеспечивает низкий коэффициент трения, имеет высокую адгезию, эффективно защищает от коррозии, предотвращает скачкообразное движение.

MODENGY 1007 (диапазон рабочих температур от -40 до + 160°С) – работоспособно во влажной и запыленной среде, устойчиво к химически агрессивным средам, способствует повышению плавности работы узлов трения, снижению шума и облегчению приработки.

Данные материалы полимеризуются при нагреве до +200 °С (есть вариант отверждения MODENGY 1005 при +130 °С).

смазки для подшипников скольжения и качения от Kluber Lubrication

Оно отличается низким коэффициентом внутреннего трения, хорошо очищает и охлаждает поверхность деталей. Такие материалы легко подводить к рабочим узлам, но они требуют уплотняющих устройств, препятствующих вытеканию.

Функции

Масло для смазывания подшипников выполняет следующие функции:

  • фрикционную. Заключается в снижении силы трения, образующейся при контакте вращающихся или скользящих рабочих частей. Движение подшипника при использовании масла облегчается, уменьшается износ соприкасающихся поверхностей;
  • защитную. Масло образует плотную пленку на поверхности металла, предохраняющую его от механических повреждений и появления коррозии;
  • барьерную. При эксплуатации в агрессивной среде масло защищает подшипник от попадания внутрь механических частиц, которые могут негативно сказаться на работе оборудования;
  • терморегулирующую. Масло равномерно распределяет выделяющееся тепло и отводит его наружу. Таким образом, снижается опасность перегрева, а рабочий ресурс подшипника увеличивается.

Категории масел для подшипников

Синтетические. Изготавливаются на основе полимеров и соединений органических кислот. Производители предлагают полиальфаолефиновые (РАО), эфирные и полигликолевые (PAG) синтетические масла. По сравнению с минеральными они имеют ряд существенных преимуществ. Синтетические масла не теряют своих свойств в агрессивной среде, почти не изменяют вязкость при колебании температуры.

Минеральные. Изготовлены на основе переработки нефтепродуктов. Для придания требуемых эксплуатационных свойств в них добавляются специальные присадки. Используются как масла для подшипников качения и скольжения наряду с синтетическими материалами.

Основные рабочие характеристики

  • Температура застывания. Граничный показатель, при котором смазочный материал еще течет. Если условия эксплуатации оборудования чуть выше температуры застывания масла, его вязкость будет слишком велика. Это негативно скажется и на подаче смазочного материала в систему, и на стабильности работы оборудования.
  • Вязкость. В большинстве случаев определяется соответствующим коэффициентом k, который характеризует условия эксплуатации оборудования. Данный параметр рассчитывается как отношение фактической рабочей вязкости (в мм²/с) к ее номинальному значению, учитывающему средний диаметр подшипника и скорость вращения. Чем выше этот показатель, тем лучше смазывается узел и больше ожидаемый эксплуатационный ресурс узла. С другой стороны, слишком большое значение данного параметра приводит к увеличенному расходу энергии при высокой угловой скорости. Для большинства областей применения подшипников необходимо, чтобы коэффициент вязкости масла находился в пределах 1–4.
  • Тип присадок. Добавка таких веществ модифицирует масло, придавая ему требуемые свойства, например антикоррозионные или противопенные. Противоизносные и антизадирные присадки могут содержать серу и фосфор, которые при температуре выше +80 ˚С оказывают негативное воздействие на подшипник. Поэтому такой смазочный материал перед эксплуатацией следует тщательно проверить.

Особенности выбора масла для подшипников

Для смазывания необходимо использовать материалы, рекомендуемые заводом-изготовителем. Это особенно важно для оборудования высокой мощности. Если по каким-то причинам рекомендации производителя отсутствуют, и Вы не знаете, каким маслом смазать подшипник, то нужно исходить из особенностей эксплуатации узла. К основным факторам выбора относятся:

  • рабочая температура. Для подшипников, работающих при отрицательных температурах, необходимо выбирать масло с точкой застывания на 15–20 ˚С ниже условий эксплуатации. Такой смазочный материал должен иметь минимальную вязкость. Для подшипников, работающих при более высоких температурах (например, +70…+80 ˚С), выбирается масло с большей вязкостью;
  • угловая скорость. Чем она выше, тем менее вязким должно быть подшипниковое масло;
  • режим работы. Если работа узла связана с частыми пусками и реверсами, рекомендуется выбрать более вязкое масло для подшипников;
  • конструкция узла. В качестве смазки для подшипника скольжения чаще выбираются синтетические смазочные материалы. Для конструкций качения учитывается оптимальная вязкость. Для шариковых и цилиндрических подшипников она должна составлять от 13 мм2/с, для конических и сферических – от 20 мм2/с, для упорных – от 32 мм2/с.

Другие виды смазки

Подшипниковое масло применяется в тех случаях, когда узлы работают при высоких скоростях и температурах. Оно эффективно отводит тепло от узла в окружающую среду, обеспечивает его постоянное охлаждение.

Если же подшипник работает на малой скорости и/или испытывает ударные нагрузки, то используется пластичная смазка. Ее получают насыщением жидкого масла эфирами жирных кислот. В зависимости от типа загустителя такие смазки делятся на литолы, солидолы, консталины и т. п. Они имеют густую консистенцию, хорошо герметизируют узлы, устойчивы к воздействию воды.

Читайте также:

Смазки для подшипников качения. ELKALUB в России

Смазки для подшипников качения — применяют в подшипниках качения. Подшипники качения состоят из двух колец, тел качения (различной формы) и сепаратора (некоторые типы подшипников могут быть без сепаратора), отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение. По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба — дорожки качения, по которым при работе подшипника катятся тела качения.

Чтобы заказать продукцию Elkalub, отправьте запрос в нашу компанию. Менеджеры ознакомят Вас с условиями и стоимостью товара.

 

Название NLGI
индекс
Темп.
диапазон (°C)*
Факторы скорости (ndm*) Основное назначение
Смазки для подшипников качения / скольжения
GLL 6 2;3 -15. ..+100 адгезионная, длинноволокнистая консистентная смазка, для роликовых подшипников и подшипников скольжения, вибраторов, открытых смазываемых поверхностей
GLL 7 2;3 -20…+120 400 000 универсальная смазка для роликовых подшипников и подшипников скольжения
GLS 35 2 -20…+120 400 000 универсальная консистентная смазка для роликовых подшипников и подшипников скольжения
GLS 135 1;2 -20…+120 500 000 шумопоглощающая смазка для роликовых подшипников и подшипников скольжения, работающих при больших нагрузках
GLS 163 -20…+130 для подшипников и элементов скольжения; смены направляющих деталей
GLS 962 2 -40…+170 600 000 смазка для роликовых подшипников и подшипников скольжения, работающих при высоких температурах
GLS 965 3 -40. ..+170 600 000 высокотемпературная смазка для роликовых подшипников и подшипников скольжения при больших нагрузках
GLS 966 2 -40…+160 подшипники, работающие при средних и высоких скоростях, при высоких нагрузках в условиях высоких температур; для конических и самовыворачивающихся шариковых подшипников; отсутствие потери масла.
GLS 367 0;2 -10…+130 используется в оборудование, которое имеет высокий статус воздействия воды, а так же кислот и щелочей
GLS 380 1 -10…+120 200 000 полусинтетическая смазка для подшипников из чистого сплава и антифрикционных подшипников (особенно для пары цветной металл- сталь),
GLS 388 2 -10…+100 смазка на основе алюминиевого комплекса и синтетического масла с высокой устойчивостью к воде,а также к соленой воде.
GLS 964

См. также:

Смазки для подшипников скольжения

Способы смазки подшипников качения — Справочник химика 21

    Смазка подшипников качения проводится следующими способами 1) в масляной ванне, когда масло заливается непосредственно в корпус подшипника (уровень масла должен находиться на уровне оси нижнего шарика или ролика) 2) распылением при подаче масла из капельной масленки на вращающийся вал 3) заполнением свободного пространства подшипникового узла консистентной смазкой (производится через 3 месяца). [c.46]
    Способы смазки подшипников качения [c.224]

    Применяются следующие способы смазки подшипников качения  [c.550]

    Для подачи масла в подшипники качения применяются следую-ш ие способы и системы смазки (не считая смазки разбрызгиванием от вращающихся шестерен)  [c. 225]

    Индивидуальная смазка применяется для поверхностей трения скольжения и подшипников качения и осуществляется при помощи масленок различной конструкции. Вследствие необходимости постоянного наблюдения за наличием масла в масленках этот способ смазки считается устаревшим и в современных металлургических цехах применяется только в исключительных случаях. [c.7]

    Описанная выше система выбора подшинников в некотором смысле определяет способы смазки. Для смазки подшипников качения иредпОчтительны жидкие масла или консистентные смазки для смазки подшипников скольжения пригодны лишь смазочные масла и жидкостные смазки. [c.278]

    Способ применения смазки в подшипниках качения влияет на коэффициент трения и срок службы подшипников. В случае подшипников качения с покрытием и уплотняющими дисками оптимальные эксплуатационные характеристики достигаются при заполнении подшипника смазкой на 30 % объема. Если подшипники качения полностью заполнены смазкой, избыток ее быстро вытесняется из зоны трения в свободное пространство подшипника в зависимости от частоты вращения. В подшипниках качения смазки подвергаются механическим, термическим и химическим нагрузкам, которые приводят к изменениям структуры смазки в процессе ее эксплуатации. Они поглощают частицы износа и другие загрязняющие примеси — пыль, воду, агрессивные газы и растворители. Отделение масла, как правило, увеличивает твердость смазки. При потере 50 % масла вследствие испарения или синерезиса полезный срок службы смазки в подшипнике уменьшается [12.70]. [c.433]

    Чугунные блоки цилиндров, как правило, отливают заодно с картером и рамой, поэтому такие конструкции носят название блок-картерных. В картере размещается кривошип-но-шатунный механизм, масляный насос с фильтром и сальник. Картер имеет две боковые крышки и одну торцовую. Коленчатый вал, обычно двухопорный с закрепленными противовесами, опирается на подшипники качения. Масляный насос имеет привод от коленчатого вала и подает смазку на сальник и механизм движения, В блоки цилиндров разными способами крепятся гильзы, которые смазывают разбрызгиванием. Поршни компрессора чу- [c.155]

    Входит в состав смазок на основе церезина, минерального масла, бутадиен-стирольного каучука для консервации подшипников качения и др. точных металлических изделий [794]. Состав и способ приготовления смазки в [794]. [c.141]

    Количество подаваемой смазки и способ ее подачи определяют в зависимости от режима работы подшипника качения. Использование жидких масел предпочтительнее, так как они легче проникают к поверхностям трения. Однако в труднодоступных местах, а также в целях увеличения сроков возобновления смазки в конструкциях опорных узлов предусматривается использование пластичных смазочных материалов (мази и пасты) 1-ЛЗ, ЦИАТИМ-201, 203, 221, 221С, ВНИИНП-242 и др. Консистентные смазки в узел обычно набивают на 1/3 свободного пространства корпуса. Предельная температура использования смазок при работе узла должна быть на 20…30 °С ниже температуры каплепадения смазки. [c.321]

    Современные каландры имеют валки с периферийно расположенными сверлеными каналами, с циркуляцией теплоносителя и с установкой для автоматического регулирования температуры в заданных пределах. Каландры с подшипниками скольжения имеют гидравлическое устройство для выбора. тшфта в подшипниках и механизмах регулирования зазора. В некоторых конструкциях используются подшипники качения с нулевым зазором. Для компенсации прогиба валков применяется устройство для перекрещивания осей валков или предварительный изгиб валка. Иногда применяются оба способа компенсации прогиба валков. Смазка жидкая или густая подается централизованно в виде свободного потока или принудительно под давлением с сигнализацией о прекращении подачи масла и о нагреве любого из подшипников. Фрикционные и универсальные каландры поставляются с механизированным изменением фрикции между выпускающими валками и с автоматической системой регулирования зазоров между валками от сигналов, непрерывно подаваемых радиоактивным измерителем толщины листа. [c.179]

    Термоупрочнение отрицательно сказывается на эксплуатационных свойствах смазок. Желатинировавшиеся смазки способйы вывести из строя подшипники качения и другие узлы, поскольку они не поступают к местам трения и не смазывают их.[c.152]

    Порошкообразная форма. В порошкообразном виде МоЗг эффективнее, чем графит. Во многих случаях достаточно нанесения вручную ветошью. Для обеспечения удовлетворительной адгезии поверхность должна быть чистой, сухой и не содержать пластичной смазки. Хорошие результаты дает также интенсивное натирание кусочком кожи или жесткой кистью. Чем интенсивнее натиранйе, тем лучше адгезия к поверхности металла. Для обработки крупных деталей применяют шлифовальные круги. Экономичным способом нанесения порошкообразного МоЗа на мелкие изделия массового производства из металла или пластмассы является полировка в барабане. В этом случае соответствующие носители (шарики, закаленная чугунная дробь и т. п.) предварительно в течение 3 ч обрабатывают порошком МоЗг. В зависимости от размера деталей в барабане можно за один прием нанести твердое смазочное покрытие толщиной около 1 мкм на несколько тысяч деталей. Этот способ часто применяют для нанесения покрытий на диски муфт сцепления, винты, валы, ролики и конструкционные элементы подшипников качения. При очень высоких температурах твердое смазочное покрытие наносят преимущественно с помощью газа-носителя. Пленки МоЗд можно также наносить с помощью ультразвуковых волн частотой около 2200 Гц. Равномерное нанесение слоев МоЗ, достигается импульсами высокой частоты. Оптимальные результаты с порошкообразным МоЗа достигаются при нанесении покрытия при малых скоростях скольжения и высоких нагрузках, при которых гидродинамическое давление, достигаемое жидкими смазочными материалами, недостаточно высоко. [c.172]



Смазка подшипников

Назначение смазки

Смазка необходима для уменьшения трения и изнашивания внутри подшипника. Надлежащая смазка и соответствующие процедуры позволяют подшипникам достигать своего предполагаемого срока службы.

Главным образом, смазка служит следующим целям:

• Cнижение трения и изнашивания. Кольца подшипника, элементы качения и сепаратор подшипника защищены от прямого контакта металла с масляной пленкой, которая уменьшает трение и тепловыделение в области контакта.

• Увеличение срока службы. Усталостная долговечность подшипников зависит в большей мере от вязкости и густоты смазки. Интенсивная густота пленки увеличивает усталостную долговечность подшипника.

• Охлаждение. Циркуляционное масло может использоватся для отвода тепла из подшипника. Циркуляционная система, как правило, используется при выработке подшипником чрезмерного тепла в силу высоких скоростей, высоких нагрузок, или когда тепло из источника, находящегося рядом с подшипником, оказывает влияние на его функционирование. Качество масел ухудшается при высоких температурах, следовательно, важно сохранять охлажденными и масло, и подшипник.

• Другое назначение. Соответствующая смазка также помогает предотвратить попадание инородного материала в подшипники и защищает от коррозии.

Основные методы смазки

Смазка подшипника может производиться с использованием либо масла, либо консистентной смазки. Наиболее удовлетворительное функционирование достигается посредством выбора метода, наиболее подходящего для области конкретного применения. Это, конечно, также зависит от условий, в которых будет работать подшипник.

Смазка маслом превосходит в смазочной способности, однако консистентная смазка позволяет создать более простую инфраструктуру вокруг подшипников. В следующей таблице проводится сравнение смазки маслом и консистентной смазки.

 

Рабочие характеристикиПри консистентой смазкеПри смазке маслом
Конструкция корпуса и способ уплотненияПростой

– Может быть комплексным

– Необходимо осторожное обращение

СкоростьПредельная скорость составляет 65-80% от скорости смазки масломВысокая предельная скорость
Охлаждающий эффектНизкийПеренос тепла возможен при использовании циркуляционной смазки под давлением
ТекучестьПлохоХорошо
Полная замена смазкиИногда затруднительнаЛегкая
Удаление инородных частицУдаление инородных частиц из смазки невозможноЛегкая
Внешнее загрязнение, вызванное утечкойЗагрязнение близлежащей территории происходит редко

– Часто происходит без должных контрмер

– Не подходит в тех случаях, когда нужно избегать внешних загрязнений

Смазка консистентной смазкой

Консистентная смазка — это полутвердый смазочный материал на основе базового масла и сгустителя. Иногда добавляются другие ингредиенты для передачи особых свойств смазочной основы.

Добавки: консистентная смазка часто содержит разнообразные добавки, такие как антиоксиданты, ингибиторы коррозии и добавки высокого давления для придания смазке особых свойств. Добавки высокого давления рекомендуется для использования при применении в условиях тяжелых нагрузок. Для продолжительного использования без пополнения необходимо добавить антиоксидант.

Консистенция: показывает «мягкость» консистентной смазки. В следующей таблице отражено соотношение между консистенцией и рабочими условиями.

Номер консистенции (данные шкалы Национального института пластичных смазочных материалов)

 

 01234

Консистенция(1)

(1/10 мм)

385≈355340≈310295≈265250≈220205≈175
Рабочие условия

–Для централизованной смазки.

–Когда может произойти ложное бринеллирование.

– Для централизованной смазки.

–Когда может произойти фреттинг-коррозия.

–Для низких температур.

– Для общего использования.

– Для подшипников с уплотнениями.

– Для высокой температуры.

– Для общего использования.

– Для подшипников с уплотонениями.

– Для высоких температур.

– Для подшипников с уплотнениями

(1) Консистенция — глубина следа в консистентной смазке, достигаемая конусом при нажатии определнным весом, указанном в единицах 1/10 мм. Чем больше величина, тем мягче смазочный материал.

Смешение разных видов консистентной смазки

В общем, консистентная смазка разных видов должна смешиваться. Смешение с различными видами загустителей может разрушить состав и физические свойства консистентной смазки. Даже если загустители одного вида, возможные различия в добавках могут привести к разрушающему эффекту.

Количество консистентной смазки

Количество консистентной смазки, помещаемой в корпус, зависит от конструкции корпуса, частоты вращения подшипника, характеристик выбранной консистентной смазки и температуры окружающей среды.

В случаях, когда рабочая скорость не превышает наполовину предельные скорости подшипника, подшипник должен быть наполнен смазкой наполовину или до 2/3 части. Если скорость подшипника превышает половину предельной скорости, то количество консистентной смазки следует сократить от половины до 1/3 и проводить периодичское пополнение смазки. При несложных рабочих условиях первоначальной смазки должно быть достаточно на длительное время без необходимости пополнения. Когда условия становятся жесткими, то появляется необходимость в периодическом пополнении смазки.

Следует избегать чрезмерного количества (переполнения) смазки, так как это приведет к перегреву подшипника.

Пополнение консистентной смазки

Частое пополнение требуется в сложных рабочих условиях, таких как высокая температура окружающей среды или когда загрязняющее вещество может попасть в подшипник. Необходимо составить графики регулярного пополнения смазки. В случаях чрезвычайно сложных условий или расположения подшипников в удаленной области, корпус подшипника должен быть сконструирован так, чтобы пополнение и замена осуществлялись наиболее простым способом. Существуют автоматические системы смазки, и их следует применять.

В нормальных рабочих условиях может быть необходимо периодически смазывать подшипник в целях замены утекающей смазки и удаления испорченной смазки.

Даже при использовании консистентной смазки высокого качества её свойства со временем ухудшаются, в связи с чем, требуется периодическое пополнение.

На рис. (1) и (2) показаны временные интервалы пополнения для различных видов подшипников, работающих на разных скоростях.

Рис. (1) и (2) применимы к условиям смазки высококачественным литиевым мыльноминеральном маслом, выдерживающим температуру 70°С и номинальную нагрузку (P/C=0,1).

Температура

Если температура подшипника превышает 70°С, то на каждые следующие 15°С временной интервал пополнения смазки сокращается наполовину.

Консистентная смазка

Что касается шарикоподшипников, временной интервал пополнения смазки может быть увеличен в зависимости от используемого вида консистентной смазки. (Например, высококачественное литьевое мыльносинтетическое масло может превысить в два раза временной интервал пополнения, показанный на рис. (1). Если температура подшипников менее 70ºС, то подходит использование в качестве смазки литьевое мыльноминеральное масло и литьевое мыльносинтетическое масло).

Нагрузка

Временной интервал пополнения зависит от величины нагрузки подшипника. Смотрите рис. (3). Если Р/C превышает 0,16, то рекомендуется проконсультироваться у специалистов.

(3) Коэффицент нагрузки

 

P/C≤0.060.10.130.16
Коэффицент нагрузки1.510.650.45

Смазка маслом

Когда рабочая скорость превышает предельную скорость консистентной смазки, допустимо для подшипника, то следует использовать смазку жидким материалом. Существует несколько методов смазки. Выбор наилучшего метода зависит от рабочих условий.

1) Смазка погружением: не для высоких скоростей

2) Смазка капельной подачей: для высоких скоростей

3) Смазка масляным туманом: от высоких до сверхвысоких скоростей

4) Смазывание разбрызгивателем: коробки передач/редукторы

5) Циркуляционная система смазки: высокие скорости и высокие температуры

6) Струйная смазка: сверхвысокие скорости, такие как у реактивных двигателей или у станочных шпинделей

 

Смазка подшипников качения для критических условий работы

Консистентная смазка — это наиболее распространенный тип смазки, используемый сегодня для смазки подшипников качения. Таким образом смазываются около 90 процентов всех подшипников. Важно правильно выбрать пластичную смазку в соответствии с конкретными требованиями и рассчитать срок службы смазки. Для точного расчета срока службы смазки необходимо знать и применять ограничивающие факторы. Правильный расчет обеспечит минимальное количество смазки (MQL).

Шариковые и цилиндрические роликоподшипники, используемые в электродвигателях, являются примером подшипников качения с MQL. Если, однако, эти типы подшипников подвергаются негативным воздействиям, эффективный срок службы смазки может быть быстро сокращен и может произойти повреждение подшипников.

В этой статье обсуждаются некоторые из этих негативных влияний и их последствия на основе практических примеров. Практическое значение будет представлено через проблему непрерывности электрического тока (токи подшипников или искровая эрозия подшипников) и влияние на смазку и подшипники качения.

Консистентная смазка подшипников качения

Консистентная смазка для подшипников качения состоит из загустителя, масла и отобранных присадок для улучшения желаемых свойств. Фактической смазкой для подшипников качения является масло, которое может быть минеральным, полностью синтетическим или их смесью.

К этим маслам добавляются различные типы присадок, которые влияют на свойства коррозионной стойкости и / или создают слои, защищающие поверхность металла в экстремальных условиях.Добавки также улучшают вязкость при различных температурах.

Задача загустителя — впитывать масло и в небольших количествах выделять его на несущий элемент в течение длительного периода.

На практике для смазки подшипников качения используется всего несколько граммов консистентной смазки, и этого количества обычно хватает на долгое время. Следовательно, особенно важен точный расчет срока службы смазки.

Расчет срока службы смазки

Срок службы пластичной смазки для подшипников качения зависит от выбора пластичной смазки, типа подшипника, условий работы и воздействия окружающей среды.

Основание для расчета срока службы пластичной смазки можно увидеть на общепринятой диаграмме (рисунок 2).

На этой диаграмме противопоставляется то, что часто называют «универсальной смазкой» (литиевая смазка на основе минерального масла, консистентная смазка A), с кривой срока службы высококачественной синтетической консистентной смазки на основе сложного эфира на основе полиуретана (консистентная смазка B). .

Преимущества синтетических масел, загущенных полимочевиной, возрастают при повышении температуры.Срок службы смазки в них в 20 раз выше, чем у стандартных пластичных смазок, в зависимости от температуры. Это означает, что пользователь может увеличить запас прочности на случай повреждения подшипников из-за смазки и одновременно увеличить интервалы замены смазки.

Так называемое значение типа подшипника (kf) предполагает фактическую конструкцию смазываемого подшипника. Этот коэффициент может иметь значение от 0,9 до 10 для кинематически простых шарикоподшипников.

Для кинематически сложных подшипников (например, осевых цилиндрических роликоподшипников с высоким трением скольжения) коэффициент kf может достигать значений до 90.Чем больше число, тем больше площадь поверхности и большее общее напряжение, прикладываемое к маслу и матрице загустителя. Сферические роликоподшипники, как категория, имеют тенденцию оказывать наибольшее давление на консистентные смазки.

Коэффициент скорости n * dm (об / мин * средний диаметр подшипника) является классификационным числом для скорости вращения подшипника качения и зависит от условий эксплуатации.

Таким образом, уже можно узнать доступный срок службы конкретного типа используемой смазки, хотя это только теоретическое значение.В следующем расчете необходимо учитывать факторы, влияющие на фактическое приложение, и оценивать их важность.

tfq = tf * f1 * f2 * f3 * f4 * f5 * f6
tfq… Практический срок службы смазки в часах
tf… срок службы смазки из рисунка 2
f1… f6… влияющие факторы

Эти факторы отражают известные негативные влияния на срок службы смазки для роликовых подшипников, которые сокращают срок службы смазки в соответствии со значениями, показанными на Рисунке 2.

Факторы влияния

Необходимо учитывать влияние загрязнения (f1), вибрации (f2), повышенной температуры подшипника (f3), высокой нагрузки на подшипник (f4) и циркуляции воздуха (f5) на подшипнике или вокруг него.

Значения могут легко варьироваться от 0,1 до 1 (нет влияния), что означает, что результат фактического расчета сильно зависит от уровня опыта человека, оценивающего значения факторов.

Структурные факторы (f6) также могут значительно сократить срок службы смазки.Например, направление сборки подшипника (горизонтальное, вертикальное или угловое) важно для интервала повторного смазывания. Из-за различного влияния центробежных сил на смазку необходимо учитывать ведомую дорожку качения подшипника (вращающегося IR или OR).

Диапазоны коэффициента уменьшения должны выбираться из диапазона. По мере того, как условия становятся более суровыми, значение коэффициента становится меньше, что сокращает расчет срока службы смазки. Опыт играет ключевую роль в точной оценке.

f1 = Окружающая среда, степень загрязнения (от 0,1 до 0,9)
f2 = Динамика нагрузки, удары (от 0,1 до 0,9)
f3 = температура подшипника (от 0,1 до 0,9)
f4 = нагрузка на подшипник (от 0,1 до 1,0)
f5 = воздушный поток (от 0,1 до 0,7)
f6 = Тип установки, центробежная энергия (от 0,5 до 0,7)

Хотя коэффициенты понижения 1, 2, 5 и 6 основаны на эмпирических значениях, температура подшипника (3) и нагрузка (4) могут быть отнесены к химико-физическим связям и зависят от типа смазки.

Для стандартной консистентной смазки (литиевое мыло и минеральное масло) термическое старение непропорционально возрастает после любого повышения температуры выше 140 ° C. Срок службы смазки сокращается почти до нуля, когда она достигает точки каплепадения примерно при 190 ° C. Можно было ожидать повышенного отделения масла и, из-за увеличенной циркуляции, заметного увеличения скорости окисления.

Когда консистентная смазка достигает точки каплепадения, происходит необратимое и самопроизвольное вытекание масла, и консистентная смазка теряет свои свойства.Срок службы смазки также снижается при экстремально низких температурах, но это невозможно измерить с той же конфигурацией испытательного стенда. Следовательно, можно определить факторы срока службы пластичной смазки на основе характеристик в диапазоне температур.

Подшипники с консистентной смазкой в ​​электродвигателях

Смазанный роликовый подшипник в электродвигателе предлагается для демонстрации возможного срока службы смазки. В общем, подвеска роторов с помощью смазываемых консистентной смазкой роликовых подшипников широко используется и хорошо известна, а также является хорошим примером подшипника, подверженного различным влияющим факторам.

С появлением современных технологий преобразования частоты было обнаружено дополнительное отрицательное влияние на срок службы подшипников, которое продолжает вызывать отказы: токи в подшипниках.

Обычно подшипники качения в электрических машинах подвергаются минимальной нагрузке, при этом типичная нагрузка составляет от P / C = 0,05 до C / P = 20. Нагрузка по отношению к несущей способности подшипника настолько минимальна, что возможно достижение максимального диапазона выносливости.

В действительности, отказы подшипников все еще происходят через 15 000–20 000 часов с этим типом подшипников.При правильном повторном смазывании срок службы смазки может быть согласован с оптимальным сроком службы подшипников и, таким образом, легко достичь 100 000 часов и более.

В стратегиях планового профилактического обслуживания электродвигатели часто заменяют через два-три года эксплуатации. Интервал определяется множеством факторов, но, как правило, это связано с предыдущим жизненным циклом приложения. Ремонт двигателя требует времени, является дорогостоящим и представляет повышенный риск с каждой новой установкой.

В новом оборудовании современные методы преобразования частоты, такие как высокочастотные двигатели с регулируемой скоростью, регулирование скорости двигателя, увеличение скорости и увеличенные часы работы — все это имеет различные эффекты, сокращающие срок службы (см. Врезку). Более высокая скорость электродвигателя приведет к повышенным температурам подшипников, подвергая смазку более сильным центробежным силам.

Эти центробежные силы удаляют масло с контактных поверхностей в то время, когда это наиболее важно для функционирования и выживания подшипников.Это может привести к преждевременному старению (окислению и затвердеванию) из-за чрезмерной нагрузки на рабочие характеристики пластичных смазок общего назначения.

Экстремальные температуры подшипников 212 ° F (100 ° C) могут вызвать испарение масла, конденсацию и проблемы со стабильностью смазки и подшипника. В последние годы к этим проблемам добавилось увеличение количества отказов из-за электрической дуги (высокочастотный переменный ток, проходящий между ротором и рамой через подшипник) в высокочастотных приводах.

При переключении прямоугольного напряжения возникают гармоники в МГц-диапазоне, которые невозможно изолировать с помощью обычных изоляционных материалов. Обычные меры, применяемые производителями подшипников (изоляция поверхности кольца подшипника керамическим слоем толщиной примерно 100 микрон), уже не приносят успеха. Эти методы эффективны только при работе с постоянным током (DC) или низкочастотным переменным током (AC).

Предполагается, что в этих высокочастотных токах остается так много энергии, что происходит заземление через смазочную пленку, и элемент и смазка повреждаются.Это влияние не принимается во внимание в современных расчетах и, в свою очередь, привело к повреждению подшипников в современных машинах, использующих методы преобразования частоты для регулирования скорости.

Распознавание влияний окружающей среды (f1 и f3) и выбор надлежащим образом сокращенных факторов жизненного цикла могут способствовать преодолению дугового напряжения на элементе. Владелец оборудования может помочь компенсировать влияние загрязнения и температурных загрязнителей, которые будут присутствовать в этих обстоятельствах, уменьшив их количество при увеличении частоты пополнения смазочного материала в процессе эксплуатации.

Неисправности подшипников

Наблюдается сильное окисление и затвердевание смазки, возникающее в результате высокотемпературного напряжения, вызванного электрическим заземлением (искрение). Потеря смазочного материала вызывает смешанное трение и износ в зоне контакта роликов.

Тот факт, что подшипник не может быть легко заменен снаружи, играет решающую роль в возможном отказе элемента. Вновь добавленная смазка не может вытеснить уже имеющуюся затвердевшую и окисленную смазку и делает замену смазки невозможной.При нормальных интервалах повторного смазывания отказ подшипника неизбежен (рисунки с 3 по 8).


Рис. 3. Состаренная смазка между сепаратором и IR


Рисунок 4. Повторное смазывание невозможно


Рисунок 5. Смешанная смазка в CRB


Рисунок 6. Повреждения из-за плохой смазки


Рисунок 7. Вода извне


Рисунок 8.Проблема конденсированной воды

Как уже упоминалось, наблюдается заметное увеличение повреждения электрическим током из-за высокочастотного переменного тока. Тусклые коричневые дорожки качения и дорожки на шаре или роликах являются типичными (рис. 9–14).


Рис. 9. CRB-Внешнее кольцо коричневого цвета


Рис. 10. Мяч с коричневыми полосами


Рис. 11. Повреждение радиального шарикоподшипника


Рисунок 12.Изображение SEM, показывающее гонку


Рисунок 13. Поврежденный CRB Причитающийся ток


Рисунок 14. Поврежденная смазка

Как показано на Рисунке 12, реальный кратер электрического тока невелик и может быть идентифицирован только с помощью сканирующего электронного микроскопа. Сегодня типичный диаметр почти круглых кратеров, присутствующих в большинстве распространенных отказов, составляет от 1 до 4 мкм.

Практика показывает, что несущие поверхности будут повреждены даже при минимальной нагрузке.Эти дуги также приводят к катастрофическому старению смазки в зоне контакта качения, вызванному окислением, что значительно сокращает срок службы смазки (Рисунки 13 и 14).

В местах контакта роликов испорченная смазка больше не может эффективно смазывать, в то время как внешние части подшипника удерживают свежую смазку.

Это состояние иногда называют недостаточным смазыванием, что может быть точным описанием вторичного механизма отказа, но не обязательно является основным фактором отказа.Корректирующие меры обычно не приносят успеха, если действительная причина не определена и не исправлена ​​правильно.


Рис. 15. Типичный рисунок рифления
(С любезного разрешения MH Electric Motor and Control Corp.)

Последняя стадия характеризуется типичным рисунком канавки из-за наличия подшипниковых токов (рис. 15).


Рисунок 16. DuoMax 160

Смазка роликовых подшипников консистентной смазкой — обычная практика для долговременной смазки.Для достижения ожидаемого срока службы особое внимание следует уделять правильному расчету срока службы смазки. Устранение ряда влияющих факторов может значительно сократить срок службы смазки. Современные электродвигатели с преобразователями частоты для регулирования скорости вращения сталкиваются с повышенными проблемами из-за подшипниковых токов в точках контакта качения.

Эти токи приводят к поверхностям подшипников качения, которые повреждаются микрократерами после термического разрушения смазки в точках контакта с металлом небольшими электрическими дугами.Это конкретное сокращение срока службы пластичной смазки еще не учитывалось при обычных расчетах срока службы пластичной смазки. Отказ из-за подшипниковых токов продолжает расти в связи с частым использованием современной приводной техники для управления двигателями.

Преобразователи IGBT

Биполярные транзисторы с изолированным затвором (IGBT) появились на рынке в 1990-х годах. Они представляют собой огромное улучшение технологии привода, увеличивая частоту переключения до 20 кГц, уменьшая гармоники и слышимый шум.

Однако в последнее время стало очевидно, что эти улучшения были куплены дорогой ценой: технология IGBT воскресила проблемы с подшипниками из-за электрического разряда, создав новую проблему для производителей электродвигателей.

Механизм переключения инвертора также создает так называемое синфазное напряжение.

Из-за высоких частот переключения инверторов IGBT паразитные емкости между обмоткой статора и статором, а также между обмоткой ротора и статора становятся актуальными.

Смазка подшипников — Консистентная смазка подшипников

Смазка

Смазка абсолютно необходима для правильной работы шариковых и роликовых подшипников. Правильная смазка уменьшит трение между внутренними поверхностями скольжения компонентов подшипников и уменьшит или предотвратит контакт металла по металлу тел качения с их дорожками качения.Правильная смазка снижает износ и предотвращает коррозию, обеспечивая длительный срок службы подшипников.

Смазка, особенно циркулирующее масло, также отводит тепло от подшипника.

Существует два основных типа смазочных материалов для подшипников: масло и консистентная смазка. Первое довольно просто понять, поскольку оно является свободно текущей жидкостью, а второе — немного сложнее. Чтобы быть смазочным материалом, все консистентные смазки содержат масло, улавливаемое загустевшей основой. Именно эта основа создает впечатление, что смазка является более вязким типом масла; однако фактическое смазывание выполняет масло в пластичной смазке.Каждый тип смазки имеет свои преимущества и недостатки и выбирается в зависимости от области применения. Основными преимуществами двух основных типов смазочных материалов являются:

Смазка Преимущество Недостаток

Нефть

Легко распределяется, смазывает другие компоненты, меньше лобовое сопротивление, легче сливать и заменять. Лучше при высокой температуре.

Возможна утечка (проблема для окружающей среды), смазка больше не требуется

Смазка

Остается на месте, не протекает легко, улучшает герметичность и не требует контроля.

Требуется больше труда для очистки и пополнения. Высокотемпературная смазка очень дорога.

Каждый производитель смазочного материала может предоставить лист технических характеристик для каждого из своих продуктов, и каждый лист будет иметь список примерно из 20 свойств и их значений, связанных с этим смазочным материалом. Важнейшим свойством любой смазки для подшипников качения является вязкость масла. Если спецификация относится к маслу, значения вязкости относятся к маслу.Если это пластичная смазка, это должно относиться к «вязкости базового масла» или другому подобному термину, в зависимости от производителя. Обычно четыре значения вязкости отображаются следующим образом:

  • сСт при 40 ° C (104 ° F), единицы СИ
  • сСт при 100 ° C (212 ° F), единицы СИ
  • SUS при 100 ° F (38 ° C) Британские единицы
  • SUS при 210 ° F (99 ° C) Британские единицы

Очень важно выбрать смазку, которая обеспечит минимально приемлемую вязкость при рабочей температуре подшипника, которая обычно будет находиться между самой низкой и самой высокой эталонными температурами, указанными выше.Обычно значения вязкости масла очень быстро уменьшаются с повышением температуры. Определение рабочей температуры подшипника — довольно сложный расчет, который выходит за рамки этого каталога. Другое дело — расчет вязкости смазочного материала при этой температуре на основе спецификаций производителя смазочного материала. Часто предыдущий опыт работы с существующей аналогичной машиной указывает на приемлемую смазку. В ходе домашних испытаний прототипа или первой машины можно определить рабочие температуры.В большинстве машин используется смазка, подобранная в соответствии с наиболее жесткими требованиями к одному из компонентов машины, например подшипнику, шестерне и т. Д.

Присадки являются очень важной характеристикой современных масел и консистентных смазок и часто могут иметь значение для успешной и долгосрочной эксплуатации подшипников и других компонентов машин. При выборе любого смазочного материала следует всегда учитывать добавки.

Подшипники, которые мы предлагаем

Компания

American Roller Bearing в основном производит подшипники для тяжелых условий эксплуатации, которые используются в различных отраслях промышленности в США и во всем мире.Наши подшипники промышленного класса не только должны обеспечивать длительный срок службы по критерию усталости при качении, но они также должны сохранять целостность конструкции от ударов, перегрузок и случайных скачков на высокой скорости. С этой целью была оптимизирована конструкция каждого подшипника для тяжелых условий эксплуатации, включая наши подшипники с большим внутренним диаметром.

Смазка маслом

С точки зрения производительности масло является лучшей формой смазки, и оно предлагает несколько способов подачи в подшипники. Самая простая форма — поддержание статического уровня масла в корпусе подшипника.В некоторых типах оборудования, например, с шестернями и / или шатунами, масло, подаваемое к этим компонентам, создает туман или брызги, которые смачивают контактные поверхности подшипников. Иногда это называют «смазкой разбрызгиванием».

Следующими по сложности являются масляный туман и системы воздух / масло, которые предназначены для подачи точного количества масла, необходимого для смазки, предотвращения излишка масла, которое может взбить подшипник, увеличения сопротивления и температуры.

Для высокоскоростных применений часто требуется циркулирующее масло.Форсунки впрыскивают масло непосредственно в подшипник, обеспечивая двойную функцию смазки и отвода тепла. Эти системы сложны и дороги, и их выбирают в случае крайней необходимости.

Консистентная смазка

Обычно консистентная смазка выбирается, если это позволяют требования к смазке подшипника. Типичные системы смазки намного проще масляных и не так дорого стоят. Часто необходимы только отверстия для подачи смазки и внешний смазочный ниппель для пополнения.

При выборе смазки для области применения необходимо учитывать несколько ее свойств для ожидаемых условий эксплуатации. Приоритет этих свойств:

  1. Требуемая вязкость масла при температуре подшипника.
  2. Марка для рабочей температуры.
  3. Мыльная основа, которая лучше всего подходит для нанесения.
  4. Наличие противозадирных присадок.

Уровень «Марка» смазки является показателем жесткости смазки.Марки «0» и «1» относительно мягкие и обычно используются при низких рабочих температурах. Классы «2», «3» и «4» используются при все более высоких температурах. Уровень «3» также обычно используется в вертикальных установках, чтобы предотвратить оседание всей смазки на дне подшипника.

Различные утолщающие основы обладают определенными преимуществами, поэтому их можно выбирать для различных областей применения. Некоторые из их основных преимуществ:

Кальций:

Врожденная противозадирная способность, коррозионная стойкость, безопасность для пищевой промышленности, только при низких температурах.

Натрий:

Более низкая стоимость, универсальное применение, средне-высокие температуры.

Литий:

Более высокая температура, высокие скорости.

BentoneClay:

Тяжелые нагрузки при высоких температурах, стойкость к вымыванию водой.

Синтетика:

Очень высокая температура.(Высокая стоимость)

Повторная смазка подшипников

Во многих случаях необходимо пополнять смазку через регулярные промежутки времени, так как старая смазка «высыхает» из-за попадания масла в движущиеся части подшипника, а загущающая основа окисляется. Повторная смазка должна быть неотъемлемой частью конструкции оборудования, а некоторые типы подшипников уже имеют функцию повторной смазки. Хорошие конструкторы обеспечат в самой машине доступные смазочные каналы для попадания смазки в подшипник.Если старая смазка преграждает путь, толкать новую смазку к подшипнику очень мало. Гораздо лучше ввести новую смазку в центр подшипника и дать ей вытолкнуть старую смазку с каждой стороны. Если в выбранном подшипнике это невозможно, то смазку необходимо нанести на одну сторону подшипника, в то время как другая сторона полости корпуса обеспечивает место для старой смазки. Некоторые конструкции машин предусматривали продувочное отверстие или позволяли старой смазке выходить из-под кромок уплотнения.В некоторых типах оборудования, применяемого в отраслях промышленности, где в воздухе содержатся абразивные частицы, консистентная смазка используется в качестве фильтрующего материала для улавливания этих частиц. Регулярная смазка этих подшипников и их корпусов удаляет загрязненную смазку из корпусов подшипников. Важно помнить, что повторную смазку следует производить, когда смазка в подшипнике еще хороша.

Интервалы повторной смазки, которые всегда обеспечивают необходимое количество масла для подшипников, не всегда можно точно спрогнозировать.Мы знаем, что правильный интервал в основном зависит от рабочей температуры, количества часов работы в день, а также размера и скорости подшипника. Некоторое оборудование требует повторной смазки всех подшипников каждый день, некоторые — раз в неделю, некоторые — каждые две недели, а некоторые — раз в месяц. В таких случаях часто бывает полезно полностью промывать подшипники один раз в год, повторно набивать новую смазку и продолжать работу по установленной программе повторной смазки. Пользователям рекомендуется не только проверять состояние старой смазки, но и отправлять образцы в лабораторию, которая специализируется на анализе использованных смазочных материалов.Знания, полученные для каждого конкретного применения, являются лучшим показателем правильного интервала замены смазки.

Получение рекомендаций по смазке не должно быть трудным, поскольку существует множество производителей и дистрибьюторов смазочных материалов, которые должны обладать знаниями и техническими характеристиками для оказания профессиональной помощи. Опыт, полученный с их продуктами на аналогичном оборудовании и / или в аналогичных условиях эксплуатации, часто является лучшей причиной для выбора марки и типа смазки для подшипников в единице оборудования.

Мы постарались определить наиболее важные характеристики смазочного материала для наших подшипников, чтобы они обеспечивали долгий срок службы владельцам и операторам оборудования, в котором они установлены. Были кратко затронуты только некоторые характеристики обычных масел и консистентных смазок, оставив многие другие характеристики различных смазочных материалов, которые предстоит объяснить специалистам по смазочным материалам. Если у клиентов наших подшипников есть какие-либо вопросы или опасения по поводу рекомендаций по смазочным материалам для их оборудования, не стесняйтесь обращаться в отдел продаж American Roller Bearing или к одному из наших представителей на местах.Политика компании American Roller Bearing Company гласит, что мы не рекомендуем какой-либо конкретный смазочный материал или даже компанию, производящую смазочные материалы. Однако мы проверим, подходит ли смазка, выбранная нашими клиентами, для наших подшипников.

Нажмите здесь, чтобы запросить ценовое предложение, или позвоните нам по телефону 828-624-1460

Краткое описание смазочных материалов для подшипников качения

Рис. 1. В этой лаборатории проводятся испытания смазочных материалов для подшипников.

Вам нужна смазка или масло для подшипников? Хотя у обоих смазочных материалов есть свои плюсы, вы должны учитывать свое применение.

Консистентная смазка или масло для смазки подшипников качения помогает сгладить путь к надежной работе, предотвращая металлический контакт между телами качения, дорожками качения и сепараторами подшипника. Помимо разделения поверхностей качения и скольжения в подшипнике, смазочные материалы препятствуют износу и могут помочь противостоять коррозии. Кроме того, консистентная смазка может обеспечить улучшенную защиту уплотнения от загрязнений.Масло однозначно может служить средством отвода тепла от подшипниковой опоры. Как выбрать между двумя?

Конкретное приложение будет определять, следует ли смазывать консистентной смазкой или маслом, и процесс выбора начинается с тщательного изучения всех параметров приложения. К ним относятся тип машины, тип и размер подшипника, температура, условия нагрузки, диапазон скоростей, рабочие условия (такие как вибрация и горизонтальная / вертикальная ориентация вала) и внешняя среда.Обладая этими знаниями, пользователи могут выбрать наиболее подходящий тип и состав смазки.

Консистентная смазка: твердый раствор
Когда это возможно, рекомендуется использовать консистентную смазку для смазки подшипников, поскольку ее легко наносить, она может удерживаться в корпусе подшипника и по своей сути обеспечивает защиту от твердого или влажного загрязнения.

Как отмечалось в предыдущей статье Рэя Тибо, озаглавленной «Основы пластичных смазок», консистентные смазки состоят из минерального или синтетического базового масла, взвешенного в загустителе (при этом масло составляет не менее 75% от объема смазки).Добавки могут быть введены для придания таких характеристик, как защита от износа или коррозии и свойства снижения трения. Изменяя вязкость базовых масел, загустители и присадки, можно разработать консистентные смазки с различными характеристиками, удовлетворяющими конкретным применениям и условиям эксплуатации.

При выборе пластичной смазки для смазки подшипников пользователи должны учитывать множество факторов, включая вязкость базового масла, консистенцию, диапазон рабочих температур и скорость утечки масла.

Вязкость базового масла
На этот показатель гидравлического сопротивления масла влияет состав загустителя, который имеет решающее значение для характеристик смазки, особенно в отношении температурных характеристик, водостойкости и скорости утечки масла. Поскольку каждый загуститель будет иметь свой набор преимуществ и недостатков, условия применения и проблемы будут определять правильные уровни.

Консистенция
Консистентные смазки классифицируются по их консистенции или жесткости в соответствии с Национальным институтом смазочных материалов (NLGI) и имеют класс NLGI Class 000 (очень мягкие) до 6 (очень жесткие). .При нормальном использовании в подшипниках консистенция консистентной смазки обычно находится в диапазоне от 1 до 3 по NLGI. Консистентные смазки с более низкой консистенцией будут рекомендованы для низкотемпературных применений или для улучшения прокачиваемости, в то время как консистентные смазки с более высокой консистенцией подходят для подшипниковых узлов с вертикальным валом. .

Рис. 2. Процесс разрушения смазки

Рабочая температура
Температурный диапазон, в котором может использоваться пластичная смазка, будет в значительной степени зависеть от типа базового масла, загустителя и присадок.Но примечание о предупреждении: хотя пределы рабочих температур, предоставляемые производителями смазочных материалов, будут основаны на химических свойствах пластичной смазки, это не означает, что пластичная смазка будет правильно смазывать подшипники в тех же диапазонах температур. Это связано с тем, что вязкость базового масла обычно слишком мала для адекватной смазки подшипника при указанном температурном пределе.

Очень низкие температуры могут привести к чрезмерному вращающему моменту или недостаточному сливу масла из пакета консистентной смазки.При очень высоких температурах скорость окисления (разрушения) смазки возрастает, а потери от испарения увеличиваются. (См. Диаграмму отказа смазки на рис. 2.)

В приложениях, где рабочие температуры подшипников будут ниже -4 F (-20 C) или выше 250 F (121 C), смазка обычной пластичной смазкой может быть совершенно неприемлемой — и вызывает потребность в специальных типах и / или других методах смазки. . Поставщик смазочного материала должен быть включен в список для предоставления дополнительных сведений, помогающих определить наиболее подходящую смазку для данной области применения.

Скорость утечки масла…
Консистентная смазка должна выделять часть своего масла во время работы, чтобы должным образом смазать подшипник. Скорость выпуска называется скоростью уноса (или скоростью отделения масла). Типичная скорость утечки масла из пластичных смазок для смазки подшипников составляет от 1% до 5%. (Одним из отраслевых стандартных тестов для определения скорости утечки масла является стандарт DIN 51817.) Вязкость базового масла и рабочая температура будут влиять на скорость утечки — , которая должна быть достаточно высокой для адекватной смазки подшипников .

По оценкам, половина всех отказов подшипников, связанных с плохой смазкой, вызвана выбором неподходящей смазки для условий эксплуатации или смешиванием несовместимых пластичных смазок с различными свойствами. Следовательно, для оптимальной работы подшипника очень важно выбрать правильный тип смазки, обеспечивающий необходимую вязкость базового масла в нужном количестве при преобладающей рабочей температуре.

Хотя может возникнуть соблазн поддержать стандартизацию одного смазочного материала с целью увеличения покупательной способности за счет закупки в большом количестве, производственные машины представляют собой узкоспециализированные вращающиеся узлы — , и в большинстве случаев требования к смазке столь же специфичны.

Еще одно предостережение: смешивание смазок в машине может быть фатальным в долгосрочной перспективе. Подобной практики следует избегать. Смешивание типов консистентной смазки может означать загрязнение смазки, и в результате получается либо более мягкая консистентная смазка, которая позволяет смазке вытекать из области применения при более низкой температуре, либо более твердая смазка, которая снижает ее способность к смазыванию.

Масло: жидкий раствор
Масло обычно используется для смазки подшипников качения, когда высокие скорости, высокие температуры или срок службы смазки не позволяют использовать консистентную смазку.Масло также будет выбрано, когда необходимо отвести тепло от позиции подшипника или когда соседние компоненты смазываются маслом.

Минеральные масла являются наиболее распространенными, а ингибиторы ржавчины и окисления являются типичными присадками. Синтетические масла обычно используются для смазки подшипников в крайних случаях — , например, при очень низких или очень высоких рабочих температурах .

Вязкость масла представляет собой его наиболее важное свойство и напрямую зависит от толщины пленки, которую масло может образовывать.Толщина пленки, в свою очередь, имеет решающее значение для эффективного разделения контактных поверхностей качения и скольжения внутри подшипника для уменьшения трения и нагрева и минимизации износа. Единицы измерения вязкости масла — универсальные секунды Сейболта (SUS) и сантистоксы (мм 2 / с, сСт).

Требуемая вязкость смазочного масла при рабочей температуре приложения может быть оценена в зависимости от размера подшипника и рабочей скорости. Среди важных факторов для расчетов масло должно иметь удельную кинематическую вязкость при рабочей температуре подшипника для образования достаточно толстой масляной пленки, а коэффициент вязкости масла (отношение фактической рабочей вязкости к требуемой кинематической вязкости) будет Укажите, будут ли поверхности контакта качения в подшипнике полностью разделены масляной пленкой.

Когда невозможно определить размер подшипника или рабочую скорость, традиционно применялись несколько «практических правил» для семейств подшипников, чтобы предложить минимально необходимую вязкость масла при рабочей температуре подшипника. Согласно этим правилам, для шарикоподшипников и цилиндрических роликоподшипников потребуется вязкость не менее 70 SUS (13 сантистокс) при рабочей температуре подшипника; для сферических роликоподшипников, тороидальных роликоподшипников и конических роликоподшипников требуется вязкость не менее 100 SUS (21 сантистокс); Для упорных сферических роликоподшипников требуется вязкость не менее 150 SUS (32 сантистокса).(Имейте в виду, что эти значения, как правило, не подходят для относительно медленных или высоких скоростей вращения; пользователям рекомендуется по возможности получать более подробную информацию.)

Поскольку масла являются жидкостями, методы смазки будут играть жизненно важную роль в их доставке, и к ним следует внимательно относиться. Среди широко используемых традиционных методов:

  • Простые масляные ванны подходят для многих применений с низкими и умеренными скоростями;
  • Маслосборные кольца могут подходить для более высоких скоростей и рабочих температур;
  • Циркуляционные системы могут свести к минимуму техническое обслуживание и обеспечить преимущества в тяжелых условиях эксплуатации, таких как приложения с высокими температурами окружающей среды или постоянно увеличивающиеся потребляемая мощность и скорость; и
  • Масляные форсунки подходят для приложений с очень высокой скоростью.

Запомните это
Со временем смазка в подшипниковой опоре естественным образом теряет свои смазочные свойства. Этот сложный жизненный факт подчеркивает необходимость внимательного отношения к выбору оригинального смазочного материала и предполагает ценность партнерства со знающим и опытным поставщиком по мере того, как начинается процесс принятия решений. LMT


Джерри МакЛэйн (Jerry McLain) — менеджер по развитию бизнеса в подразделении смазочных материалов SKF USA Inc., базирующаяся в Калпсвилле, штат Пенсильвания. Его обширный опыт включает помощь в разработке и внедрении индивидуальных программ смазки для промышленности. Телефон: (513) 248-4335.

Три ошибки смазки подшипников — приложения

Избыточная смазка повышает температуру внутри подшипника.

Если частью вашей работы является смазывание машинного оборудования, то вы хорошо знаете, как бороться с силами трения, которые угрожают сроку службы подшипников качения. Смазка подшипников качения — одна из самых недооцененных и часто используемых в промышленности задач. Может ли быть правдой, что 40 процентов подшипников никогда не доживают до своего инженерного жизненного цикла и что неправильная смазка является основной причиной такой смертности?

Подшипники используют консистентную смазку для снижения уровня трения.Избегая трех распространенных ошибок при смазке подшипников, вы можете предсказать подходящее время для смазки, знать, сколько смазки нужно нанести, и быть уверенным в общем состоянии подшипника.

Ошибка 1 — Смазка основана на времени, а не на условии

Смазка подшипника один раз в неделю или один раз в месяц может показаться разумным делом. В конце концов, регулярное плановое техническое обслуживание — это старая концепция.

Подшипники нуждаются в смазке только по одной причине — для уменьшения трения.Если смазочный материал хорошо справляется с этой задачей, нет необходимости его менять или добавлять. Однако мы часто это делаем с катастрофическими результатами.

Смазка подшипника только потому, что в календаре сказано: «Время вышло!» это первая ошибка. Контролируйте, измеряйте и изменяйте уровни трения с помощью ультразвука, чтобы знать, когда пришло время смазывать.

Когда достигается идеальный уровень смазки, значение микровольт в дБ возвращается к нормальному уровню.Это прекрасно слышно в наушниках, при воспроизведении динамического сигнала и видно на экране устройства SDT.

Ошибка 2 — Излишняя и недостаточная смазка

Вторая ошибка, которую мы должны избегать, — это добавление слишком большого или недостаточного количества смазки.Слишком большое количество смазки создает давление, толкая тела качения через жидкую пленку к внешнему кольцу. Подшипник теперь должен работать намного тяжелее, чтобы протолкнуть тела качения через грязевое болото, покрытое смазкой.

Повышенное трение и давление из-за слишком большого количества смазки повышают температуру внутри подшипника. Избыточное тепло может снизить эффективность смазки, что приведет к отделению масла от загустителя. Недостаточное количество смазки сокращает срок службы.

Как узнать, что было добавлено нужное количество смазки? Контролируя уровень трения с помощью ультразвука по мере нанесения новой смазки — медленно, по одной дозе за раз.

Послушайте подшипник и измерьте падение трения при поступлении смазки в подшипник. Когда уровень децибел приближается к минимальному значению и стабилизируется, обратите особое внимание. Добавьте одиночные снимки. Если уровень децибел начнет немного увеличиваться, остановитесь! Работа сделана.

Ошибка 3 — Использование ультразвукового прибора «только для прослушивания»

Как и в любой работе, есть правильный и неправильный способ делать что-то. Простое прослушивание пеленга с помощью ультразвукового устройства, которое не дает обратной связи при измерении, — это верный путь к катастрофе.

Сама по себе звуковая обратная связь слишком субъективна, чтобы делать какие-либо сравнительные выводы. Нет двух людей, которые слышат одно и то же, и невозможно вспомнить, как звучал подшипник месяц назад.

Третья ошибка зависит исключительно от субъективного ультразвукового шума, когда доступны точные количественные данные. Поэтому всегда используйте ультразвуковой прибор с цифровым измерителем децибел. Еще лучше использовать устройство, которое предоставляет несколько индикаторов состояния.

Максимальные среднеквадратичные значения и пиковые значения в дБ показывают уровни срабатывания сигнализации и интервалы смазки, в то время как ультразвуковой пик-фактор дает представление о состоянии подшипника по отношению к его смазке.Crest Factor помогает нам различать подшипники, требующие смазки, и подшипники, которые необходимо заменить.

Очевидные преимущества избежания трех ошибок

Смазка оборудования с помощью ультразвука дает значительные преимущества, которых не может обеспечить смазка на основе календаря. Смазка служит основной цели, которая заключается в создании тонкого слоя смазки между элементами качения и скольжения, уменьшающего трение. Поэтому логично, что лучший способ определить потребность машины в смазке — это контролировать уровень трения, а не время эксплуатации.

Оптимизация смазки машинного оборудования ультразвуком приведет к значительному снижению расхода смазки. Наличие программы ультразвукового исследования поможет создать лучшую культуру, включающую более чистые методы хранения, отбор проб и недопущение смешивания смазок.

Машины с должной смазкой требуют меньше энергии для работы. Представьте, что сокращение суммы денег, потраченных на смазку, на самом деле приведет к снижению счетов за электроэнергию. Машины, потребляющие меньше электроэнергии, работают с меньшим нагревом, а машины с меньшим нагревом имеют более длительный жизненный цикл.

Хорошо, настоящая причина для оптимизации смазки подшипников состоит в том, чтобы продлить срок службы подшипников, убедившись, что в них содержится нужное количество смазки, но не слишком много. Когда все работает по плану, специалисты по смазке будут тратить меньше времени на смазку подшипников, которые в этом не нуждаются. Поэтому, подсчитывая преимущества вашей программы УЗИ, не забудьте добавить к длинному списку «сокращение родов».

Наконец, отслеживая состояние смазки вашего оборудования, вы в то же время собираете ценные данные о состоянии самой машины.Динамические и статические ультразвуковые данные в сочетании с индикаторами состояния, такими как общее среднеквадратичное значение, максимальное среднеквадратичное значение, пик и пик-фактор, являются индикаторами состояния подшипников.

Практика, в которой не используется эта комбинация, не является реальным решением при смазке подшипников. Кто знал, что такой простой переход от календарного к техническому обслуживанию по состоянию может принести столько пользы? Теперь ты знаешь.

Назначение и способ смазки | Базовые знания подшипников

Смазка — один из наиболее важных факторов, определяющих рабочие характеристики подшипников.Пригодность смазки и метод смазки имеют решающее влияние на срок службы подшипников.

Функции смазки:

  • Для смазки каждой части подшипника, а также для уменьшения трения и износа
  • Для отвода тепла, выделяемого внутри подшипника из-за трения и других причин
  • Для покрытия поверхности контакта качения надлежащей масляной пленкой с целью продления усталостной долговечности подшипников
  • Для предотвращения коррозии и загрязнения грязью

Смазка подшипников в целом подразделяется на две категории: консистентная смазка и смазка маслом. Таблица 12-1 проводит общее сравнение между ними.

Таблица 12-1 Сравнение консистентной и масляной смазки

Деталь Смазка Масло
Уплотнительное устройство Легко Немного сложный и требует особого ухода для обслуживания
Смазывающая способность Хорошо Отлично
Скорость вращения Низкая / средняя скорость Применяется также на высоких скоростях
Замена смазки Слегка хлопотная Легко
Срок службы смазки Сравнительно короткий длинный
Эффект охлаждения Без охлаждающего эффекта Хорошее (необходим тираж)
Фильтрация грязи Сложный Легко

12-1-1 Консистентная смазка

Смазка консистентной смазкой широко применяется, так как нет необходимости в пополнении в течение длительного периода после заполнения консистентной смазкой, а для устройства уплотнения смазочного материала может быть достаточно относительно простой конструкции.
Есть два метода консистентной смазки. Один из них — это закрытый метод смазки, при котором консистентная смазка заранее заливается в экранированный / герметичный подшипник; другой — метод подачи, при котором подшипник и корпус сначала заполняются смазкой в ​​надлежащих количествах, а затем пополняются через регулярные промежутки времени путем пополнения или замены.
В устройствах с многочисленными впускными отверстиями для консистентной смазки иногда используется централизованный метод смазки, при котором впускные отверстия соединены трубопроводами и совместно снабжаются консистентной смазкой.

1) Количество смазки

Как правило, смазка должна заполнять примерно от одной трети до половины внутреннего пространства, хотя это зависит от конструкции и внутреннего пространства корпуса.
Следует иметь в виду, что чрезмерная смазка будет выделять тепло при взбалтывании и, следовательно, изменится, испортится или размягчится.
Однако, когда подшипник работает на низкой скорости, внутреннее пространство иногда заполняется консистентной смазкой на две трети полностью, чтобы

2) Пополнение / замена смазки

Метод пополнения / замены смазки во многом зависит от метода смазки.Какой бы метод ни использовался, следует соблюдать осторожность, чтобы использовать чистую смазку и не допускать попадания грязи или других посторонних предметов в корпус.
Кроме того, желательно доливать смазку той же марки, что и была залита вначале.
При повторной заливке смазки необходимо ввести новую смазку внутрь подшипника.
Рис. 12-1 дает один пример метода подачи.

Рис. 12-1 Пример способа подачи смазки (с использованием смазочного сектора)

В этом примере внутренняя часть корпуса разделена смазочными секторами.Смазка заполняет один сектор, затем течет в подшипник.
С другой стороны, смазка, текущая изнутри, вытесняется из подшипника центробежной силой смазочного клапана.
Когда смазочный клапан не используется, необходимо увеличить пространство корпуса на напорной стороне для хранения старой смазки.
Корпус открыт, и старая смазка удаляется через регулярные промежутки времени.

3) Интервал подачи смазки

При нормальной эксплуатации срок службы смазки следует рассматривать примерно так, как показано на Рис.12-2 , и пополнение / замена должны выполняться соответственно.

Рис. 12-2 Интервал подачи смазки

4) Срок службы смазки в экранированном / закрытом шарикоподшипнике

Срок службы смазки можно оценить по следующей формуле, если однорядный радиальный шарикоподшипник заполнен консистентной смазкой и закрыт щитками или уплотнениями.

Условия для применения уравнения (12-1) следующие:

12-1-2 Масляная смазка

Масляная смазка применима даже при высокой скорости вращения и несколько высоких температурах, и она эффективна для снижения вибрации и шума подшипников.Таким образом, масляная смазка используется во многих случаях, когда консистентная смазка не работает. Таблица 12-2 показывает основные типы и методы смазки маслом.

Таблица 12-2 Тип и способ смазки маслом

① Масляная ванна
  • Простейший способ погружения подшипников в масло для эксплуатации.
  • Подходит для низкой / средней скорости.
  • Датчик уровня масла должен быть предоставлен для регулировки количества масла.
    (в случае горизонтального вала)
    Около 50% самого нижнего тела качения должно быть погружено в воду.
    (В случае вертикального вала)
    Примерно от 70 до 80% подшипника должно быть погружено.
  • Лучше использовать магнитную пробку, чтобы частицы износостойкого железа не рассеивались в масле.
② Подвод масла
  • Масло капает с помощью смазочного устройства, а внутренняя часть корпуса заполняется масляным туманом под действием вращающихся частей. Этот метод имеет охлаждающий эффект.
  • Применяется при относительно высокой скорости и средней нагрузке.
  • Обычно используется от 5 до 6 капель масла в минуту.
    (Трудно отрегулировать капельницу до 1 мл / ч или меньше.)
  • Необходимо предотвратить скопление слишком большого количества масла на дне корпуса.
③ Брызги масла
  • В этом типе смазки используется шестерня или простой отражатель, прикрепленный к валу для разбрызгивания масла. Этот метод позволяет подавать масло для подшипников, расположенных вдали от масляного бака.
  • Может использоваться до относительно высокой скорости.
  • Необходимо поддерживать уровень масла в определенном диапазоне.
  • Лучше использовать магнитную пробку, чтобы частицы износостойкого железа не рассеивались в масле.
    Также рекомендуется установить экран или перегородку для предотвращения попадания загрязняющих веществ в подшипник.
④ Принудительная циркуляция масла
  • В этом методе используется система маслоснабжения циркуляционного типа.
    Подаваемое масло смазывает внутреннюю часть подшипника, охлаждается и отправляется обратно в резервуар по трубопроводу для выпуска масла. Масло после фильтрации и охлаждения перекачивается обратно.
  • Широко используется при высоких скоростях и высоких температурах.
  • Лучше использовать маслосливную трубку примерно в два раза толще, чем маслоподводящая трубка, чтобы предотвратить скопление слишком большого количества смазки в корпусе.
  • Необходимое количество масла: см. Замечание 1.
⑤ Маслоструйная смазка
  • В этом методе используется форсунка для впрыскивания масла при постоянном давлении (от 0,1 до 0,5 МПа), и он очень эффективен при охлаждении.
  • Подходит для высоких скоростей и больших нагрузок.
  • Обычно сопло (диаметром от 0,5 до 2 мм) располагается на расстоянии 5-10 мм от стороны подшипника.
    Когда выделяется большое количество тепла, следует использовать от 2 до 4 форсунок.
  • Поскольку при струйной смазке подается большое количество масла, старое следует сливать с помощью масляного насоса, чтобы предотвратить чрезмерное количество остаточного масла.
  • Необходимое количество масла: см. Замечание 1.
⑥ Смазка масляным туманом (смазка распылением)
  • В этом методе используется генератор масляного тумана для создания сухого тумана (воздух, содержащий масло в форме тумана).Сухой туман непрерывно отправляется поставщику масла, где он превращается во влажный туман (липкие капли масла) с помощью сопла, установленного на корпусе или подшипнике, а затем распыляется на подшипник.
  • Этот метод обеспечивает и поддерживает наименьшее количество масляной пленки, необходимой для смазки, и имеет преимущества предотвращения загрязнения масла, упрощения обслуживания подшипников, продления усталостной долговечности подшипников, снижения расхода масла и т. Д.
  • Требуемое количество тумана: см. Замечание 2.
⑦ Масляно-воздушная смазка
  • Дозировочный насос подает небольшое количество масла, которое смешивается со сжатым воздухом с помощью смесительного клапана. Примесь подается в подшипник непрерывно и стабильно.
  • Этот метод позволяет количественно контролировать масло в очень малых количествах, всегда добавляя новое смазочное масло. Таким образом, он подходит для станков и других приложений, требующих высокой скорости.
  • Сжатый воздух и смазочное масло подаются к шпинделю, увеличивая внутреннее давление и помогая предотвратить попадание грязи, смазочно-охлаждающей жидкости и т. Д.от входа. Кроме того, этот метод позволяет смазочному маслу проходить через подающую трубу, сводя к минимуму загрязнение атмосферы.
Примечание 1 Требуемая подача масла при принудительной циркуляции масла; методы смазки масляной струей
Значения коэффициента трения
μ ..
Тип подшипника μ
Радиальный шарикоподшипник 0,0010 — 0,0015
Радиально-упорный шарикоподшипник 0.0012 — 0,0020
Подшипник роликовый цилиндрический 0,0008 — 0,0012
Конический роликоподшипник 0,0017 — 0,0025
Подшипник роликовый сферический 0,0020 — 0,0025

Значения, полученные с помощью приведенного выше уравнения, показывают количество масла, необходимое для отвода всего выделяемого тепла, без учета тепловыделения.
В действительности поставляемая нефть обычно составляет от половины до двух третей расчетной стоимости.
Тепловыделение широко варьируется в зависимости от области применения и условий эксплуатации.
Для определения оптимальной подачи масла рекомендуется начинать работу с двух третей расчетного значения, а затем постепенно уменьшать масло, измеряя рабочую температуру подшипника, а также подаваемое и сливаемое масло.

Примечание 2 Примечания к смазке масляным туманом
1) Требуемое количество тумана (давление тумана: 5 кПа)

В случае высокой скорости ( d м n ≧ 40 万) необходимо увеличить количество масла и повысить давление тумана.

2) Диаметр трубопровода и конструкция смазочного отверстия / канавки

Когда скорость потока тумана в трубопроводе превышает 5 м / с, масляный туман внезапно конденсируется в масляную жидкость.
Следовательно, диаметр трубопровода и размеры смазочного отверстия / канавки в корпусе должны быть рассчитаны таким образом, чтобы скорость потока тумана, полученная по следующему уравнению, не превышала 5 м / с.

3) Масло тумана

Масло, используемое для смазки масляным туманом, должно соответствовать следующим требованиям.

  • способность превращаться в туман
  • обладает высокой устойчивостью к экстремальным давлениям
  • хорошая термостойкость / устойчивость к окислению
  • нержавеющая
  • осадок маловероятен
  • деэмульгатор высшего качества

(Смазка масляным туманом имеет ряд преимуществ для подшипников с высокой скоростью вращения. Однако на его характеристики в значительной степени влияют окружающие конструкции и условия эксплуатации подшипников.
Если вы планируете использовать этот метод, обратитесь в JTEKT за советом, основанным на многолетнем опыте JTEKT в области смазывания масляным туманом.)

Наука о простоте Самосмазывающиеся подшипники скольжения линейного перемещения

Простота Подшипники скольжения для линейного перемещения ® обладают реальными преимуществами по сравнению с другими типами линейных подшипников; такие как самосмазывающееся качество гильзы Frelon® подшипника, а также очищающее действие на валу, которое обеспечивает плавное линейное движение. Эти возможности позволяют системе линейного перемещения не только избежать катастрофического отказа, но также продлить срок службы системы.

Что такое самосмазка?

Самосмазка характеризуется способностью подшипника переносить микроскопические количества материала на сопрягаемую поверхность. Этот процесс переноса создает пленку, которая обеспечивает смазку и снижает трение по длине рельса или вала. Самосмазка имеет несколько преимуществ по сравнению с традиционными подшипниками со смазкой. Самосмазывающиеся подшипники экономят время и деньги на профилактическое обслуживание и не требуют опасных отходов смазочного материала, утилизации или очистки.Самосмазка обеспечивает постоянство сил трения в подшипниках и системе привода, и не требуется добавление смазки или масла, которые могут притягивать загрязнения, разрушающие обычные подшипники.

Процесс передачи

Процесс переноса — это постоянная динамическая функция самосмазывающегося подшипника, которая будет продолжаться на протяжении всего срока его службы.

Первым и наиболее важным этапом процесса является период обкатки. Это когда происходит первоначальный перенос материала на сопрягаемую поверхность.Количество материала подшипника, затронутого во время переноса, зависит от множества факторов, включая скорость, нагрузку, длину хода и т. Д. Для приложения. Обычно начальный процесс переноса выполняется за 50-100 ходов непрерывной работы.

На вторичной и продолжающейся фазе переноса самосмазка наиболее эффективна.

Что делает систему самосмазывающейся?

  1. Смазка является неотъемлемой частью материала подшипника.
  2. Смазка (обычно масло или консистентная смазка) НЕ добавляется к оригинальной конструкции подшипника.
  3. Смазка НЕ ​​разрушается и со временем становится неэффективной (старение смазки).
  4. Смазка равномерно нанесена на поверхность вала.
  5. Дополнительные компоненты не увеличивают стоимость всей системы.

Чтобы действительно быть самосмазывающейся, подшипниковая система должна выполнять именно то, что подразумевает ее название. Он должен обеспечивать собственную смазку на протяжении всего срока службы системы и не иметь какого-либо внешнего источника, облегчающего смазку в течение определенного периода времени.Он должен быть спроектирован и изготовлен из материала подшипника с самого начала.

Распространенные заблуждения о самосмазке

Умные рекламные уловки и неточные учебные материалы часто заявляют о возможности «самосмазывания» или «смазки на весь срок службы» для систем или компонентов, которые не подходят под определение смазки как неотъемлемого элемента материала подшипника. Хотя эти системы могут быть временно «самосмазывающимися», в конечном итоге смазка будет использована и ее необходимо будет заменить.Многие подшипники с «пожизненной смазкой» на самом деле не смазываются на весь срок службы, их просто «смазывают на долгое время».

Обычные несамосмазывающиеся системы

Системы качения: К ним относятся поворотные (шариковые и роликовые) подшипники, линейные шарикоподшипники с круговым ходом и конструкции монорельсового типа с профилем качения. Для работы всех этих систем требуется какая-то внешняя смазка. Контакт металла по металлу тела качения с дорожкой качения требует постоянного присутствия смазки или масла.Если эта внешняя смазка отсутствует, шарик или ролик начнет непосредственно контактировать с материалом вала или рельса, что приведет к истиранию и повреждению бринелинга. Многие производители пытаются преодолеть этот недостаток конструкции, добавляя пропитанные маслом уплотнения на концах подшипника или корпуса. Такой подход может привести к некоторому увеличению срока службы подшипника качения.

Бронза, пропитанная маслом: Подшипники из бронзы очень пористые и имеют легкое масло, пропитанное материалом.В оптимальных условиях это масло всасывается к поверхности подшипника, образуя слой смазки между подшипником и валом.

Бронза с графитовой пробкой: Графит — хорошая твердая смазка, которую обычно добавляют в подшипники из бронзы. В отверстия в основном бронзовом материале обычно вставляются твердые заглушки из графита.

Материалы с тефлоновым покрытием: ПТФЭ можно использовать для покрытия поверхностей подшипников несколькими способами. Может применяться как в составе порошка, просто присыпка подшипника.Это может быть распыленная смесь, которая прилипает к опорной поверхности. Или это может быть часть жидкости или смазки, нанесенной на подшипник. Любой из этих методов приводит к образованию очень тонкого слоя реальной смазки, который быстро изнашивается и становится неэффективным.

Пластмасса, пропитанная маслом: Здесь снова к основному материалу добавляется легкое масло для облегчения смазки подшипников. В результате сначала снижается трение, но старение и рассеяние смазки быстро снижает ее эффективность.

Процесс обкатки

Процесс обкатки и передачи самосмазывающегося линейного подшипника Frelon обеспечивает максимальную эффективность работы. Чтобы правильно интегрировать подшипник в систему линейного перемещения, вал линейного перемещения необходимо очистить маслом типа 3-в-1®, чтобы обеспечить чистую передачу материала. Затем подшипник должен пройти несколько циклов по валу, чтобы фрелон нанес на вал микроскопическую пленку, заполнив впадины в отделке поверхности и создав условия работы фрелона на фрелоне, которые действительно являются самосмазывающимися.

В определенных ситуациях подшипник скольжения может нуждаться в дополнительной смазке. Для подшипников PBC Linear’s Simplicity рекомендуются следующие смазочные материалы:

  • Масла Waylube
  • Легкие масла на нефтяной основе
  • Масла типа 3-в-1
  • Легкие смазки на нефтяной основе

Некоторые смазочные материалы, которых следует избегать при использовании подшипников Simplicity, включают:

  • WD-40®
  • Распылители из ПТФЭ
  • Масла, смазки или спреи, содержащие фторуглероды или силикон
  • Моторные масла / масла с присадками

Подшипники Simplicity могут быть сконфигурированы с дополнительной системой смазки, механически обработанной для дополнительной смазки.Фетровый фитиль врезан во внутренний диаметр подшипника, который предназначен только для использования с маслами — при использовании консистентной смазки удалите войлочный фитиль, чтобы создать резервуар для консистентной смазки. Установленные в корпусе агрегаты имеют крепление в стене, позволяющее вводить смазку в войлочный фитиль на внутренней стороне подшипника.

Найдите свое идеальное решение для линейного перемещения:

Смазка подшипников: масло или консистентная смазка

Некоторые инженеры рассматривают смазочные материалы как простое и беспорядочное вспомогательное средство индустриальной эпохи.Однако, как и сами подшипники качения, смазка — это древняя технология, воплощенная в современных формах. На самом деле инженеры использовали жидкости для уменьшения трения тысячи лет, но появление нефтяной промышленности в конце 19 века стимулировало появление современных смазочных материалов для подшипников. Сегодня смазочные материалы для подшипников выполняют несколько функций:

Создание барьера между контактными поверхностями качения
Создание барьера между контактными поверхностями скольжения
Защита поверхностей от коррозии
Уплотнение от загрязнений
Обеспечение теплопередачи (в случае масляной смазки)

Смазочные материалы представляют собой масло или консистентную смазку.Масляные смазки чаще всего используются в высокоскоростных и высокотемпературных системах, где требуется отвод тепла от рабочих поверхностей подшипников. Подшипниковые масла представляют собой либо натуральное минеральное масло с присадками для предотвращения ржавчины и окисления, либо синтетическое масло. В синтетических маслах основой обычно являются полиальфаолефины (PAO), полиалкиленгликоли (PAG) и сложные эфиры. Хотя синтетические и минеральные масла схожи, они обладают разными свойствами и не являются взаимозаменяемыми. Минеральные масла являются наиболее распространенными из двух.

Наиболее важной характеристикой при выборе масла для подшипника является вязкость.Вязкость — это мера внутреннего трения жидкости или сопротивления потоку. Жидкости с высокой вязкостью гуще, как мед; жидкости с низкой вязкостью тоньше воды. Инженеры выражают сопротивление жидкости потоку в универсальных секундах Сейболта (SUS) и сантистоксах (мм2 / сек, сСт). Разница в вязкости при разных температурах — это индекс вязкости (VI). Вязкость масла зависит от толщины пленки, которую оно может создать. Эта толщина имеет решающее значение для разделения элементов качения и скольжения в подшипнике.В некоторых подшипниках используется масло, но консистентная смазка является предпочтительным смазочным материалом для 80–90% подшипников.
Консистентная смазка состоит примерно на 85% из минерального или синтетического масла с загустителями, дополняющими остальной объем смазки.

Загустители обычно представляют собой металлические мыла на основе лития, кальция или натрия. Составы для высокотемпературных применений часто включают полимочевину. Более высокая вязкость консистентной смазки помогает удерживать ее внутри подшипниковой оболочки. При выборе пластичной смазки наиболее важными факторами являются вязкость базового масла, способность предотвращать ржавление, диапазон рабочих температур и способность выдерживать нагрузки.

Посмотрите здесь 5 лучших видеороликов о смазке подшипников в Интернете.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *