Принципы работы автомобильных двигателей: Принцип работы и устройство двигателя

Содержание

Принцип увеличения гибкости характеристик современных автомобильных ДВС / Хабр


Насколько важно иметь совершенный код в программе для ее быстрой и качественной работы? Настолько же важно для ДВС тратить меньше энергии там, где этих затрат можно избежать.
Прошлая статья из-за упрощений вызвала вопросы критического характера у части хабра-людей. В этой я попробую ответить на них подробнее как и обещал, а так же раскрыть один из основных принципов ДВС последних десятилетий упомянутый в статье «Эволюция развития автомобильных двигателей с начала 90-х годов.»

Агрегаты с гибкой характеристикой срабатывания в ДВС


Первым, и наверно самым известным примером повышения гибкости характеристик в ДВС стали гидрокомпенсаторы, обеспечившие отказ от теплового зазора и более плавную работу клапанов.


Саморегуляция и плавность работы гидравлики так же использовалась и в других узлах и агрегатах ДВС.

Например гидронатяжители цепи обеспечили те же преимущества что и толкатели, но наиболее ярким примером триумфа гидравлики можно считать систему Fiat MultiAir.


Двигатель, как и машина, где устанавливается данная система уникальны сами по себе, поэтому остановимся лишь на отдельных моментах.

Так из видео видно, что пока гидравлическим способом открывается только клапан впуска, но далее я покажу что и на клапан выпуска так же есть воздействие в другой системе, связанной с полным управлением процесса закрытия клапанов. Поэтому фактически гидравлика на сегодня уже способна управлять практически всеми процессами в ГБЦ. Поразительно, но при всей сложности системы ее работа является оправданием-примером перспектив следующего этапа — электро клапанов.

Есть правда и компромиссный вариант от koenigsegg

Следующий пример — регулируемый маслонасос уже можно считать скорее давно ожидаемой доработкой, чем техническим прорывом.


Как видно сложность работы тут оправдана оптимизированным диапазоном работы.

Последующий «гидравлический» пример — система впрыска, где происходили действительно революционные изменения.

Начнем пожалуй с того факта что переход от моно-впрыска к распределенному, а далее к непосредственному у бензиновых моторов затронул целый ряд характеристик.

Таких, как давление впрыска, время цикла впрыска и цену на это оборудование (последнее наверно самый очевидный момент).

Давление впрыска — при разных режимах работы двигателя может быть от 3 до 11 МПа.

Время цикла впрыска может изменятся (а иногда впрыск может проходить за один рабочий такт до нескольких раз).

Прямой впрыск способен обеспечить шесть вариантов смешивания топлива.

  • послойное распределение смеси;
  • гомогенная смесь;
  • гомогенно-обедненная смесь;
  • гомогенно-послойное распределение смеси;
  • двойной впрыск для защиты двигателя от детонации;
  • двойной впрыск для разогрева нейтрализатора.

Цена последнего вида впрыска считается самой высокой для бензиновых ДВС (поэтому не случайно появления комбинированных систем впрыска).

Одним из возможных вариантов удешевления прямого впрыска являются форсунки Orbital.
Принцип работы тут такой — воздух к воздушным жиклерам поступает в сжатом виде от специального компрессора при давлении 0,65 МПа. Давление топлива составляет 0,8 МПа. Сначала срабатывает топливный жиклер, а затем в нужный момент и воздушный, поэтому в цилиндр, мощным факелом впрыскивается топливно-воздушная смесь в виде аэрозоля.
Форсунка, установленная в головке цилиндра рядом со свечой зажигания, впрыскивает топливно-воздушную струю непосредственно на электроды свечи зажигания, что обеспечивает ее хорошее воспламенение.


Ford Sci ( Smart Charge injection), Mitsubishi GDI (Gasoline Direct Injection), VW FSI (Fuel Stratified Injection), HPi (High Pressure Injection), Mersedes Benz CGI, Renault IDE, SCC (Saab Combustion Control. Отличительной особенностью системы является интеграция свечи зажигания и инжектора в один модуль(SPI). С помощью сжатого воздуха топливо попадает напрямую в блок цилиндров и тут же воспламеняется.) — все эти системы различные варианты прямого впрыска.
У дизельных моторов различия в топливной аппаратуре стали менее значимы, так как они изначально были с прямым впрыском. Тут рост давления впрыска был попутным фактором, и больше сказывалось улучшенное управление процессами. Механические форсунки у дизеля сейчас практически везде заменены на электромеханические. У «дизелей» как и у бензиновых с прямым впрыском так же присутствует «многоимпульсный режим» ( впрыск за один цикл от 1 до 7 раз).


Главное противостояние в дизель-технологиях впрыска идет между индивидуальными насос-форсунками и системой Common Rail.

Еще одним значимым изменением в системе впрыска стало увеличение количества и качества датчиков используемых для коррекции впрыска. Система управления двигателем<на данный момент имеет все больше данных для обработки и коррекции напрямую, а не разными обходными путями, как это было ранее.

На ранних этапах становления электронных систем управления двигателем процесс ручной настройки впрыска через ЭСУД напоминал работу с Big Data. И там, и там в принципе не знаешь точно конечный результат в начале процесса, но все же надеешься нащупать «золотое дно». При ручной настройке впрыска рассчитывать приходилось только на опыт и интуицию, чтоб получить нужный результат.

В системе зажигания преобразования так же прошли в сторону повышения мощности и точности работы.


Контактное зажигание с одной катушкой сменило бесконтактное (с одной, а далее с двумя катушками), а итогом развития стали индивидуальные катушки зажигания на каждом цилиндре.
небольшая отсылка к предыдущей статье — есть так же и две катушки зажигания на весь мотор, которые из-за особенностей работы дают искру два раза за цикл (причем одна искра проходит в цилиндре не в такте зажигания).
Электро генерация так же стала экономнее, так одним из итогов развития стал отключаемый генератор.


Принцип работы тут следующий — когда машина замедляется, генератор включается на максимальный режим работы. При последующем ускорении… отключается до определенных пределов, которые зависят от ряда параметров. Такой режим работы позволяет распределять нагрузку лучше, так как при торможении двигателем дополнительное сопротивление оказывает генератор, а при ускорении он наоборот — снимает нагрузку с ДВС.
Генератор с муфтой INA.

Кондиционер с помощью то же с помощью отключаемой муфты стал экономнее. Теперь он не нагружает вал «холостой» работой компрессора.
Турбина как элемент изначально мало подверженный усложнению все же стала «гибче».


Но не всегда выхлопные газы выходят в «трубу», иногда часть из них «возвращается» обратно в камеру сгорания.


Работа этой системы позволяет регулировать температуру в камере сгорания за счет рециркуляции выхлопных газов (Бывают системы с охлаждением выпускных газов, и без, при рециркуляции).

Последним «невозможным» преобразованием на данный момент можно считать цикл Homogeneous Charge Compression Ignition (HCCI).


Смысл данной технологии объединить 2 типа сгорания топлива в одном моторе. При применении этого цикла становится возможным сжигать смесь бензина как с помощью свечи, так и по «дизельному» (с помощью сжатия).

Агрегаты потерявшие механическую связь с ДВС


Под это определение первым подпадает бензонасос.

В большинстве современных инжекторных автомобилей этот агрегат, как правило, размещен в бензобаке, имеет незначительные различия по конструкции… и полностью лишен какой-либо механической связи с ДВС. Правда сейчас уже даже в качестве тюнинга научились ставить электрический бензонасос даже на карбюраторные машины.

Эффективность его работы выросла, особенно после того как стали устанавливать системы без «обратки» (подачи топлива по обратному каналу в бензобак).

Следующий чисто электрически «связанный» элемент — дроссельная заслонка, которая традиционно всегда была связана с педалью газа, но теперь это «независимый» от педали элемент.


Дело в том что с точки зрения работы различных взаимосвязанных систем в двигателе не всегда нужно напрямую воздействовать на заслонку и прямая связь тут скорее помеха, чем помощь. Поэтому в силу многих причин разделение на педаль газа (Потенцио́метр) и заслонку с электроприводом вполне оправданно. Определенную роль во внедрении электро-дросселя так же сыграли и нормы токсичности выхлопа.

Последующей системой потерявшей «связи» стала система охлаждения.

Про электро-вентилятор охлаждения думаю уже все знают (хотя ранее в 90-х было еще такое понятие как привод через вязкостную муфту вентилятора охлаждения).


Замена вискомуфты на электровентилятор и сейчас актуальна.

А вот про наличие 2 контуров охлаждения отдельно для ГБЦ и блока цилиндров?


Все это «приправлено» тем что термостаты тут более «шустрые» т. е. То же потерявшие прямую физическую взаимосвязь за счет внедрения электрической составляющей (поэтому быстродействие тут зависит уже не столько от воздействия температуры на рабочий расширяющийся элемент, а от работы нагревающего элемента внутри).

Разделение контуров на ГБЦ и Блок цилиндров позволило поддерживать различную температуру охлаждающей жидкости в них. В отличие от стандартной, в двухконтурной системе охлаждения обеспечивается температура в головке блока цилиндров в пределе 87°С, в блоке цилиндров – 105°С.

Так как в контуре головки блока цилиндров должна поддерживаться более низкая температура, то в нем циркулирует больший объем охлаждающей жидкости (порядка 2/3 от общего объема). Остальная охлаждающая жидкость циркулирует в контуре блока цилиндров.
При запуске двигателя оба термостата закрыты. Обеспечивается быстрый прогрев двигателя. Охлаждающая жидкость циркулирует по малому кругу контура головки блока цилиндров: от насоса через головку блока цилиндров, теплообменник отопителя, масляный радиатор и далее в расширительный бачок. Данный цикл осуществляется до достижения охлаждающей жидкостью температуры 87°С.

При температуре 87°С открывается термостат контура головки блока цилиндров и охлаждающая жидкость начинает циркулировать по большому кругу: от насоса через головку блока цилиндров, теплообменник отопителя, масляный радиатор, открытый термостат, радиатор и далее через расширительный бачок. Данный цикл осуществляется до достижения охлаждающей жидкостью в блоке цилиндров температуры 105°С.

При температуре 105°С открывается термостат контура блока цилиндров и в нем начинает циркулировать жидкость. При этом в контуре головки блока цилиндров всегда поддерживается температура на уровне 87°С.

Последним достойным упоминания можно назвать электро-помпу BMW. Решение «электрофицировать» водяной насос рискованное, так как требует не малых энергозатрат, и наверно поэтому не встречается пока у большинства остальных автопроизводителей. Применяется электрическая помпа на двигателях N52: E60, E61, E63, E64, E65, E66, E87, E90, E91.

Помимо непосредственно навесного оборудования связанного с работой ДВС, механическую связь потерял гидроусилитель… став в некоторых случаях электрогидроусилителем, и в максимуме — электроусилителем.

«Гибкие» в зависимости от оборотов…


В предыдущей статье был вопрос — «а может ли работать 4-х клапанный ДВС без части клапанов, или вообще без них?»

Ответ прост — не только может, но и работает (правда есть нюансы).

Технология Twinport от Опель позволяет обходиться и 3-мя в режиме частичных нагрузок.

Причина такой частичной работы кроется в снижении наполняемости цилиндра воздухом при частично открытой дроссельной заслонке при небольшой нагрузке на двигатель. Эту проблему частично решает рециркуляция выхлопных газов (EGR), но немецкие инженеры посчитали что этого недостаточно. Для увеличения скорости воздушного потока они решили «заткнуть» один впускной клапан заслонкой (на фото справа), что позволило закрутить поток воздуха и увеличить его скорость.

В итоге применение Twinport экономит 6% топлива на двигателе объемом 1.6 л. В общем совместно с EGR экономия может доходить до 10%.

Подобная система применяется Opel и на двигателях с прямым впрыском топлива.

на рено шафран для создания завихрения в цилиндре использовали форсунку впрыска воздуха в камере сгорания. Впрыск воздуха улучшает процесс сгорания на малых оборотах, оптимизируя сгорание топлива, что обеспечивает экономию топлива от 8 до 14 %.

Занимательно, но факт что впрыск воздуха в последствии еще использовался в выпускном тракте для улучшения экологии выхлопа холодного двигателя, а в суперкаре Koenigsegg Jesko сжатый воздух так же впрыскивается в выпускной тракт чтобы… раскрутить турбину для устранения турболага.

Следующая система более радикально подходит к вопросу деактивации клапанов.

Принцип схож с big.LITTLE .

В одном моторе, при полном отключении клапанов в нескольких цилиндрах, появляется возможность получить меньший рабочий объем для экономии топлива.



Volkswagen cylinder deactivation technology



Audi A1 Sportback 1.4 TSI при 4 цилиндровом моторе способен с помощью системы отключения цилиндров «превращаться» при оборотах 1400 до 4000 об/мин (частичная нагрузка) в двухцилиндровый!
Honda Variable Cylinder Management


Был и отечественный аналог подобной системы.

Профессор П. И. Андрусенко в 1967 году предложил более простой способ регулировки мощности ДВС — отключение отдельных рабочих циклов. В 1996 году совместно с «АвтоВазом» это метод рекламировался на выставке в Детройте.

Принцип работы идеи профессора простой, надо лишь отключать подачу топлива в разные цилиндры, что и обеспечит получение необходимого количества энергии в данный момент. Реализуется это с помощью управления впрыском, а дроссельная заслонка во всем диапазоне изменения нагрузок мотора остается полностью открытой! (напомню что в системе BMW Valvetronic то же есть дроссельная заслонка, которая полностью открыта для повышения индикаторного К.П.Д., но там это «страховка» на случай выхода из строя системы).

Преимущества системы:

  • На режиме частичных нагрузок 20 — 23% с уменьшением токсичности в 2.5 — 4 раза.
  • Расход топлива на холостом ходу сокращается в два раза.

Отличия от используемых сейчас.
  • Количество отключаемых циклов может быть любым. Работа ДВС в данном режиме может быть оптимизирована по составу топлива в широком диапазоне оборотов и нагрузок.
  • При регулировании мощности отключением цилиндров изменяется их температурный режим, так как они остаются незадействованными в течение длительного времени. При методе ДРЦ пропущенные циклы приходятся на различные цилиндры, поэтому они практически не успевают охлаждаться.
  • Не требуется серьезных изменений конструкции ДВС.

Сдвиг фаз.

Следующая технология манипуляции работы клапанов — фазовращатели. Технология сдвига фаз с успехом улучшила идею 4-х клапанов, и по исполнению настолько простая что «добрались» и до моторов АвтоВаза.

Суть процесса состоит в том, чтобы изменять время открытия клапанов в цилиндре в зависимости от роста оборотов двигателя. Причина тут простая — сгорание топлива на более высоких оборотах происходит не так быстро, а значит нужно время для «продувки-открытия» клапанов выставлять раньше. Достигается это небольшим смещением распределительного вала с помощью гидроуправляемой муфты.

VVT-i


BMW VANOS


«дедушкой» сдвига фаз принято считать разрезную шестерню.

В основном разрезная шестерня используется в тюнинге и… при несовершенстве некоторых моторов так как позволяет установить «правильные» фазы открытия и закрытия клапанов.

Регулирование высоты подъема клапана.

Кроме сдвига, используется и еще одна «гибкая» технология — «подъем клапанов».

MITSUBISHI MIVEC


Honda VTEC


BMW Valvetronic


Variocam Porsche


Последним достижением ДВС на данный момент является изменяемая характеристика степени сжатия.

Примеры подобной системы от шведов


и немецкий аналог…


По итогу развития эти системы так и не нашли применения, но вот Nissan решил исправить ситуацию, и представил свой серийный вариант системы.

Несмотря на сложность этого мотора ему далеко до главного лидера по «гибкости» — гибридного привода Toyota Prius.


Сочетание совместной работы двигателя по циклу Аткинсона (Миллера) с электромотором дает недостижимый для обычных ДВС расход топлива, экологию выхлопа и КПД.

Таким образом развитие двигателей внутреннего сгорания пришло к закономерному итогу электрификации, и даже запустились процессы обратные всей тенденции развития моторов до этого момента.

P.S. Период с начала 80-х по наше время смело можно назвать временем отсечения лишних затрат в ДВС. О параллельном процессе — миниатюризации ДВС (даунсайзинге) будет в следующей статье.

P.P.S. Если у вас есть примеры-аналогии из it-сферы по перечисленным ДВС-технологиям можете написать ниже в комментариях (лучшее добавлю в статью).

Принцип работы турбокомпрессора автомобиля — ПроТурбо

Принцип работы турбокомпрессора

Турбокомпрессор – важнейшая составляющая часть двигателя современного автомобиля. Благодаря ему достигается существенный прирост мощности при незначительной массе самой детали. Как известно, принцип работы турбокомпрессора заключается в сильном сжатии подаваемого в двигатель воздуха и, соответственно, создании высокой мощности взрыва в цилиндрах двигателя. Благодаря турбокомпрессору в двигатель поступает на 50% больше объема воздуха, таким образом, сжигается больший объем топлива, что увеличивает мощность двигателя на 30-40% при тех же затратах топлива. Мотор, который имеет турбину, вырабатывает намного больше полезной энергии, чем не оснащенный ею.

Механизм состоит из таких основных элементов:

  • корпус турбины, в которой выхлопные газы вращают ротор;
  • корпус компрессора, который всасывает воздух, а затем с помощью ротора нагнетает его в систему впуска;
  • картридж между турбиной и компрессором, содержащий вал с крыльчатками ротора;
  • интеркулер, который охлаждает воздух перед нагнетанием его в цилиндры двигателя.

Принцип действия автомобильной турбины

Турбокомпрессор на двигатель крепится к выпускному коллектору.  Система турбокомпрессора заключается в том, что турбина при помощи вала соединяется с компрессором, который установлен между воздушным фильтром и впускным коллектором.

Принцип действия автомобильной турбины заключается в сжатии воздуха, который поступает в цилиндры двигателя. Так возникает давление турбокомпрессора. Выхлопные газы из цилиндров вращают лопатки ротора и выходят через боковое отверстие в корпусе турбины в глушитель. Благодаря устройству турбины автомобиля ее ротор, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорный ротор.

С другой стороны вала ротор компрессора всасывает чистый атмосферный воздух из впускного тракта и направляет его под сильным давлением дальше во впускной тракт к цилиндрам мотора. Когда ротор компрессора вращается, воздух втягивается внутрь и сжимается, так как лопасти ротора вращаются с высокой скоростью. Корпус компрессора разработан таким образом, чтобы превращать поток воздуха, обладающий высокой скоростью и низким давлением, в поток воздуха с высоким давлением и низкой скоростью с помощью процесса, называемого диффузией. В этом и заключается принцип действия автомобильной турбины.

Особенности функционирования

Оба эти ротора, турбинный и компрессорный, жестко закреплены на роторном валу, вращающемся на гидростатических подшипниках. Они поддерживают вал на тонком слое масла, которое постоянно подается для снижения трения и охлаждения вала. Для правильной работы подшипники скольжения должны быть покрыты пленкой масла. Зазоры подшипников очень малы, меньше толщины человеческого волоса.

В турбомоторах воздух, который поступает в цилиндры, приходится дополнительно охлаждать – тогда его сжатие можно будет сделать еще сильнее, закачав в цилиндры двигателя больше кислорода. Ведь сжать холодный воздух легче, чем горячий. Воздух, проходящий через турбину, нагревается от сжатия, от деталей турбонаддува. Поэтому перед попаданием в цилиндры двигателя сжатый воздух охлаждается в интеркулере. Интеркулер – это радиатор жидкостного или водяного охлаждения, установленный на пути воздуха от компрессора к цилиндрам двигателя. За счет охлаждения увеличивается плотность воздуха и, соответственно, закачать в цилиндры его можно больше.

Мощность турбины автомобиля такова, что ротор турбокомпрессора вращается со скоростью до 150 тыс. оборотов в минуту, что примерно в 30 раз быстрее, чем скорость вращения автомобильного двигателя. Так как она соединена с выхлопной системой, температура в турбине также очень высокая. Работа турбокомпрессора заключается в том, что воздух поступает в компрессор при температуре окружающей среды, но при сжатии температура растет и на выходе из компрессора достигает 200°С.

На «самообслуживание» системы наддува тратится немного энергии от двигателя – всего лишь около 1,5%. Это происходит потому, что ротор турбины получает энергию от выхлопных газов за счет их охлаждения. Кроме этого, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объема большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Все это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными аналогами такой же мощности.

В последнее время популярность турбокомпрессоров резко возросла. Они оказалось перспективнее не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Если вы хотите купить турбокомпрессор с доставкой – вы обратились по адресу. На нашем сайте можно сделать заказ, а также узнать характеристики турбокомпрессора и характеристики турбины для модели своего автомобиля.

Устройство и схема работы ГБО простыми словами

Принцип работы

Необходимо отметить, питание газовой смесью, исполнение всей газобаллонной системы предыдущих поколений значительно проще, чем конструкция бензиновой системы подачи топливной смеси.

Перевод транспортного средства для работы на газобаллонном оборудовании, его соответствующее переустройство выглядит таким образом. Предварительно в багажном, грузовом отделении, под днищем машины, на раме монтируют специальную емкость, предназначенную для заполнения газом. В двигательном отсеке (подкапотное пространство) устанавливают редуктор-испаритель, дополнительные устройства, функции которых связаны с подачей в мотор газовой смеси, и механизмы регулировки топлива.

Баллоны заправляются жидкой смесью пропана-бутана. Если давление соответствует атмосферному, топливо имеет газообразное состояние. Если давление выше атмосферного, газ преобразуется в жидкое топливо, которое при бытовых температурах может испаряться. Поэтому под сжиженный газ используются только герметичные емкости. Давление в них может составлять 2-16 атмосфер.

Газовые пары формируют давление, благодаря которому они подаются в газовый трубопровод повышенного давления. Заправка газового баллона и подача из него топлива в магистраль производится через мультиклапан. Для выполнения заправки дополнительно применяется специальное выносное приспособление.

Сжиженная газовая смесь направляется по трубопроводу и проходит через газовый клапан с фильтровальным элементом. Такая дополнительная фильтрация позволяет эффективнее очищать топливо от смолистых соединений, прочих примесей. Это устройство также предназначено для блокировки подачи газовой смеси при отключении зажигания, переключении рабочего режима двигателя на автомобильный бензин.

После фильтрации топливная смесь направляется в редуктор. Здесь давление газовой смеси падает до показателя, составляющего примерно 1 атмосферу. Снижение давления способствует испарению жидкой газовой смеси. При прохождении данного процесса редуктор активно охлаждается. Именно по данной причине его соединяют с системой охлаждения автомобильного двигателя. Подогретая охлаждающая жидкость в результате циркуляции по системе не дает редуктору обмерзать. В холодный период года рекомендуется производить запуск автомобильным бензином, а уже после предварительного прогрева двигателя стоит переводить его рабочий режим на газобаллонное оборудование. Данное требование предполагает выход мотора на рабочий температурный режим, а также подогрев охлаждающей жидкости до необходимой температуры.

После редуктора уже парообразный газ направляется в цилиндры мотора. В ГБ системе отсутствует деталь, схожая функционально с бензонасосом. Газовая смесь содержится в баллоне под определенным давлением, и поступает в редуктор автономно, дополнительная подкачка для этого не требуется. Благодаря этому система ГБО по конструкции значительно проще. А способность газа преобразовываться из жидкости в пар при изменении показателей температуры, давления еще больше сокращает количество элементов конструкции ГБО установок.

Специальный переключатель, установленный в автомобильном салоне, позволяет переключаться с бензина на газ и обратно. После выключения зажигания переключатель занимает нейтральное положение. Газобаллонное оборудование может быть наделено дополнительно функцией отключения подачи газовой смеси, если в автомобильном двигателе отсутствует искра.

Схема установки

Двигатель автомобиля (ДВС). Типы двигателей

Двигатель внутреннего сгорания (ДВС) – одно из главных устройств в конструкции автомобиля, служащее для преобразования энергии топлива в механическую энергию, которая, в свою очередь, выполняет полезную работу. Принцип работы двигателя внутреннего сгорания построен на том, что топливо в соединении с воздухом образуют воздушную смесь. Циклически сгорая в камере сгорания, воздушно-топливная смесь обеспечивает высокое давление, направленное на поршень, а тот, в свою очередь, вращает коленчатый вал через кривошипно-шатунный механизм. Его энергия вращения передается трансмиссии автомобиля.

Для запуска двигателя внутреннего сгорания часто используется стартер – обычно электрический двигатель, проворачивающий коленвал. В более тяжелых дизельных двигателях в качестве стартера и для той же цели применяется вспомогательный ДВС («пускач»).

Существуют следующие типы двигателей (ДВС):

  1. бензиновые
  2. дизельные
  3. газовые
  4. газодизельные
  5. роторно-поршневые

Также ДВС классифицируются: по виду топлива, по числу и расположению цилиндров, по способу формирования топливной смеси, по количеству тактов работы двигателя внутреннего сгорания и т.д.

 

Бензиновые и дизельные двигатели

Бензиновые двигатели внутреннего сгорания – наиболее распространенные из автомобильных двигателей. Топливом для них служит бензин. Проходя через топливную систему, бензин попадает через распыляющие форсунки в карбюратор или впускной коллектор, а затем эта воздушно-топливная смесь подается в цилиндры, сжимается под воздействием поршневой группы, поджигается искрой от свечей зажигания.

Карбюраторная система считается устаревшей, поэтому сейчас повсеместно используется инжекторная система подачи топлива. Распыляющие топливо форсунки (инжекторы) осуществляют впрыск либо непосредственно в цилиндр, либо во впускной коллектор. Инжекторные системы делятся на механические и электронные. Во-первых для дозации топлива используются механические рычаговые механизмы плунжерного типа, с возможностью электронного контроля топливной смеси. Во вторых процесс составления и впрыска топлива полностью возложен на электронный блок управления (ЭБУ). Инжекторные системы необходимы для более тщательного сгорания топлива и минимизации вредных продуктов горения.

Дизельные ДВС используют специальное дизтопливо. Двигатели автомобиля подобного типа не имеют системы зажигания: топливная смесь, попадающая в цилиндры через форсунки, способна взрываться под действием высокого давления и температуры, которые обеспечивает поршневая группа.

 

Газовые двигатели

Газовые двигатели используют газ в качестве топлива – сжиженный, генераторный, сжатый природный. Распространение таких двигателей было обусловлено растущими требованиями к экологической безопасности транспорта. Исходное топливо хранится в баллонах под большим давлением, откуда через испаритель попадает в газовый редуктор, теряя давление. Далее процесс аналогичен инжекторным бензиновым ДВС. В некоторых случаях газовые системы питания могут не использовать в своем составе испарители.

 

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

 

Роторный двигатель. Устройство, принцип работы. Плюсы и минусы ротора.

Изобретение двигателя внутреннего сгорания дало толчок к производству автомобилей, передвигающихся на жидком виде топлива. Двигатели эти на протяжении всей истории автомобилестроения эволюционировали: появлялись различные конструкции моторов. Одной из прогрессивных, но так и не получивших распространение конструкций двигателей стал роторно-поршневой агрегат. Об особенностях этого типа двигателя, его достоинствах и недостатках мы поговорим в сегодняшнем материале.

История

Разработчиком роторно-поршневого двигателя стал дуэт инженеров компании NSU – Феликс Ванкель и Вальтер Фройде. И хотя основная роль в создании роторного двигателя принадлежит именно Фройде (второй участник проекта в это время работал над конструкцией иного двигателя), в автомобильной среде силовой агрегат известен как мотор Ванкеля.

Феликс Ванкель и роторный двигатель

Эта силовая установка была собрана и испытана в 1957 году. Первым автомобилем, на который установили роторно-поршневой двигатель, стал спорткар NSU Spider, который развивал скорость 150 км/час при мощности мотора 57 лошадиных сил. Производилась эта модель на протяжении трех лет (1964-1967 годы).

NSU Spider

По настоящему массовым автомобилем с роторным двигателем стало второе детище компании NSU – седан Ro-80.

NSU Ro-80

В названии автомобиля указывалось, что модель оснащается роторным агрегатом. Впоследствии роторные двигатели устанавливались на автомобили Citroen (GS Birotor), Mercedes-Benz (С111), Chevrolet (Corvette), ВАЗ (21018) и так далее. Но самый массовый выпуск моделей с роторным двигателем был налажен японской компанией Mazda. Начиная с 1964 года, компания произвела несколько автомобилей с подобным типом силовой установки, а пионером в этом деле стала модель Cosmo Sport. Самая известная модель с роторно-поршневым двигателем, которая выпускалась этим производителем – RX (Rotor-eXperiment). Производство последней модели из этого семейства, Mazda RX8 в специальной версии Spirit R, было свернуто в середине 2012 года. Впрочем, не все экземпляры роторной «восьмерки» еще распроданы – официальный дилер Mazda в Индонезии еще продает эти автомобили.

Mazda RX-8

Устройство

Особенностью роторно-поршневого двигателя внутреннего сгорания стало присутствие в его конструкции трехгранного ротора – поршня. Он вращается в цилиндре, который имеет специальную форму. Ротор насажен на вал, и соединен с зубчатым колесом, которое, в свою очередь, имеет сцепление со статором – шестерней. Ротор вращается вокруг статора по так называемой эпитрохоидальной кривой, его лопасти попеременно перекрывают камеры цилиндра, в которых происходит сгорание топлива.

Роторный двигатель

В конструкции роторного двигателя отсутствует газораспределительный механизм – его функцию выполняет сам ротор, который при помощи своих лопастей распределяет поступающую горючую смесь и выпускает отработанные в цилиндре газы. Подобная конструкция двигателя позволяет обойтись без множества узлов, крайне необходимых для простого поршневого двигателя (например, коленчатый вал, шатуны), что, во-первых, позволяет уменьшить размер и массу силового агрегата, а во-вторых – уменьшить стоимость его производства.

Достоинства и недостатки

Роторно-поршневой двигатель не зря привлек внимание многих именитых автомобильных компаний. Его конструкция и принцип действия позволяли получить несколько довольно весомых преимуществ перед обычными двигателями.

Во-первых, роторно-поршневой мотор в силу своей конструкции обладал лучшей среди остальных типов силовых установок сбалансированностью, и был подвержен минимальным вибрациям.

Во-вторых, у этой силовой установки отмечались отменные динамические характеристики: без существенной нагрузки на двигатель, авто с роторно-поршневым мотором легко можно разогнать до 100 км/час и более на низкой передаче при высоких оборотах двигателя.

роторный двигатель Мазда RX-8

В-третьих, роторный двигатель компактнее и легче, чем стандартный поршневой силовой агрегат. Эта особенность позволяла конструкторам добиться практически идеальной развесовки по осям, что влияло на устойчивость автомобиля на дороге.

В-четвертых, в нем используется намного меньшее количество узлов и агрегатов, чем в обычном двигателе.

Наконец, в-пятых, роторный двигатель обладает высокой удельной мощностью.

Недостатки

К минусам роторно-поршневого двигателя, из-за которых он так и не смог получить массового применения и не используется сегодня в автомобилях всех брендов, относится, во-первых, большой расход топлива на низких оборотах. На некоторых моделях он достигает 20 литров на 100 км пробега, что, согласитесь, совсем не экономично и бьет по карману владельца авто с роторным двигателем.

Во-вторых, недостатком этого типа двигателей является сложность изготовления его деталей: чтобы ротор правильно прошел эпитрохоидальную кривую, необходима высокая геометрическая точность при создании как самого ротора, так и цилиндра. Для этого производители роторных двигателей используют высокоточное и дорогостоящее оборудование, а стоимость производства закладывают в цену автомобиля.

В-третьих, роторный двигатель склонен к перегреву из-за особенности конструкции камеры сгорания: она имеет линзовидную форму, а не сферическую, как у обычных поршневых моторов. Топливная смесь, сгорая в такой камере, превращается в тепловую энергию, которая расходуется в большей части неэффективно – ее избыток нагревает цилиндр, что в конечном итоге приводит к износу и выходу его из строя.

В-четвертых, высокий износ уплотнителей между форсунками ротора из-за перепадов давления в камерах сгорания двигателя. Именно поэтому ресурс таких двигателей составляет 100-150 тысяч км, после чего, как правило, требуется капитальный ремонт силового агрегата.

В-пятых, роторно-поршневой двигатель нуждается в своевременной и четко соблюдаемой процедуре смены моторного масла: мотор потребляет примерно 600 мл моторного масла на 1000 км, так что менять его приходится раз в 5000 км пробега. Если его вовремя не заменить, это чревато выходом из строя узлов и агрегатов мотора, что повлечет за собой дорогостоящий ремонт. То есть, к эксплуатации и обслуживанию роторно-поршневых двигателей следует подходить более ответственно, чем к обслуживанию обычных моторов, вовремя проводя их техническое обслуживание и капитальный ремонт.

Роторно-лопастной двигатель внутреннего сгорания

Валерий Васильев, фото автора

За историю автомобилестроения лучшие умы человечества придумали немало самых разнообразных конструкций двигателей. Но только некоторым из них удалось стать серийными образцами. Остальные, несмотря на оригинальность заложенных идей, так и не вышли из стадии эксперимента. Возможно, судьба роторно-лопастного мотора, созданного в Псковском государственном политехническом университете, окажется более удачливой.

Расклад сил

Развитие и область применения двигателей внутреннего сгорания (ДВС) приобрели сегодня всеобъемлющий характер. Многочисленные научные исследования и разработки превратили ДВС в сложнейшую, но надежную и универсальную систему. В то же время опыт длительной эксплуатации в составе транспортных средств выявил недостатки, которые практически невозможно исключить путем модернизации конструкции двигателя, не затронув базовых принципов его организации, таких как механические потери на трение и процесс внутреннего сгорания топлива.

Главным недостатком ДВС, который в результате массового распространения автомобильного транспорта занял лидирующее положение, стал фактор загрязнения окружающей среды выхлопными газами. Доля вредных веществ, поступающих в атмосферу с отработавшими газами автомобильных двигателей, составляет до 63% от общего загрязнения окружающей среды. В связи с этим в последние десятилетия в мире ужесточаются требования к экологическим нормам для транспортных средств, и в первую очередь это касается двигателей внутреннего сгорания. Последние, потребляя пятую часть первичных энергоносителей, являются основным источником загрязнения окружающей среды. Однако планируемые меры, даже в случае их полной реализации, способны лишь снизить темпы увеличения загрязняющего действия ДВС транспортных средств на фоне быстрого роста их количества и мощности.

Экологические преимущества двигателей с внешним подводом теплоты
Тип двигателяТоксичность, мг/(л.с..с)
NOxCOCxHy
Карбюраторный двигатель0,6–2,040–10015–120
Дизель0,4–2,00,2–5,00,6–12
Газовая турбина0,7–2,02,0–3,60,012–0,07
Двигатель внешнего сгорания0,1–0,20,05–0,20,0015–0,009
Нормы Euro 50,4140,3110,095

Таким образом, назрела необходимость производства принципиально иного двигателя, способного кардинально изменить ситуацию, работающего на различных видах топлива и не имеющего вредных выбросов в атмосферу.

По критерию экологичности использования любого вида топлива наилучшие характеристики у двигателя с внешним подводом тепла (ДВПТ), реализующего цикл Стирлинга. Внешний подвод тепла позволяет применять различные тепловые источники без каких-либо существенных изменений конструкции двигателя. В подобных двигателях могут быть использованы практически все виды ископаемого топлива – от твердых до газообразных. Для оценки уровня токсичности двигателя с внешним подводом тепла его удельные выделения токсичных веществ можно сравнить с таковыми у дизеля, газовой турбины и карбюраторного двигателя. По таким показателям вредных веществ, как CO, NOx и CxNy, мотор с внешним подводом тепла выглядит не только значительно лучше перечисленных конкурентов, но и соответствует перспективным экологическим нормам, еще не введенным в действие.

Итак, преимущества двигателей с внешним подводом тепла выражаются в термическом КПД, достигающем 60%, использовании практически всех видов топлива, включая солнечную энергию, возможности регулирования мощности путем изменения давления рабочего тела и температуры, легком пуске при низкой температуре, герметичности, высоком моторесурсе.

Исходя из этого можно сказать, что в сфере создания двигателей возникло техническое противоречие: с одной стороны, имеются компактные и дешевые двигатели внутреннего сгорания, а с другой – массивные и дорогие в изготовлении моторы с внешним подводом теплоты.

Давайте рассмотрим недостатки поршневого двигателя Стирлинга. Во-первых, это сложность конструктивного исполнения отдельных узлов, проблемы в области уплотнений, регулирования мощности и т. д. Особенности технического решения обусловливаются применяемыми рабочими телами. Так, например, гелий обладает сверхтекучестью, что определяет повышенные требования к уплотняющим элементам рабочих поршней, штока вытеснителя и т. д. Во-вторых, формирование облика перспективных, предполагаемых к производству машин Стирлинга невозможно без разработки новых технических решений основных узлов. В-третьих, высокий уровень технологии производства.

Кроме того, данная проблема связана с необходимостью применения в машинах Стирлинга жаростойких сплавов и цветных металлов, их сварки и пайки. Отдельный вопрос – изготовление регенератора и насадки для него для обеспечения, с одной стороны, высокой теплоемкости, а с другой – низкого гидравлического сопротивления. Все это требует высокой квалификации рабочего персонала и современного технологического оборудования. Зарубежный опыт создания современных высокоэффективных машин Стирлинга показывает, что без точного математического моделирования рабочих процессов и оптимального проектирования основных узлов доводка таких машин превращается в многолетние изнурительные экспериментальные исследования.

Свой путь

Взвесив все «за» и «против», в Псковском государственном политехническом университете (ППИ) подумали, почему бы не создать новый тип двигателя, соединяющего в себе преимущества роторно-лопастной расширительной машины и принципа внешнего подвода теплоты.

Кстати, работы по созданию роторно-лопастного двигателя ведутся в ППИ уже более 30 лет. За это время создан коллектив из высококвалифицированных научных сотрудников, накоплены значительный опыт и научно-технический материал. Результатом исследований стало создание натурного образца роторно-лопастной расширительной машины на основе рычажно-кулачкового преобразователя движения.

В практическое русло работы вошли в 1998 году, когда в рамках федеральной целевой программы ППИ заключил договор с Миннауки на опытно-конструкторские работы на тему: «Разработка технологии и изготовление опытного образца роторно-лопастного двигателя внутреннего сгорания». Итогом работы стало создание технологии изготовления и макета РЛД внутреннего сгорания.

Исследование данных макетов позволило доказать принцип работы роторно-лопастной машины, отработать конструкцию рычажно-кулачкового механизма, утвердиться в надежности и долговечности работы РЛД и подтвердить достоинства роторно-лопастных машин.

Принцип работы роторно-лопастного двигателя известен уже давно. Этот механизм содержит два ротора с лопастями и цилиндр с впускными и выпускными окнами. В двигателе предусмотрен механизм связи, позволяющий роторам совершать движение друг относительно друга и вращательно-колебательное движение относительно цилиндра, а также устройство, позволяющее суммировать движение роторов и передать равномерное вращение выходному валу.

При этом выяснилось, что коэффициент компактности основного объема роторно-лопастного двигателя (отношение эквивалентного рабочего объема к объему двигателя) достигает 15–20%, в то время как максимальное значение этого показателя для поршневых (V-образных с кривошипно-шатунным механизмом) составляет 1–2%. Столь большое (в несколько раз) преимущество по удельно-массовым показателям открывает перспективы практического применения двигателей данной схемы.

Предложенная конструктивная схема роторно-лопастного двигателя имеет ряд преимуществ по сравнению с шатунно-поршневым двигателем. На основании проведенных ранее исследований, выявления проблем в области создания двигателей с внешним подводом теплоты, требованиям к современным моторам возникла идея объединить роторно-лопастную конструкцию двигателя с принципом внешнего подвода теплоты. Данный синтез явился следствием тщательного анализа современных конструктивных вариантов двигателей с выявлением достоинств и недостатков каждого.

В настоящее время существует три основные проблемы в области создания роторно-лопастных машин. В основе конструкции предложенной расширительной машины и двигателя внутреннего сгорания лежит четырехзвенный механизм преобразования движения, особенность конструкции которого заключается в следущем: механизм состоит из четырехзвенника и кулачка. Четырехзвенник состоит из шарнирно связанных плеч одинаковой длины. К серединам плеч шарнирно прикреплены рычаги лопастей. Механизм обеспечивает основные функциональные требования к преобразователю движения. Закон изменения угла между лопастями синусоидальный. Графики скоростей и ускорений лишены резких скачков, поэтому достигается плавность и безударность работы механизма. В конструкции нет недостатков, связанных с использованием зубчатых колес. В свою очередь простота изготовления определяется отсутствием сложных прецизионных деталей, сферических шарниров и т. п., применением однотипных элементов. К тому же механизм реверсивен, обратим, уравновешен, что расширяет функциональные возможности двигателя, спроектированного на его основе.

Число рабочих тактов при одном обороте выходного вала равно четырем, в то время как для шатунно-поршневого ДВС оно равно двум. Равенство продолжительности рабочих тактов на одном обороте выходного вала обеспечивается симметричной конструкцией механизма преобразования. Степень сжатия рабочего тела зависит от диапазона изменения угла между лопастями. Для данного механизма она ограничивается лишь конструктивными и прочностными параметрами реального механизма.

Отличия и преимущества

В 2007 г. ППИ выиграл конкурс в рамках федеральной целевой программы и заключил государственный контракт с Федеральным агентством по науке и инновациям на проведение научно-исследовательских работ на тему «Разработка математической модели протекания термодинамического цикла с внешним подводом теплоты, позволяющей создать экологически чистый двигатель роторно-лопастного типа».

В итоге появилась методика расчета и проектирования РЛД с внешним подводом теплоты (РЛДВПТ), в частности, созданы математические модели отдельных узлов двигателя, а также математическая модель, подтверждающая возможность реализации термодинамического цикла с внешним подводом теплоты в РЛД. Для проведения экспериментальных исследований были созданы и исследованы макет механизма преобразователя движения и макет камеры сгорания. Полученные результаты явились доказательной базой правильности теоретических расчетов.

Сравнитльные характеристики роторно-лопастных (РЛД) и шатунно-поршневых (ШПД) двигателей
ПоказателиРЛДШПД
Удельная масса, кг/кВт0,4–0,82,5–4,5
Удельная мощность, кВт/л20050–80
Минимальная скорость вращения, мин-160600–800
Потери на механическое трение, %1035
Средняя скорость лопастной (поршневой) группы, м/с30–5015–25
Амплитуда вибраций (в подвешенном состоянии), мкм1003000

Как следствие исследования механических и термодинамических процессов двигателя подтвердили возможность и перспективность создания нового типа двигателя – РЛДВПТ (роторно-лопастной двигатель с внешним подводом тепла).

Для практического осуществления цикла с внешним подводом теплоты в двигателе, имеющем замкнутое рабочее пространство, необходимы циклическое изменение объема рабочего пространства, подвод теплоты к рабочему телу, отвод теплоты от него и регенерация некоторой части тепла. Реализовать условия осуществления термодинамического цикла с внешним подводом теплоты на базе двигателя роторно-лопастного типа возможно несколькими способами, для осуществления которых используются соответствующие конструктивные решения.

Сравнение параметров двигателей Стирлинга с РЛДВПТ
Показатели4S1210 «Дженерал Моторс» (экспери-ментальные данные)4L23 «Дженерал Моторс» (расчетные данные)Рядный «Филипс» (расчетные данные)РЛДВПТ (расчетные данные)
Мощность, кВт28095147300
Частота вращения, мин-11500210030001500
КПД, %3522,6
Температура нагревателя, °С650760700427
Температура охладителя, °С32574077
Рабочее телоH2H2HeСО2
Среднее давление, МПа10,3510,321,63,1
Количество цилиндров4442
Объем цилиндра, cм3227015104001000
Удельная мощность, Вт/ cм35815,7136150
Масса, кг2270725400500
Габаритные размеры, мм1880x1016x x19301360x600x x10001130x440x x9631200x600x x900
Объемная мощность, кВТ/м376116,4308464
Удельная масса, кг/кВТ87,62,721,66

Конструктивно двигатель состоит из двух модулей, каждый из которых включает лопастную группу и механизм преобразования движения. Модули жестко соединены между собой и повернуты друг относительно друга на 45°. В конструкции для нагревания и охлаждения рабочего тела предусмотрены нагреватель и охладитель.

  • рабочее тело в отличие от поршневого Стирлинга может иметь большую молярную массу по сравнению с гелием и водородом, что приводит к уменьшению среднего давления рабочего тела и применению общедоступных уплотнений;
  • температура рабочего тела в нагревателе благодаря круговой циркуляции ниже, чем у обычных Стирлингов, что дает возможность применять недорогие по стоимости стали и сплавы;
  • применение конструктивной схемы роторно-лопастной машины позволяет снизить удельную массу двигателя.

Область применения

По данному принципу можно создать целое семейство двигателей различной мощности. Сейчас отрабатывается конструкция мотора мощностью до 300 кВт. Область применения роторно-лопастных двигателей с внешним подводом тепла достаточна велика. Они могут использоваться везде, где работают ДВС, в том числе и на автомобильном транспорте. РЛДВПТ способны функционировать в условиях, где ДВС не работают, а именно: в воде, под землей, в космосе, в условиях песчаных бурь. При изменении конструкции механизма преобразования движения роторно-лопастная машина работает как пневмодвигатель либо гидродвигатель, как расширительная (паровая) машина или дроссель в магистральных газопроводах для понижения давления с целью получения электричества. РЛДВПТ могут работать с такими источниками энергии, как компрессор; жидкостный, тепловой, вакуумный насосы, а также холодильная машина.

Cпециалисты Псковского государственного политехнического университета продолжают совершенствовать свое детище, и, возможно, очень скоро оно станет настоящей альтернативой традиционным конструкциям двигателей.

Автор благодарит М.А. Донченко за помощь в подготовке статьи

Устройство и принцип действия радиатора охлаждения двигателя

Устройство и принцип действия радиатора охлаждения двигателя

Система охлаждения играет очень важную роль, так как именно она предотвращает перегревание двигателя автомобиля, которое неизбежно в процессе работы. Важнейшим элементом охлаждающей системы выступает радиатор, обеспечивающий эффективное охлаждение жидкости.

Система охлаждения автомобиля специально предназначена для того, чтобы охлаждать детали двигателя, которые нагреваются в процессе его работы. Современные автомобили имеют системы охлаждения, которые, помимо своей основной, выполняют целый ряд других важных функций:

— нагревают воздух в системе вентиляции, отопления и кондиционирования;
— охлаждают масло в системе смазки;
— охлаждают отработанные газы в системе рециркуляции отработанных газов;
— охлаждают рабочую жидкость в автоматической коробке передач;
— охлаждают воздух в системе турбонаддува.

На сегодняшний день существует несколько систем охлаждения двигателя: воздушная, жидкостная и комбинированная. В жидкостной системе тепло от разогретых элементов двигателя отводит поток жидкости, в воздушной системе — поток воздуха. В комбинированной системе воздушная и жидкостная системы объединяются.

Большинство современных автомобилей оборудованы жидкостной системой охлаждения, среди преимуществ которой можно выделить эффективное равномерное охлаждение. Кроме этого, жидкостная система охлаждения имеет невысокий уровень шума.

Независимо от того, какой тип двигателя имеет автомобиль — бензиновый или дизельный, конструкция систем охлаждения будет подобной. В состав системы охлаждения входят следующие элементы:

— радиатор системы охлаждения;
— теплообменник отопителя;
— масляный радиатор;
— расширительный бачок;
— термостат;
— центробежный насос;
— вентилятор радиатора;
— патрубки;
— элементы управления;
— рубашка «охлаждения» двигателя.


Устройство радиатора

Важнейшим конструктивным элементом не только системы охлаждения, но и самого двигателя, является радиатор. Прообраз современного радиатора устанавливался даже на самых первых автомобилях, так как без радиатора работа двигателя не представляется возможной. Радиатор системы охлаждения выполняет такую важную функцию, как поддержание рабочей температуры двигателя и защита его от перегрева.

Как правило, автомобильный радиатор состоит из таких элементов, как верхний и нижний баки, сердцевина, детали крепления. Радиатор предназначен для того, чтобы жидкость, поступающая в него непосредственно из водяной рубашки двигателя, охлаждалась до необходимой температуры. Баки радиатора, а также сердцевина, которая к ним припаяна, как правило, изготавливаются из латуни, благодаря чему обеспечивается хорошая теплопроводность.

Сердцевина радиатора представляет собой тонкие поперечные пластины, через которые проходят плоские вертикальные трубки, припаянные к этим пластинам. Жидкость, которая проходит через сердцевину радиатора охлаждения, расходится на множество потоков. Подобное устройство сердцевины позволяет жидкости охлаждаться более интенсивно, так как значительно возрастает площадь соприкосновения жидкости со стенками трубок.

Баки радиатора соединяются с рубашкой охлаждения при помощи патрубков. Нижний бак оснащен специальным краником, предназначенным для слива жидкости из радиатора. Чтобы спускать воду из водяной рубашки, в нижней части блока также имеется краник.

В систему охлаждения жидкость заливается через горловину бака, расположенного вверху и закрываемого крышкой. Жидкостная система охлаждения двигателя отличается наличием двойного регулирования теплового режима: термостатом и шторкой.

Шторка радиатора охлаждения — это своеобразное полотно, один из концов которого закрепляется на сматывающем механизме, который, в свою очередь, монтируется в барабане. Второй конец неподвижно соединяется в нижней части автомобильного радиатора.

Некоторые двигатели внутреннего сгорания вместо шторки оснащены жалюзи створчатого типа, состоящими из пластин. Пластины шарнирно закрепляются в нижней планке, связанной тягой и системой рычагов с рукояткой управления жалюзи, которая находится в кабине. Сами створки могут быть расположены горизонтально или вертикально.


Принцип работы радиатора

Системы охлаждения, которыми оборудуются современные автомобили, учитывают множество важных параметров, среди которых температура двигателя, температура жидкости и масла, температура снаружи салона и т.д.

Принцип работы системы охлаждения следующий. Благодаря жидкостному насосу охлаждающая жидкость находится в постоянном движении, циркулируя по кругу, омывая горячие стенки головки блока и цилиндров. Таким образом удается избежать перегрева двигателя, так как от нагретых деталей отводится тепло. Далее горячая жидкость направляется в радиатор охлаждения, который обеспечивает отвод тепла в окружающую среду. На этом цикл заканчивается, а охлажденная жидкость идет по новому циклу.

Таким образом, можно сделать вывод, что радиатор представляет собой своеобразный теплообменник, который обеспечивает охлаждение жидкости. Чтобы работа радиатора была еще более эффективной, перед двигателем устанавливается специальный вентилятор радиатора, нагнетающий воздух на поверхность радиатора, благодаря чему процесс теплообмена значительно ускоряется.

Вентилятор радиатора запускается автоматически специальным термодатчиком, который срабатывает в тот момент, когда рабочая температура двигателя начинает подниматься выше допустимой нормы. Вентилятор и радиатор охлаждения устанавливают непосредственно перед двигателем.

Другие статьи

#Бачок ГЦС

Бачок ГЦС: надежная работа гидропривода сцепления

14.10.2020 | Статьи о запасных частях

Многие современные автомобили, особенно грузовые, оснащаются гидравлическим приводом выключения сцепления. Достаточный запас жидкости для работы главного цилиндра сцепления хранится в специальном бачке. Все о бачках ГЦС, их типах и конструкции, а также о выборе и замене этих деталей читайте в статье.

Принципы двигателей внутреннего сгорания для транспортных средств — Добро пожаловать в базу данных DTU Research

TY — КНИГА

T1 — Принципы двигателей внутреннего сгорания для транспортных средств

AU — Соренсон, Спенсер C

PY — 2017

Y1 — 2017

N2 — Книга представляет собой вводный текст по теме двигателей внутреннего сгорания, предназначенный для использования на инженерных курсах на старшем или вводном уровне аспирантов. Основное внимание уделяется описанию основных принципов работы двигателя в широком смысле, чтобы обеспечить основу для дальнейших исследований, исследований и разработок.Цель состоит в том, чтобы описать основные переменные, участвующие в работе двигателей различных типов, и то, как их взаимодействие определяет характеристики двигателя. Включены следующие темы: общие параметры двигателя, термодинамические циклы, включая простое моделирование двигателя, процессы воздухообмена, сгорание в различных типах двигателей, выбросы выхлопных газов, управление двигателем, включая модели двигателей среднего значения, наддув, топливо и топливные системы, балансировка, трение и тепло. перевод. Кроме того, представлены методы установления связи между характеристиками двигателя и характеристиками транспортного средства с точки зрения ускорения, максимальной скорости и расхода топлива.

AB — Книга представляет собой вводный текст по теме двигателей внутреннего сгорания, предназначенный для использования на инженерных курсах на старшем или вводном уровне аспирантов. Основное внимание уделяется описанию основных принципов работы двигателя в широком смысле, чтобы обеспечить основу для дальнейших исследований, исследований и разработок. Цель состоит в том, чтобы описать основные переменные, участвующие в работе двигателей различных типов, и то, как их взаимодействие определяет характеристики двигателя.Включены следующие темы: общие параметры двигателя, термодинамические циклы, включая простое моделирование двигателя, процессы воздухообмена, сгорание в различных типах двигателей, выбросы выхлопных газов, управление двигателем, включая модели двигателей среднего значения, наддув, топливо и топливные системы, балансировка, трение и тепло. перевод. Кроме того, представлены методы установления связи между характеристиками двигателя и характеристиками транспортного средства с точки зрения ускорения, максимальной скорости и расхода топлива.

M3 — Книга

BT — Принципы двигателя внутреннего сгорания для транспортных средств

PB — Автоматический пресс

ER —

Основы двигателя

Основы двигателя

Ханну Яэскеляйнен, Магди К.Хаир

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Аннотация : Поршневые двигатели внутреннего сгорания — подкласс тепловых двигателей — могут работать в четырех- и двухтактных циклах. В каждом случае двигатель может быть оборудован системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI). Возможен ряд других классификаций двигателей, основанных на мобильности двигателя, применении, топливе, конфигурации и других параметрах конструкции.Теоретически процесс сгорания можно смоделировать, применяя законы сохранения массы и энергии к процессам в цилиндре двигателя. Основные конструктивные и рабочие параметры двигателей внутреннего сгорания включают степень сжатия, рабочий объем, зазор, выходную мощность, указанную мощность, термический КПД, указанное среднее эффективное давление, среднее эффективное давление при торможении, удельный расход топлива и многое другое.

Тепловые двигатели

Определение и классификация

Тепловые двигатели — это машины преобразования энергии — они преобразуют химическую энергию топлива в работу, сжигая топливо в воздухе для производства тепла.Это тепло используется для повышения температуры и давления рабочего тела, которое затем используется для выполнения полезной работы. Тепловые двигатели можно классифицировать как:

  1. Двигатели внутреннего сгорания, или
  2. Двигатели внешнего сгорания.

Их также можно разделить на возвратно-поступательные и вращательные. В поршневых двигателях рабочая жидкость используется для линейного перемещения поршня. Затем поступательное движение обычно преобразуется во вращательное с помощью кривошипно-скользящего механизма (шатун / коленчатый вал).В роторном двигателе рабочая жидкость вращает ротор, соединенный с выходным валом.

Двигатели внутреннего сгорания

В двигателях внутреннего сгорания (ДВС) рабочее тело состоит из воздуха, топливовоздушной смеси или продуктов сгорания самой топливно-воздушной смеси. Поршневые двигатели с возвратно-поступательным движением являются, пожалуй, наиболее распространенной формой известных двигателей внутреннего сгорания. Они приводят в движение автомобили, грузовики, поезда и большинство морских судов. Они также используются во многих небольших служебных приложениях.Они могут работать на жидком топливе, таком как бензин и дизельное топливо, или на газообразном топливе, таком как природный газ и сжиженный нефтяной газ. Двумя общими подкатегориями поршневых двигателей с возвратно-поступательным движением являются двухтактный двигатель и четырехтактный двигатель . Примеры роторных двигателей внутреннего сгорания включают роторный двигатель Ванкеля и газовую турбину.

Общие цели при проектировании и разработке всех тепловых двигателей включают: максимизацию работы (выходную мощность), минимизацию потребления энергии и уменьшение загрязняющих веществ, которые могут образовываться в процессе преобразования химической энергии в работу.На рисунке 1 показаны основные узлы поршневых двигателей внутреннего сгорания. Конструкция магистрального двигателя является наиболее распространенной, хотя термин «магистральный двигатель» редко используется за пределами отрасли крупных двигателей. Конструкция крейцкопфа в настоящее время используется только в больших тихоходных двухтактных двигателях. Впускные и выпускные клапаны для простоты опущены, однако стоит отметить, что в некоторых конструкциях двухтактных двигателей используются впускные и выпускные отверстия, а не клапаны.

Рисунок 1 . Основные узлы поршневых (а) и крейцкопфных (б) двигателей

Как двух-, так и четырехтактный поршневой двигатель внутреннего сгорания может быть оборудован системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI).

Обычно системы с искровым зажиганием характеризуются предварительно смешанным зарядом (т.е. топливо и воздух смешиваются перед зажиганием) и внешним источником воспламенения, таким как свеча зажигания. Предварительное смешивание может происходить во впускном коллекторе или в цилиндре. Хотя предварительно смешанный заряд имеет относительно однородное пространственное распределение воздуха и топлива в большинстве случаев, это распределение также может быть неоднородным. Возгорание инициируется искрой, и пламя распространяется наружу вдоль фронта от места искры.Сгорание в двигателях SI считается кинетическим, потому что вся смесь воспламеняется, а скорость сгорания определяется тем, насколько быстро химическая реакция может поглотить эту смесь, начиная с источника воспламенения.

Обычные дизельные двигатели характеризуются впрыском топлива непосредственно в цилиндр примерно в то время, когда требуется зажигание. В результате заправка воздуха и топлива в этих двигателях очень неоднородна: одни регионы являются чрезмерно богатыми, а другие — обедненными.Между этими крайностями смесь топлива и воздуха будет существовать в различных пропорциях. При впрыске топливо испаряется в этой высокотемпературной среде и смешивается с горячим окружающим воздухом в камере сгорания. Температура испарившегося топлива достигает температуры самовоспламенения и самовоспламеняется, чтобы начать процесс сгорания. Температура самовоспламенения топлива зависит от его химического состава. В отличие от системы SI, сгорание в двигателях с воспламенением от сжатия может происходить во многих точках, где соотношение воздух-топливо и температура могут поддерживать этот процесс.Считается, что основная часть процесса сгорания в двигателях с ХИ регулируется смешиванием, потому что скорость регулируется образованием воспламеняющихся смесей воздуха и топлива в камере сгорания.

В некоторых случаях различие между модулями SI и CI может быть нечетким. В связи с необходимостью снижения выбросов и расхода топлива были разработаны системы сгорания, которые могут использовать некоторые особенности двигателей SI и CI; например, самовозгорание предварительно смешанных смесей бензина, дизельного топлива или их смеси.

Газовые турбины, рис. 2, являются еще одним примером двигателей внутреннего сгорания. Однако, в отличие от поршневых двигателей с возвратно-поступательным движением, сгорание происходит отдельно в специальной камере сгорания.

Рисунок 2 . Микрогазовая турбина для расширителей диапазона в транспортных средствах средней и большой грузоподъемности

(Источник: Wrightspeed Inc.)

Двигатели внешнего сгорания

В двигателях внешнего сгорания рабочее тело полностью отделено от топливовоздушной смеси.Тепло от продуктов сгорания передается рабочему телу через стенки теплообменника. Паровая машина — хорошо известный пример двигателя внешнего сгорания.

Примером поршневого двигателя внешнего сгорания является двигатель Стирлинга, в котором тепло добавляется к рабочему телу при высокой температуре и отводится при низкой температуре. Тепло, добавляемое к рабочему телу, может быть получено практически от любого источника тепла, такого как сжигание ископаемого топлива, дерева или любого другого органического материала.

Цикл Ренкина, на котором основаны многие конструкции паровых двигателей, является еще одним примером двигателя внешнего сгорания. Тепло, поступающее от внешнего источника, повышает температуру жидкости, такой как вода, до тех пор, пока она не превратится в пар, который используется для перемещения поршня или вращения турбины. Паровые двигатели приводили в движение автомобили в США с 1900 по 1916 год; однако к 1924 году они почти исчезли. Паровые грузовики были популярны в Англии до середины 1930-х годов. В то время как паровые локомотивы во многих странах постепенно заменялись тепловозами на протяжении большей части 20 -го -го века, некоторые из них оставались в магистральной эксплуатации вплоть до 21-го -го -го века.Причины отказа от парового двигателя в качестве основного двигателя в мобильных приложениях заключались в размере и количестве основных компонентов, необходимых для их работы, таких как печь, котел, турбина, клапаны, а также их сложных органов управления [422] . Паровая турбина, которая до сих пор работает на многих стационарных электростанциях, является примером роторного двигателя внешнего сгорания.

В 21 годах акцент на повышении эффективности двигателей вызвал возобновление интереса к циклу Ренкина для мобильных приложений — в форме рекуперации отработанного тепла (WHR).В то время как в некоторых из этих устройств используется пар, в других используются органические жидкости, которые лучше подходят для приложений с относительно низкой температурой выхлопных газов транспортных средств. Из-за комбинации цикла Ренкина и органической рабочей жидкости эти системы часто называют системами рекуперации отходящего тепла с органическим циклом Ренкина (ORC).

###

Автомобильные двигатели (легковые автомобили)

Блок питания

В этой главе рассматриваются двигатели внутреннего сгорания (IC), наиболее часто используемые двигатели
в автомобилях сегодня.Приведены принцип действия, различные типы и классификация двигателей внутреннего сгорания
.
2.1.

Автомобильные двигатели

Среди всех автомобильных двигателей бензиновый двигатель доминирует в автомобильной отрасли. В 1900 году эта силовая установка находилась на третьей позиции после паровой машины и
аккумуляторной электросети. Автомобили с паровым и электрическим приводом не требуют трансмиссии
из-за наличия большой мощности на низких скоростях.Самым большим недостатком
для этих силовых агрегатов является соответственно опасность высокого давления в паровом котле и неудобство подзарядки батарей
, что снизило их популярность. На диаграмме 2.1 представлены
различных автомобильных двигателей.
Бензиновый двигатель, несмотря на необходимость трансмиссии, имеет то преимущество, что
вырабатывает большое количество энергии из небольшого количества топлива, которое можно легко пополнить. Дизельный двигатель
был представлен благодаря его дополнительным преимуществам, таким как более низкая стоимость топлива, снижение затрат на техническое обслуживание
, низкий риск возгорания и более равномерный крутящий момент в широком диапазоне скоростей.Сегодня
как бензиновые, так и дизельные двигатели широко используются в автомобилях. Однако
они в значительной степени ответственны за вредные выбросы, наносящие ущерб окружающей среде.
Автомобильные двигатели называются двигателями внутреннего сгорания (ВС), потому что топливо сжигается
внутри или внутри двигателей. Они бывают двух типов: возвратно-поступательные и поворотные. Почти
все автомобильные двигатели сегодня, использующие бензиновые и дизельные двигатели, относятся к поршневому типу
. В этих двигателях поршни движутся вверх и вниз или совершают возвратно-поступательное движение.Эти двигатели также называются поршневыми двигателями
. Роторные двигатели имеют вращающиеся или вращающиеся роторы. Два основных типа роторных двигателей
— это газовая турбина и двигатель Ванкеля. Двигатель Ванкеля
набирает популярность для небольших автомобилей. Газовая турбина больше использовалась в автобусах и грузовиках.
Двигатель Ванкеля имеет определенные преимущества перед поршневыми двигателями. Он работает очень плавно; для своего размера он производит большую мощность по сравнению с поршневыми двигателями того же размера; его
можно заглушить, чтобы он работал очень тихо, поскольку он не имеет шумной работы клапанного механизма; и он
работает на низкооктановом бензине и производит небольшие выбросы оксидов азота.Но
другие выбросы высоки, и он работает не так экономично, как поршневые двигатели
, производящие аналогичную мощность.

Газовая турбина вырабатывает большую мощность для своих размеров и веса по сравнению с поршневыми автомобильными двигателями
. Он не требует системы охлаждения или преобразователя крутящего момента на трансмиссии. Срок службы
между капитальными ремонтами в несколько раз больше, чем у поршневого двигателя. Он имеет низкие выбросы
углеводородов и окиси углерода. Последние разработки позволили снизить выбросы оксидов азота на
ниже допустимого значения.Турбинный двигатель лучше всего работает при постоянной скорости
, поэтому он больше подходит для грузовиков и автобусов, чем для легковых автомобилей.
График 2.1. Автомобильные двигатели.

1903 Термодинамический анализ двигателя — цикл Отто

Термодинамика это раздел физики, имеющий дело с энергией и работа системы. Он родился в 19 веке как ученые. впервые открыли, как строить и эксплуатировать паровые двигатели.Термодинамика имеет дело только с крупномасштабным откликом системы. которые мы можем наблюдать и измерять в экспериментах. Основные идеи термодинамики преподаются в классах физики в средней школе. поэтому братья Райт знали и использовали эти концепции, особенно в своих конструкция двигателя.

Дизайн братьев очень прост по сегодняшним меркам, так что это хороший двигатель для студентов, чтобы изучить основы работа двигателя. Работа двигателя состоит из двух основных частей: механическая операция частей двигателя и термодинамики, с помощью которой двигатель производит Работа а также мощность.На этой странице мы обсуждаем основные термодинамические уравнения, которые позволяют для проектирования и прогнозирования характеристик двигателя. На на отдельной странице мы представляем термодинамические принципы на котором основан двигатель.

Братья использовали бензиновый четырехтактный, двигатель внутреннего сгорания для питания их самолет. В двигателе внутреннего сгорания топливо и воздух воспламеняется внутри цилиндра. Горячий выхлоп толкает поршень, который соединен к коленчатый вал производить мощность.Сжигание топлива не является непрерывным процессом, но происходит очень быстро через равные промежутки времени. Между возгоранием детали двигателя двигаться в повторяющейся последовательности, называемой циклом . Двигатель называется четырехтактным, потому что в нем четыре движения. (штрихи) поршня за один цикл. Конструкция братьев была основана на ранних конструкциях автомобильных двигателей, в которых использовались Цикл Отто , разработанный немецким доктором Н.А. Отто в 1876 году.

На рисунке показан график давление по сравнению с объемом газа в течение одного цикла. Мы разорвали цикл на шесть пронумерованных ступеней в зависимости от механической операции двигателя. В расположение поршня и объем газа созданный движением поршня на каждой ступени описаны на других страницах. (гамма — 1)

где p — давление, T — температура, а гамма это соотношение удельные плавки.В течение процесс горения (3-4), объем поддерживается постоянным и выделяется тепло. Изменение температуры составляет дано

T4 = T3 + f * Q / cv

где Q — количество тепла, выделяемое на фунт топлива, которое зависит от топлива, f — соотношение топливо / воздух для сгорания, которое зависит от нескольких факторов. связанные с конструкцией и температурой в камере сгорания, и cv — удельная теплоемкость при постоянном объеме.(1 — гамма)

Между этапом 5 и этапом 6 остаточное тепло переведен к окружающей среде так что температура и давление возвращаются к начальным условиям 1 этап (или 2).

Во время цикла Работа производится на газе поршнем между ступенями 2 и 3. Работа выполняется газ на поршне между ступенями 4 и 5. Разница между работой, проделанной на газ и работа, проделанная с газом, показаны желтым цветом и являются произведенной работой. по циклу.Мы можем рассчитать работу, определив прилегающую площадь циклом на p-V диаграмме. Но поскольку процессы 2-3 и 4-5 кривые, это сложно. расчет. Также мы можем оценить работу W по разнице тепла в газ. минус тепло, отводимое газом. Зная температуры, это более простой расчет.

W = cv * [(T4 — T3) — (T5 — T2)]

Время работы, умноженное на скорость цикла (циклов в секунду cps ), равно мощность P производится двигателем.

P = W * cps

На этой странице у нас есть показан цикл Отто , идеальный , в котором нет поступления тепла (или уходящий) газ при сжатии и силовых тактах, трения нет потери и мгновенное горение, происходящее при постоянном объеме. В реальности, идеального цикла не происходит, и есть много потерь, связанных с каждый процесс. Эти потери обычно учитываются коэффициентами эффективности. которые умножают и видоизменяют идеальный результат.Для реального цикла форма диаграммы p-V аналогичен идеальному, но площадь (работа) равна всегда меньше идеального значения.



Деятельность:

Навигация ..


Возрождение пути Райта
Руководство по воздухоплаванию для новичков
Домашняя страница НАСА
http://www.nasa.gov

Прикладная физика бензиновых двигателей, часть 1

Дуайт Э.Нойеншвандер, Южный Назаренский университет

См. Также: Прикладная физика бензиновых двигателей, часть 2

На протяжении последних двух десятилетий я проводил на различных курсах практическое упражнение под названием «Лаборатория трупов двигателя» [1]. В отличие от биологов, мы собираем наши трупы вместе, потому что мы рассекаем двигатели газонокосилок (рис. . 1)! Опыт всегда доставлял много удовольствия. В дополнение к новым открытиям в области физики, большинство студентов сообщают о том, что они пришли к ним, с повышенным уважением к своим автомобилям и глубоким восхищением перед умными умами, которые предвидели, как все эти системы, состоящие из неодушевленной материи, могут быть скоординированы, чтобы дать машине жизнь. собственное.

За редкими исключениями, большинство студентов приступают к этому упражнению, не имея большого представления о том, что происходит внутри автомобильного двигателя. (Тем, кто имеет опыт работы в области механики, отводятся роли помощников преподавателя.) Большинство студентов взаимодействуют с автомобилем, заливая бензин в бак и направляя машину вниз по дороге. Такое безразличие предполагает, что в нашем обществе мы воспринимаем наши машины как должное, довольствуясь тем, что не понимаем, как они работают, даже несмотря на то, что мы становимся все более зависимыми от них.Такое отсутствие любопытства, я полагаю, совершенно чуждо студентам-физикам.

В этой статье мы исследуем внутреннее устройство бензинового четырехтактного двигателя внутреннего сгорания, который используется в большинстве автомобилей, легких грузовиков, мотоциклов, легких самолетов и газонокосилок. Базовый дизайн датируется примерно 1890 годом; его долговечность указывает на его надежность. С тех пор четырехтактные бензиновые двигатели стали намного более эффективными и мощными, а их сложность становилась все более сложной, поскольку мы предъявляем к ним все более и более противоречивые требования.Но основная анатомия двигателя Ferrari V12 имеет много общего с двухцилиндровым Fiat 1899 года выпуска. Основные идеи, лежащие в основе двигателя, можно понять, изучив простейший из двигателей — одноцилиндровый двигатель газонокосилки с воздушным охлаждением и клапанами в блоке, который имеет зажигание от магнита, запуск от толчка и смазку разбрызгиванием. Вариации этого двигателя десятилетиями создавались такими марками, как Briggs & Stratton, Jacobsen и Tecumseh. В силу своей простоты эти простые машины предлагают для всех двигателей уровень понимания, аналогичный по глубине тому, который предлагает атом водорода для всех атомов.[2]

В этой первой из серии, состоящей из двух частей, для иллюстрации двигателя косилки мы очерчиваем основную анатомию четырехтактного бензинового двигателя, а также его смазку и охлаждение. Мы также определяем термодинамический верхний предел эффективности четырехтактного бензинового двигателя. Попутно отметим отличия одноцилиндрового двигателя косилки от более сложных четырехтактных двигателей.

Часть 2, которая будет опубликована в следующем номере журнала, обсудит воздушную и топливную системы двигателя, а также систему зажигания с ее магнето, цепь RLC и свечу зажигания.Эти технические примечания будут сопровождаться наблюдениями о наших отношениях с нашими автомобилями. Это включает в себя признание и уважение к этим чудесным машинам, одновременно осознавая высокую цену, которую платит общество и окружающая среда за их огромное количество. В заключение мы поговорим об отношениях между известными физиками и их моторизованными товарищами.

Анатомия двигателя и четырехтактный цикл

Двигатель получает энергию за счет передачи тепла от источника при одной или нескольких высоких температурах, преобразует часть подводимого тепла в работу и отдает оставшуюся энергию в виде тепла в окружающую среду при низкой температуре.[3] В бензиновом двигателе тепловложение происходит от периодического взрывного горения порции испаренного бензина. Энергия каждого взрыва толкает поршень вниз по цилиндру (при первом упоминании детали и названия процессов выделены курсивом). Вместо того, чтобы вылетать из цилиндра через гараж, поступательное движение поршня преобразуется коленчатым валом в угловой момент. Чтобы увидеть коленчатый вал в действии, представьте, что едете на велосипеде; линейное движение коленей вверх и вниз преобразуется во вращение педалями, которые смещены относительно оси вращения звездочки.

Основным корпусом двигателя является экзоскелет, называемый блоком, чудесно сложная отливка, которая поддерживает вращающиеся или скользящие детали на критических поверхностях, обработанных с точностью до одной тысячной дюйма (рис. 2). Доминирующим элементом в блоке являются одно или несколько больших отверстий, упомянутых выше цилиндров. Двигатель косилки, который мы здесь разбираем, имеет один цилиндр. Поршень соединен с коленчатым валом шатуном (рис. 3; в аналогии с велосипедом ваша голень служит шатуном).Верхний конец штока крепится внутри поршня с помощью наручного пальца, от которого шток раскачивается взад и вперед, как маятник. На нижнем конце штока имеется съемный колпачок, который плотно прилегает к шатунной шейке, смещенной части коленчатого вала. Поскольку массы поршня, шатуна и шатунной шейки лежат вне оси вращения коленчатого вала, в коленчатый вал врезаны противовесы для уравновешивания всего узла вокруг этой оси. Коленчатый вал удерживается на месте коренными подшипниками в блоке под цилиндром.

В дальнейшем мы представляем цилиндр, расположенный вертикально, а коленчатый вал — горизонтально под цилиндром.Многие косилки устанавливают двигатель так, чтобы цилиндр располагался горизонтально, а коленчатый вал — вертикально, чтобы вращать нож в горизонтальном направлении. Большинство автомобилей имеют четыре или более цилиндра с горизонтальным расположением коленчатого вала. Цилиндры могут располагаться вертикально по прямой линии (например, Pontiac 1954 года «Straight-8»), они могут быть наклонены двумя рядами, образуя V-образную форму (например, Corvette «V8»), или они могут располагаться горизонтально или « плоский », чтобы снизить центр тяжести (например, Porsche 911« Flat-6 »).

Движение поршня от самой нижней точки в цилиндре (нижняя мертвая точка или НМТ) до его наивысшей точки (верхняя мертвая точка или ВМТ) или в обратном направлении от ВМТ к НМТ является одним ходом работы двигателя.За каждый ход коленчатый вал поворачивается на полоборота. Термин «ход» также относится к расстоянию между ВМТ и НМТ. Диаметр цилиндра называется расточкой. Объем, определяемый ходом и отверстием, объем, вытесняемый верхней поверхностью поршня за один ход, и есть смещение этого цилиндра. Объем всех цилиндров двигателя является одним из показателей его рабочих характеристик. Если у вас «Корвет 427», рабочий объем его восьми цилиндров равен 427 кубическим дюймам.Конструкторы двигателей, использующие метрические единицы измерения, описывают рабочий объем двигателя в литрах или кубических сантиметрах.

Плотность энергии бензина составляет около 45 мегаджоулей на килограмм. [4] Чем больше бензина поступает в двигатель за цикл его работы, тем большую мощность он может производить. У двигателей одинаковой конструкции выходная мощность зависит от рабочего объема. Автомобили с бензиновым двигателем, построенные в 1890-х годах, производили примерно такое же количество энергии, что и двигатель нашей косилки, а автомобили, приводимые в движение, работали примерно так же, как одна из сегодняшних небольших ездовых газонокосилок.В первой в мире автогонке 1895 года из Парижа в Бордо и обратно приняли участие 15 бензиновых автомобилей (специализированных гоночных автомобилей еще не существовало), один электромобиль и шесть пароходов. Гонку выиграл Эмиль Левассор на своем Panhard-Levassor с двигателем Daimler объемом 1200 куб. См (73 куб. Дюйма) мощностью 3,5 лошадиных силы (1 л.с. = 745,7 Вт). Левассор проехал 723-мильную дистанцию ​​практически без остановок со средней скоростью 14,9 миль в час [5]. Мотор газонокосилки, предназначенный для мотокосилок, производит около 3.75 л.с. при рабочем объеме около 12 куб. дюйм [6] Его вековая конструкция все еще производится сегодня, потому что для предполагаемого применения доминирующим достоинством является простота.

Для увеличения мощности смещения конструкций первого поколения были быстро увеличены. Первый Гран-при специализированных гоночных автомобилей прошел в Ле-Мане, Франция, в 1906 году. Двигатель Renault, который выиграл, имел рабочий объем 12,8 литра (781 куб. Дюйм), развивал 105 л.с. и развивал среднюю скорость 62,88. миль в час, что означает, что на прямых участках он разгонялся до 100 миль в час.Но революция в эффективности была не за горами, когда мощность на рабочий объем станет столь же критичной, как и сам рабочий объем. Peugeot, выигравший Гран-при Франции 1912 года, имел объем всего 7,6 литра, соревнуясь с огромными 14-литровыми Fiat и 15-литровыми Lorraine-Dietrichs. [7] Некоторые конструктивные изменения, которые привели к более высокому соотношению мощности к рабочему объему, будут описаны ниже, поскольку мы исследуем простую конструкцию двигателя косилки, которая перекликается с автомобильными двигателями первого поколения.

В верхней части цилиндра находится головка (рис.4), с прокладкой головки, расположенной между блоком и головкой для образования плотного уплотнения при затяжке болтов головки (примерно до 12 фунт-футов). Пространство между поршнем в ВМТ и выступом головки над цилиндром образует камеру сгорания. Подвод искры к летучей смеси бензина и воздуха в камере сгорания выстреливает поршнем вниз по цилиндру, чтобы вращать коленчатый вал с помощью шатуна. Как топливовоздушная смесь попадает в цилиндр, как из него выводятся продукты сгорания и как доставляется искра в решающий момент?

Двигатель нашей косилки имеет два клапана, которые обеспечивают проход в цилиндр, впускной и выпускной клапан.Рассмотрим двигатель, работающий на скорости (обороты двигателя измеряются в об / мин, угловая скорость коленчатого вала в оборотах в минуту). Начнем с момента, когда оба клапана закрыты и поршень мгновенно находится в ВМТ. Это состояние отмечает начало четырехтактного цикла работы двигателя: такты впуска, сжатия, мощности и выпуска.

(1) Такт впуска: при вращении коленчатого вала поршень опускается вниз, и впускной клапан открывается. Разница давлений между внутренним пространством цилиндра и наружным воздухом толкает топливовоздушную смесь в цилиндр по мере того, как поршень опускается.Когда поршень достигает НМТ, впускной клапан закрывается.

(2) Такт сжатия: Поршень движется назад при закрытых обоих клапанах, сжимая топливовоздушную смесь. Пусть V2 будет объемом газа внутри цилиндра, когда поршень находится в НМТ, и пусть V1 будет обозначать объем с поршнем в ВМТ. Степень сжатия V2 / V1 является еще одним показателем производительности двигателя. Двигатели, предназначенные для работы в течение длительного времени, такие как двигатели косилок, должны работать с низким напряжением и обычно имеют степень сжатия около 4 или 5; двигатели соревнований могут иметь степень сжатия 10 и выше.Поскольку такт сжатия происходит быстро, во время такта во внешний мир передается незначительное тепло («адиабатический» процесс), и температура топливовоздушной смеси повышается.

(3) Рабочий ход: когда поршень достигает ВМТ в конце такта сжатия, зажигается свеча зажигания, воспламеняя топливовоздушную смесь. Пламя взрывным образом пронизывает камеру сгорания, повышая температуру и совершая работу, поскольку оно решительно толкает поршень вниз в рабочем такте.Хотя воспламенение топлива высвобождает огромную внутреннюю энергию в цилиндр, незначительная энергия уходит в виде теплопроводности во время быстрого рабочего хода, поэтому этот ход также является адиабатическим.

(4) Такт выпуска: Когда поршень движется вверх от НМТ, выпускной клапан открывается, и поршень выталкивает выхлопные газы из цилиндра. Они выходят через глушитель (с перегородками для гашения шума) в атмосферу. Двигатель обменивается теплом с окружающей средой во время тактов выпуска и впуска, удаляя горячие выхлопные газы и втягивая относительно холодные всасываемые газы.В конце такта выпуска поршень вернулся в ВМТ с закрытыми обоими клапанами, и цилиндр готов к повторению четырехтактного цикла.

Что открывает и закрывает клапаны и дает искру в нужный момент? Параллельно коленчатому валу движется распределительный вал с кулачками или кулачками (рис. 5). Через пару зацепленных зубчатых колес, по одной на конце каждого вала, вращающийся коленчатый вал поворачивает распределительный вал. В двигателе нашей косилки шестерня коленчатого вала имеет 20 зубьев, а шестерня на распределительном валу имеет 40 зубцов, вращая распределительный вал с половиной угловой скорости коленчатого вала.Перпендикулярно распределительному валу и на кулачках расположены толкатели клапанов, а сами клапаны стоят поверх толкателей. Когда распределительный вал вращается, кулачок поднимает подъемник и клапан, открывая проход в камеру сгорания. Когда кулачок выкатывается из-под подъемника, пружины клапана снова закрывают клапан (рис. 6). На распредвале нашего одноцилиндрового двигателя с двумя клапанами кулачки ориентированы на 90 градусов друг от друга, потому что впускные и выпускные клапаны открываются при смежных тактах. Один ход — это половина оборота коленчатого вала и, следовательно, четверть оборота распределительного вала.На обоих зубчатых колесах есть метки, которые необходимо совместить, чтобы клапаны открывались в нужное время в течение цикла (рис. 7).

В четырехтактном цикле одноцилиндровый двигатель обеспечивает один рабочий ход на каждые два оборота коленчатого вала. [8] В случае двух цилиндров рабочий ход происходит на каждом обороте. Четыре цилиндра производят рабочий ход каждые пол-оборота. Восемь цилиндров обеспечивают один рабочий ход за четверть оборота и так далее. Увеличение количества цилиндров делает машину более сложной, но выигрыш в том, что мощность прилагается более равномерно.Большинство автомобилей имеют четыре, шесть или восемь цилиндров; у некоторых их 10 (например, Dodge Viper), у некоторых — 12 (например, у большинства Ferrari и Lamborghinis, а также Lincolns и Auburns 1930-х годов), а у некоторых их 16 (например, Cadillac 1932 г., Marmon 1933 г. и современный Bugatti Veyron).

К внешнему концу коленчатого вала на конце, противоположном зубчатому колесу привода ГРМ, находим маховик (рис. 8). Самая важная задача маховика в любом двигателе — обеспечить большой момент инерции для максимально плавного вращения коленчатого вала с его штоком и поршнем в сборе между рабочими тактами.В двигателях косилок маховик также играет роль в системах охлаждения и зажигания, как будет описано ниже.

Объемный КПД, отношение объема паров воздух-топливо, попадающих в двигатель во время такта впуска, к рабочему объему цилиндра, предлагает еще один показатель характеристик двигателя. Говоря простым языком, он измеряет, насколько хорошо двигатель «дышит». Движущийся воздух имеет инерцию, а при турбулентности сила сопротивления воздуха равна квадрату скорости воздуха. Размер и расположение клапана, а также гладкость внутренних поверхностей, через которые проходят газы, существенно влияют на производительность двигателя.Двигатель нашей косилки представляет собой конструкцию с плоской или L-образной головкой, так называемую конструкцию, потому что клапаны проходят через блок параллельно цилиндру, и, таким образом, камера сгорания должна находиться не только над поршнем, но и над определенной областью. в головке с одной стороны цилиндра, где открываются клапаны (рис. 8). В течение 1940-х годов большинство автомобильных двигателей имели конструкцию с плоской головкой. Примерно в 1950 году производители начали производить конструкции с верхним расположением клапанов. Перемещение клапанов над поршнем увеличивает расход и объемный КПД, поскольку топливно-воздушная смесь попадает в камеру сгорания непосредственно над поршнем, а не сбоку.Теперь, когда клапаны должны быть опущены сверху, а коленчатый вал и синхронизирующие шестерни по-прежнему соединены их синхронизирующими шестернями, длинные толкатели расположены над толкателями клапанов и коромыслами, которые качаются вперед и назад на горизонтальном валу, как качели. , теперь сядьте на макушку. Кулачок поднимает толкатель, который поднимает одну сторону коромысла, а другая сторона коромысла толкает клапан вниз, открывая его. Пружины под коромыслами закрывают клапан, когда кулачок выкатывается из-под подъемника и толкателя.

Если бы толкатели и коромысла можно было исключить, а распределительный вал расположить на верхней стороне головки, механическая энергия, потребляемая двигателем, перемещающим его внутренние части, была бы значительно уменьшена. Это достигается в двигателях с верхним распределительным валом (ohc). (Логотип «DOHC» на некоторых автомобильных значках обозначает двойные верхние кулачки, один для ряда впускных клапанов, а другой для выпускных клапанов.) Если коленчатый вал и распределительный вал находятся слишком далеко друг от друга, чтобы их можно было соединить с помощью синхронизирующих шестерен, коленчатый вал поворачивает распределительный вал ремнем ГРМ или цепью ГРМ.Ремни привода ГРМ изготовлены из армированной проволокой синтетической резины и должны заменяться через регулярные промежутки времени, обычно около 90 000 миль. Если ремень ГРМ обрывается, открытие клапанов больше не будет зависеть от положения поршня. Столкновение клапана с поршнем приводит к возникновению дорогостоящего шума!

Для дальнейшего увеличения объемного КПД некоторые двигатели имеют четыре клапана на цилиндр, два впускных и два выпускных. Добавление нагнетателя (или «нагнетателя») значительно увеличивает объемный КПД.Нагнетатель — это компрессор, приводимый в движение ремнем от шкива коленчатого вала, который нагнетает в двигатель больше воздуха за цикл, чем это было бы возможно только за счет атмосферной аспирации. К началу 1920-х годов на гоночных автомобилях Гран-при использовались нагнетатели. Турбонагнетатель использует поток выхлопных газов для привода небольшого компрессора с той же целью.

Смазка и охлаждение

Внутри нашего скромного двигателя косилки, работающего на скромных 800 об / мин, царит оживленная среда. Поршень перемещается между ВМТ и НМТ 1600 раз в минуту; коленчатый вал и распределительный вал вращаются в своих подшипниках со скоростью 800 и 400 об / мин, соответственно, при зацеплении друг с другом через вращающиеся зубчатые передачи; кулачковые выступы открывают клапаны, которые закрываются пружинами; а пары бензина взрываются 200 раз в минуту.Некоторые спортивные мотоциклы развивают скорость до 14 000 об / мин и более! Чтобы продержаться более нескольких секунд, это шоу должно иметь адекватную смазку, которая не дает металлическим поверхностям сливаться друг с другом, когда они вращаются или скользят друг мимо друга. Избыточное тепло необходимо отводить для поддержания постоянной температуры.

В двигателе нашей косилки масло (1 литр 30 Вт) разбрызгивается на движущиеся части внутри картера с помощью стропила (рис. 7), шестерни, зацепленной с зубчатым колесом распределительного вала и снабженных маленькими лопастными колесами по ее периметру.Несмотря на примитивность, он обеспечивает адекватную смазку даже в гонках на картинге, когда двигатели испытывают гораздо большую нагрузку, чем при стрижке газонов. В более крупных двигателях масляный насос, приводимый в действие распределительным валом, подает масло непосредственно к подшипникам через проходы в блоке и головке. Масло не только обеспечивает смазку, предотвращающую сваривание движущихся частей металла, но и помогает отводить тепло. Масло не может проскользнуть мимо поршня в камеру сгорания (где оно может засорить свечу и вызвать синий дым), а топливовоздушная смесь не может протолкнуться мимо поршня, чтобы разбавить масло в картере с помощью набора поршней. кольца, пружинящие круги из сплава (с небольшим зазором для установки и теплового расширения), которые перемещаются в канавках в верхней части поршня (рис.2).

Двигатель газонокосилки представляет собой двигатель с воздушным охлаждением (рис. 2, 4). Головка и блок, изготовленные из алюминия, который эффективно проводит тепло, имеют отлитые в них охлаждающие ребра, которые обеспечивают большую площадь поверхности для теплообмена с окружающим воздухом. Маховик двигателя косилки выполняет функцию охлаждающего вентилятора. Окруженный кожухом из листового металла (рис.1) с проволочной сеткой, которая позволяет воздуху втягиваться внутрь, маховик имеет залитые в него лопатки, которые при вращении обеспечивают циркуляцию воздуха по ребрам охлаждения на блоке (рис.9). Пластиковая лопасть, называемая регулятором (рис.9), соединенная пружиной с дроссельной заслонкой, находится между периметром маховика и кожухом, где она поворачивается в ответ на изменения давления воздуха, возникающие в результате изменения частоты вращения двигателя из-за переменной нагрузки двигателя. Простой регулятор помогает поддерживать постоянные обороты двигателя при заданной настройке дроссельной заслонки и предотвращает случайное превышение скорости оператором оборотов двигателя.

Большинство автомобильных двигателей имеют водяное охлаждение; блок и головка имеют залитые в них каналы, называемые водяными рубашками, по которым циркулирует охлаждающая жидкость.Из двигателя охлаждающая жидкость поступает в радиатор, где она течет по длинным трубкам, окруженным охлаждающими ребрами, прежде чем вернуться в двигатель. В дополнение к движению автомобиля вперед, вентилятор, приводимый в движение ремнем вентилятора, змеевиком или электродвигателем, помогает втягивать воздух через радиатор. Охлаждающая жидкость проходит между двигателем и радиатором через верхний и нижний шланги радиатора и проталкивается водяным насосом, обычно приводимым в действие ремнем вентилятора или ремнем привода ГРМ. Охлаждающая жидкость обычно представляет собой 50 процентов дистиллированной воды и 50 процентов этиленгликоля; более низкая точка замерзания этой смеси по сравнению с чистой водой предотвращает образование трещин в блоках в холодную погоду (поскольку вода расширяется при замерзании), а также смесь обеспечивает коррозионную стойкость.

Термодинамическая эффективность

В контексте двигателей «КПД» означает отношение выполненной работы (то, что вы хотите) к затраченной тепловой энергии (сколько это стоит). Второй закон термодинамики гласит, что эффективность никогда не может достичь единицы, поэтому возникает вопрос о том, насколько большой она может быть, ограничиваясь только вторым законом. Паровые двигатели получают энергию от перегретого пара, впрыскиваемого в цилиндр с температурой TH. Они выполняют работу и отводят отработанный пар в окружающий воздух при температуре TC.Цикл Карно был изобретен Сади Карно (1796-1832) в 1824 году для концептуализации идеализированной версии паровой машины. Таким образом достигается максимальная эффективность, достижимая в принципе для двухтемпературного двигателя. В каждом цикле двигатель Карно изотермически получает энергию в виде тепла от горячего резервуара при абсолютной температуре TH, выполняет работу и изотермически отводит тепло в холодный резервуар с температурой TC. Два изотермических теплообмена связаны адиабатическими процессами. Обычное упражнение по общей физике требует, чтобы эффективность двигателя Карно была равна 1 — TC / TH.

Концептуальный цикл, называемый циклом Отто (ок. 1880 г.), выполняет те же теоретические функции для четырехтактного бензинового двигателя. Этот идеализированный цикл назван в честь Николауса Отто (1832–1891), который построил первые коммерчески успешные четырехтактные двигатели. Как и цикл Карно, цикл Отто термодинамически обратим (т.е. отклонения от равновесия незначительны), а идеальный газ служит рабочей жидкостью. Но шаги в цикле отличаются от таковых Карно.Давайте продумаем их и отобразим их изменения состояния на диаграмме давление-объем (рис. 10), начиная с рабочего хода, который мы разбиваем на две части. Давайте начнем с события, зажигания свечи зажигания в точке a на фотоэлектрической диаграмме, которое происходит в объеме V1 с поршнем в ВМТ. Это событие повышает температуру и давление от точки a до точки b на диаграмме PV, в то время как объем остается на уровне V1. Остальная часть рабочего хода моделируется поршнем, который адиабатически опускается до НМТ (от b до c) по мере увеличения объема газов от V1 до V2.Затем такт выпуска удаляет горячие выхлопные газы, когда поршень движется из НМТ в ВМТ, а такт впуска приводит к более холодной воздушно-топливной смеси, когда поршень возвращается в НМТ. В фотоэлектрическом пространстве чистым эффектом тактов выпуска и впуска является снижение температуры и давления при постоянном объеме V2, переходя цикл от c к d. Такт сжатия адиабатически уменьшает объем от V2 до V1, повышая температуру и давление и возвращая представление цикла на PV-диаграмме от d к точке a.

Эффективность этого цикла, как вы могли продемонстрировать во вводной термодинамике, составляет 1 — (V2 / V1) 1 − γ. V2 / V1 — степень сжатия, а γ — отношение удельной теплоемкости при постоянном давлении к теплоемкости при постоянном объеме. Для воздуха γ ≈ 1,4. Двигатели косилок имеют степень сжатия около 5, что соответствует теоретическому верхнему пределу эффективности 0,47. Напротив, двигатель соревнований со степенью сжатия 15 имеет верхний предел эффективности 0,66. Настоящий двигатель менее эффективен, чем его идеальный верхний предел, потому что он имеет не только диссипативные влияния, такие как трение, но и теплообмен, превышающий требования второго закона, потери работы при перемещении его внутренних масс и т. Д., Не говоря уже о качении. и сопротивление воздуха, препятствующее движению машины.Как правило, автомобиль чувствует себя хорошо, если четверть выходной мощности, измеренной на маховике, преобразовывается в кинетическую энергию центра масс всего автомобиля [9].

Теперь, когда мы вступаем в сезон кошения, проявите уважение к двигателю своей косилки, заменив масло и промытый или новый воздушный фильтр, сотрите грязь с ребер охлаждения и взаимодействуйте со своей машиной с искренней благодарностью!

В Части 2 мы обсудим, как топливо смешивается с воздухом перед сгоранием и как искра подается в эту смесь в решающий момент между тактами сжатия и рабочего хода.Эта статья также будет включать несколько примечаний по техническому обслуживанию, и мы увидим некоторых известных физиков-историков, взаимодействующих со своими автомобилями и мотоциклами. //

Благодарность

Большое спасибо Девину Пауэллу за внимательное редактирование этой статьи.

Ссылки и примечания

[1] Лаборатория трупов двигателей с фотографиями студентов, работающих с двигателями, описана в «Техническом обслуживании мотоциклов и оценке физики», Radiation (Fall 2007), pp.5-11. Веб-сайт с интерактивным моделированием всех типов двигателей можно найти по адресу http://www.animatedengines.com/index.html.
[2] То, что мы вообще можем понять атомы благодаря существованию простейшего атома, водорода, элегантно сформулировано Джоном Ригденом в книге «Водород, существенный элемент» (издательство Гарвардского университета, Кембридж, Массачусетс, 2002).
[3] Выходная мощность, которая обязательно меньше погонной энергии, является утверждением второго закона термодинамики. См. «Второй закон термодинамики и несохранение энтропии», SPS Newsletter (июнь 1998 г.), стр.9-13.
[4] Гленн Элерт, изд., The Physics Factbook, http://hypertextbook.com/facts/2003/ArthurGolnik.shtml.
[5] Брэд Кинг, Книга всех цветов гоночных автомобилей (Crescent Books, Нью-Йорк, Нью-Йорк, 1972), стр. 5-7.
[6] Объем одноцилиндровых двигателей Brigg & Stratton составляет от 5 до 32 кубических дюймов; эта и другие спецификации двигателя косилки из книги Пола Демпси, «Как ремонтировать двигатели Briggs & Stratton» (Tab Books, Blue Summit, PA, 1978), стр. 9.
[7] Чтобы двигаться быстрее, объем ранних гоночных автомобилей становился все больше.Fiat S79 1910 года обладал, возможно, самым большим 4-цилиндровым двигателем в истории, мощностью 28,3 литра от дирижабля и разгонялся до 132,37 миль в час в 1913 году. Знаменитый «Blitzen Benz» с 21,5 литровым двигателем в 1911 году разогнался до скорости более 140 миль в час; Король, исх. 5, pp. 5-7, 22.
[8] В двухтактных двигателях поршень используется в качестве клапана с отверстиями или портами, вырезанными по бокам цилиндра, впускной и выпускной отверстий на противоположных сторонах. Чтобы смазать поршень как клапан, масло необходимо предварительно смешать с бензином. Эти двигатели дымные и шумные, но выдают большую мощность для своего размера с одним рабочим ходом на оборот.Дизельные двигатели работают на четырехтактных двигателях без свечи зажигания. Степень сжатия достаточно высока, чтобы температура достигала температуры вспышки менее летучего дизельного топлива в конце такта сжатия.
[9] Колин Кэмпбелл, Двигатель спортивного автомобиля: его настройка и модификация (Robert Bentley Inc., Кембридж, Массачусетс, 1965, старомодное, но хорошее, загруженное прикладной физикой и написанное с юмором), стр. 4-7.

Каков принцип создания гибридного автомобиля?

Гибридные автомобили — это первый шаг к переходу на электромобили, когда дело касается транспорта.Чтобы снизить уровень загрязняющих выбросов, производимых двигателями внутреннего сгорания, у них есть электродвигатель, который заменяет или поддерживает бензиновый или дизельный двигатель в зависимости от того, как он используется. Существует несколько различных типов гибридных автомобилей со своими преимуществами и методами работы.

Различные типы гибридных автомобилей

Легкие гибридные автомобили

Легкие гибридные автомобили являются лишь частично гибридными и могут снимать некоторую нагрузку со стороны двигателя внутреннего сгорания, чтобы снизить его расход топлива.В этих автомобилях есть небольшая батарея, которая может обеспечивать резервное копирование двигателя внутреннего сгорания, но эта технология не позволяет использовать электрическое вождение.

Поскольку при движении автомобиля расходуется больше всего энергии, такая низкоуровневая гибридизация может снизить расход топлива при движении по городу (от 5 до 10%). Он заряжается кинетической энергией, возникающей при торможении и замедлении, что делает его автономной системой, которую не нужно заряжать от розетки.

Однако до сих пор он показал ограниченную производительность, а экономия на выбросах CO 2 низкая.

Гибридные автомобили

Гибридный автомобиль (или HEV, сокращенно от Hybrid Electric Vehicle ) имеет аккумулятор с достаточной емкостью, чтобы проехать несколько километров в полностью электрическом режиме. Как и у мягкого гибрида, аккумулятор этого автомобиля заряжается за счет преобразования кинетической энергии, выделяющейся при торможении и замедлении. При езде по городу это позволяет электродвигателю регулярно заменять двигатель внутреннего сгорания. Таким образом, водитель экономит топливо, наслаждаясь поездкой без шума и вибрации двигателя — качества, уникальные для электромобиля.

Модели последнего поколения предлагают более динамичные и гибкие характеристики, такие как новая линейка гибридных автомобилей Renault E-TECH с интеллектуальной многорежимной коробкой передач, позволяющей легко переключаться между режимами.

Например, новые гибриды Renault E-TECH могут ездить в полностью электрическом режиме до 80% пробега в городе. А их расход топлива при езде по городу примерно на 40% ниже, чем у аналогичного автомобиля с бензиновым двигателем.

Аккумуляторные гибридные автомобили

Перезаряжаемый гибридный автомобиль (или PHEV, сокращенно от Plug-in Hybrid Electric Vehicle), немного ближе к полностью электрическому транспортному средству с перезаряжаемой батареей большей емкости (9.8 кВтч для линейки Renault PHEV). Перезаряжаемый гибридный автомобиль подключается к подходящей домашней розетке или общественной точке зарядки, чтобы «зарядиться» электричеством. Эта способность заряжаться от сети дает ему полный запас хода в несколько десятков километров.

Перезаряжаемые гибридные автомобили идеально подходят, например, для всех еженедельных поездок по городу в полностью электрическом режиме, без использования ископаемого топлива и, следовательно, без выбросов *. Преимущества очевидны как для окружающей среды, так и для вашего кошелька! В длительных поездках перезаряжаемый гибридный двигатель ведет себя как обычный гибридный двигатель, поскольку автомобиль запускается от электричества и частично работает в электрическом режиме.

Благодаря моделям PHEV и их способности заряжаться от сети водители делают большой шаг к переходу на полностью электрические.

Итак, как это работает в общих чертах? В отличие от мягкого гибрида, электродвигатель гибридного автомобиля или перезаряжаемого гибридного автомобиля фактически используется для поворота колес, чтобы обеспечить даже полностью электрическое вождение. Автомобили HEV и PHEV имеют тяговую батарею (в дополнение к обычной батарее автомобиля с двигателем внутреннего сгорания), которая используется только для питания электродвигателя.
Во время пуска и разгона электродвигатель гибрида и перезаряжаемого гибрида с его мгновенным крутящим моментом заменяет двигатель внутреннего сгорания и делает транспортное средство более отзывчивым.

Какой бы ни была степень гибридизации, электродвигатель действует как генератор, который заряжает аккумулятор, пока автомобиль замедляется во время замедления и торможения. Благодаря этой бесплатной энергии снижается расход топлива, что соответственно снижает эксплуатационные расходы.
Перезаряжаемые гибридные модели также имеют тяговую батарею большей емкости.Автомобиль можно подключить к электросети для зарядки аккумулятора и, таким образом, увеличить запас хода в полностью электрическом режиме.

Преимущества гибридного автомобиля

Комбинируя электродвигатель с двигателем внутреннего сгорания, гибридные автомобили могут снизить выбросы при эксплуатации * и потребление ископаемого топлива на 5–40% в зависимости от уровня гибридизации. Гибридные и перезаряжаемые гибридные автомобили также имеют преимущество в том, что они не имеют шума двигателя, а также обладают динамичным, но расслабляющим опытом вождения в электрическом режиме.
Помимо этих основных качеств, мы можем добавить интеллектуальное управление энергопотреблением благодаря различным калькуляторам, которые оптимизируют урожайность автомобиля в режиме реального времени и обеспечивают наилучшую производительность в любых условиях.
Кроме того, в гибридных автомобилях Renault используются все знания и ноу-хау номер 1 в Европе на рынке электромобилей.

Гибрид и электромобили

Помимо того, что гибриды в меньшей степени зависят от зарядных устройств для преодоления больших расстояний, они также оснащены высокопроизводительным газовым двигателем, отвечающим последним экологическим стандартам.
Что касается полностью электрического автомобиля, в любой поездке на него можно положиться, поскольку он обладает полной мощностью при запуске, мощным устойчивым ускорением и динамичным плавным управлением, причем без шума двигателя.

* Ни выбросы CO 2 в атмосферу, ни загрязняющие вещества во время движения (за исключением изнашиваемых деталей)

Авторские права: He & Me, Жан-Брис ЛЕМАЛЬ, Оливье МАРТЕН-ГЕМБЬЕ.

Принципы работы

a. Основные детали

Все двигатели состоят из двух основных частей:

  • СТАТОР (неподвижная часть)
  • РОТОР (вращающаяся часть)

Конструкция и изготовление этих двух компонентов определяют классификацию и характеристики двигателя.Дополнительные компоненты (например, щетки, контактные кольца, подшипники, вентиляторы, конденсаторы, центробежные переключатели и т. Д.) Также могут быть уникальными для конкретного типа двигателя.

г. Операция

Все двигатели, описанные в этом руководстве, работают по принципу электромагнетизма. Существуют и другие двигатели, работающие на электростатическом и пьезоэлектрическом принципах, но они менее распространены.

В электродвигателях величина силы напрямую зависит от силы магнитного поля и силы тока, протекающего в проводнике (рисунок 3-1).

Рисунок 3-1: Сила, действующая на проводник в магнитном поле

F = ILB, где

F — Сила (ньютоны)
I — Ток (Амперы)
L — Длина (метры)
B — Магнитный поток (веберы / м²)

Обычно ротор электродвигателя находится в магнитном поле, создаваемом статором. Магнитное поле индуцирует ток внутри ротора, и результирующая сила, вызванная магнитными полями в статоре и роторе (и, следовательно, крутящий момент), заставляет его вращаться.

г. Мощность и крутящий момент двигателя

Паспортная табличка электродвигателей указывает номинальную механическую мощность в лошадиных силах или киловаттах.

Двумя важными факторами, определяющими выходную механическую мощность, являются крутящий момент и скорость.

Крутящий момент — это мера силы, которая вызывает вращение. Часто указывается в фунт-футах или ньютон-метрах.

Чтобы лучше понять концепцию крутящего момента, рассмотрим большой гаечный ключ длиной в один фут, который используется для снятия гайки (см. Рисунок 3-2).Если приложить усилие в 2 фунта на конце этого гаечного ключа, крутящий момент будет 2 фунт-фут. Пока гайка не начнет вращаться, работа фактически не выполняется. Когда гайка действительно начинает вращаться, работа выполняется. Если предположить, что к рукоятке гаечного ключа по-прежнему прикладывается та же сила, мощность по существу равна скорости вращения, умноженной на приложенный крутящий момент.

Рисунок 3-2: Пример крутящего момента

Скорость двигателя обычно указывается в оборотах в минуту (об / мин).

Мощность двигателя в лошадиных силах определяется как скорость вращения двигателя, умноженная на крутящий момент.

Чем медленнее двигатель работает, тем больший крутящий момент он должен создать для обеспечения такой же выходной мощности. Чтобы выдерживать больший крутящий момент, двигатели с более низкой скоростью нуждаются в более прочных компонентах и, как правило, больше, тяжелее и дороже, чем двигатели с более высокой скоростью и той же номинальной мощностью.

Иногда понятие крутящего момента и скорости путают с мощностью в лошадиных силах.Чтобы проиллюстрировать разницу, рассмотрим пусковой двигатель автомобиля. Этот специальный двигатель рассчитан на высокий крутящий момент, но относительно низкую мощность. Его единственная цель — медленно повернуть двигатель автомобиля, чтобы он завелся. И наоборот, двигатель маленького вентилятора вращается с высокой скоростью, но его легко остановить. Последний двигатель выдает низкий крутящий момент. Последний пример — двигатель настольной пилы мощностью 3 л.с. Если вставить кусок дерева во вращающееся лезвие, двигатель практически не замедлится, поскольку двигатель сочетает в себе скорость и крутящий момент.

г. Характеристики крутящего момента двигателя

Крутящий момент, создаваемый двигателем, обычно зависит от скорости.

Каждый тип двигателя имеет свое собственное соотношение крутящего момента и скорости, которое при отображении как крутящий момент в зависимости от скорости помогает в процессе выбора (рисунок 3-3).

Рисунок 3-3: Типичный график крутящего момента-скорости

Некоторые важные моменты, обнаруженные на графике крутящий момент-скорость, включают:

  1. Пусковой крутящий момент — крутящий момент, создаваемый при нулевой скорости.Если двигатель должен вращать нагрузку, которую трудно запустить (нагрузка с высоким моментом инерции), следует выбрать двигатель с высоким пусковым моментом.
  2. Крутящий момент — минимальный крутящий момент, создаваемый при разгоне с места до рабочей скорости. Это может быть критичным для приложения, которому требуется питание, чтобы преодолеть некоторые временные препятствия перед достижением выходного рабочего уровня.
  3. Пробойный момент — максимальный крутящий момент, который двигатель может выдать до остановки.
  4. Момент полной нагрузки (также тормозной момент) — крутящий момент, создаваемый при скорости полной нагрузки, который дает номинальную мощность двигателя. На этом этапе значение крутящего момента, умноженного на скорость, равняется номинальной мощности, указанной на паспортной табличке.

Предыдущая: Классификация двигателей | Содержание | Далее: AC Motors

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *